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Abstract

Action recognition has become a hot topic within computer vision. However, the action rec-

ognition community has focused mainly on relatively simple actions like clapping, walking,

jogging, etc. The detection of specific events with direct practical use such as fights or in

general aggressive behavior has been comparatively less studied. Such capability may be

extremely useful in some video surveillance scenarios like prisons, psychiatric centers or

even embedded in camera phones. As a consequence, there is growing interest in develop-

ing violence detection algorithms. Recent work considered the well-known Bag-of-Words

framework for the specific problem of fight detection. Under this framework, spatio-temporal

features are extracted from the video sequences and used for classification. Despite en-

couraging results in which high accuracy rates were achieved, the computational cost of ex-

tracting such features is prohibitive for practical applications. This work proposes a novel

method to detect violence sequences. Features extracted from motion blobs are used to

discriminate fight and non-fight sequences. Although the method is outperformed in accura-

cy by state of the art, it has a significantly faster computation time thus making it amenable

for real-time applications.

Introduction

In the last few years, the problem of human action recognition from video has become tractable

by using computer vision techniques, see surveys [1], [2], [3]. Within this topic, there is a vast

literature in which experimental results are given for recognition of human actions like walk-

ing, jumping or hand waving [4]. However, action detection has been devoted less effort. Ac-

tion detection is a related task in which only a specific action must be detected. Action

detection may be of direct use in real-life applications, fight detection being a clear example.

Whereas there is a number of well-studied datasets for action recognition, significant datasets

with violent actions (fights) have not been made available until the work [5]. A violence detec-

tor has, however, immediate applicability in the surveillance domain. The primary function of

large-scale surveillance systems deployed in institutions such as schools, prisons and psychiat-

ric care facilities is for alerting authorities to potentially dangerous situations. However, human

operators are overwhelmed with the number of camera feeds and manual response times are

slow, resulting in a strong demand for automated alert systems. Similarly, there is increasing
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demand for automated rating and tagging systems that can process the great quantities of

video uploaded to websites.

One of the first proposals for violence recognition in video is Nam et al. [6], which proposed

recognizing violent scenes in videos using flame and blood detection and capturing the degree

of motion, as well as the characteristic sounds of violent events. Cheng et al. [7] recognize gun-

shots, explosions and car-braking in audio using a hierarchical approach based on Gaussian

mixture models and Hidden Markov models (HMM). Giannakopoulos et al. [8] also propose a

violence detector based on audio features. Clarin et al. [9] present a system that uses a Kohonen

self-organizing map to detect skin and blood pixels in each frame and motion intensity analysis

to detect violent actions involving blood. Zajdel et al. [10], introduced the CASSANDRA sys-

tem, which employs motion features related to articulation in video and scream-like cues in

audio to detect aggression in surveillance videos.

More recently, Gong et al. [11] propose a violence detector using low-level visual and audi-

tory features and high-level audio effects identifying potential violent content in movies. Chen

et al. [12] use binary local motion descriptors (spatio-temporal video cubes) and a bag-of-

words approach to detect aggressive behaviors. Lin and Wang [13] describe a weakly-super-

vised audio violence classifier combined using co-training with a motion, explosion and blood

video classifier to detect violent scenes in movies. Giannakopoulos et al. [14] present a method

for violence detection in movies based on audio-visual information that uses a statistics of

audio features and average motion and motion orientation variance features in video combined

in a k-Nearest Neighbor classifier to decide whether the given sequence is violent. Chen et al.

[15] proposed a method based on motion and detecting faces and nearby blood. Violence de-

tection has been even approached using static images [16]. Also recently, [17] approached the

problem within the context of video sharing sites by using textual tags along with audio and

video. [18] recently approached the problem of detecting violence outbreaks in crowds using

an optical flow-based method. Proof of the growing interest in the topic is also the MediaEval

Affect Task, a competition that aims at discovering violence in color movies [19]. Goto et al.

[20] recently proposed a system for violent scenes detection, which is based on the combination

of visual and audio features at segment-level. In this case the algorithms have access to addi-

tional information such as audio, subtitles and previously-annotated concepts.

