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This paper proposes a model order reduction (MOR) based on the proper orthogonal decomposition (POD) to perform fast analysis 

of motors. When POD-based MOR is applied to the motor analysis, the number of basis vectors has to be increased to express changes 

in magnetic fields due to rotational movement. Its computational efficiency is thus greatly deteriorated. To overcome this difficulty, 

block-MOR is first applied to motor analysis. In this method, a parameter space is subdivided into several blocks, which correspond to 

angular ranges in motor analysis, in each of which the basis vectors are constructed from snapshotted fields. The computational time 

of block-MOR is shown to be shorter than that of the conventional MOR while accuracy of both methods is almost identical. 

 
Index Terms—Finite element analysis, interior permanent magnet motor, model order reduction, proper orthogonal decomposition. 

 

I. INTRODUCTION 

N  the design of the control and driving systems of the 
motors, equivalent circuits and behavior models of the 
motors are widely used rather than finite element (FE) 

models whose computational time is rather long for dynamic 
simulations [1]. Accuracy of the former two methods is, 
however, often unsatisfactory especially for loss evaluation. 
For this reason, fast and accurate computational methods for 
the motor analysis have been required. 

In order to reduce the computational time in FE analysis, 
the model order reduction (MOR) based on the proper 
orthogonal decomposition (POD) has been proposed, in which 
unknown fields are approximated by a linear combination of 
small number of basis vectors obtained by principal 
component analysis of the snapshotted fields. POD-based 
MOR has been successfully applied to analysis of stationary 
electromagnetic devices [2-5]. Moreover, it has been applied 
to the analysis of a surface permanent magnet motor 
considering rotation movement [6] in which magnetic 
saturation in the motor core is not taken into account. 

When POD-based MOR is applied to moving objects, large 
number of the basis vectors must be involved to express field 
changes due to motion. Its computational efficiency is thus 
greatly deteriorated. Moreover, when we consider magnetic 
saturation in core materials, a number of matrix-matrix 
products in the Newton-Raphson iteration [4] must be carried 
out. This is another factor to limit efficiency of POD-based 
MOR. 

In order to circumvent these difficulties, the block-MOR 
has been proposed for fast analysis of moving objects [7] 
considering nonlinearity of magnetic material. In this method, 
a parameter space is subdivided into several blocks. The basis 
vectors are generated for each block from snapshotted fields. 
It will be shown that computational burden of block-MOR 
becomes smaller as the number of blocks increases, and 
therefore it is smaller than that of the conventional MOR. 

The block-MOR method has been successfully applied to 
analysis of a vibration energy harvester [7]. However, its 
applicability of the motor analysis has remained unclear. 

In this study, we apply the block-MOR for the first time to 
analysis of reluctance and interior permanent magnet (IPM) 
motors, to evaluate computational efficiency and accuracy.  

II. NUMERICAL METHOD 

A. Proper orthogonal decomposition 

It is assumed that the magnetic fields in a motor do not vary 
along its axial direction parallel to z-axis. The two-
dimensional magnetostatic fields on x-y plane are analyzed 
here by finite element method (FEM), which solves 
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where Aj, (A), Nj, J, Mx, My and n are magnetic vector 
potential, magnetic reluctivity, scalar interpolation function, 
current density and x and y components of the magnetization 
and the number of nodal points respectively. Eq. (1) can be 
written as the matrix form that is Ax=b. Applying the Newton-
Raphson method to (1), we obtain 
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where ARn and G=b-Ax are the unknown and residual 
vectors. We apply POD-based MOR to (2) in order to reduce 
DoF. To do so, we solve (2) at s sampling angles l, l = 1, 
2,… , s, where s is much smaller than n. Then, the data matrix 
X is constructed as follows: 
 

 )()()(X 21 s AAA    (3) 
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The singular value decomposition applied to X results in 

 

tt
222

t
111

t  VWX sss vwvwvw      (4) 

 

where l is l-th singular value of X and wl, vl are the 
eigenvectors of XXt, XtX, respectively. The unknown vector 
is then approximately expressed by A=Wy where WRns, 
yRs. Now (2) reduces to 
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Because s << n, (5) can be solved much faster than (2).  

