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This paper proposes a model order reduction (MOR) based on the proper orthogonal decomposition (POD) to perform fast analysis
of-motors. When POD-based MOR is applied to the motor analysis, the number of basis vectors has to be increased to express changes
in magnetic fields due to rotational movement. Its computational efficiency is thus greatly deteriorated. To overcome this difficulty,
block-MOR is first applied to motor analysis. In this method, a parameter space is subdivided into several blocks, which correspond to
angular ranges in motor analysis, in each of which the basis vectors are constructed from snapshotted fields. The computational time
of block-MOR is shown to be shorter than that of the conventional MOR while accuracy of both methods is almost identical.

Index Terms—Finite element analysis, interior permanent magnet motor, model order reduction, proper orthogonal decomposition.

L INTRODUCTION

IN the design of the control and driving systems of the
motors, equivalent circuits and behavior models of the

motors are widely used rather than finite element (FE)
models whose computational time is rather long for dynamic
simulations [1]. Accuracy of the former two methods is,
however, often unsatisfactory especially for loss evaluation.
For this reason, fast and accurate computational methods for
the motor analysis have been required.

In order to reduce the computational time in FE analysis,
the model order reduction (MOR) based on the proper
orthogonal decomposition (POD) has been proposed, in which
unknown fields are approximated by a linear combination of
small number of basis vectors obtained by principal
component analysis of the snapshotted fields. POD-based
MOR has been successfully applied to analysis of stationary
electromagnetic devices [2-5]. Moreover, it has been applied
to the analysis of a surface permanent magnet motor
considering rotation movement [6] in which magnetic
saturation in the motor core is not taken into account.

When POD-based MOR is applied to moving objects, large
number of the basis vectors must be involved to express field
changes due to motion. Its computational efficiency is thus
greatly deteriorated. Moreover, when we consider magnetic
saturation in core materials, a number of matrix-matrix
products in the Newton-Raphson iteration [4] must be carried
out. This is another factor to limit efficiency of POD-based
MOR.

In order to circumvent these difficulties, the block-MOR
has been proposed for fast analysis of moving objects [7]
considering nonlinearity of magnetic material. In this method,
a parameter space is subdivided into several blocks. The basis
vectors are generated for each block from snapshotted fields.
It will be shown that computational burden of block-MOR
becomes smaller as the number of blocks increases, and
therefore it is smaller than that of the conventional MOR.
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The block-MOR method has been successfully applied to
analysis of a vibration energy harvester [7]. However, its
applicability of the motor analysis has remained unclear.

In this study, we apply the block-MOR for the first time to
analysis of reluctance and interior permanent magnet (IPM)
motors, to evaluate computational efficiency and accuracy.

IL NUMERICAL METHOD

A. Proper orthogonal decomposition

It is assumed that the magnetic fields in a motor do not vary
along its axial direction parallel to z-axis. The two-
dimensional magnetostatic fields on x-y plane are analyzed
here by finite element method (FEM), which solves

ZA y L v(A)gradN j -gradN;ds
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where 4;, VA4), N, J, M,, M, and n are magnetic vector
potential, magnetic reluctivity, scalar interpolation function,
current density and x and y components of the magnetization
and the number of nodal points respectively. Eq. (1) can be
written as the matrix form that is Ax=b. Applying the Newton-
Raphson method to (1), we obtain

G g .
OA

where AeR"” and G=b-Ax are the unknown and residual
vectors. We apply POD-based MOR to (2) in order to reduce
DoF. To do so, we solve (2) at s sampling angles 6, / = 1,
2,--+, s, where s is much smaller than n. Then, the data matrix
X is constructed as follows:

X=[A@) A®@,) - A@©,)] 3)
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The singular value decomposition applied to X results in
X=WIV' =awp| +0,W,v5 +++ 0 WV, “4)

where o; is I-th singular value of X and w;, v, are the
eigenvectors of XX', X'X, respectively. The unknown vector
is then approximately expressed by A=Wy where WeR"™,
yeR’. Now (2) reduces to

W' %WAy =-W'G )

Because s << n, (5) can be solved much faster than (2).

B. Block-MOR

In order to reduce the computational time, s should be set as
small as possible. However, s must be set sufficiently large to
accurately express the magnetic field which significantly
changes due to rotational movements shown in Fig. 1. It is,
therefore, important to effectively take the snapshots. Fig. 2
shows the procedure of Newton-Raphson method. Increase of
s leads to long computational time mainly because of heaby
compuational burden in matrix-matrix products in the left
hand side of (5). In the conventional POD-based MOR
method, the snapshots are taken at equal rotational intervals
over the whole angular range of the interest. This results in
large 5. The computational complexity for the matrix-matrix
products is Xns*+n’s).

In the block-MOR, to overcome this difficulty, a parameter
space is subdivided into m blocks to generate transformation
matrix W; in each block as shown in Fig. 3. In the motor
analysis, the whole the range of mechanical angle is
subdivided into 6, < < 6, i=1,2,...,m. The reduced equation
is constructed depending on the mechanical angle is solved.

Because changes in the magnetic field in each block, which
is here an angular range, are expected to be small, the snapshot
number can be reduced to, for example, s/m. Hence, the
computational burden for matrix-matrix product in left hand
side of (5) can be reduced. Moreover, because the number of
unknowns is also reduced, (5) can be solved faster.

6=90°

Fig. 1. Distribution of the magnetic fields in the cores.
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Fig. 2. Procedure of Newton-Raphson.
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Fig. 3. Transformation matrices for m blocks

C. Loss evaluation using 1-D FE method

After the magnetic field analysis, the iron loss is evaluated
by so called 1-D FE method assuming that the motor is
sufficiently long in the axial direction and the steel sheet is
sufficiently wide [8]. In this method, we analyze one-
dimensional quasi-static electromagnetic fields in the
thickness direction of a steel sheet under the condition that the
computed magnetic flux is imposed in the cross-section of the
steel sheet. The hysteresis loss W), and eddy current loss W, are
obtained from this post-processing. The detailed theory is
explained in [8].

