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FAST FINITE-ENERGY PLANES

IN SYMPLECTIZATIONS AND APPLICATIONS

UMBERTO HRYNIEWICZ

Abstract. We define the notion of fast finite-energy planes in the symplecti-
zation of a closed 3-dimensional energy level M of contact type. We use them
to construct special open book decompositions of M when the contact struc-
ture is tight and induced by a (non-degenerate) dynamically convex contact
form. The obtained open books have disk-like pages that are global surfaces
of section for the Hamiltonian dynamics. Let S ⊂ R4 be the boundary of a
smooth, strictly convex, non-degenerate and bounded domain. We show that
a necessary and sufficient condition for a closed Hamiltonian orbit P ⊂ S to
be the boundary of a disk-like global surface of section for the Hamiltonian
dynamics is that P is unknotted and has self-linking number −1.

1. Introduction

We intend to give a systematic treatment to the procedure of constructing global
surfaces of section for the Hamiltonian dynamics on strictly convex 3-dimensional
energy levels.

Definition 1.1. A global surface of section for a vector field X on a 3-manifold M
is a compact embedded surface Σ ↪→ M satisfying:

(1) X is transverse to Σ \ ∂Σ and ∂Σ consists of periodic orbits of X.
(2) For every x ∈ M \∂Σ, one finds sequences t±n → ±∞ such that φt±n

(x) ∈ Σ.

Here φt denotes the flow of X.

In [17] Hofer, Wysocki and Zehnder studied Hamiltonian dynamics on a bounded
and strictly convex regular level S = H−1(1) ⊂ R4, where H : R4 → R is a smooth
Hamiltonian. If z = (q1, p1, q2, p2) are coordinates in R4 equipped with its canonical
symplectic form

(1) ω0 = dq1 ∧ dp1 + dq2 ∧ dp2,

then Hamilton’s equations can be rewritten as

ż = XH(z),

where XH is the so-called Hamiltonian vector field. It is uniquely determined by

iXH
ω0 = dH,
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1860 UMBERTO HRYNIEWICZ

and its flow preserves level-sets of H. They consider the case when S = ∂K for
some bounded, smooth and strictly convex domain K ⊂ R4. If G is some other
Hamiltonian realizing S as a regular energy level, then RXG|S = RXH |S , that is,
Hamiltonian dynamics depends only on S and ω0, up to time-reparametrization.
This can be checked by inspection, or by noting that

RXH(z) = (TzS)
ω0 ∀z ∈ S,

where (TzS)
ω0 :=

{
v ∈ R4 : ω0(v, u) = 0, ∀u ∈ TzS

}
is the ω0-symplectic orthogo-

nal of TzS. The line bundle (TS)ω0 is called the characteristic line field.
The study of Hamiltonian dynamics on such strictly convex hypersurfaces is

now a classical subject. In 1978 P. Rabinowitz [27] and A. Weinstein [33] proved
existence of periodic orbits on these energy levels. In [17] Hofer, Wysocki and
Zehnder proved the following remarkable result.

Theorem 1.2 (Hofer, Wysocki and Zehnder). Let S ⊂ R4 be a bounded, smooth
and strictly convex hypersurface. Then S carries an unknotted periodic Hamiltonian
orbit P0 bounding a disk-like global surface of section D for Hamiltonian dynamics.

The Poincaré return map to D̊ preserves a smooth area-form, with total area∫
D ω0 < ∞. Brouwer’s translation theorem provides a second periodic orbit P1,
geometrically distinct of P0. It corresponds to a fixed point of the first return map
to D̊. One can, as described in [17], apply results of J. Franks [6] on periodic points
of area-preserving diffeomorphisms of the open annulus to obtain the following
important corollary.

Corollary 1.3 (Hofer, Wysocki and Zehnder). Hamiltonian dynamics on a
bounded, smooth, strictly convex energy level inside R

4 has either two or infinitely
many periodic orbits.

Theorem 1.2 immediately prompts the following question: What are the neces-
sary and sufficient conditions for a periodic Hamiltonian orbit to bound an embed-
ded disk-like global surface of section?

Our main result answers this question when S is non-degenerate, that is, when 1
is not a transverse eigenvalue of the linearized Poincaré return map of every closed
orbit. This is a C∞-generic condition on S. Our answer is stated in terms of a
certain contact-topological invariant, called the self-linking number, which we now
describe.

A 1-form λ on a 3-manifold M is a contact form if λ ∧ dλ never vanishes. The
associated contact structure is the hyperplane distribution

(2) ξ = kerλ.

A co-oriented contact 3-manifold is a pair (M, ξ) such that (2) holds for some
contact form λ. We call λ tight if ξ is a tight contact structure; see Subsection 3.4.
The associated Reeb vector field R is defined implicitly by

(3) iRdλ = 0 and iRλ = 1.

Definition 1.4 (Self-linking number). Let L ⊂ M be a knot transverse to ξ, and
let Σ ↪→ M be a Seifert surface1 for L. Since the bundle ξ|Σ carries the symplectic
bilinear form dλ, there exists a smooth non-vanishing section Z of ξ|Σ, which can

1By a Seifert surface for L we mean an orientable embedded connected compact surface Σ ↪→ M
such that L = ∂Σ.
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be used to slightly perturb L to another transverse knot Lε = {expx(εZx) : x ∈ L}.
Here exp is any exponential map. A choice of orientation for Σ induces orientations
of L and of Lε. The self-linking number is defined as the oriented intersection
number

(4) sl(L,Σ) := Lε · Σ ∈ Z,

whereM is oriented by λ∧dλ. It is independent of Σ when c1(ξ) ∈ H2(M) vanishes.

Recall that ω0 has a special primitive λ0 = 1
2

∑2
k=1 qkdpk − pkdqk. We assume

0 is in the bounded component K of R4 \ S, so that λ0|S is a contact form. If R
is the associated Reeb field on S, then RR = RXH . Our main result can be stated
as follows.

Theorem 1.5. Let S ⊂ R
4 be a non-degenerate, bounded, smooth and strictly

convex hypersurface. A necessary and sufficient condition for a periodic Hamil-
tonian orbit P ⊂ S to be the boundary of a disk-like global surface of section for
Hamiltonian dynamics is that P is unknotted and has self-linking number −1.

Necessity is an easy computation; see Proposition 2.1. The assumption of S
being non-degenerate is rather technical and will be removed in [20]. The reader
acquainted with the work of Hofer, Wysocki and Zehnder will notice that it can be
removed by arguments found in [17]. In [20] we shall also prove that a periodic orbit
associated to any fixed point of Poincaré’s first return map to the global surface of
section obtained from Theorem 1.2 has self-linking number −1. As a consequence,
it also bounds a disk-like global surface of section.

Sufficiency in Theorem 1.5 will follow from a more general result, which we
now describe. Motivated by [17], we consider systems of global surfaces of section
organized in the form of open book decompositions.

Definition 1.6. An open book decomposition of an oriented 3-manifold M is a
pair (L, p) where L is an oriented link in M , and p : M \ L → S1 is a fibration
such that each fiber p−1(θ) is the interior of an oriented compact embedded surface
Sθ ↪→ M satisfying ∂Sθ = L (including orientations). L is called the binding and
the fibers are called pages. It is said to be adapted to the dynamics of a vector
field X if L consists of periodic orbits, X orients L positively, the pages are global
surfaces of section and the orientation of M together with X induce the orientation
of the pages.

We are interested in constructing open book decompositions adapted to the dy-
namics of Reeb vector fields. The study of this problem was initiated by Hofer,
Wysocki and Zehnder in [15, 16]. Their proofs are based on the theory of pseudo-
holomorphic curves in symplectizations, introduced by Hofer in [9]. In the construc-
tions they use disk-filling methods, bubbling-off analysis and their own perturbation
theory. This work is the first of three articles extending their results.

Consider a contact form λ on a closed 3-manifold M . A periodic Reeb orbit
will be denoted by P = (x, T ), where x : R → M solves ẋ = R ◦ x and T > 0 is
a period. It is called simply covered when T is the minimal positive period of x,
and unknotted if it is simply covered and x(R) is the unknot. When Σ is a Seifert
surface for the transverse knot x(R), we write sl(P,Σ) instead of sl(x(R),Σ). Since
the Reeb flow φt preserves λ, we have well-defined dλ-symplectic maps dφt(x(t0)) :
ξx(t0) → ξ|x(t0+t). The periodic orbit P is non-degenerate if 1 is not an eigenvalue

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1862 UMBERTO HRYNIEWICZ

of dφT (x(t0))|ξ, ∀t0 ∈ R. When every P is non-degenerate, one says λ is non-
degenerate. See Subsection 3.1 for a more precise discussion.

There is an important invariant of the linearized dynamics along a periodic
orbit originally introduced in [3], called the Conley-Zehnder index, which we now
describe. Let Sp(n) be the symplectic linear group in dimension 2n, and denote

Σ∗ = {ϕ ∈ C∞([0, 1], Sp(1)) : ϕ(0) = I and det [ϕ(1)− I] 	= 0} .
In [18] we find the following axiomatic characterization of the Conley-Zehnder index
in the case n = 1. For other discussions on this topic see [28] or [29].

Theorem 1.7. There exists a unique surjective map μ : Σ∗ → Z characterized by
the following axioms:

(1) Homotopy: If ϕs is a homotopy of arcs in Σ∗, then μ (ϕs) is constant.
(2) Maslov index: If ψ : (R/Z, 0) → (Sp(1), I) is a loop and ϕ ∈ Σ∗, then

μ(ψϕ) = 2Maslov(ψ) + μ(ϕ).
(3) Invertibility: If ϕ ∈ Σ∗ and ϕ−1(t) := ϕ(t)−1, then μ

(
ϕ−1

)
= −μ(ϕ).

(4) Normalization: μ
(
t 
→ eiπt

)
= 1.

Let P = (x, T ) be a non-degenerate periodic Reeb orbit and denote by ξP the
bundle x∗

T ξ → R/Z, where xT (t) = x(Tt). Consider the set SP of homotopy classes
of smooth dλ-symplectic trivializations of ξP , and fix β ∈ SP . Any trivialization in
class β can be used to represent the linear maps dφTt : ξx(0) → ξx(Tt) by some path
ϕ ∈ Σ∗. We write μCZ(P, β) = μ(ϕ). By axiom (1) above this is independent of
the particular trivialization in class β. When P is contractible, we shall say c1(ξ)
vanishes along P if the 2-sphere obtained by gluing any two disk-maps spanning
the map ei2πt 
→ x(Tt) lies in the kernel of c1(ξ). In this case, there exists a special
class βP ∈ SP induced by some, and hence any, such disk-map. We can define
μCZ(P ) := μCZ(P, βP ); see Subsection 3.1.

In [9] Hofer introduced special almost complex structures on the symplectization
R × M and considered solutions of the associated Cauchy-Riemann equations in
order to study the dynamics of Reeb vector fields. As a consequence of his ground-
breaking work, the 3-dimensional Weinstein Conjecture2 was confirmed in many
cases, including all contact forms on S3. We need to recall a few concepts from [9]
in order to discuss our results.

A complex structure J on ξ is dλ-compatible if dλ(·, J ·) is a metric on ξ. We write
J (ξ, dλ|ξ) for the set of such complex structures. Following [9], every J ∈ J (ξ, dλ|ξ)
induces an almost complex structure J̃ on R×M by

(5) J̃ · ∂a = R and J̃ |ξ ≡ J,

where a denotes the R-component. A finite-energy plane is a J̃-holomorphic map
ũ : (C, i) → (R×M, J̃) with positive and finite Hofer energy; see Subsection 3.5 for
the precise definitions. The following result is central in [16]; see also [15].

Theorem 1.8 (Hofer, Wysocki and Zehnder). Let λ be a tight contact form on a
closed connected 3-manifold M and assume c1 (ξ) vanishes. Let P0 = (x0, T0) be
an unknotted closed Reeb orbit satisfying μCZ(P0) = 3 and sl(P0) = −1. Suppose
every contractible orbit P = (x, T ) is non-degenerate and satisfies μCZ(P ) ≥ 3.
Then, for generic choice of J ∈ J (ξ, dλ|ξ), there exists an embedded finite-energy

J̃-holomorphic plane ũ0 in the symplectization R×M asymptotic to P0 at ∞. Its

2In [31] C. Taubes proved the 3-dimensional Weinstein Conjecture using Seiberg-Witten theory.
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projection onto M does not intersect x0(R) and is only one page of an open book
decomposition adapted to the Reeb dynamics. The binding is P0 and the pages are
open disks. In particular, M = S3 and ξ is its unique (up to contact morphism)
positive tight contact structure.

As explained before, Brouwer’s translation theorem and results of J. Franks from
[6] provide an important corollary.

Corollary 1.9 (Hofer, Wysocki and Zehnder). Under the assumptions of Theo-
rem 1.8, the Reeb dynamics has either two or infinitely many periodic orbits.

Here we shall define a class of pseudo-holomorphic curves suitable for this con-
struction. They generalize the curves used in [15], [16] and [17].

Definition 1.10 (Fast planes). A finite-energy plane ũ : C → R×M is said to be
fast if ∞ is a non-degenerate puncture, wind∞(ũ) = 1 and cov(ũ) = 1.

Let us briefly describe the invariants wind∞ and cov, originally introduced in [12].
If we write ũ = (a, u) ∈ R × M and assume λ is non-degenerate, then the loops
t 
→ u(e2π(s+it)) converge to x(Tt + c) in C∞(R/Z,M) as s → +∞, where P =
(x, T ) is some closed Reeb orbit and c ∈ R. This follows from Theorem 3.9 below
and the definition of non-degenerate punctures given in Subsection 3.6; see [11]. In
this case one says ũ is asymptotic to P . Condition cov(ũ) = 1 means that P is
simply covered. The identity wind∞(ũ) = 1 holds if, and only if, u : C → M is an
immersion transverse to the Reeb vector field; see Lemma 3.19.

The term “fast” used above alludes to the following alternative interpretation
of the identity wind∞(ũ) = 1. The map ũ is J̃-holomorphic. This means that
s 
→ u(e2π(s+it)) can be thought of as a gradient trajectory of the action functional
converging to one of its critical points P . One has the corresponding Hessian AP

for the action at P , which is a self-adjoint operator on a suitable Hilbert space of
sections of ξ|P . Its spectrum is real, discrete, accumulates only at ±∞ and consists
of eigenvalues. It can be ordered according to the windings of the corresponding
eigensections. All this is proved in [12]; see Subsection 4.1. Condition wind∞(ũ) = 1
tells us that s 
→ u(e2π(s+it)) is a trajectory on the fastest piece of the stable
manifold of P , keeping a “maximally weighted” Fredholm index of ũ ≥ 1. This fast
decay is the source of compactness properties of fast planes, as shown in Section 4.
We are ready for our second statement.

Theorem 1.11. Let λ be a tight contact form on a closed connected 3-manifold
M . Assume the following holds for every contractible periodic Reeb orbit P̂ :

(i) P̂ is non-degenerate,

(ii) c1(ξ) vanishes along P̂ and μCZ(P̂ ) ≥ 3.