In summary, a number of previous works require audio cues for detecting violence or rely

on color to detect cues such as blood. In this respect, we note that there are important applica-

tions, particularly in surveillance, where audio and color are not available. In other cases it is

possible and easy to obtain audio, but audio features can increase false positive rates or miss

true positives because there are many violence situations where the audio signal is not signifi-

cant, for example: to push, throw (something), knock down, attack with a knife, block (some-

one), etc. Besides, while explosions, blood and running may be useful cues for violence in

action movies, they are rare in real-world situations. In any case, violence detection is an ex-

tremely difficult problem, since violence is a subjective concept. Fight detection, on the con-

trary, is a specific violence-related task that may be tackled using action

recognition techniques.

Deniz et al. [21] have more recently presented a novel method to detect violent sequences

which uses extreme acceleration patterns as the main feature. The average performance was

around 90% in three datasets and with a feature extraction time of 162 ms (including a neces-

sary global motion correction step). Bermejo et al. [5] recently demonstrated encouraging re-

sults in applying generic action recognition methods to violent detection, achieving 90%

accuracy using MoSIFT features ([22]). MoSIFT descriptors are obtained from salient points in

two parts: the first is an aggregated histogram of gradients (HoG) which describe the spatial ap-

pearance. The second part is an aggregated histogram of optical flow (HoF) which indicates the
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movement of the feature point. MoSIFT are powerful features used for generic action recogni-

tion. However, the computational cost of extracting such features is prohibitively large, taking

nearly 1 second per frame on a high-end laptop. This precludes use in practical applications,

where many camera streams may have to be processed in real-time. Such cost is also a major

problem when the objective is to embed a fight detection functionality into a smart camera (i.e.

going from the extant embedded motion detection to embedded violent motion detection).

Also these cameras could provide global motion compensation that can be performed in the

device itself.

In this context, an efficient method is proposed based on detecting motion blobs. After-

wards, features extracted from these blobs are ultimately used to discriminate between fight

and non-fight sequences. The paper is organized as follows. Section describes the proposed

method. Section provides experimental results. Finally, in Section the main conclusions

are outlined.

Method

As mentioned above, the main steps of the proposed method are shown in Fig 1. It is hypothe-

sized that motion blobs in fight sequences have a distinct position and shape. Firstly, the abso-

lute image difference between consecutive frames is computed. The resulting image is then

binarized, leading to a number of motion blobs, see Fig 2 where the largest blobs have been

marked on a fight sequence and Fig 3 on a no-fight sequence. Only the K largest motion blobs

are selected for further processing.

In order to characterize the K blobs, different measures are computed such as area, centroid,

perimeter, . . . as well as distances between blob centroids. In the following, the method is de-

scribed in detail.

A short sequence S(s) of gray scale images is denoted as:

SðsÞ ¼ Itðx; yÞ

where x = 1, 2, . . ., N, y = 1, 2, . . .,M and t = 1, 2, . . ., T. N andM are the number of rows

and columns of each frame I and T is the number of frames respectively.

Let It−1(x, y) and It(x, y) be two consecutive frames in the sequence. The absolute difference

between consecutive images is then computed as:

Etðx; yÞ ¼ jIt�1
ðx; yÞ � Itðx; yÞj

Then, E is binarized using a threshold h:

Ftðx; yÞ ¼
1; if Etðx; yÞ > 255 � h;

0; otherwise

(

where 0< h< 1 can be arbitrarily chosen. The second step is to define each blob on the

image Fi(x, y). Each blob (B) is the set of pixels (x, y) for which Bb,t(x, y) = b, where b = 0, 1,

2, . . ., J and where J is the number of blobs in image Ft(x, y). Each blob Bb,t(x, y) is here defined
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as an image containing a set of adjacent points, neighborhood (N), where Ft(x, y) = 1.

Bb;tðx; yÞ ¼

1; if [
ðx;yÞ2N 1

Ftðx; yÞ ¼ 1;

X

ððx; yÞ 2 N
1
Þ ¼ m

1
;

2; if [
ðx;yÞ2N 2

Ftðx; yÞ ¼ 1;

X

ððx; yÞ 2 N
2
Þ ¼ m

2
;

. . .