B. Block-MOR 

In order to reduce the computational time, s should be set as 
small as possible. However, s must be set sufficiently large to 
accurately express the magnetic field which significantly 
changes due to rotational movements shown in Fig. 1. It is, 
therefore, important to effectively take the snapshots. Fig. 2 
shows the procedure of Newton-Raphson method. Increase of 
s leads to long computational time mainly because of heaby 
compuational burden in matrix-matrix products in the left 
hand side of (5). In the conventional POD-based MOR 
method, the snapshots are taken at equal rotational intervals 
over the whole angular range of the interest. This results in 
large s. The computational complexity for the matrix-matrix 
products is (ns2+n2s). 

In the block-MOR, to overcome this difficulty, a parameter 
space is subdivided into m blocks to generate transformation 
matrix Wi in each block as shown in Fig. 3. In the motor 
analysis, the whole the range of mechanical angle is 

subdivided into i1 <  ≤ iq, i=1,2,...,m. The reduced equation 
is constructed depending on the mechanical angle is solved. 

Because changes in the magnetic field in each block, which 
is here an angular range, are expected to be small, the snapshot 
number can be reduced to, for example, s/m. Hence, the 
computational burden for matrix-matrix product in left hand 
side of (5) can be reduced. Moreover, because the number of 
unknowns is also reduced, (5) can be solved faster.  

 

 
 

 
 

 
 

C.  Loss evaluation using 1-D FE method 

After the magnetic field analysis, the iron loss is evaluated 
by so called 1-D FE method assuming that the motor is 
sufficiently long in the axial direction and the steel sheet is 
sufficiently wide [8]. In this method, we analyze one-
dimensional quasi-static electromagnetic fields in the 
thickness direction of a steel sheet under the condition that the 
computed magnetic flux is imposed in the cross-section of the 
steel sheet. The hysteresis loss Wh and eddy current loss We are 
obtained from this post-processing. The detailed theory is 
explained in [8]. 

III. NUMERICAL RESULTS 

A. Reluctance motor 

We apply the conventional MOR and block-MOR to 
analysis of the motor shown in Fig. 4 [9]. We first consider the 
reluctance motor for which the permanent magnet is assumed 
to be, for simplicity, non-magnetized, that is, Mx=My=0. The 

 
Fig. 1. Distribution of the magnetic fields in the cores. 

=0˚ =30˚

=60˚ =90˚

 
Fig. 2. Procedure of Newton-Raphson. 
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Fig. 3. Transformation matrices for m blocks 
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analysis conditions are summarized in Table I. The air gap and 
the other domains are discretized with rectangular and 
triangular FEs. The rotor angle  ranges from 0˚ to 90˚. In this 
case, the cores are scarcely saturated because the permanent 
magnet is not magnetized. 

In the conventional MOR, s snapshots are taken at equal 
intervals. The snapshot number s is set to 16, 31 and 46, that 
is, the angular intervals are 6, 3 and 2 degrees, respectively. In 
the block-MOR, the number of blocks m is set to 2 and 3, and 
the snapshot number is set to 𝑠 𝑚⁄ . The total snapshot number 
is identical to that for the conventional MOR. 

The error in torque calculated by the nodal force method is 
defined by  
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where Nt, Tk

orig and Tk
red are the number of time steps, and the 

torque obtained by original FE analysis without MOR and 
with MOR, respectively. 