Let P = (x, T ) be a simply covered periodic Reeb orbit. A necessary and sufficient
condition for P to be the binding of an open book decomposition adapted to Reeb
dynamics with disk-like pages is that P is unknotted and sl(P, disk) = −1. When
P fulfills these conditions, then ∀ l ≥ 1 there exists J ∈ J (ξ, dλ|ξ) and a Cl-map

ũ = (a, u) : S1 × C → R×M

satisfying the following:

(1) Each ũ(ϑ, ·) is an embedded fast finite-energy J̃-holomorphic plane asymp-
totic to3 P .

3See Definition 3.11.
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(2) u(ϑ,C) ∩ x(R) = ∅ ∀ϑ ∈ S1 and the map u : S1 × C → M \ x(R) is an
orientation-preserving Cl-diffeomorphism.

(3) Each u(ϑ,C) is a global surface of section for the Reeb flow.

The self-linking number sl(P, disk) is computed using any embedded disk for
the unknot x(R), and is independent of this choice since c1(ξ) vanishes along P .
Necessity is given by Proposition 2.1. Sufficiency in Theorem 1.5 follows from the
above statement, since kerλ0|S is tight. The proof of sufficiency in Theorem 1.11
can be found in Section 7; for a sketch see Subsection 2.5. Following Hofer, Wysocki
and Zehnder, there is an important corollary.

Corollary 1.12. Suppose M and λ satisfy the conditions of Theorem 1.11. If there
exists an unknotted periodic Reeb orbit P with sl(P, disk) = −1, then M � S3, ξ
is contactomorphic to the positive tight contact structure on S3 and the associated
Reeb flow has either two or infinitely many closed orbits.

Organization of the article. In Section 2 we outline the proofs of Theorem 1.5
and Theorem 1.11. In Subsection 2.1 we prove necessity in Theorem 1.11. The
proof of sufficiency requires three analytical tools: compactness, perturbation the-
ory and existence for fast planes. They are explained in Subsections 2.2, 2.3 and 2.4,
respectively. In Subsection 2.5 we outline the proof of sufficiency in Theorem 1.11,
and explain how Theorem 1.5 follows from Theorem 1.11. In Section 3 we recall the
standard definitions from the theory of finite-energy surfaces in symplectizations.
Section 4 is devoted to our compactness result, Theorem 2.2. In Section 5 we prove
our existence result for fast planes, Theorem 2.4. In Section 6 we describe the
perturbation theory, Theorem 2.3, where some technical lemmas are postponed to
the appendices. In Section 7 we prove sufficiency in Theorem 1.11.

2. Outline of main arguments

In this section we prove necessity in Theorems 1.5 and 1.11, and then outline
the proof of sufficiency.

2.1. Proof of necessity in Theorem 1.11.

Proposition 2.1. Let λ be a contact form on an oriented 3-manifold M satisfying
λ∧dλ > 0, and let R be the associated Reeb vector field. Suppose P is an unknotted
periodic Reeb orbit. If there exists an embedded disk D ⊂ M satisfying ∂D = P and
RRp ∩ TpD = {0}, ∀p ∈ D̊, then sl(P,D) = −1.

Proof. Let ϕ : D → M be a smooth embedding such that D := ϕ(D) satisfies

∂D = P and RRp∩TpD = {0}, ∀p ∈ D̊. Here D ⊂ R2 is the closed unit disk, which
we equip with euclidean coordinates (x, y). We orient D so that λ|∂D=P > 0, and
assume ϕ is orientation preserving when D is equipped with its standard orientation.
Orient ξ by dλ|ξ and M by λ ∧ dλ. Let π : TM → ξ denote the projection along

RR. Since R is never tangent to D̊, π : T D̊ → ξ|D̊ is an isomorphism. We claim it
is orientation preserving. In fact, let σ be a positive smooth area form on D, and
let f : D → R be defined by dλ|TD = fσ. We know f does not vanish on D̊ since
f(p) = 0 ⇔ RRp ⊂ TpD. Our choice of orientation of D gives∫

D
dλ =

∫
∂D

λ > 0,
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implying f > 0 on D̊. Fix p ∈ D̊ and u, v ∈ TpD such that σ(u, v) > 0. Then

dλ(π · u, π · v) = dλ(u, v) = f(p)σ(u, v) > 0,

proving our claim. The bundle map π · dϕ : T D̊ → ξ|D̊ is orientation preserving

since so are ϕ and π : T D̊ → ξ|D̊. This will be important in what follows. Consider
the smooth section W := π · (x∂xϕ+ y∂yϕ) of ξ|D. It does not vanish on ∂D = P .
Let Z be a non-vanishing section of ξ|D. Fix any exponential map exp on M and
consider the transverse unknots

PZ
ε := {expp(εZp) : p ∈ P} and PW

ε := {expp(εWp) : p ∈ P},
where 0 < ε � 1. Let J be any complex structure on the bundle ξ|P such that
dλ(p)(·, Jp·) is a positive inner product on ξ|p, ∀p ∈ P . This defines a unique non-
vanishing smooth map f = u + iv : P → C \ {0} by Wp = u(p)Zp + v(p)JpZp,
p ∈ P . Let k := deg f/|f |. Standard degree theory tells us that k is the algebraic
count of zeros of W on D and that PW

ε · D = PZ
ε · D + k. Thus

sl(P,D) =
(
PW
ε · D

)
− k.

Since D is transverse to RR on D̊, the only zero of W is at the point ϕ(0). We

now claim k = 1. In fact, define Ĵ := (π · dϕ)∗J . Then Ĵ is an almost complex

structure on T D̊ satisfying det Ĵp = 1, ∀p ∈ D̊. One finds a smooth path Jt of

almost complex structures on T D̊ satisfying det Jt|q = 1, ∀(t, q) ∈ [0, 1]× D̊, J0 = i

and J1 = Ĵ . Consider a disk Dδ of radius 0 < δ � 1 centered at the origin. On
Dδ there exists a non-vanishing section Y := π · ∂xϕ of ξ|ϕ(Dδ). When A and B
are two non-vanishing sections of ξ|ϕ(∂Dδ), we write A ∼ B if they are homotopic

through non-vanishing sections. We parametrize ∂Dδ by θ 
→ δei2πθ, θ ∈ [0, 1], and
note that{

θ 
→ W (ϕ(δei2πθ))
}
∼
{
θ 
→ δ−1W (ϕ(δei2πθ)) = π · dϕ(δei2πθ) · ei2πθ

}
∼
{
θ 
→ π · dϕ(δei2πθ) · exp(Ĵ2πθ) ·

(
1
0

)}

∼
{
θ 
→ exp(J |ϕ(δei2πθ)2πθ) · π · dϕ(δei2πθ) ·

(
1
0

)}
=
{
θ 
→ exp(J |ϕ(δei2πθ)2πθ) · Y (ϕ(δei2πθ))

}
.

Write W (ϕ(δei2πθ)) = a(θ)Y (ϕ(δei2πθ)) + b(θ)J |ϕ(δei2πθ)Y (ϕ(δei2πθ)) and define
h = a + ib. The above calculation shows that deg h/|h| = 1. It follows from
standard degree theory that k = 1 since W has no zeros on D \Dδ. Now consider
the normal derivative θ ∈ R/Z 
→ A(θ) := dϕ(ei2πθ) · ei2πθ and the map

(θ, t) ∈ R/Z× [0, 1] 
→ (1− t)π ·A+ tA.

It provides a smooth homotopy from the vector θ 
→ W (ϕ(ei2πθ)) to the vector
θ 
→ A(θ) through non-vanishing vectors. This shows PW

ε · D = 0 and completes
the proof that sl(P,D) = −1. �

2.2. Compactness. Since we deal with higher Conley-Zehnder indices, we need
new compactness arguments replacing those given by Hofer, Wysocki and Zehnder;
see [12], [15] and [16]. Loosely speaking, we shall prove that, under convexity
assumptions on λ, breaking of Morse trajectories for the action functional does not
occur in families of unparametrized fast planes through a compact H ⊂ R×M . As

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1866 UMBERTO HRYNIEWICZ

an example, this will be the case for non-degenerate dynamically convex contact
forms on S3.

Let λ be a contact form on a closed 3-manifold M , and let P = (x, T ) be a
simply covered periodic Reeb orbit. Assume every contractible periodic Reeb orbit
P̂ = (x̂, T̂ ) with T̂ ≤ T is non-degenerate. Consider the set Ac of positive periods
of contractible periodic Reeb trajectories and define Ak

c = {τ ∈ Ac : τ ≤ k}.
Following [18], we define

γ1 = minAT
c , γ2 = min

{
|τ1 − τ2| : τ1 	= τ2; τ1, τ2 ∈ AT

c

}
and fix a number

(6) 0 < γ < min{γ1, γ2}.
Recall the almost complex structure J̃ (5) associated to some J ∈ J (ξ, dλ|ξ). We
fix a subset H ⊂ R×M and define

(7) Θ(H,P, λ, J) ⊂ C∞(C,R×M)

by requiring that ũ ∈ Θ(H,P, λ, J) if, and only if, ũ is a fast finite-energy J̃-
holomorphic plane asymptotic to P , ũ(0) ∈ H and

∫
C\D u∗dλ = γ. We define

(8) Λ(H,P, λ, J) ⊂ Θ(H,P, λ, J)

by requiring that ũ ∈ Λ(H,P, λ, J) if, and only if, ũ ∈ Θ(H,P, λ, J) is an embed-
ding. Consider

ΘL(H,P, λ, J) = {ũ = (a, u) ∈ Θ(H,P, λ, J) : inf a(C) ≥ −L},(9)

ΛL(H,P, λ, J) = {ũ = (a, u) ∈ Λ(H,P, λ, J) : inf a(C) ≥ −L}(10)

for a given L > 0. When (λ, J) are fixed, we write Θ(H,P ), Λ(H,P ), ΘL(H,P )
and ΛL(H,P ) for simplicity. Note that if P is not simply covered, then all these
sets of fast planes are empty. Our compactness result is as follows.

Theorem 2.2. Let λ be a contact form on a closed 3-manifold M , let P = (x, T )
be a periodic Reeb orbit and let H ⊂ R × M be compact. Suppose the following
properties hold for every contractible periodic Reeb orbit P̂ = (x̂, T̂ ) with T̂ ≤ T :

(i) P̂ is non-degenerate,

(ii) c1(ξ) vanishes along P̂ and μCZ(P̂ ) ≥ 3.

Then the following assertions are true:

(1) ΘL(H,P ) and ΛL(H,P ) are compact in C∞
loc(C,R×M).

(2) Θ(H,P ) and Λ(H,P ) are compact in C∞
loc(C,R×M) if H∩(R×x(R)) = ∅.

The above theorem can be rephrased in the terminology of Symplectic Field
Theory (SFT) originally introduced by Eliashberg, Givental and Hofer in [4]. A
plane in Θ(H,P ) is a stable connected smooth holomorphic curve, in the sense
of [2]. The SFT Compactness Theorem [2] describes the compactification of the set
of such curves with a priori bounds on energy and genus. It generalizes the notion
of Gromov convergence of pseudo-holomorphic curves in closed symplectic mani-
folds [8] to, for example, the non-compact setting of symplectizations. The notion
of a stable curve, adapted in [2] to symplectic cobordisms, was first introduced by
Kontsevich in [23]. More general than a stable connected smooth holomorphic curve
is a holomorphic building of height 1, which is a finite energy map defined on the
components of a (not necessarily stable) nodal Riemann surface, plus compatibility
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conditions. These are not enough to compactify the set of smooth curves, and one
needs to introduce higher buildings.

In our situation, the possible limiting holomorphic buildings of a sequence of fast
planes can be described as a rooted graph, the vertices of which represent stable
connected smooth holomorphic curves. An edge represents a closed Reeb orbit,
which is a common limit of the curves at the corresponding vertices. This is always
the case when dealing with curves of genus 0 with one positive puncture. The edges
can be oriented as going away from the root, and this divides the graph into levels,
these being the levels of the holomorphic building as described in [2]. The proof
of Theorem 2.2 consists of showing this graph has exactly one vertex. In order to
accomplish this, we only need to analyze the root; more precisely, we shall prove
that the convexity assumptions on λ will discard outgoing edges.

As a final remark, assertions (1) and (2) of Theorem 2.2 about the sets ΛL(H,P )
and Λ(H,P ) follow independently from Theorem 4 of [34]; we explain. The elegant
analysis of Wendl can be applied to embedded fast planes. In view of Theorem 2.3,
these are examples of “nicely embedded” curves in the sense of [34], which, in
the symplectization R × M , are holomorphic curves with embedded projections
onto M . With the appropriate asymptotic constraint on the orbit P , a fast plane
has a vanishing “constrained” normal first Chern number, so that the limiting
holomorphic building of a sequence of embedded fast planes is either smooth or
one of its levels contains a plane with μ-index equal to 2. But these do not exist
under our crucial additional assumption that λ is dynamically convex. However,
the results of [34] do not cover the corresponding statements made in Theorem 2.2
about the sets ΘL(H,P ) and Θ(H,P ), even when λ is dynamically convex.

A proof using the SFT Compactness Theorem or the results of [34] directly
would make the exposition non-elementary and highly non-self-contained, forcing
the introduction of a large amount of notation, and making this work less accessible
to a wider public.

Also, we would like to emphasize that our arguments are independent of any
transversality assumptions.

2.3. Fredholm theory. The second analytical tool for proving Theorem 1.11 is a
perturbation theory. Embedded fast planes are always regular in a suitably defined
index-2 Fredholm theory with exponential weights.

Theorem 2.3. Let λ be any contact form on a 3-manifold M and let ξ = kerλ be
the associated contact structure. Fix any J ∈ J (ξ, dλ|ξ) and suppose ũ = (a, u) is

an embedded fast finite-energy J̃-holomorphic plane asymptotic to a periodic Reeb
orbit P = (x0, T0) at ∞. If μ = μ(ũ) ≥ 3, then u(C) ∩ x0(R) = ∅ and u : C →
M \ x0(R) is a smooth proper embedding. Moreover, for any l ≥ 1, there exists an
open ball Br(0) ⊂ R2 and a Cl embedding f : C×Br(0) → R×M satisfying:

(1) f(z, 0) = ũ(z).
(2) If |τ | < r, then f(·, τ ) is an embedded fast finite-energy plane in R × M

asymptotic to P satisfying μ(f(·, τ )) = μ.
(3) Fix τ0 ∈ Br(0), and let {ũn} be a sequence of embedded fast finite-energy

planes asymptotic to P satisfying ũn → f(·, τ0) in C∞
loc and μ(ũn) = μ ∀n.

Then there exist sequences τn → τ0, An → 1 and Bn → 0 such that

f(Anz +Bn, τn) = ũn(z) ∀z ∈ C, n � 1.
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In view of Definitions 1.10 and 3.11, the map u : C → M provides a capping disk
for P0, singling out a homotopy class βũ ∈ SP0

defined by the following property:
a dλ-symplectic trivialization Ψ of ξP0

extends to u∗ξ if, and only if, it is in class
βũ. In the above statement μ(ũ) = μCZ(P0, βũ).

Note that P0 is not assumed to be non-degenerate; instead we assume the planes
have non-degenerate asymptotic behavior in the sense of Definition 3.11. This
allows us to handle arbitrary contact forms on S3; see [20]. We also emphasize
that no assumptions on λ, such as being Morse-Bott, are made. This justifies
Theorem 2.3.