J; if [
ðx;yÞ2N J

Ftðx; yÞ ¼ 1;

X

ððx; yÞ 2 N JÞ ¼ mJ ;

0; otherwise
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Fig 1. General diagram.General diagram of the proposed method.

doi:10.1371/journal.pone.0120448.g001
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wherem1,m2, . . .mJ are the number of adjacent pixels of each blob respectively and

m1+m2+. . .mJ � N �M. These blobs are calculated for every frame. Afterwards, the K largest

blobs are selected to extract useful information for the classification of the video sequences.

The following features are extracted by the proposed method.

The blob areas (Aa,t) will be definedlike as:

Aa;t ¼

PN

x¼1

PM

y¼1
Ba;tðx; yÞ

a

Fig 2. Fight sequence. Four consecutive frames from a fight sequence where the four largest motion blobs
have been marked.

doi:10.1371/journal.pone.0120448.g002
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Fig 3. Non-Fight sequence. Four consecutive frames from of a non-fight sequence where the four largest
motion blobs have been marked. Compare with those of Fig 2. In the previous figure the motion blobs are
larger and clustered, whereas in the current figure the motion blobs are smaller and not clustered.

doi:10.1371/journal.pone.0120448.g003
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where a = 1, 2, . . ., K. The centroids (CXc,t and CYc,t) are

CXc;t ¼

PN

x¼1
Bc;tðx; yÞ � x

PN

x¼1
Bc;tðx; yÞ

¼

PN

x¼1
Bc;tðx; yÞ � x

N

CYc;t ¼

PM

y¼1
Bc;tðx; yÞ � y

PM

y¼1
Bc;tðx; yÞ

¼

PM

y¼1
Bc;tðx; yÞ � y

M

where c = 1, 2, . . ., K. The best K blobs are selected according to area (largest K areas). Now,

the distances Dd,t between blobs are calculated as:

Dd;t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCXdþ1;t � CXd;tÞ
2

þ ðCYdþ1;t � CYd;tÞ
2

q

where d ¼ 1; 2; . . . ;
PK�1

i¼1
i. Therefore, Dd,t represents the distances between every pair in

the K blobs.

Compactness (Cco,t) is also used to estimate the shape (rounded or elliptical) of the blob and

is defined as:

Cco;t ¼
P2

co;t

Aco;t

where co = 1, 2, . . ., K. To estimate the perimeter (Pp,t) the Sobel operator [23] has been

used to detect the edges over Bb,t(x, y). This operator (Gb,t(x, y)) is applied to calculate the

edges for each blob. Edge pixels have value 1 and the rest 0.

Pp;t ¼

PN

x¼1

PM

y¼1
Gp;tðx; yÞ

p

where p = 1, 2, . . ., K.

Finally, note that the proposed method is intrinsically able to learn in the presence of global

motion. Global motion leads to blobs with a distinct shape and position, typically large elongat-

ed blobs, see Fig 4.

Results

Datasets

The proposed method was assessed using three different datasets and compared with other five

related methods. The work [5] introduced the first two datasets explicitly designed for assessing

fight detection. The first dataset (“Movies”) introduced in [5] consists of 200 video clips in

which fights were extracted from action movies (see Fig 5 top). The non-fight videos were ex-

tracted from public action recognition datasets. The second dataset (“Hockey”) consists of

1000 clips at a resolution of 720×576 pixels, divided in two groups, 500 fights (see Fig 5 bot-

tom) and 500 non-fights, extracted from hockey games of the National Hockey League (NHL).

Each clip was limited to 50 frames and resolution lowered to 320x240. Unlike the Hockey data-

set, which was relatively uniform both in format and content, the movies dataset had a wider

variety of scenes that were captured at different resolutions. This dataset was rescaled to a

uniform size.