The numerical errors in torque and speed up ratio are 
plotted in Fig. 5 (a) in which the speed up ratio is defined by 
FEM/MOR where FEM and MOR  are computational times of 
FEM and MOR. The results marked by m=1 are obtained by 
the conventional MOR-based FEM. We can find that, although 
the accuracy becomes better as s increases, the speed up ratio 
greatly decreases when we use the conventional MOR. This 
tendency is mainly due to matrix-matrix products performed 
in the Newton-Raphson iterations. On the other hand, the 
speed up ratio increases with m because complexity of matrix-
matrix products is reduced to (n(s/m)2+n2(s/m)) and, in 
addition, unknowns in (5) are reduced to s/m. Accuracy of 
block-MOR is almost the same as that of conventional MOR. 
We conclude from these results for the reluctance motor that 
block-MOR is superior to conventional MOR with respect to 
computational efficiency. 

B. IPM motor 

We next consider the IPM motor shown in Fig. 4. There 
exist saturated region near the magnet in this case. The 
numerical errors in torque and speed up ratio are plotted in 
Fig. 5(b). We observe that tendency in (b) is essentially the 
same as that in (a). It is found from these figures that the 
errors for IPM motor are larger than those for the reluctance 
motor. The relatively large errors in IPM motor are attributed 
to the magneic saturation in the cores. The torques calculated 
by the conventional FE analysis and FEM with block-MOR at 
each angular step are shown in Fig. 6, where error(T) is also 
plotted. We find no significant differences in both torques. The 
error tends to become larger near the upper peak of the torque 
curves.  

Figs. 7(a) and (b) show the distribution of flux density 
computed by the conventional FEM and FEM with block-
MOR under the condition that m=3 and s=31. Fig. 7(c) shows 
the difference between the flux densities. The differences are 
found to be less than 0.10 T. There are relatively large errors 

around the edge of the flux barrier. This error is due to the fact 
that the flux density strongly saturates in these portions. 

Fig. 8 shows the speed up ratios and numerical error in 
torque when s=45. It is found that speed up ratio gradually 
improves with m, while it goes down when m=45. When 
m=15, speed up ratio is about four times as high as that of the 
conventional method (m=1). On the other hand, numerical 
error scarcely depends on m expect when m=45. It is 
concluded that m should be set as great as possible provided 
that s/m is greater than 2. 

 

 
 

C. Iron losses 

As mentioned in II. C, in the post-processing, iron losses We 
and Wh are computed from the magnetic fields obtained from 
the conventional MOR and block-MOR. The results are 
summarized in Table II. There are no significant differences in 
the results obtained by both methods. The computational time 
for block-MOR in this post-processing is shorter than that for 
conventional MOR as can be seen in the above results. 

IV. CONCLUSION 

In this paper, we have described the performance of the 
block-MOR applied to analysis of reluctance and IPM motors. 
Accuracy of the present method for torque and loss analysis is 
almost the same as that of the conventional MOR. On the 
other hand, the former MOR has larger speed up ratio with 
respect to the conventional FEM. The error in the flux density 
computed by block-MOR applied to the IPM motor is less 
than 0.1 T. Relatively large errors exist in the highly saturated 
region. Suppress of these errors remains for our future work. 
Moreover, application of the present method to 3D analysis of 
motors will be our future work. 
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Fig. 4. Motor model 
 

TABLE I 
ANALYSIS CONDITION 

Current value [AT] 3.035 
Phase angle of current [degree] 30 

Magnetization [T] 1.25 
Lamination thickness [mm] / number 0.5 / 130 

Initial angle of rotor [degree] 15 
Number of the elements / nodes 29498 / 15267 

Material of the core 50A470 
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Fig. 5. Diagram of numerical error and computational time. Results 
marked by m=1 and m=2, 3 represent conventional and block-MOR. 
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Fig. 6. Comparison of torque calculated by original FE analysis and 
block-MOR 

TABLE II 
NUMERICAL ERRORS IN IRON LOSS IN ROTOR 

 IPM Reluctance 

 We Wh We Wh 

Conventional POD 
(m=1,s=31) 2.62% 3.32% 0.889% 0.774% 

block-MOR 
 (m=3,s=31) 1.81% 3.59% 0.669% 1.12% 

 

 
Fig. 7. Distribution of flux density when =45˚.   
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Fig. 8. Results of each number of m (s=45) 
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