A degenerate Fredholm theory as described above was only hinted at in [17]. The
above statement does not follow from the results of [13] but, of course, its proof
follows their arguments closely. We refer the reader to Section 6 for the proof.

2.4. Existence of fast finite-energy planes. We shall prove the following ex-
istence result of fast planes. It partially generalizes the existence statement in
Theorem 1.8 since it deals with higher Conley-Zehnder indices.

Theorem 2.4. Let λ be a tight contact form on a closed 3-manifold M such that
the following properties hold for every contractible Reeb orbit P̂ :

(i) P̂ is non-degenerate,

(ii) c1(ξ) vanishes along P̂ and μCZ(P̂ ) ≥ 3.

Suppose P is an unknotted periodic Reeb orbit satisfying sl(P, disk) = −1. Then,
for a suitable dλ-compatible complex structure J : ξ → ξ, there exists an embedded
fast finite-energy J̃-holomorphic plane asymptotic to P at ∞.

As before, the integer sl(P, disk) denotes the self-linking number computed with
respect to any embedded disk spanning the unknot x(R). It is independent of this
disk since c1(ξ) vanishes along P .

The general idea of the proof is standard; see [16]. Since P is unknotted and
sl(P ) = −1 we can find, using arguments of Giroux [7] and Hofer [9], an embed-
ded disk F ↪→ M spanning P (including orientations) such that its characteristic
foliation has exactly one positive elliptic singularity e ∈ F with real eigenvalues.
Denote F ∗ = F \ {e}. The surface {0} × F ∗ ↪→ R × M is totally real with re-

spect to J̃ and there exists a so-called Bishop family emanating from (0, e). It

is a 1-dimensional family of unparametrized embedded J̃-holomorphic disks with
boundary on {0} × F ∗. This family was discovered by E. Bishop in [1] and used
by Hofer in [9] in order to establish the Weinstein Conjecture in S3 and in many
other closed 3-manifolds. It should be noted that disk-filling methods were also
used in [8] and in [5] in order to show that symplectically fillable contact structures
are tight.

Each connected component of the Bishop family is an open interval. At one end
the family converges to the constant (0, e). At the other end bubbling-off occurs
and one can prove, using the convexity assumptions on λ, that bubbling-off does not
happen before the disks reach the boundary ∂F = P . As a result of this bubbling-
off analysis, we have, in the language of SFT (see [2]), a holomorphic building with
height k ≥ 2. Each level is a collection of smooth finite-energy surfaces in R×M .
The first level is a half trivial cylinder over P and the curves on other levels have
no boundary. All this is proved in [16].

Now we need to introduce new arguments. In [16] the authors use the fact that
the μ-index of the orbit in question is 3. They rely heavily on the compactness
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argument explained in [12] to conclude that the second level of the stable curve
consists of a single plane; hence there are no more levels. This is in great contrast
with our situation, since we allow μCZ(P ) ≥ 3. We overcome this difficulty by
slightly perturbing the boundary condition F in order to ensure there are no Reeb
tangencies near its boundary (of course the Reeb vector is tangent at the boundary
since it is a Reeb orbit). This allows us to reach the same conclusions as in [16]:
k = 2 and the second level is a single plane asymptotic to P . Also, this plane is
embedded and fast.

2.5. Proofs of Theorems 1.5 and 1.11. Necessity in Theorem 1.11 follows from
Proposition 2.1. We now turn to sufficiency. We construct the desired open book
decomposition as a consequence of compactness properties of families of fast planes.
Recall the families Λ(H,P ) in (8) and define

(11) Λk(H,P ) := {ṽ ∈ Λ(H,P ) : μ(ṽ) = k} .
One easily checks that Λk(H,P ) is C∞

loc-closed, ∀k. Thus, each Λk(H,P ) is C∞
loc-

compact whenever Λ(H,P ) is C∞
loc-compact. In Section 7 we prove

Theorem 2.5. Let λ be a non-degenerate contact form on the closed connected
3-manifold M and let J̃ be the almost complex structure on R × M defined by
equations (5). Suppose there exists an embedded fast J̃-holomorphic finite-energy
plane ũ0 asymptotic to P = (x, T ) with μ(ũ0) = k ≥ 3. We also suppose that
the set of planes Λk(H,P ) is C∞

loc-compact for every compact subset H ⊂ R × M
satisfying H ∩ (R × x(R)) = ∅. Then for every l ≥ 1 there exists a Cl-map ũ =
(a, u) : S1 × C → R×M with the following properties:

(1) ũ(ϑ, ·) is an embedded fast finite-energy plane asymptotic to P at (the pos-
itive puncture) ∞ satisfying μ(ũ(ϑ, ·)) = k, ∀ϑ ∈ S1.

(2) u(ϑ,C) ∩ x(R) = ∅ ∀ϑ ∈ S1 and the map u : S1 × C → M \ x(R) is an
orientation-preserving Cl-diffeomorphism.

(3) Each u(ϑ,C) is a smooth global surface of section for the Reeb flow.

The purpose of the above statement is to isolate the compactness properties
of fast planes which allow us to construct the desired open book decompositions.
Here these compactness properties follow from convexity assumptions on λ; see
Theorem 2.2. In [21] we shall prove that the assumptions of Theorem 2.5 hold
under much less restrictive assumptions on λ, allowing us to investigate general
Reeb flows on the tight 3-sphere.

Let us assume the hypotheses of Theorem 1.11. If P is an unknotted, simply
covered, periodic Reeb orbit satisfying sl(P ) = −1, then Theorem 2.4 provides
an embedded fast finite-energy plane ũ0 asymptotic to P at ∞. Theorem 2.2 now
shows that the hypotheses of Theorem 2.5 hold. Theorem 1.11 follows immediately.

Before proving Theorem 1.5, we briefly outline the proof of Theorem 2.5 for the
convenience of the reader. Suppose M , λ and ũ0 satisfy the hypotheses of Theo-
rem 2.5. If we write ũ0 = (a0, u0) ∈ R×M , then it follows from Lemmas 6.22, 6.23
and 6.24 that u0 is a proper embedding into M \x(R). The identity wind∞(ũ0) = 1
proves u0(C) is transverse to the Reeb vector field. By Theorem 2.3, ũ0 is only one
embedded fast plane in a small 2-parameter family. Let p0 = u0(0) ∈ M and as-
sume, without loss of generality, that a0(0) = 0. Denoting by φt the Reeb flow, we
can single out a 1-dimensional subfamily {ũt = (at, ut)} by requiring

ut(0) = φt(p0), at(0) = 0 and ũ0 = ũ0.
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The family of embedded planes {ut(C)} inside M \x(R) provides a smooth foliation
of a neighborhood of u0(C). Using the compactness assumptions, we continue
the family ũt for all values t ∈ R, satisfying the above normalization conditions.
By Poincaré recurrence we could have assumed, without loss of generality, that
p0 ∈ ω-limit(p0). Then the trajectory φt(p0) will eventually come close to p0. The
completeness statement in Theorem 2.3 can be used to show that the family ũt can
be glued to provide an S1-family. It foliates the whole of M \x(R). This S1-family
can be made minimal if we require

(t, z) ∈ S1 × C 
→ ut(z) ∈ M \ x(R)
is a diffeomorphism. This provides an open book decomposition with disk-like
pages that are transverse to the Reeb field. To prove the pages are global surfaces
of section, fix q0 ∈ M \ x(R). If x(R)∩ ω-limit(q0) = ∅, then φt(q0) hits every page
in forward time by an easy compactness argument. If x(R) ∩ ω-limit(q0) 	= ∅, then
the condition μCZ(P ) ≥ 3 makes the flow wind around x(R) for long enough times,
forcing it to hit every page. This is proved in Section 5 of [17]; see Lemma 6.9
below. The argument is the same for negative times. This concludes the proof of
Theorem 2.5.

Theorem 1.5 follows easily from Theorem 1.11 and from the following result
from [17].

Theorem 2.6 (Hofer, Wysocki and Zehnder). If S ⊂ R4 is the boundary of a
bounded, smooth, strictly convex domain containing 0, then λ0|S is dynamically
convex, that is, μCZ(P ) ≥ 3 for every periodic orbit of the Reeb vector field associ-
ated to the contact form λ0|S.

The arguments are immediate in view of a famous result of Bennequin asserting
that ξ0 = kerλ0|S ⊂ TS is a tight contact structure.

3. Basic definitions and facts

Unless otherwise stated, M denotes a closed connected 3-manifold, λ ∈ Ω1(M)
is a contact form and ξ = kerλ is the induced contact structure.

3.1. Periodic Reeb orbits and winding numbers. We shall identify a periodic
Reeb orbit P = (x, T ) with the class in C∞(S1,M)/S1 of the loop

t ∈ R/Z � S1 
→ xT (t) := x(Tt).

Here we let S1 act on the loop space by rotations on the domain. Hence, we view the
collection P of periodic Reeb orbits as a subset of C∞(S1,M)/S1. The geometric
image of P = (x, T ) ∈ P is the set x(R), and P ′ = (x′, T ′) is geometrically distinct
of P if x(R) ∩ x′(R) = ∅. We shall agree with the following convention: for every
periodic Reeb orbit we select a point in its geometric image, and it will be implicit
from the notation P = (x, T ) that x(0) is the chosen point.

Definition 3.1. Consider a contractible periodic orbit P = (x, T ) and two contin-
uous disk-maps f1, f2 : D → M spanning xT , that is, fj(e

i2πt) = x(Tt), j = 1, 2.
We can define the map f1#f̄2 : S2 = C � {∞} → M by

z 
→

⎧⎪⎨
⎪⎩

f1(z) if |z| ≤ 1,

f2(1/z̄) if 1 ≤ |z| < ∞,

f2(0) if z = ∞.
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We say that c1(ξ) vanishes along P if c1((f1#f̄2)
∗ξ) = 0 for every pair f1, f2 as

above. We denote by P∗ the set of contractible orbits with this property.

Clearly, all contractible periodic Reeb orbits belong to P∗ if c1(ξ) vanishes.

Notation 3.2 (Winding numbers). Let (E, J) be a complex line bundle over S1. If
A and B are two non-vanishing sections, then A = fB for unique f : S1 → C \ {0},
identifying i with J . We denote wind(A,B, J) = deg f/|f | ∈ Z. More loosely, we
write wind(f) = wind(f, 1, i) = deg f/|f | if f : S1 → C \ {0} is continuous. This
winding count does not depend on the homotopy classes (of non-vanishing sections)
of A or B, nor does it depend on the homotopy class (of complex multiplications)
of J . If we fix classes α and β and sections A ∈ α and B ∈ β, then expressions like
wind(α, β, J) or wind(A, β, J) have obvious meaning.

Remark 3.3. Given P ∈ P, recall the set SP of homotopy classes of dλ-symplectic
trivializations of ξP . One can identify SP with the set of homotopy classes of non-
vanishing sections of ξP in a straightforward way. In the following we shall always
assume this is done. Consequently, if P = (x, T ) ∈ P∗, then a section Z is in the
special class βP discussed in the introduction if, and only if, for some (and hence
any) continuous map f : D → M satisfying f(ei2πt) = x(Tt), the section Z extends
to a non-vanishing section of f∗ξ.

The following lemma, which is a trivial consequence of standard degree theory,
will be stated without proof.

Lemma 3.4. Suppose P = (x, T ) ∈ P∗ and U is a small tubular neighborhood
of x(R) in M . Let Z be a non-vanishing section of ξ|U such that x∗

TZ ∈ βP . If
f : D → M is a continuous map such that f(∂D) ⊂ U and t 
→ f(ei2πt) is homotopic
to xT in U , then (f |∂D)∗Z extends to a non-vanishing section of f∗ξ.

3.2. Special coordinates. Consider a periodic Reeb orbit P = (x0, T0) ∈ P with
minimal period 0 < Tmin ≤ T0. Set k := T0/Tmin ∈ Z+.

Definition 3.5 (Martinet Tube). Let R/Z × R2 be equipped with coordinates
(θ, x, y), and set λ0 := dθ + xdy. A Martinet Tube around P is an open neighbor-
hood U of x0(R), an open ball B ⊂ R2 centered at 0, and a diffeomorphism

(12) Ψ : U → R/Z×B

satisfying the following properties:

(1) Ψ∗λ = fλ0, where f |R/Z×{0} ≡ Tmin and df |R/Z×{0} ≡ 0.
(2) Ψ(x0(Tmint)) = (t, 0, 0) ∀t ∈ R.

Remark 3.6. There always exists a Martinet Tube around any P , as noted in [11].
The bundle ξ|U is framed by ∂x and −x∂θ + ∂y. Setting e1 = f−1/2∂x and e2 =

f−1/2(−x∂θ + ∂y), then {e1, e2} is dλ-symplectic. The homotopy class (of non-
vanishing sections of ξ|Pmin

) induced by t ∈ R/Z 
→ ∂x|(t,0) can be chosen arbitrarily.

Note that Ψ−1(kt, 0, 0) = x0T0
(t) ∀t ∈ S1.

3.3. Dynamical convexity. Here we shall slightly modify an important definition
from [17].

Definition 3.7. A contact form λ is dynamically convex if μCZ(P ) ≥ 3 ∀P ∈ P∗.
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3.4. Tight contact structures. The contact structure ξ is said to be tight if there
are no overtwisted disks in M . An embedded disk F ⊂ M is overtwisted if ∂F is a
Legendrian knot and TxF 	= ξ|x, ∀x ∈ ∂F .

3.5. Finite-energy surfaces in symplectizations. In 1985 pseudo-holomorphic
curves were introduced in symplectic geometry by M. Gromov [8]. In 1993 they
were used by H. Hofer to study Reeb flows on contact manifolds. Let (Σ, j) be a
Riemann surface, possibly with non-empty boundary and not necessarily compact,
and let Γ ⊂ Σ \ ∂Σ be a finite subset. The notion of finite-energy surfaces was
introduced by H. Hofer in [9].

Definition 3.8 (Finite-energy surfaces). A map ũ : (Σ\Γ, j) → (R×M, J̃) is called
a finite-energy surface if it is pseudo-holomorphic, that is, it satisfies the non-linear
Cauchy-Riemann equations

(13) dũ ◦ j = J̃ ◦ dũ
and also the energy condition 0 < E(ũ) < +∞. The energy E(ũ) is defined as
follows. Set Λ := {φ ∈ C∞(R, [0, 1]) : φ′ ≥ 0} and ωφ = dλφ where λφ ∈ Ω1(R×M)
is given by λφ(a, p) = φ(a)λ(p). Finally define

E(ũ) = sup
φ∈Λ

∫
Σ\Γ

ũ∗ωφ.

It follows from (13) that each integral above is non-negative. When Σ = S2 and
#Γ = 1 we call ũ a finite-energy plane.