Since the proposed method is based to detect blobs, sudden actions such as those in the

above-mentioned Hockey dataset are particularly challenging. In any case, for practical use the

aim at separating fights from other typical actions. Consequently, a more realistic dataset was
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Fig 4. Global movement sequence. Four consecutive frames from with global movement where the four
largest motion blobs have been marked.

doi:10.1371/journal.pone.0120448.g004
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Fig 5. Movie and Hockey datasets. Sample fight videos from the action movie (top) dataset and the Hockey (bottom) datase

doi:10.1371/journal.pone.0120448.g005
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also considered. The UCF101 [24] is a data set of realistic action videos collected from You-

Tube, having 101 action categories. UCF101, see Fig 6, gives the largest diversity in terms of ac-

tions and with the presence of large variations in camera motion, object appearance and pose,

object scale, viewpoint, cluttered background and illumination conditions it is the most chal-

lenging dataset to date. For this case, it is even more challenging since it also includes 50 actions

from sports. To our knowledge, this is the largest and most challenging dataset in which a fight

detection algorithm has been tested.

Fig 6. UCF101 dataset. The 101 actions in UCF101 shown with one sample frame.

doi:10.1371/journal.pone.0120448.g006
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In the experiments with UCF101, for the fight set was pooled on the fight clips of both the

Hockey and Movies dataset plus two of the 101 UCF actions that actually represented fights

(“Punching” and “Sumo”, see Fig 7). This gave a total of 1843 fight clips and 42278 non-fight

clips (totaling approximately 2 Million frames). In order to avoid unbalanced sets have been se-

lected a randomly chosen subset of 500 fight and 500 non-fight clips. This in turn was repeated

10 times.

Experimental Setup

In the following experiments, two variants of the proposed method are described, called v1 and

v2. Previously some of the related methods are commented.

As for the other related methods, the Bag-of-Words framework was used with both STIP

and MoSIFT features, as in [5]. In [5] STIP features performed poorly on the Movie dataset

and so MoSIFT was considered the best descriptor. MoSIFT’s superiority has been also proven

in other action recognition works. For BoW(MoSIFT), and even with the use of parallel K-

means, extracting vocabularies from the whole UCF101 dataset was unfeasible. Therefore, a

random subset of 1200 samples was first selected and then a vocabulary of size 500 (the best vo-

cabulary size in [5]) was computed (The authors are not aware of any previous work using

MoSIFT in a bag-of-words framework with the UCF101 database).

The Violent Flows method (ViF) [18] mentioned in Section was also tested. ViF is a recent

method which may be considered representative of dense optical flow based methods for action

recognition (other examples that fall into this category are the dense trajectories of [25] and

discriminate slow feature analysis [26]). Finally, results are also compared to the Local Motion

Patterns method (LMP) [27]. This method is based on extracting simple statistics (variance,

skewness and kurtosis) from temporal cuboids centered on tracked keypoints. Keypoints are

located with a Harris detector. In [27] the authors claimed that this descriptor is both informa-

tive and efficient for action recognition. Since the number of extracted descriptor vectors varies

in each video sequence is extracted fixed-size histograms for each feature, similar to what is

done with the proposed method. The best results were obtained using 6 bins. Deniz et al. [21]

method is another recent method to detect violent sequences mentioned in Section and was

also included in the experiments.

Fig 7. Fights on UCF101. Sample frames of Sumo and Punch categories in UCF101.

doi:10.1371/journal.pone.0120448.g007
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The first variant (v1) assumes that position and shape of K largest blobs can discriminate

between fight and non-fight sequences. To characterize position and shape, the centroid and

distances between blob centroids are computed. In summary, this variant (v1) uses the best K

areas, the K centroids of these areas and the distances between these centroids. Hence, a se-

quence S has 3K + K(K − 1)/2 features.

The second variant (v2) uses the following features to characterize position and shape, the

centroid, distances between blob centroids and compactnesses. Finally, this variant (v2) uses

the best K areas, the K centroids of these areas, the distances between these centroids and the K

compactnesses. Hence, the sequence S has 2K + K(K − 1)/2 features.