I11. NUMERICAL RESULTS

A. Reluctance motor

We apply the conventional MOR and block-MOR to
analysis of the motor shown in Fig. 4 [9]. We first consider the
reluctance motor for which the permanent magnet is assumed
to be, for simplicity, non-magnetized, that is, M,=M,=0. The
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analysis conditions are summarized in Table I. The air gap and
the other domains are discretized with rectangular and
triangular FEs. The rotor angle #ranges from 0° to 90°. In this
case, the cores are scarcely saturated because the permanent
magnet is not magnetized.

In the conventional MOR, s snapshots are taken at equal
intervals. The snapshot number s is set to 16, 31 and 46, that
is, the angular intervals are 6, 3 and 2 degrees, respectively. In
the block-MOR, the number of blocks m is set to 2 and 3, and
the snapshot number is set to s/m. The total snapshot number
is identical to that for the conventional MOR.

The error in torque calculated by the nodal force method is
defined by

N,

Tkorig _Tkred 2
Sl -1i)

error(l)= |24 < 6)

; (Tk"dg )2

k=

where N, T,°"¢ and 7,”® are the number of time steps, and the
torque obtained by original FE analysis without MOR and
with MOR, respectively.

The numerical errors in torque and speed up ratio are
plotted in Fig. 5 (a) in which the speed up ratio is defined by
Trem/Tmor Where Tpgy and Tyor are computational times of
FEM and MOR. The results marked by m=1 are obtained by
the conventional MOR-based FEM. We can find that, although
the accuracy becomes better as s increases, the speed up ratio
greatly decreases when we use the conventional MOR. This
tendency is mainly due to matrix-matrix products performed
in the Newton-Raphson iterations. On the other hand, the
speed up ratio increases with m because complexity of matrix-
matrix products is reduced to O(n(s/m)*+n*(s/m)) and, in
addition, unknowns in (5) are reduced to s/m. Accuracy of
block-MOR is almost the same as that of conventional MOR.
We conclude from these results for the reluctance motor that
block-MOR is superior to conventional MOR with respect to
computational efficiency.

B. IPM motor

We next consider the IPM motor shown in Fig. 4. There
exist saturated region near the magnet in this case. The
numerical errors in torque and speed up ratio are plotted in
Fig. 5(b). We observe that tendency in (b) is essentially the
same as that in (a). It is found from these figures that the
errors for IPM motor are larger than those for the reluctance
motor. The relatively large errors in IPM motor are attributed
to the magneic saturation in the cores. The torques calculated
by the conventional FE analysis and FEM with block-MOR at
each angular step are shown in Fig. 6, where error(T) is also
plotted. We find no significant differences in both torques. The
error tends to become larger near the upper peak of the torque
curves.

Figs. 7(a) and (b) show the distribution of flux density
computed by the conventional FEM and FEM with block-
MOR under the condition that m=3 and s=31. Fig. 7(c) shows
the difference between the flux densities. The differences are
found to be less than 0.10 T. There are relatively large errors

around the edge of the flux barrier. This error is due to the fact
that the flux density strongly saturates in these portions.

Fig. 8 shows the speed up ratios and numerical error in
torque when s=45. It is found that speed up ratio gradually
improves with m, while it goes down when m=45. When
m=15, speed up ratio is about four times as high as that of the
conventional method (m=1). On the other hand, numerical
error scarcely depends on m expect when m=45. It is
concluded that m should be set as great as possible provided
that s/m is greater than 2.

Permanent Magnetic
( Magnetization direction : 457 )

27mm

v

L, L
S6mm
Fig. 4. Motor model
TABLE I
ANALYSIS CONDITION
Current value [AT] 3.0x35
Phase angle of current [degree] 30
Magnetization [T] 1.25
Lamination thickness [mm] / number 0.5/130
Initial angle of rotor [degree] 15

29498 / 15267
50A470

Number of the elements / nodes
Material of the core

C. Iron losses

As mentioned in II. C, in the post-processing, iron losses W,
and W), are computed from the magnetic fields obtained from
the conventional MOR and block-MOR. The results are
summarized in Table II. There are no significant differences in
the results obtained by both methods. The computational time
for block-MOR in this post-processing is shorter than that for
conventional MOR as can be seen in the above results.

IV. CONCLUSION

In this paper, we have described the performance of the
block-MOR applied to analysis of reluctance and IPM motors.
Accuracy of the present method for torque and loss analysis is
almost the same as that of the conventional MOR. On the
other hand, the former MOR has larger speed up ratio with
respect to the conventional FEM. The error in the flux density
computed by block-MOR applied to the IPM motor is less
than 0.1 T. Relatively large errors exist in the highly saturated
region. Suppress of these errors remains for our future work.
Moreover, application of the present method to 3D analysis of
motors will be our future work.
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Fig. 5. Diagram of numerical error and computational time. Results
marked by m=1 and m=2, 3 represent conventional and block-MOR.
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Fig. 7. Distribution of flux density when 6=45".
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Fig. 6. Comparison of torque calculated by original FE analysis and
block-MOR
TABLE II
NUMERICAL ERRORS IN IRON LOSS IN ROTOR
IPM Reluctance
We Wh We Wh
Conventional POD 7, 332%  0.889%  0.774%
(m=1,s=31)
block-MOR 1.81% 3.59% 0.669% 1.12%

(m=3,5=31)
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