Let us write ũ = (a, u) ∈ R ×M . The points of Γ are called punctures. Let us
fix a puncture z ∈ Γ and let ϕ : (U, 0) → (ϕ(U), z) be a holomorphic chart of (Σ, j)
centered at z. Write ũ(s, t) = ũ ◦ ϕ

(
e−2π(s+it)

)
. It follows easily from E(ũ) < ∞

that the limit

(14) m = lim
s→+∞

∫
{s}×S1

u∗λ

exists. The puncture z is removable if m = 0, positive if m > 0 and negative if
m < 0. A removable singularity can actually be removed, meaning that ũ can be
smoothly continued across the singularity; see [9]. If Σ is closed, then a finite-energy
surface must have non-removable punctures because the forms ωφ are exact.

Finite-energy surfaces are closely related to periodic Reeb orbits. This is the
content of the following fundamental result from [9].

Theorem 3.9 (H. Hofer). In the notation explained above, suppose z is non-
removable and let ε = ±1 be the sign of m in (14). Then every sequence sn → +∞
has a subsequence snk

such that the following holds: there exists a real number c
and a periodic Reeb orbit P = (x, T ) such that u(snk

, t) → x(εT t+c) in C∞(S1,M)
as k → +∞.

In his seminal work [9] H. Hofer is able to partially solve the 3-dimensional
Weinstein Conjecture using techniques of pseudo-holomorphic curves.

Remark 3.10. R×M carries an R-action given by translating the first coordinate,
and J̃ is R-invariant. If ũ = (a, u) is a finite-energy surface, then so is c · ũ :=
(a+ c, u).
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3.6. Asymptotic behavior near the punctures. Let π : TM → ξ denote the
projection along the Reeb direction.

Definition 3.11. Let (S, j), Γ and ũ be as in Definition 3.8. Fix a non-removable
puncture z ∈ Γ, choose a holomorphic chart ϕ : (U, 0) → (ϕ(U), z) centered at z
and write ũ(s, t) = (a(s, t), u(s, t)) = ũ ◦ ϕ(e−2π(s+it)) for s � 1. Define m by (14)
and let ε = ±1 be its sign. We say that z is a non-degenerate puncture of ũ if there
exists a periodic Reeb orbit P = (x, T ) and constants c, d ∈ R such that

(1) supt∈S1 |a(s, t)− εTs− d| → 0 as s → +∞.
(2) u(s, t) → x(εT t+ c) in C0(S1,M) as s → +∞.
(3) If π · du does not vanish identically over S \ Γ, then π · du(s, t) 	= 0 when s

is large enough.
(4) If we define ζ(s, t) by u(s, t) = expx(εT t+c) ζ(s, t), then ∃b > 0 such that

supt∈S1 ebs |ζ(s, t)| → 0 as s → +∞.

In this case we say ũ is asymptotic to P at z. The puncture z is positive or negative
according to the sign ε. This definition is independent of ϕ and of the exponential
map exp.

Definition 3.12. We say that ũ has non-degenerate asymptotic behavior at z if
z is a non-degenerate puncture, and that ũ has non-degenerate asymptotics if this
holds for every puncture.

The behavior of ũ near a puncture is studied in [11]. Here is a partial result.

Theorem 3.13 (Hofer, Wysocki and Zehnder). Let ũ, z and ϕ be as in Theo-
rem 3.9. If a Reeb orbit P obtained by Theorem 3.9 is non-degenerate, then ũ has
non-degenerate asymptotic behavior at z. In particular, ũ is asymptotic to P at z.

3.7. Algebraic invariants. In [12] a number of algebraic invariants of finite-
energy surfaces were introduced. In the next two definitions we fix a finite-energy
plane ũ : C = S2 \ {∞} → R ×M with non-degenerate asymptotics and consider
its asymptotic limit P = (x, T ) at ∞.

Definition 3.14 (Covering number). We define cov(ũ) := T/Tmin ∈ Z+, where
Tmin > 0 is the minimal period of x.

Definition 3.15 (μ-index for planes). Writing ũ = (a, u) then u provides a capping
disk for P and induces a class βũ ∈ SP . Define μ(ũ) = μCZ(P, βũ).

Let ũ and ṽ be finite-energy planes with the same asymptotic limit P . The
identity μ(ũ) = μ(ṽ) + 2wind(βṽ, βũ, J) proves that βũ = βṽ ⇔ μ(ũ) = μ(ṽ).

Remark 3.16. If ũ = (a, u) defined on (S, j) is a J̃-holomorphic map, then π · du
satisfies the “perturbed” Cauchy-Riemann equation π · du ◦ j = J̃ ◦ π · du. By the
similarity principle (see [26]), π · du ≡ 0 on connected components of S where the
zero set of π · du has a limit point.

For the next two definitions we fix a closed Riemann surface (Σ, j), a finite set

Γ ⊂ Σ and a finite-energy surface ũ = (a, u) : (Σ \ Γ, j) → (R × M, J̃) with non-
degenerate asymptotics. We assume that π ·du does not vanish identically and that
Γ consists of non-removable punctures.

Definition 3.17 (wind∞). Split Γ = Γ+ � Γ−, where Γ+ is the set of positive
punctures and Γ− is the set of negative punctures. The bundle u∗ξ is trivializable
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since Γ 	= ∅. Let α be a homotopy class of non-vanishing sections of u∗ξ. Choose a
non-vanishing section σ in class α and write ũ(s, t) around a puncture z ∈ Γ as in
Definition 3.11. If ε = ±1 is the sign of z, then define

wind∞(ũ, α, z) = lim
s→+∞

wind(t 
→ πus(s, εt), t 
→ σ(s, εt), J),

where σ(s, t) = σ(ϕ(e−2π(s+it))). The invariant wind∞(ũ) is defined in [12] by

wind∞(ũ) =
∑
z∈Γ+

wind∞(ũ, α, z)−
∑
z∈Γ−

wind∞(ũ, α, z).

Each wind∞(ũ, α, z) depends on the choice of α but is independent of ϕ. By
standard degree theory, wind∞(ũ) is independent of α.

Definition 3.18 (windπ). The bundle E = HomC(T (Σ \ Γ), u∗ξ) is a complex line
bundle and the section π · du satisfies a perturbed Cauchy-Riemann equation; see
Remark 3.16. Thus its zeros are isolated and count positively when computing the
intersection number with the zero section of E . As a consequence of Definition 3.11
the number of zeros is finite. Following [12] we define

(15) windπ(ũ) = algebraic count of zeros of π · du,
where the zeros are counted with multiplicities. The inequality windπ(ũ) ≥ 0 can
be seen as a linearized version of the positivity of self-intersections.

The Gauss-Bonet formula proves the following lemma, as shown in [12].

Lemma 3.19. wind∞(ũ) = windπ(ũ)−#Γ+ χ(Σ).

Remark 3.20. π · du does not vanish identically if ũ is a finite-energy plane with
non-degenerate asymptotics; this follows from results of [12] (see Lemma 4.6 below).
In this case wind∞(ũ) ≥ 1.

4. Compactness

This section is devoted to the proof of Theorem 2.2. We fix the Riemannian
metric g0 on R×M given by

(16) g0 = da⊗ da+ λ⊗ λ+ dλ(·, J ·),
where J : ξ → ξ is dλ-compatible. All norms of maps or objects in R×M are taken
with respect to the metric g0.

4.1. Asymptotic operators and their spectral properties. We endow R2

with its standard euclidean structure 〈·, ·〉, inducing a Hilbert space structure on
L2(S1,R2). If ϕ : [0, 1] → Sp(1) is a smooth path and S := −J0ϕ

′ϕ−1, then
ST = S. We identify S1 = R/Z and consider the unbounded self-adjoint operator

LS : W 1,2 ⊂ L2 → L2, LS(e) = −J0ė− Se.

LS has compact resolvent and discrete real spectrum σ(LS) accumulating only at
±∞. Each point of the spectrum is an eigenvalue with the same (finite) algebraic
and geometric multiplicities; see [22]. This is so because LS is homotopic to −J0∂t
through compact symmetric perturbations; see [12] for more details.

If ϕ(0) = I, then ϕ ∈ Σ∗ if, and only if, 0 	∈ σ(LS). For any δ ∈ R denote by
νnegδ < δ and νposδ > δ the special eigenvalues

νposδ = min{ν ∈ σ(LS) : ν > δ}, νnegδ = max{ν ∈ σ(LS) : ν < δ}.
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To each non-zero eigenvector e of LS one can consider the winding number wind(e).
It is proved in [12] that:

(1) If e1, e2 are two non-zero eigenvectors of LS such that LSej = νej for
j = 1, 2, then wind(e1) = wind(e2).

(2) If LSej = νjej for j = 1, 2 and ν1 ≤ ν2, then wind(e1) ≤ wind(e2).

Thus one has a well-defined winding wind(ν) associated to an eigenvalue ν of LS

satisfying ν1 ≤ ν2 ⇒ wind(ν1) ≤ wind(ν2). It is also proved in [12] that for every
k ∈ Z there are exactly two eigenvalues (counting multiplicities) with winding equal
to k. Following [12], we have a well-defined integer

(17) μ̃δ (LS) = 2wind (νnegδ ) +
1

2

(
1 + (−1)bδ

)
,

where bδ is the number of eigenvalues ν < δ such that wind(ν) = wind(νnegδ ),
counting multiplicities.

Lemma 4.1 (Hofer, Wysocki and Zehnder). μ̃0 : ϕ ∈ Σ∗ 
→ μ̃0(ϕ) ∈ Z satisfies
the axioms of Theorem 1.7.

Remark 4.2. The above lemma provides an extension of the index to symplectic
paths ϕ that are not in Σ∗. By the spectral properties of LS , if δ is not an eigenvalue,
then the term 1

2

(
1 + (−1)bδ

)
is equal to wind (νposδ )− wind (νnegδ ).

Definition 4.3 (Asymptotic operators). Fix a dλ-compatible complex structure J
on ξ and let P = (x, T ) be a periodic Reeb orbit. Then the metric dλ(·, J ·) induces
a Hilbert space structure on L2 (ξ|P ). Choose a symmetric connection ∇ on TM .
The unbounded self-adjoint operator

AP : W 1,2 (ξ|P ) ⊂ L2 (ξ|P ) → L2 (ξ|P ) ,
η 
→ −J∇tη + TJ∇ηR

is independent of∇ (∇t denotes the covariant derivative along the curve t 
→ xT (t)).
AP is the so-called asymptotic operator at P .

The linear flow generated by ∇tη = T∇ηR is dφTt|x(0)-restricted to ξ. Choose a
dλ-symplectic frame σ = {e1, e2} for ξ|P , and represent the linear maps dφTt|x(0)
by a smooth path ϕ : [0, 1] → Sp(1), ϕ(0) = I and the multiplication x∗

TJ by a
smooth path t 
→ J(t). Then J(t) ∈ Sp(1) and −J0J(t) is a positive symmetric
matrix. The matrix S = −J(t)ϕ′ϕ−1 is symmetric with respect to the inner product
〈·,−J0J(t)·〉 on R

2 and 1-periodic (since so is ϕ′ϕ−1). The operator

(18) LS : e(t) 
→ −J(t)e′(t)− S(t)e(t)

represents AP in the frame σ. If σ is (dλ, J)-unitary (dλ(e1, e2) ≡ 1 and Je1 = e2),
then AP is presented as LS = −J0∂t − S(t) with ST = S. Thus AP has all the
spectral properties explained before.

Notation 4.4. With respect to a symplectic frame σ = {e1, e2} for ξ|P , the eigenvec-
tors and eigenvalues of AP have well-defined winding numbers. These, of course, de-
pend on the homotopy class β ∈ SP of the section t 
→ e1(t) and will be denoted by
(ν, β) ∈ Z. They are comparable via the formula (ν, β1) = (ν, β0)+wind(β0, β1, J).
For any δ ∈ R we define

μδ
CZ(P, β) = 2 (νnegδ , β) +

1

2

(
1 + (−1)bδ

)
,
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where bδ is the number of eigenvalues ν < δ such that (ν, β) = (νnegδ , β), counting
multiplicities. If P is non-degenerate, then

μCZ(P, β) = 2 (νneg0 , β) + (νpos0 , β)− (νneg0 , β).

The following lemma is an easy consequence of the definitions.

Lemma 4.5. Suppose P ∈ P∗ satisfies μCZ(P ) ≥ 3. Then (ν, βP ) ≥ 2 for every
eigenvalue ν ≥ 0 of AP .

4.2. Finite-energy spheres with vanishing dλ-energy.

Lemma 4.6 (Hofer, Wysocki and Zehnder). Suppose ṽ = (d, v) : C \ Γ → R ×M
is a finite-energy sphere satisfying π · dv ≡ 0. Suppose further that ∞ is its unique
positive puncture. There exists a non-constant polynomial p : C → C and a periodic
orbit P̂ = (x̂, T̂ ) such that p−1(0) = Γ and ṽ = f(x̂,T̂ ) ◦ p, where

f(x̂,T̂ ) : C \ {0} → R×M, f(x̂,T̂ )(e
2π(s+it)) = (T̂ s, x̂(T̂ t)).

4.3. Bubbling-off points. The basic tool for the bubbling-off analysis is the fol-
lowing lemma. In the statement below norms are taken with respect to g0 (16) and
the euclidean metric on C.

Lemma 4.7. Let Γ ⊂ C be finite and let Un ⊂ C \ Γ be an increasing sequence of

open sets such that
⋃

n Un = C \ Γ. Let ũn = (an, un) : (Un, i) → (R×M, J̃) be a

sequence of J̃-holomorphic maps satisfying supn E(ũn) = C < ∞, and let zn ∈ Un

be a sequence such that |dũn(zn)| → +∞. If zn stays bounded away from Γ� {∞},
or if there exist m and ρ > 0 such that C \ Bρ(0) ⊂ Um and zn stays bounded
away from Γ, then the following holds: ∀0 < s < 1 there exist subsequences {ũnj

}
and {znj

}, sequences z′j ∈ C and rj(s) ∈ R, and a contractible periodic Reeb orbit

P̂ = (x̂, T̂ ) such that
∣∣znj

− z′j
∣∣→ 0, rj(s) → 0+, T̂ ≤ C and

lim sup
j→+∞

∫
|z−z′

j |≤rj(s)

u∗
nj
dλ ≥ sT̂ .

We do not include a proof here since it is standard.

Corollary 4.8. Assume λ and P satisfy the hypotheses of Theorem 2.2. Suppose
{ũn = (an, un)} ⊂ Θ(H,P ) and {zn} ⊂ C are sequences such that |dũn(zn)| → +∞.
Then lim sup |zn| ≤ 1 and for any 1 < s < γ−1 min{γ1, γ2} there exist subsequences
{ũnj

} and {znj
}, a sequence rj(s) → 0+ and a sequence z′j such that

∣∣znj
− z′j

∣∣→ 0
and

lim sup
j→+∞

∫
|z−z′

j|≤rj(s)

u∗
nj
dλ ≥ sγ.

Corollary 4.9. Assume λ and P satisfy the hypotheses of Theorem 2.2. If {ũn} ⊂
Θ(H,P ) and z1, . . . , zJ are distinct points of C satisfying

∀ 1 ≤ l ≤ J ∃{zln} such that zln → zl and |dũn(z
l
n)| → +∞,

then {z1, . . . , zJ} ⊂ D and J ≤ T/γ.