In the experiments, the proposed method needs to set two parameters. First, a binary

thresholding parameter h between 0< h< 1 to binarize this image. Second, the parameter K

that represents the number of largest blobs (Areas, Centroids, distances between centroids and

compactnesses, see the previous Section). The Movies dataset has been used to fit these param-

eters. To find the best configuration of the proposed method Accuracy has been used. The Ac-

curacy is the number the True Posives(TP) plus True Negatives(TN) divided by the total

number of samples. Tables 1 and 2 show the results measured using 5 repetitions of 10-fold

cross-validation and three different classifiers KNN, Adaboost (100 classifiers, weighted vot-

ing) and Random Forests (50 trees) for both variants (v1 and v2) of the method. The aim is to

set the best parameters h and K for these two variants. These tables (1 and 2) show the results.

The h and K parameters have been set to 0.4 and 8 respectively for both variants. In the follow-

ing, these two variants are compared with other extant methods.

Table 1. This table shows the mean and standard deviation of the Accuracy for these three classifiers
for variant 1 of the proposedmethod.

Method h K KNN AdaBoost Random Forests

Variant-v1 0.2 4 91.1 ± 0.7 79.5 ± 0.6 95.9 ± 0.5

6 92.6 ± 0.5 84.9 ± 0.8 94 ± 0.6

8 95 ± 0.4 87.7 ± 1.1 96.4 ± 0.5

10 93.5 ± 0.2 89.2 ± 0.4 95.5 ± 0.4

12 94.7 ± 0.4 90.6 ± 0.6 95.2 ± 0.5

14 93.5 ± 0.2 90.2 ± 0.6 95.0 ± 0.6

16 93.3 ± 0.8 89.4 ± 0.4 95.1 ± 0.5

18 93 ± 0.4 88.1 ± 0.6 95.2 ± 0.8

20 92.8 ± 0.4 87.2 ± 0.3 94.8 ± 0.4

0.05 8 88.6 ± 0.1 78.5 ± 0.7 93.8 ± 0.3

0.1 90.2 ± 1 78.4 ± 0.8 94.4 ± 0.7

0.15 88.5 ± 0.4 83.6 ± 0.5 96.1 ± 0.3

0.25 93.6 ± 0.7 88 ± 0.9 96.1 ± 0.3

0.3 94.8 ± 0.4 87.8 ± 0.6 97.4 ± 0.4

0.35 90.6 ± 1.9 85.1 ± 0.4 97.1 ± 0.3

0.4 63.4 ± 3.8 81.8 ± 0.2 97.7 ± 0.4

0.45 91.7 ± 1.1 79.6 ± 0.8 94.8 ± 0.4

0.5 94 ± 0.2 77.7 ± 0.3 92.7 ± 0.4

doi:10.1371/journal.pone.0120448.t001
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Discussion

The related methods are now compared with the two variants proposed. See Table 3 which

shows the results for the three datasets using Support Vector Machines (SVM), AdaBoost and

Random Forests (RF) classifiers are compared. See Figs 8, 9 and 10 where the ROC can be ob-

served for the Random Forest classifier for each method.

In the experiments above, the ViF and LMP implementations followed the original version

in the respective papers. In order to evaluate the dependence of accuracy of these methods on

the number of features, it was also deemed necessary to assess the accuracy vs speed trade-off

offered by those two methods. Fig 11 shows the results obtained with ViF (using UCF101 data-

set). In this case the ViF results were obtained by varying the width of the coarsest level of the

Optical Flow computation. As for LMP, the results (see Fig 12) were obtained by varying the

number of temporal scales considered by the algorithm.

Table 4 shows the number of features used for classification and the computational cost (for

feature extraction). The code for both STIP and MoSIFT was compiled, while the code for rest

of the methods was interpreted and used no parallelization. These results show a significant im-

provement in speed. The proposed method, using 2548 and 2940 features respectively, is com-

putationally 12 and 16 times faster than the STIP and MoSIFT methods.

From the results it can be observed that the proposed method is not better than BoW

(STIP), BoW(MoSIFT) and Deniz et al. [21] in terms of accuracy. However, the proposed

method gives slightly better accuracies than the ViF and LMP methods. Most importantly, see

Table 4, the proposed method is approximately 26, 12, 18, 6 and 7 times faster than the BoW

(STIP), BoW(MoSIFT), ViF, LMP and Deniz et al. [21] methods respectively.