Proof. Write ũn = (an, un). The conclusion follows easily from the previous lemma
since

∫
C
u∗
ndλ = T for all n. �

Corollary 4.10. If {ũn} ⊂ Θ(H,P ), then one can find a subsequence {ũnj
} and

a finite set Γ ⊂ D such that {|dũnj
|} is uniformly bounded on compact subsets of

C \ Γ.
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4.4. Special cylinders with small energy. Fix any contact form λ on the closed
3-manifold M . Suppose Q ⊂ P satisfies the following condition: if P̂ = (x̂, T̂ ) ∈ Q,

P̃ = (x̃, T̃ ) ∈ P and x̂T̂ is C0-homotopic to x̃T̃ , then P̃ ∈ Q. We denote QC =

{P̂ = (x̂, T̂ ) ∈ Q : T̂ ≤ C} for some fixed C > 0. We assume every P ∈ QC is
non-degenerate so that QC is finite. We follow [18] and fix a number

(19)
0 < e < min{a1, a2}, where a1 = min{T̂ : P̂ = (x̂, T̂ ) ∈ QC} and

a2 = min{|T̂ − T̃ | : P̂ = (x̂, T̂ ), P̃ = (x̃, T̃ ) ∈ QC and T̂ 	= T̃}.

Choose also an arbitrary S1-invariant open neighborhood W of QC in the loop
space C∞(S1,M). The proof of the following lemma is found all over the literature;
however, its statement is not. We shall not give the arguments here since they are
almost identical to the ones given to prove Lemma 4.9 from [18]; see also [19].

Lemma 4.11. Let η > 0 be fixed. Suppose that, in addition to the assumptions
made above, every contractible P̃ = (x̃, T̃ ) with T̃ ≤ C belongs to Q. Then ∃h > 0
with the following significance. If ũ = (a, u) : [r,+∞) × S1 → R × M is a finite-
energy cylinder satisfying

(1) E(ũ) ≤ C and
∫
[r,+∞)×S1 u

∗dλ ≤ e,

(2)
∫
{s}×S1 u

∗λ ≥ η ∀s ≥ r,

(3) ∃P̂ ∈ QC and y ∈ P̂ such that lims→+∞ u(s, ·) = y in C∞(S1,M),

then s ≥ r + h ⇒ u(s, ·) ∈ W.

It is not hard to check that, under the assumptions of Theorem 2.2, Q = P∗ and
C = T satisfy the hypotheses of Lemma 4.11.

4.5. An auxiliary lemma. This subsection is independent of the previous discus-
sion. Our goal is to prove Lemma 4.15 below. Let

w̃ = (d, w) : C \ Γ̂ → R×M

be a finite-energy sphere with non-degenerate asymptotics, where Γ̂ ⊂ C is finite.
Suppose Γ = Γ̂ ∪ {∞} consists of non-removable punctures. Denote z1 = ∞ and

write Γ̂ = {z2, . . . , zN}. We find periodic orbits {Pj = (xj , Tj)}j=1···N such that w̃
is asymptotic to Pj at zj , according to Definition 3.11.

Assume Pj ∈ P∗ ∀j and that z2, . . . , zN are negative punctures. There are dis-
tinguished homotopy classes βj = βPj

∈ SPj
induced by capping disks for the maps

xjTj
, as explained in Remark 3.3, and we choose Zj in class βj . By Theorem 3.13

there exist sections of w∗ξ defined near the punctures zj , still denoted Zj , such
that the following holds: if ψ is a holomorphic chart satisfying ψ(0) = zj then

Zj(ψ(e
2π(s+it))) → Zj(xj(Tjt+ c)) uniformly in t as s → −∞, for some c ∈ R.

Lemma 4.12. The sections Zj ◦ w (defined only near the punctures zj) extend to
a non-vanishing section B of w∗ξ.

The proof follows from standard degree theory; we only sketch it here.

Sketch of proof. We can glue capping disks Dj for Pj along the punctures zj , for
j = 2 . . . , N , with the surface w to obtain a capping disk

D1 = D2# . . .#DN#w
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for P1. This follows from the asymptotic behavior described in Definition 3.11. The
sections {Zj}j≥2 extend to a section σ of ξ|D1

. We used that Zj |Pj
∈ βPj

∀j ≥ 2j
and that the class βPj

has special properties described in Subsection 3.1. Since
Z1|P1

∈ βP1
, then σ does not wind with respect to Z1 near ∂D1 and, consequently,

can be patched with Z1. �

Lemma 4.13. Fix 1 ≤ j ≤ N . Suppose the Pi are non-degenerate. If zj is a
negative puncture of w̃, μCZ(Pj) ≥ 3 and

∫
C\Γ̂ w

∗dλ > 0, then wind∞(w̃, δ, zj) ≥ 2,

where δ is the homotopy class of the section B given by Lemma 4.12.

The proof requires the following very non-trivial theorem proved in [11].

Theorem 4.14 (Hofer, Wysocki and Zehnder). Suppose Pj is non-degenerate and
choose a holomorphic chart ϕ : (V, 0) → (ϕ(V ), zj) centered at zj . Write w(s, t) =

w ◦ ϕ(e−2π(s+it)) if zj is a positive puncture or w(s, t) = w ◦ ϕ(e2π(s+it)) if zj is a
negative puncture. By rotating the chart ϕ, we can assume that w(s, t) → xj(Tjt)
as |s| → +∞ in C∞. Then either π · dw vanishes identically or the following hold.

(1) If zj is positive, then ∃f(s, t) ∈ R \ {0} smooth such that

lim
s→+∞

f(s, t)π · ∂sw = e(t) in C∞(S1, ξ),

where e is an eigenvector of APj
associated to an eigenvalue ν ≤ νneg.

(2) If zj is negative, then ∃f(s, t) ∈ R \ {0} smooth such that

lim
s→−∞

f(s, t)π · ∂sw = e(t) in C∞(S1, ξ),

where e is an eigenvector of APj
associated to an eigenvalue ν ≥ νpos.

In Section 6 we will generalize the above theorem, replacing the assumption that
Pj is non-degenerate by the assumption that w̃ has non-degenerate asymptotic
behavior at zj .

Proof of Lemma 4.13. Let ϕ be as in the statement of Theorem 4.14. Write w(s, t)
= w ◦ ϕ

(
e2π(s+it)

)
and B(s, t) = B ◦ ϕ

(
e2π(s+it)

)
, where B is the non-vanishing

section given by Lemma 4.12. We compute

wind∞(w̃, δ, z) = lim
s→−∞

wind(π · ∂sw(s, t), B(s, t), J)

= lim
s→−∞

wind(π · ∂sw(s, t), Zj(w(s, t)), J)

= lim
s→−∞

wind(f(s, t)π · ∂sw(s, t), Zj(w(s, t)), J)

= wind(e(t+ c), Zj(x(Tt+ c)), J) = (ν, βPj
),

where ν is a positive eigenvalue of APj
and c ∈ R. The inequality μCZ(Pj) ≥ 3

implies (ν, βPj
) ≥ 2 in view of Lemma 4.5. �

Lemma 4.15. Let λ be a contact form on M , inducing the contact structure ξ =
kerλ, and let J : ξ → ξ be a dλ-compatible complex structure. Suppose

w̃ = (d, w) : C \ Γ̂ → R×M

is a finite-energy sphere with non-degenerate asymptotics, where ∅ 	= Γ̂ ⊂ C is
finite. Suppose also that Γ = Γ̂ ∪ {∞} consists of non-removable punctures. Write

z1 = ∞ and Γ̂ = {z2, . . . , zN}. Assume w̃ is asymptotic to Pj at zj according to
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Definition 3.11, where {Pj = (xj , Tj)}j=1···N are periodic Reeb orbits. Assume also
that

(1) Pj ∈ P∗ and Pj is non-degenerate ∀j.
(2) z1 is a positive puncture and z2, . . . , zN are negative punctures.

Let δ be the homotopy class of the section B given by Lemma 4.12. If w̃ satisfies
wind∞(w̃, δ, z1) ≤ 1 and

∫
C\Γ̂ w

∗dλ > 0, then μCZ(Pj) < 3 for some j ≥ 2.

Proof. Let us assume that μCZ(Pj) ≥ 3 ∀j ≥ 2. Using Lemma 4.13, we have the
following chain of inequalities:

0 ≤ windπ(w̃) = wind∞(w̃) + #Γ̂ + 1− χ(S2)

≤ 1−
∑
j≥2

wind∞(w̃, δ, zj) + 1 +#Γ̂− 2

≤ −2#Γ̂ + #Γ̂ = −#Γ̂,

proving that Γ̂ = ∅. This contradiction concludes the argument. �

As the proof demonstrates, the above lemma follows essentially from the in-
equality windπ ≥ 0. This should be seen as some kind of linearized version of the
positivity of self-intersections, and it is violated when the asymptotic winding is
≤ 1 at the positive puncture and ≥ 2 at the negative puncture. One should also
note that this very simple argument is independent of any transversality results.

4.6. Bubbling-off analysis. We start with a technical lemma.

Lemma 4.16. Assume λ and P = (x, T ) satisfy the hypotheses of Theorem 2.2
and recall the number γ in (6). Suppose rn → 0+, e > 0 and {ṽn = (dn, vn) : C →
R×M} is a sequence of finite-energy planes. Suppose further that

(1) E(ṽn) ≤ T and
∫
{|z|>rn} v

∗
ndλ ≤ γ.

(2)
∫
|z|=ρ

v∗nλ ≥ e ∀ρ > rn.

(3) ∃N > 0 such that ṽn(C) ⊂ [−N,+∞)×M ∀n.
Then limn→+∞ infK dn = +∞ for every compact set K ⊂ C \ {0}.

Proof. We claim |dṽn| is bounded on compact subsets of C \ {0}. If not, we may
assume ∃ζn → ζ∗ 	= 0 satisfying |dṽn(ζn)| → +∞. By Lemma 4.7 we can further
assume that for every 0 < s < 1 there exists ρn → 0+ and a contractible Reeb
orbit P̃ = (x̃, T̃ ) such that T̃ ≤ T and lim supn→+∞

∫
Bρn (ζn)

v∗ndλ ≥ sT̃ . Choosing

s > γ/γ1, we obtain a contradiction to (1).
We proceed indirectly. Suppose ∃{zn} ⊂ C such that zn → z∗ 	= 0 and {dn(zn)}

is bounded. Hence the sequence ṽn(zn) is compactly contained in R×M . We proved
above that {|dṽn|} is C0

loc-bounded on C\{0}. Thus {ṽn} is C1
loc-bounded on C\{0}.

Elliptic estimates provide C∞
loc-bounds and a subsequence {ṽnj

} converging to a J̃-
holomorphic cylinder f : C \ {0} → R × M in C∞

loc. It satisfies E(f) ≤ T and∫
C\{0} g

∗dλ ≤ γ, where we write f = (h, g). We estimate

(20)

∫
|z|=ρ

g∗λ = lim
j→+∞

∫
|z|=ρ

v∗nj
λ ≥ e > 0, ∀ρ > 0.

Hence E(f) > 0 and 0 is not a removable puncture. Moreover, h ≥ −N on
C \ {0} since ṽn(C) ⊂ [−N,+∞) ×M ∀n. Consequently, 0 is a positive puncture.
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Let us write g
(
e−2π(s+it)

)
= g(s, t). By Theorem 3.9 there exist a periodic orbit

P̃ = (x̃, T̃ ) and a sequence sk → +∞ such that

lim
k→+∞

g(sk, t) = x̃(T̃ t+ c) in C∞(S1,M)

for some c ∈ R. Thus limk→+∞
∫
|z|=e−2πsk

g∗λ = −T̃ < 0, contradicting (20). �

Lemma 4.17. Assume λ and P = (x, T ) satisfy the hypotheses of Theorem 2.2
and let H ⊂ R ×M be a compact set. Suppose {ũn = (an, un)} ⊂ Θ(H,P ). Then

one can find a subsequence {ũnj
}, a finite set Γ ⊂ D and a smooth J̃-holomorphic

map w̃ : C \ Γ → R×M satisfying the following properties.

(1) Defining w̃n : C → R×M by w̃n(z) = (an(z)−an(2), un(z)), then w̃nj
→ w̃

in C∞
loc(C \ Γ,R×M) and 0 < E(w̃) ≤ T .

(2) ∃A ∈ [−∞,+∞) such that infC anj
→ A.

(3) If A = −∞, then #Γ = 1, π · dw ≡ 0 and H ∩ R× x(R) 	= ∅.
(4) If A > −∞, then Γ = ∅, anj

(2) → c ∈ R and ũnj
→ ũ := c · w̃ in C∞

loc.

Moreover, ũ ∈ ΘA(H,P ).

Proof. By Corollary 4.10 we find a subsequence {ũnj
} ⊂ {ũn} and a finite set Γ ⊂ D

such that

(i) |dũnj
| is C0

loc-bounded on C \ Γ.
(ii) ∀z∗ ∈ Γ ∃zj → z∗ such that

∣∣dũnj
(zj)

∣∣→ +∞.

Define w̃n(z) = (an(z)−an(2), un(z)) and write w̃n = (bn, wn). Note that |dw̃n(z)|
= |dũn(z)|, ∀z ∈ C since the metric g0 is R-invariant. This proves that w̃nj

is

C1
loc-bounded on C \ Γ since w̃nj

(2) ⊂ {0} × M . Elliptic estimates provide C∞
loc-

bounds. Thus we can assume, without loss of generality, that we can find a smooth
J̃-holomorphic map

w̃ = (b, w) : C \ Γ → R×M

such that w̃nj
→ w̃ in C∞

loc(C \ Γ). Clearly, E(w̃) ≤ supj E(w̃nj
) = T . We split the

remaining arguments into a few steps.

Step 1. w̃ is not constant, all punctures in Γ are negative, and ∞ is the unique
positive puncture.

Proof of Step 1. If Γ = ∅, then
∫
D
w∗dλ = limj

∫
D
u∗
nj
dλ = T − γ > 0, proving

that w̃ is not constant. Suppose w̃ is constant and Γ 	= ∅. Fix z∗ ∈ Γ ⊂ D and
1 < s < γ−1 min{γ1, γ2}. By Corollary 4.8 we assume, without loss of generality,
that we can find sequences znj

→ z∗ and rj(s) → 0+ such that

lim sup
j→+∞

∫
|z−znj

|≤rj(s)

u∗
nj
dλ ≥ sγ.

Set Bj = Brj(s)(znj
). If w̃ is constant, we can estimate

0 =

∫
|z|=2

w∗λ = lim
j

∫
|z|≤2

w∗
nj
dλ ≥ lim sup

j

∫
Bj

u∗
nj
dλ = sγ > 0.

This contradiction shows w̃ is not constant. Assume again Γ 	= ∅, fix z∗ ∈ Γ and
suppose, by contradiction, that it is a positive puncture. By Theorem 3.9 we find
r > 0 small and a periodic Reeb orbit P ∗ = (x∗, T ∗) such that

−
∫
|z−z∗|=r

w∗λ ≥ T ∗

2
> 0.
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However

−
∫
|z−z∗|=r

w∗λ = − lim
j

∫
|z−z∗|=r

w∗
nj
λ = − lim

j

∫
|z−z∗|≤r

u∗
nj
dλ ≤ 0.

This contradiction shows that z∗ is a negative puncture. If ∞ is also a negative
puncture, then E(w̃) < 0, which is impossible. �

We fix an S1-invariant neighborhood W of the (discrete) set of S1-orbits

{y ∈ C∞(S1,M) : y ∈ P̃ = (x̃, T̃ ) ∈ P∗ with T̃ ≤ T}

in C∞(S1,M) with the following property: whenever P̂ = (x̂, T̂ ), P̃ = (x̃, T̃ ) are

two contractible Reeb orbits with max{T̂ , T̃} ≤ T and P̂ 	= P̃ , then no connected
component of W contains the two loops x̂T̂ and x̃T̃ simultaneously. This can be
done by our assumptions on λ and P . Let W1 denote the component containing
xT .

Step 2. There exist h > 0 and j0 ∈ Z+ such that {t 
→ unj
(rei2πt)} ∈ W1 for every

j ≥ j0 and r ≥ 2eh.

Proof of Step 2. We can estimate

(1) lim supj
∫
2≤|z|≤R

u∗
nj
dλ ≤ γ ∀R ≥ 2.

(2)
∫
|z|=2

u∗
nj
λ ≥ T − γ ∀j.

Applying Lemma 4.11 to W , e = γ, η = T − γ and the cylinders

(s, t) ∈ [(2π)−1 log 2,+∞)× S1 
→ ũnj

(
e2π(s+it)

)
,

we obtain h > 0 and j0 such that the loop t 
→ unj
(rei2πt) is in W , whenever j ≥ j0

and r ≥ 2eh. By the path-connectedness of W1, these loops cannot leave W1. �

Step 3. The curve w̃ has non-degenerate asymptotics and is asymptotic to P at the
puncture ∞.

Proof of Step 3. We only deal with∞; the other punctures are subject to analogous
arguments. Use Theorem 3.9 to find c+ ∈ R, rk → +∞ and an orbit P+ = (x+, T+)
such that

w
(
rke

i2πt
)
→ x+(T+t+ c+) in C∞(S1,M).

Fix k large. Then for j large the loop unj

(
rke

i2πt
)
is C∞ close to w

(
rke

i2πt
)
and

is homotopic to x(Tt). It follows that P+ is contractible. Clearly, T+ ≤ E(w̃) ≤ T .
Thus, by the assumptions of Theorem 2.2, P+ is non-degenerate and belongs to
P∗. By Theorem 3.13 w̃ has non-degenerate asymptotic behavior at the puncture
∞ and the associated asymptotic Reeb orbit is P+. It follows from Step 2 that
P+ = P . �

By our assumptions on λ and P , the asymptotic limits at the punctures z ∈ Γ
are non-degenerate orbits in P∗ with periods ≤ T and indices μCZ ≥ 3.

Step 4. If
∫
C\Γ w

∗dλ > 0, then Γ = ∅ and wind∞(w̃) = 1.
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Proof of Step 4. Write z1 = ∞ and Γ = {z2, . . . , zN}. Suppose w̃ is asymptotic to
Pj = (xj , Tj) at the puncture zj . As remarked above, P1 = P , {P1, . . . , PN} ⊂
P∗ and Pj is non-degenerate ∀j. Moreover, maxj Tj ≤ T and μCZ(Pj) ≥ 3 ∀j.
Let U1 be an open neighborhood of x(R) and let Z1 be non-vanishing sections of
ξ|U1

satisfying Z1|P ∈ βP . Let B be the non-vanishing section of w∗ξ given by
Lemma 4.12 and δ be its homotopy class. By Theorem 3.13 we can find R0 � 2
so that r ≥ R0 implies π · ∂rw(rei2πt) 	= 0 and w(rei2πt) ∈ U1. Let h > 0 be given
by Step 2 and suppose W1 is small enough so that c ∈ W1 ⇒ c(S1) ⊂ U1. If we
assume R0 ≥ 2eh, then wnj

(rei2πt) ∈ U1 whenever r ≥ R0 and j is large. Perhaps

after making j larger, we can also assume π · ∂rwnj
(R0e

i2πt) 	= 0 ∀t ∈ S1 because
wnj

→ w in the sense of C∞ on the set {|z| = R0}. Define lj and l by

lj = wind(π · ∂rwnj
(R0e

i2πt), Z1 ◦ wnj
(R0e

i2πt), J),

l = wind(π · ∂rw(R0e
i2πt), Z1 ◦ w(R0e

i2πt), J).

Then l = wind∞(w̃, δ,∞). Note that Z1 ◦ wnj
, only defined on {|z| ≥ R0}, ex-

tends to a non-vanishing section of w∗
nj
ξ by the properties of the class βP1

= βP .
Consequently, ∀j ∃Rj � R0 such that

1 = wind∞(ũnj
) = wind(π · ∂rwnj

(Rje
i2πt), Z1 ◦ wnj

(Rje
i2πt), J).

The Gauss-Bonet formula proves

1− lj = wind∞(ũnj
)− lj = #{zeros of π · dwnj

in {R0 ≤ |z| ≤ Rj}} ≥ 0.

It follows that lj ≤ 1. We know that lj → l, proving l ≤ 1. If Γ 	= ∅, we can apply
Lemma 4.15 to obtain a contradiction. �

Step 5. If π · dw ≡ 0, then #Γ = 1, Γ ⊂ ∂D and w̃(C \ Γ) ⊂ R× x(R).

Proof of Step 5. We use Lemma 4.6. Let p be a polynomial of degree k ≥ 1 satis-
fying p−1(0) = Γ and let P̂ = (x̂, T̂ ) be a periodic orbit such that w̃ = f(x̂,T̂ ) ◦ p.
It follows from Step 3 that (x, T ) = (x̂, kT̂ ). Thus x = x̂ and k = 1. In fact,
if k ≥ 2, then T is not the minimal period of x, contradicting the fact that P is
simply covered. Consequently, p(z) = Az + D and Γ = {−D/A} ⊂ D for some
A ∈ C, A 	= 0. It follows from Lemma 4.6 and Step 3 that w̃(C \ Γ) ⊂ R× x(R). If
| −D/A| < 1, then we obtain the contradiction

(21) T =

∫
|z|=1

w∗λ = lim
j→+∞

∫
|z|=1

u∗
nj
λ = T − γ.

�

Step 6. A = −∞ ⇔ Γ 	= ∅.

Proof of Step 6. Let {zj} be so that anj
(zj) = infC anj

→ −∞. Suppose, by
contradiction, that Γ = ∅. Then |dũnj

| is bounded on compact subsets of C. We
claim that |zj | → +∞. If not, we can assume, after selecting a subsequence, that
we have a uniform bound |anj

(zj) − anj
(0)| ≤ c for some c > 0. This proves

anj
(0) → −∞, contradicting {ũnj

(0)} ⊂ H because H is compact. Now define
ṽj : C → R×M by

ṽj(z) = (dj(z), vj(z)) = (anj
(zjz)− anj

(zj), unj
(zjz)).
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Then the planes {ṽn} satisfy the hypotheses of Lemma 4.16 with e = T − γ,
rj = 2|zj |−1 and N = 0, in view of the properties of the set Θ(H,P ). However,
{ṽn(1)} ⊂ {0} ×M and this is in contradiction to Lemma 4.16.

Assume Γ 	= ∅ and suppose, by contradiction, that A > −∞. First we claim
that anj

(2) → +∞. If not, we can assume, after selecting a subsequence, that
∃N < +∞ satisfying supj anj

(2) < N . Choose z ∈ Γ. By Step 1 z is a negative
puncture. In view of the asymptotic behavior described in Theorem 3.13 and of
Definition 3.11, ∃ζ ∈ C\Γ close to z such that b(ζ) < A−N−1. Since bnj

(ζ) → b(ζ)
as j → +∞, then we can estimate anj

(ζ) = bnj
(ζ)+anj

(2) < A−1 for j large. This
contradicts the definition of A, proving anj

(2) → +∞. We now claim that 0 ∈ Γ.
If not, then we find a smooth curve c : [0, 1] → C such that c(0) = 0, c(1) = 2
and c ([0, 1]) ∩ Γ = ∅. We estimate |anj

(2) − anj
(0)| ≤ C × length(c) ∀j for some

C > 0, since the metric g0 is R-invariant. This is a contradiction since {an(0)} is
a bounded sequence (H is assumed compact) and anj

(2) → +∞. Hence 0 ∈ Γ.

By Step 4 we must have π · dw ≡ 0. By Step 5 we conclude that 0 ∈ S1, which is
absurd. �

In view of Step 4 and Step 5, the points 0 and 2 do not belong to Γ. This
allows us to conclude that anj

(2) is bounded since so is anj
(0) (H is compact).

Up to selection of a subsequence, we can assume anj
(2) → c ∈ R. If A > −∞,

then Γ = ∅ by Step 6, and the plane ũ = c · w̃ must belong to ΘA(H,P ) by Step
3 and Step 4. If A = −∞, then Γ 	= ∅ by Step 6, π · dw ≡ 0 by Step 4, and
w̃(0) = (b(0), w(0)) ∈ R× x(R) by Step 5. We know ũ(0) = limj ũnj

(0) ∈ H. The
conclusion follows since ũ(0) = (b(0) + c, w(0)). �

4.7. End of the proof of Theorem 2.2. Suppose λ and P satisfy the assumptions
of Theorem 2.2 and that H ⊂ R ×M is compact. Take {ũn} ⊂ ΘL(H,P ) and set
An = infC an. We can assume, after selecting a subsequence, that An → A ∈
[L,+∞). By Lemma 4.17 we find a subsequence {ũnj

} and some ũ ∈ ΘL(H,P )

such that ũnj
→ ũ in C∞

loc. This proves Θ
L(H,P ) is C∞

loc-compact.
Assume H ∩ R × x(R) = ∅, consider {ũn} ⊂ Θ(H,P ) and set An = infC an. If

infn An = −∞, then we can assume An → −∞. By Lemma 4.17 we conclude that
H∩R×x(R) 	= ∅, a contradiction. Thus we find L > 0 such that {ũn} ⊂ ΘL(H,P ).
This proves Θ(H,P ) is C∞

loc-compact.
Now suppose {ũn} ⊂ ΛL(H,P ) ⊂ ΘL(H,P ). We already know ∃ũ ∈ ΘL(H,P )

and a subsequence {ũnj
} such that ũnj

→ ũ in C∞
loc. We must show that ũ is an

embedding. It must be an immersion since windπ(ũ) = wind∞(ũ) − 1 = 0. Let Δ
be the diagonal in C× C and consider the set

D = {(z1, z2) ∈ C× C \Δ : ũ(z1) = ũ(z2)}.

If D has a limit point in C × C \ Δ, then we find, using the similarity principle

as in [26], a polynomial p : C → C of degree ≥ 2 and a J̃-holomorphic map
f : C → R×M such that ũ = f ◦ p. This forces zeros of dũ, a contradiction. Thus
D is closed and discrete in C × C \Δ. By stability and positivity of intersections
of pseudo-holomorphic immersions, we find self-intersections of the maps ũnj

for
large values of j if D 	= ∅. This is a contradiction since each ũn is an embedding.
We proved D = ∅ and ΛL(H,P ) is C∞

loc-compact. The same reasoning as above
shows Λ(H,P ) is C∞

loc-compact if H ∩ R × x(R) = ∅. The proof of Theorem 2.2 is
complete.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1884 UMBERTO HRYNIEWICZ

5. Existence of fast planes

In this section we prove Theorem 2.4.

5.1. Special boundary conditions for the Bishop family. We will need spe-
cial totally real boundary conditions for our Bishop family of J̃-holomorphic disks
described in Subsection 2.4.

Proposition 5.1. Let P = (x, T ) be an unknotted and simply covered periodic
Reeb orbit on a 3-manifold M equipped with a non-degenerate contact form λ and
Reeb vector field R. Let D0 be a smooth embedded disk satisfying ∂D0 = x(R). For
any open neighborhood U of x(R) in M there exists a smooth embedded disk D1

satisfying the following properties.

(1) ∂D1 = x(R), D1 \ U = D0 \ U .
(2) There exists a neighborhood O of ∂D1 in D1 such that

(22) Rp 	∈ TpD1, ∀p ∈ O \ ∂D1.

The goal of this subsection is to prove the above statement. We start with some
technical lemmas. Let sp(1) denote the Lie algebra of Sp(1).

Lemma 5.2. Let ψ ∈ C∞([0, 1], Sp(1)) satisfy det[I − ψ(1)] 	= 0 and suppose
Y ∈ sp(1) satisfy eY = ψ(1). Suppose t 
→ ψ′(t)ψ−1(t) extends to a smooth 1-
periodic function on R. Then M(t) = etY ψ−1(t) also extends to a smooth 1-periodic

function on R. Moreover, if detY > 0, then ∃ Ỹ ∈ sp(1) satisfying eỸ = ψ(1),

such that the smooth map M̃ : R/Z → Sp(1) defined by M̃(t) = etỸ ψ−1(t) satisfies

Maslov(M̃) = 0.

Proof. Clearly, M extends to a continuous 1-periodic function. The formula M ′ =
YM − etY ψ−1ψ′ψ−1 = YM − Mψ′ψ−1 shows that so does M ′. An induction
argument proves that all derivatives of M extend to continuous 1-periodic functions
on R. Now assume detY > 0. The eigenvalues of Y are ±i

√
detY since tr Y = 0.

In this case the Jordan form of Y is the matrix J = iγ for γ =
√
detY 	∈ 2πZ.

There exists T ∈ GL(2,R) such that Y = T−1iγT . Thus ϕ(1) = T−1eiγT . Denote
by C = diagonal(1,−1) the conjugation matrix, and let k = Maslov(M). Define a
loop of symplectic matrices by N(t) := T−1e−i2πktT , t ∈ R/Z.

We claim that Maslov(N) = −k if detT > 0, and Maslov(N) = k if detT < 0.
In fact, suppose detT < 0. Then there exists a smooth path s ∈ [0, 1] 
→ T (s) ∈
GL(2,R) with T (0) = T and T (1) = C. Using the homotopy invariance of the
Maslov index we compute

Maslov(N) = Maslov(t 
→ Ce−i2πktC) = Maslov(t 
→ ei2πkt) = k.

The case detT > 0 is similar, and the claim is proved.
We continue the proof of the lemma considering the case det T < 0. Then

Maslov(N) = k. Using etY = T−1eitγT , we compute

0 = Maslov(M(t))− k = Maslov(N−1(t)M(t))

= Maslov(T−1eit(γ+2πk)Tψ−1(t)).

The conclusion follows by noting that Ỹ := T−1i(γ + 2πk)T is another logarithm

of ψ(1). The case detT > 0 is treated similarly. The eigenvalues of Ỹ are

±i(
√
detY + 2πk) 	∈ i2πZ, and we still have det Ỹ > 0. �
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Before starting with the proof, we fix the notation and make some initial con-
structions. Let U , D0 and P be as in Proposition 5.1. Perhaps after making U
smaller, we can find a Martinet Tube

Ψ : U → R/Z×B

as explained in Definition 3.5. Here B ⊂ R2 is an open ball centered at the origin.
In the coordinates (θ, x, y) ∈ R/Z × R2, the contact form is Ψ∗λ = f(dθ + xdy),
where the smooth function f > 0 satisfies f(θ, 0, 0) ≡ T and df(θ, 0, 0) ≡ 0. Note
that T is the minimal positive period of x by assumption. The map t 
→ x(Tt)
is represented by t 
→ (t, 0, 0). We still denote by R the Reeb vector in the local
coordinates (θ, x, y). The proof of Proposition 5.1 is based on the following lemma.