The proposed method is amenable to real-time applications since it requires less than 1/25

seconds per frame. In fact, the time spent in deciding whether an input sequence (50 frames)

contains a violent action is between 0.0225 and 0.0265 seconds per frame.

Table 2. This table shows the mean and standard deviation of the Accuracy for three classifiers for
variant 2 of the proposedmethod.

Method h K KNN AdaBoost Random Forests

Variant-v2 0.2 4 92.7 ± 0.8 79.3 ± 0.8 95.9 ± 0.3

6 93.2 ± 0.6 84.5 ± 1.5 95.7 ± 0.6

8 95.2 ± 0.8 88.6 ± 0.6 96.4 ± 0.3

10 93.7 ± 0.4 90.2 ± 0.4 95 ± 0.8

12 94.5 ± 0.5 90.6 ± 0.7 95.9 ± 0.9

14 93.9 ± 0.5 90.7 ± 0.4 95.1 ± 0.9

16 94 ± 0.4 90 ± 0.2 95.5 ± 0.8

18 93.7 ± 0.3 88.2 ± 0.5 95.2 ± 1

20 92.6 ± 0.5 87.2 ± 0.3 94.4 ± 0.5

0.05 8 88.8 ± 1.2 77.3 ± 0.4 93.9 ± 0.5

0.1 91.2 ± 0.6 78.8 ± 1.4 94.9 ± 0.7

0.15 89.7 ± 1.3 83.1 ± 1.4 96.1 ± 0.5

0.25 93 ± 0.4 88.4 ± 1.2 95.8 ± 0.6

0.3 94.8 ± 0.4 88.4 ± 0.6 97.3 ± 0.2

0.35 88.2 ± 2 85.3 ± 0.6 97.4 ± 0.2

0.4 65.1 ± 2.7 81.8 ± 0.4 97.8 ± 0.4

0.45 91.2 ± 2.3 79.5 ± 0.5 94.9 ± 0.5

0.5 91 ± 4.3 77.2 ± 0.3 92.6 ± 0.3

doi:10.1371/journal.pone.0120448.t002
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Table 3. This table shows the results for the three datasets using Support Vector Machines (SVM),
AdaBoost and Random Forests (RF) classifiers for the related methods and the two proposed vari-
ants. Three measures have been calculated: mean accuracy, standard deviation accuracy and AUC.