Lemma 5.3. Let π0 : R/Z × R2 → R2 be the projection onto the second factor.
There exists ε > 0 and a smooth embedding h : (1−ε, 1]×R/Z → R/Z×B satisfying

(1) h(1, t) = (t, 0, 0).
(2) {hr(r, t), ht(r, t), R ◦ h(r, t)} is linearly independent if 1− ε < r < 1.
(3) wind (t 
→ dπ0 · hr(1, t)) = 0.

Proof. We denote the Reeb flow by φt and assume, for simplicity and without loss
of generality, that T = 1. In the local coordinates (θ, x, y) introduced above, we
have R(θ, 0, 0) = (1, 0, 0), φt(θ0, 0, 0) = (t+ θ0, 0, 0) and

Dφt(0, 0, 0) =

(
1 0
0 ψ(t)

)
for some ψ ∈ C∞ ([0, 1], Sp(1))

with respect to the splitting T (R/Z× R
2) = R ⊕ R

2. We used that the linearized
Reed flow preserves the splitting TM = RR⊕ ξ. The formula

d

dt
Dφt(0, 0, 0) = DR(φt(0, 0, 0))Dφt(0, 0, 0)

shows that the matrix ψ′ψ−1(t) is a smooth loop R/Z → R2×2. P is a non-
degenerate Reeb orbit if, and only if, 1 is not an eigenvalue of ψ(1).

Suppose ∃Y ∈ sp(1) such that ψ(1) = eY . By Lemma 5.2 the function

(23) M(t) = etY ψ−1

defines a loop R/Z → Sp(1) of class C∞. Consider the diffeomorphism

G : (t, x, y) 
→
(
t,M(t)

(
x
y

))

of R/Z× R2 onto itself. Note that G is smooth since so is M . We compute

D(G∗φt)(0, 0, 0) = DG (φt(0, 0, 0)) ·Dφt (0, 0, 0) ·DG−1(0, 0, 0)

=

(
1 0
0 M(t)

)
·
(
1 0
0 ψ(t)

)
· I =

(
1 0
0 etY

)

and prove

D(G∗R)(t, 0, 0) =

[
d

dt
D(G∗φt)(0, 0, 0)

]
[D(G∗φt)(0, 0, 0)]

−1 ≡
(
0 0
0 Y

)
.

From now on we work in these new coordinates, obtained by pushing forward with
G. We still denote them by (θ, x, y) without fear of ambiguity. The Reeb vector
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is still denoted by R and its flow by φt. The above equations imply DR(θ, 0, 0) ≡(
0 0
0 Y

)
. The characteristic polynomial of Y is p(λ) = λ2 − tr(Y )λ+ detY . Since

tr(Y ) = 0 its roots are ±i
√
detY if detY > 0, or ±

√
− detY if detY < 0. The case

detY = 0 is ruled out since P is non-degenerate. Let k = Maslov(M) and consider
the smooth 2π-periodic function

(24) g(ϑ) = det

((
1
0

)
, Ade−iϑY

(
1
0

))
= det

(
1 (e−iϑY eiϑ)11
0 (e−iϑY eiϑ)21

)

of the real variable ϑ. We split the proof into two cases.

Case 1. detY > 0. By Lemma 5.2 we can assume k = 0. It follows that μCZ(e
tY ) =

μCZ(ψ(t)). Since the Jordan form of Y is the matrix

J = iγ =

(
0 −γ
γ 0

)
, with γ =

√
detY > 0,

we find T ∈ GL(2,R) such that Y = T−1iγT . Thus ψ(1) = T−1eiγT and

g(ϑ) =
1

detT
det

(
Teiϑ

(
1
0

)
, JTeiϑ

(
1
0

))
.

This proves g(ϑ) 	= 0 for all ϑ ∈ S1. Consider

ĥ(r, t) =

⎛
⎝ t
1− r
0

⎞
⎠

defined for (r, t) ∈ (1− ε, 1]× R/Z, with ε > 0 small. Then

R(ĥ(r, t)) =

⎛
⎝1
0
0

⎞
⎠+ (1− r)

⎛
⎝ 0
Y11

Y21

⎞
⎠+O(|1− r|2).

This implies

det
(
ĥr, ĥt, R

)
= det

⎛
⎝ 0

−1
0

1
0
0

1
(1− r)Y11

(1− r)Y21

⎞
⎠+O(|1− r|2)

= (1− r)g(0) +O(|1− r|2)

and we conclude det(ĥr, ĥt, R) 	= 0 for r < 1 close to 1. This tells us that the map

h = G−1 ◦ ĥ satisfies conditions (1) and (2) if ε is small enough. We compute

hr(1, t) = DG−1(ĥ(1, t)) · ĥr(1, t) = −

⎛
⎝ 0

M−1(t)

(
1
0

)⎞⎠ ,

which proves assertion (3) since Maslov(M) = 0.

Case 2. detY < 0. In this case Y = T−1JT with J = diagonal(γ,−γ) and
γ =

√
− detY > 0. The function g(ϑ) defined in (24) is 2π-periodic and we find

ϑ0 < ϑ1 < ϑ2 < ϑ3 < ϑ4 = ϑ0 + 2π,
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with ϑ0 ≤ 0, so that g changes sign at every ϑj . Here ϑj are precisely the numbers
when Teiϑ changes quadrant. Define

ĥ(r, t) =

⎛
⎝ t

(1− r)eiϑ(t)
(
1
0

)⎞⎠
for (r, t) ∈ (1 − ε, 1] × R/Z, with ε > 0 small. We are still to find the real-valued
function ϑ(t). Let us make some a priori computations:

ĥr =

⎛
⎝ 0

−eiϑ
(
1
0

)⎞⎠ , ĥt =

⎛
⎝ 1

(1− r)iϑ′eiϑ
(
1
0

)⎞⎠
and

R(ĥ(r, t)) =

⎛
⎝1
0
0

⎞
⎠+ (1− r)

⎛
⎝ 0

Y eiϑ
(
1
0

)⎞⎠+O(|1− r|2).

We have

det
(
ĥr, ĥt, R

)
= det

⎛
⎝ 0

−1
0

1
0

(1− r)ϑ′

1
(1− r) (Ade−iϑY )11
(1− r) (Ade−iϑY )21

⎞
⎠+O(|1− r|2)

= −(1− r)ϑ′ + (1− r) det

(
1 (Ade−iϑY )11
0 (Ade−iϑY )21

)
+O(|1− r|2)

= −(1− r)(ϑ′ − g(ϑ)) +O(|1− r|2).
Thus it suffices to prove that t 
→ ϑ(t) can be chosen to satisfy:

(1) ϑ(t) is smooth in a neighborhood of [0, 1], and ϑ(1) = ϑ(0) + 2πk.
(2) ϑ′(t) : R/Z → R is smooth and ϑ′ − g(ϑ) does not vanish.

We first handle the case k < 0. Fix some non-empty open interval I ⊂ (2πk, 0)
where g ≥ σ > 0. Let η = sup |g| and a > 2η be very large. Now choose ϑ(t) so
that

(1) ϑ(t) = −at for t close to 0, and ϑ(t) = −a(t− 1) + 2πk for t close to 1.
(2) ϑ′(t) < 0 ∀ t ∈ [0, 1], and ϑ′(t) 	= −a ⇔ ϑ(t) ∈ I.

Then ϑ′ − g(ϑ) < −a + η < −η if ϑ(t) 	∈ I, and ϑ′ − g(ϑ) ≤ 0 − σ = −σ if
ϑ(t) ∈ I. This proves that ϑ′ − g(ϑ) ≤ min(−σ,−η) < 0. The case k > 0 is treated

similarly. If k = 0, we take ϑ(t) ≡ ϑ0 with g(ϑ0) 	= 0. In all cases ĥ(r, t) is a

smooth embedding, ĥ(1, t) = (t, 0, 0) and {ĥr(r, t), ĥt(r, t), R(ĥ(r, t))} is a linearly
independent set if r < 1 and ε is fixed small enough. Moreover,

wind(t 
→ dπ0 · ∂rĥ(1, t)) = k.

Composing with G−1, we arrive at h = G−1 ◦ ĥ with similar properties, but with
wind(t 
→ dπ0 · hr(1, t)) = 0: the winding is corrected from k to 0 since

hr(1, t) = −

⎛
⎝ 0

M−1(t)eiϑ(t)
(
1
0

)⎞⎠
and Maslov(M−1) = −k.

If ψ(1) does not have a logarithm then its spectrum must be a pair of real negative
numbers a, a−1 	= −1 and one finds T ∈ GL(2,R) such that −ψ(1) = T−1eJT with
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J = diagonal(ln(−a),− ln(−a)}. We proceed as above setting M(t) = K(t)ψ(t)−1

with K(t) = T−1eiπtetJT , and defining

ĥ =

⎛
⎝ t

(1− r)T−1eiϑ(t)
(
1
0

)⎞⎠
where ϑ(t) satisfies ϑ′− [Ade−iϑ(iπ+eiπtJe−iπt)]21 	= 0 and ϑ(1)−ϑ(0) = 2πk with
k = Maslov(M). �

With Lemma 5.3 proved, we can continue our constructions toward the proof of
Proposition 5.1. Let ϕ0 : D ↪→ M be a C∞-embedding satisfying ϕ0(D) = D0 and
ϕ0(e

i2πt) = x(Tt) ∀t ∈ R. We have

(25) ϕ0 ({1− ε0 ≤ |z| ≤ 1}) ⊂ U

for some ε0 > 0 small. Let (r, t) ∈ [1 − ε0, 1] × R/Z be cylindrical coordinates in
the annulus {1 − ε0 ≤ |z| ≤ 1}. We may write ϕ0(r, t) instead of ϕ0(re

i2πt). In
the local coordinates (θ, x, y), ξ|x(Tt) is represented by {0} × R2. As explained in
Remark 3.6, the vector field along (θ, 0, 0) given by θ 
→ ∂x|(θ,0,0) = (0, 1, 0)|(θ,0,0)
can be chosen to represent any given non-vanishing smooth vector tangent to the
contact structure along t 
→ x(Tt). We will assume

(26) ∂x|(t,0,0) = ∂r(Ψ ◦ ϕ0)(1, t) ∀t ∈ R/Z.

We prove a few preliminary steps.

Step 1. There exists 0 < ε < ε0, a diffeomorphism F of the set (1− ε, 1]×R/Z onto
itself and a smooth function γ0 : (1− ε, 1]×R/Z → B such that the following hold.

(1) If F = (F1, F2), then F1(r, t) = r.
(2) Ψ ◦ ϕ0 ◦ F−1(r, ϑ) = (ϑ, γ0(r, ϑ)), ∀(r, ϑ) ∈ (1− ε, 1]× R/Z.
(3) γ0(r, ϑ) 	= 0, ∀(r, ϑ) ∈ (1− ε, 1)× R/Z.
(4) ∂rγ0(1, ϑ) 	= 0, ∀ϑ ∈ R/Z.
(5) wind (ϑ 
→ ∂rγ0(1, ϑ)) = 0.

Proof of Step 1. In this proof we write ϕ0 instead of Ψ ◦ ϕ0 for simplicity. Then
θ ◦ ϕ0(1, t) = t, ∀t. Consider the map F (r, t) = (r, θ ◦ ϕ0(r, t)) defined for (r, t) ∈
[1− ε0, 1]× R/Z. One has

DF (1, t) =

(
1 0

dθ · ∂rϕ0(1, t) dθ · ∂tϕ0(1, t)

)
=

(
1 0
∗ 1

)
.

Since F maps {1}×R/Z diffeomorphically onto {1}×R/Z, we can use the inverse
function theorem to find 0 < ε � ε0 such that F is a diffeomorphism of the set
(1− ε, 1]× R/Z onto itself. It follows that

θ ◦ ϕ0 ◦ F−1(r, ϑ) = ϑ, ∀(r, ϑ) ∈ (1− ε, 1]× R/Z

since F ◦ F−1 = id. Let γ0 be implicitly defined by

(27) ϕ0 ◦ F−1(r, ϑ) = (ϑ, γ0(r, ϑ)).

The map γ0 satisfies conditions (3) and (4) since ϕ0 is an embedding. Condition
(5) follows trivially since

image of dϕ0(1, t) = span {(1, 0, 0), (0, ∂rγ0(1, t))}
and wind(t 
→ dπ0 · ∂rϕ0(1, t)) = 0 by (26). Here π0 : R/Z× R2 → R2 denotes the
projection onto the second factor. �
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Arguing exactly as in Step 1, we prove

Step 2. Let h be the map given by Lemma 5.3, defined on (1− ε, 1]×R/Z for some
ε > 0. We can assume ε < ε0 and find a diffeomorphism H of the set (1−ε, 1]×R/Z
onto itself, and a smooth function γ1 : (1− ε, 1]× R/Z → B satisfying

(1) If H = (H1, H2), then H1(r, t) = r.
(2) h ◦H−1(r, ϑ) = (ϑ, γ1(r, ϑ)), ∀(r, ϑ) ∈ (1− ε, 1]× R/Z.
(3) γ1(r, ϑ) 	= 0, ∀(r, ϑ) ∈ (1− ε, 1)× R/Z.
(4) ∂rγ1(1, ϑ) 	= 0, ∀ϑ ∈ R/Z.
(5) wind (ϑ 
→ ∂rγ1(1, ϑ)) = 0.

Bη ⊂ R2 will denote the open ball of radius η > 0 centered at the origin.

Step 3. Let g(r, ϑ) := |π0◦Ψ◦ϕ0(r, ϑ)|2, where π0 : R/Z×R2 → R2 is the projection
onto the second factor. ∃ 0 < ε < ε0 and η > 0 such that Bη ⊂ B and

(1) D0 ∩Ψ−1(R/Z×Bη) ⊂ ϕ0((1− ε, 1]× R/Z).
(2) ∂rg < 0 on [1− ε, 1)× R/Z.

Proof of Step 3. Denote Ψ ◦ ϕ0 = (β,Γ) ∈ R/Z×B, where β and Γ are defined on
R/Z × (1 − ε0, 1], so that g(r, ϑ) = |Γ(r, ϑ)|2. Clearly, g(r, ϑ) = 0 if, and only if,
r = 1. We also know that ∂rΓ(1, ϑ) 	= 0 ∀ϑ ∈ R/Z. Let C > 0 be a constant so
that |Γ(r, ϑ)+(1− r)∂rΓ(1, ϑ)| ≤ C|1− r|2 holds for every (r, ϑ) ∈ [1− ε0, 1]×R/Z.
This follows from expanding r 
→ Γ(r, ϑ) up to first order at (1, ϑ). Thus

∂rg(r, ϑ) = 2 〈Γ(r, ϑ), ∂rΓ(r, ϑ)〉
= −2(1− r) 〈∂rΓ(1, ϑ), ∂rΓ(r, ϑ)〉+O(|1− r|2),

which is clearly strictly negative if 1 − ε < r < 1 for some ε > 0 small. We used
that ε > 0 small enough implies 〈∂rΓ(1, ϑ), ∂rΓ(r, ϑ)〉 is positive and bounded away
from 0 on R/Z× (1− ε, 1]. The existence of η is easy since ϕ0 is an embedding. �

From now on we fix 0 < ε < ε0 and η > 0 such that the conclusions of Lemma 5.3
and of Steps 1, 2 and 3 hold.