Method Classifier Dataset

Movies Hockey UCF101

BoW (STIP) SVM 82.3±0.9/0.88 88.5±0.2/0.95 72.5±1.5/0.74

AdaBoost 75.3±0.83/0.83 87.1±0.2/0.93 63.1±1.9/0.68

RF 97.7±0.5/0.99 96.5±0.2/0.99 87.3±0.8/0.94

BoW (MoSIFT) SVM 63.4±1.6/0.72 83.9±0.6/0.93 81.3± 1/0.86

AdaBoost 65.3±2.1/0.72 86.9±1.6/0.96 52.8±3.6/0.62

RF 75.1±1.6/0.81 96.7±0.7/0.99 86.3±0.8/0.93

ViF SVM 96.7±0.3/0.98 82.3±0.2/0.91 77.7±2.16/0.87

AdaBoost 92.8±0.4/0.97 82.2±0.4/0.91 78.4±1.7/0.86

RF 88.9±1.2/0.97 82.4±0.6/0.9 77±1.2/0.85

LMP SVM 84.4±0.8/0.92 75.9±0.3/0.84 65.9±1.5/0.74

AdaBoost 81.5±2.1/0.86 76.5±0.9/0.82 67.1±1/0.71

RF 92±1/0.96 77.7±0.6/0.85 71.4±1.6/0.78

Deniz et al. [21] SVM 85.4±9.3/0.74 90.1±0/0.95 93.4±6.1/0.94

AdaBoost 98.9±0.22/0.99 90.1±0/0.90 92.8±6.2/0.94

RF 90.4±3.1/0.99 61.5±6.8/0.96 64.8±15.9/0.93

Variant-v1 SVM 87.9±1/0.97 70.8±0.4/0.75 72.1±0.9/0.78

AdaBoost 81.8±0.5/0.82 70.7±0.2/0.7 71.7±0.9/0.72

RF 97.7±0.4/0.98 79.3±0.5/0.88 74.8±1.5/0.83

Variant-v2 SVM 87.2±0.7/0.97 72.5±0.5/0.76 71,2±0.7/0.78

AdaBoost 81.7±0.2/0.82 71.7±0.3/0.72 71±0.8/0.72

RF 97.8±0.4/0.97 82.4±0.6/0.9 79.5±0.9/0.85

doi:10.1371/journal.pone.0120448.t003

Fig 8. ROCs on Movies dataset. ROC curves for the five related methods and the two considered variants.
The Random Forests classifier on Movies dataset is used.

doi:10.1371/journal.pone.0120448.g008
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Fig 9. ROCs on Hockey dataset. ROC curves for the five related methods and the two considered variants.
The Random Forests classifier on Hockey dataset is used.

doi:10.1371/journal.pone.0120448.g009

Fig 10. ROCs on UCF101 dataset. ROC curves for the five related methods and the two considered
variants. The Random Forests classifier on UCF101 dataset is used.

doi:10.1371/journal.pone.0120448.g010
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Fig 11. ViF results comparing accuracy vs feature extraction time.

doi:10.1371/journal.pone.0120448.g011

Fig 12. LMP results comparing accuracy vs feature extraction time.

doi:10.1371/journal.pone.0120448.g012
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The novel method has a processing average time of 0.02391 seconds per frame (between v1

and v2). The method has different sub-steps for each frame. Some of these sub-steps can be

parallelized when the image can be splitted in different smaller sub-images without affecting

the result. Each sub-image can be handled by a processor. These sub-steps are shown in

Table 5.

Given a computer with N processors and parallelizable processes, the processing time can

be theoretically estimated from Table 5 as T = parallelizable_processes/N + not_parallelizable_-

processes. For example, using a computer with 4 processors, the processing time would be

T = 0.0121/4 + 0.01181, T = 0.01483 seconds per frame. This is an increase of 37.95% on the

processing time.

Conclusions

This work has described a novel method for detecting fights. Blobs of movement are first de-

tected and then different features are used to characterize them. The proposed method makes

no assumptions on number of individuals (it can be also used to detect vandalism), body part

detection or salient point tracking. Experiments show that the method does not outperform

the best methods considered. However, it is much faster while still maintaining useful accura-

cies ranging from 70% to near 98% depending on the dataset. While other methods tackle a

more general problem (such as action recognition) or resort to computationally intensive opti-

cal flow computations, the proposed method opens up the possibility of practical implementa-

tions. There is growing interest in the private video surveillance sector in deploying efficient

methods for violence detection in prisons and other premises.

The shortcomings of the proposed method are the following. The classification accuracy is

not as good as the best state-of-art-the fight detection methods. Furthermore, the proposed

Table 4. Feature extraction times. Average timesmeasured with the non-fight videos in the UCF101
dataset, on an Intel Xeon computer with 2 processors at 2.90Ghz.

Method Features/sequence Msecs/frame

BoW(MoSIFT) 500 661.5

BoW(STIP) 500 293.5

ViF 96000 454.5

LMP 10368 151.6

Deniz et al. [21] 14 162.4

Variant-v1 2548 22.5

Variant-v2 2940 26.5

doi:10.1371/journal.pone.0120448.t004

Table 5. Sub-steps of the proposedmethod.

Sub-step Seconds per frame Parallelizable?

Load a frame 0.00608 No

Convert RGB to Gray image 0.00412 Yes

Rescale 0.00749 Yes

Binarization 0.00041 Yes

Find the regions 0.00551 No

Select the K best regions 0.00022 No

Calculate the features 0.00008 Yes

doi:10.1371/journal.pone.0120448.t005
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method has difficulty in classifying videos where there is continuous movement from such as

with clouds or tree branches when they are moved by the wind.

Future work will seek to improve accuracy by using additional features to detect the violent

areas. Further speed improvements can be also obtained by exploiting parallelism in

blob processing.
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