Step 4. Let γj (j = 0, 1) be the maps obtained from Step 1 and Step 2. There
exist numbers 0 < δ1 < δ0 � ε2 < ε and a smooth map γ2 : (1− ε2, 1]× R/Z → B
satisfying:

(1) γ2 = γ1 on (1− δ1, 1]× R/Z and γ2 = γ0 on (1− ε2, 1− δ0]× R/Z.
(2) If ρ2(r, ϑ) := |γ2(r, ϑ)|, then ∂rρ2(r, ϑ) < 0 on (1− ε2, 1)× R/Z.
(3) ρ2 < η on (1− ε2, 1]× R/Z, where η is given by Step 3.

Proof of Step 4. Define ρj(r, ϑ) := |γj(r, ϑ)| on (1− ε, 1]×R/Z, j = 0, 1. Note that
ρj(1, ϑ) = 0 ∀ϑ. We claim ∃ 0 < ε2 < ε such that

(28)

∂r(ρ
2
j) < 0 on (1− ε2, 1)× R/Z,

wind(ϑ 
→ γj(r, θ)) = 0, ∀ 1− ε2 < r < 1,

ρj < η on (1− ε2, 1]× R/Z,

for j = 0, 1. In fact, let C > 0 be a constant so that

(29) |γj(r, ϑ) + (1− r)∂rγj(1, ϑ)| ≤ C |1− r|2 ; j = 0, 1,
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holds for every (r, ϑ) ∈ [1− ε, 1]× R/Z. Thus

∂r(ρ
2
j)(r, ϑ) = 2 〈γj(r, ϑ), ∂rγj(r, ϑ)〉

= −2(1− r) 〈∂rγj(1, ϑ), ∂rγj(r, ϑ)〉+O(|1− r|2),
which is clearly strictly negative if 0 < 1 − r ≤ ε2 for some ε2 > 0 small. We used
that ∂rγj(1, ϑ) 	= 0 ∀ϑ for j = 0, 1. This proves the first assertion in (28). By the
continuity of ∂rγj , we can make ε2 smaller so that

(30) wind(ϑ 
→ ∂rγj(r, θ)) = wind(ϑ 
→ ∂rγj(1, θ)) = 0, ∀1− ε2 < r < 1.

The second assertion of (28) follows since we showed 〈γj , ∂rγj〉 does not change sign
when r ∈ (1− ε2, 1). The last condition of (28) is easy to achieve.

We now construct the map γ2. Since ρ2j (r, ϑ) > 0 if r < 1, we have

(ρ2j)
−1(0) ∩ (1− ε2, 1]× R/Z = {1} × R/Z.

Now choose 0 < s1 � s0 � ε2. It follows from (28) and from the implicit function
theorem that (ρ2j)

−1(s2j) 	= ∅, s2j is a regular value of ρ2j |(1− ε2, 1]× R/Z, j = 0, 1,
and that there are unique smooth functions rj : R/Z → (1− ε2, 1) satisfying

(ρ2j)
−1(s2j) ∩ (1− ε2, 1]× R/Z = {(rj(ϑ), ϑ) : ϑ ∈ R/Z}, j = 0, 1.

Since 0 < s1 � s0, we can also assume r1(ϑ) > r0(ϑ) ∀ϑ. Note that

r1(ϑ) < r ≤ 1 ⇒ ρ1(r, ϑ) < s1 and 1− ε2 < r < r0(ϑ) ⇒ ρ0(r, ϑ) > s0.

We can smoothly define αj : (1− ε2, 1)× R/Z → R/Z by γj = ρje
iαj(r,ϑ), j = 0, 1.

Note that γj(r, ϑ) 	= 0 since r < 1. Here (30) was strongly used. We choose a
smooth function f : R → R satisfying f ≡ 0 on a neighborhood of (−∞, s1], f ≡ 1
on a neighborhood of [s0,+∞), and f ′ ≥ 0 on R. We can find a smooth function

ρ2 : (1− ε2, 1)× R/Z → (0,+∞)

satisfying ρ2 = ρ1 if r ≥ r1(ϑ), ρ2 = ρ0 if r ≤ r0(ϑ) and ∂rρ2 < 0. Define γ2 =
ρ2e

i2π(f◦ρ2)α0ei2π(1−f◦ρ2)α1 . The argument is now complete. �

Let ε2 and γ2 be given by Step 4 and consider the map φ : (1 − ε, 1] × R/Z →
R/Z×B defined by

φ(r, ϑ) =

{
(ϑ, γ2(r, ϑ)) if r > 1− ε2,

(ϑ, γ0(r, ϑ)) if 1− ε < r ≤ 1− ε2.

One easily checks, using Step 4, that φ is a smooth embedding. Define

(31)
A = ϕ0({z ∈ D : |z| ≤ 1− ε}),
B = Ψ−1(φ((1− ε, 1]× R/Z)).

We claim that A ∩B = ∅. If not, then Ψ(ϕ0(z
∗)) = φ(r∗, ϑ∗) for some |z∗| ≤ 1− ε

and some r∗ > 1− ε. Note that

φ((1− ε, 1− ε2]× R/Z) = Ψ(ϕ0({1− ε < |z| ≤ 1− ε2})),
in view of Step 1 and Step 4. Thus we must have r∗ > 1 − ε2 because ϕ0 is
injective. By condition (3) in Step 4, φ(r∗, ϑ∗) ∈ Ψ−1(R/Z × Bη). We know

from Step 3 that Ψ−1(R/Z × Bη) ∩ D0 ⊂ ϕ0({|z| > 1 − ε}). This proves that
ϕ0({|z| ≤ 1− ε}) ∩ ϕ0({|z| > 1− ε}) 	= ∅, a contradiction since ϕ0 is one-to-one.

Now we claim D1 := A∪B is a smooth embedded disk spanning the orbit P and
satisfying conditions (1) and (2) from Proposition 5.1. In fact, the map F obtained
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in Step 1 preserves r-slices. Then D1 is a smooth embedded disk since F maps
(1− ε, 1− ε2)×R/Z diffeomorphically onto itself and Ψ−1 ◦φ◦F (r, ϑ) = ϕ0(re

i2πϑ)
for (r, ϑ) ∈ (1 − ε, 1 − ε2) × R/Z. Condition (1) in Proposition 5.1 follows from
the definition of ε0 and from ε < ε0. Condition (2) follows from the properties of
the map h proved in Lemma 5.3. Proposition 5.1 is now proved. The proof goes
through if we only assume all orbits P k, k ≥ 1, are non-degenerate.

5.2. The Bishop family. From now on we suppose λ is a contact form on a 3-
manifold M and P is a non-degenerate, unknotted and simply covered periodic
Reeb orbit. Following [15], we construct a Bishop family of J̃-holomorphic disks in
the symplectization R ×M . We orient x(R) along the Reeb field and let D0 ⊂ M
be an embedded disk with ∂D0 = x(R), orientations included. By Proposition 5.1
we obtain another embedded disk D1 spanning the orbit P with special properties
near the boundary. These properties will be crucial for the proof of Theorem 2.4.

If h : D → M is a smooth embedding such that h(D) = D1, we will consider the
transverse unknot l and the disk F given by

l := h({z ∈ D : |z| = 1− ε}) and F := h({z ∈ D : |z| ≤ 1− ε}),

where 0 < ε � 1. We orient l so that λ|Tl > 0, and F accordingly. If ε is small

enough, then sl(l, F ) = sl(P,D1) and ξ|p 	= TpD1, ∀p ∈ D1 \ F .

5.2.1. The characteristic singular foliation. The contact structure ξ induces a (sin-
gular) characteristic distribution

(32) ξ ∩ TF ⊂ TF.

Generically these are lines since ξ is maximally non-integrable, except at the so-
called singular points, where ξ = TF . Given a smooth function H on a neighbor-
hood of F , having F inside a regular level set, the equations

(33) iV λ = 0, iV dλ = (iRdH)λ− dH

define a vector field V tangent to both F and the contact structure ξ|F . The zero
set of V is precisely the singular set of ξ ∩ TF . Clearly, V does not vanish over
∂F = l since l is transverse to ξ. All these facts are standard; see [15] and [16].
The integral lines of V define the so-called characteristic singular foliation of F .

5.2.2. A convenient spanning disk for P . Let dvol be a smooth 2-form on D1 defin-
ing the orientation induced by the Reeb vector along ∂D1 = x(R). We have two
symplectic bundles over F , namely (TF, dvol) and (ξ|F , dλ), and V is a section of
both. Perhaps after changing H by −H in (33), we can assume V points out of F
at ∂F . One can, as is done in [15] and [16], use the topological information of both
bundles in order to understand the zero set of V .

The singular distribution (32) is said to be Morse-Smale if V is also. One can
show (see [9]) that F can be C∞-perturbed, keeping ∂F fixed, so that its char-
acteristic distribution becomes Morse-Smale. This perturbation can be arbitrarily
C∞-small. V becomes a non-degenerate section of TF and also, consequently, of
ξ|F . We assume this is done and examine a zero p ∈ F of V . Let o and o′ be
the orientations of TF and ξ|F induced by dvol and dλ, respectively. The zero p
has two associated numbers ε and ε′ (both equal to ±1), namely, the intersection
numbers of V with the zero sections 0TF and 0ξ of TF and ξ|F , respectively. Let
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a1 and a2 be the two eigenvalues of the linearization DV |p ∈ GL(TpF = ξ|p). The
zero p is elliptic if a1a2 > 0, or hyperbolic if a1a2 < 0. An elliptic point is nicely
elliptic if the eigenvalues are real. These notions relate to the bundle TF . If p is
elliptic, then ε = 1; if p is hyperbolic, then ε = −1. Now, following [9], we relate
them to the bundle ξ|F . The zero p is positive if o = o′ and negative if o = −o′. We
have ε′ = 1 if DV |p : (TpF, o) → (TpF, o

′) preserves orientation, which will be the
case when p is elliptic positive or hyperbolic negative. It is also clear that ε′ = −1
if p is elliptic negative or hyperbolic positive. Denote

e+ = number of positive elliptic points,

e− = number of negative elliptic points,

h+ = number of positive hyperbolic points,

h− = number of negative hyperbolic points.

In view of the formula (4) for the self-linking number and of standard degree theory
(see the proof of Proposition 2.1), one has

(34)
− sl(l, F ) =

∑
ε′ = e+ − e− − h+ + h−,

1 = χ(F ) =
∑

ε = e+ + e− − h+ − h−,

where the sums are taken over the (non-degenerate) zeros of V . We used the fact
that V points in the outward normal direction of the disk F at its boundary and
hence pushes it off from F .

We state the following proposition which can be extracted from [15].

Proposition 5.4 (Giroux and Hofer). The disk F can be smoothly perturbed, keep-
ing l = ∂F fixed, so that its singular characteristic distribution satisfies the following
properties.

(1) It is Morse-Smale.
(2) All its elliptic points are nicely elliptic.
(3) It has no trajectories connecting an elliptic point to a hyperbolic point of

the same sign.
(4) It has no closed leaves.
(5) h+ = e− = 0.

This perturbation can be made C0-arbitrarily small. Moreover, it can be made C∞-
arbitrarily small on a neighborhood of ∂F .

It is crucial for the above statement that ξ is tight, so that no closed leaves arise
when perturbing F . The proof that h+ = e− = 0 is carried out in section 3 of [16];
more precisely, they show that (5) is implied by (1)–(4).

From now on we assume the disk F was perturbed using Proposition 5.4. The
compact strip S := (D1 \F )∪∂F has two boundary components, namely x(R) and
∂F . Recall that TpS 	= ξ|p, for every p ∈ S. Since the perturbation using the above
lemma can be arbitrarily C∞-small near ∂F , we can obtain a smooth embedded
disk, still denoted by D1, constructed by joining F with S along ∂F , and smoothing
it out near ∂F . This smoothing process clearly has support arbitrarily near ∂F . The
singular distribution ξ ∩TD1 has the same singular points as F . If sl(P,D0) = −1,
then sl(l, F ) = −1 by the invariance of the self-linking number under homotopy
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through transverse knots. Equations (34) and the above construction imply e+ = 1
and h− = 0. This follows from e− = h+ = 0. Summarizing, we proved

Theorem 5.5. Let M,λ and P be as in Theorem 2.4. Suppose there exists an
embedded disk D0 ⊂ M satisfying ∂D0 = x(R) and sl(P,D0) = −1. Then there
exists an embedded disk D1 spanning P , arbitrarily C0-close to D0, such that the
singular characteristic distribution ξ∩TD1 has precisely one positive, nicely elliptic
singular point. In addition, there exists a neighborhood O ⊂ D1 of ∂D1 such that
Rp 	∈ TpD1 for every p ∈ O \ ∂D1, where R is the Reeb vector associated to λ.

5.2.3. One last perturbation. Let D1 be the disk given by Theorem 5.5 and fix a
smooth embedding f1 : D → M such that f1(D) = D1. By Proposition 5.1 there
exists δ > 0 such that

1− δ ≤ |z| < 1 ⇒ RRf1(z) ∩ Tf1(z)D1 = {0}.
Consider the set

X = {f ∈ C∞(D,M) : 1− δ ≤ |z| ≤ 1 ⇒ f(z) = f1(z)}.
Then X is closed in the complete metric space C∞(D,M) endowed with the C∞

topology. Hence it is also a complete metric space. For a fixed periodic Reeb
trajectory y : R → M , we define

Xy := {f ∈ X : y(R) ⊂ f(D)}.
By the definition of δ and the properties of D1 we have

y(R) 	= x(R) and f ∈ Xy ⇒ y(R) ⊂ f({|z| < 1− δ}).
It is easy to show Xc

y is open and dense in X if y(R) 	= x(R). Let us assume
every contractible closed Reeb orbit P ′ = (x′, T ′) is non-degenerate. There are
only countably many such P ′. It follows from Baire’s category theorem that⋂

{Xc
x′ : P ′ = (x′, T ′) is contractible, x′(R) 	= x(R)}

is dense in X. Hence, by an arbitrarily small C∞-perturbation supported away
from ∂D1, we may assume that our disk D1 contains no contractible periodic Reeb
orbits other than x(R).

5.2.4. Filling by J̃-holomorphic disks. We now recall a construction done by Hofer,
Wysocki and Zehnder in [15] and [16]. Let M , ξ, λ and P satisfy the hypotheses of
Theorem 5.5. Let e be the (unique) singular point of the characteristic foliation of
D1 and denote D∗

1 = D1\{e}. Recall that e is a nicely elliptic singularity. Following
[16], consider for each J ∈ J (ξ, dλ|ξ) the boundary value problem

(35)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ũ = (a, u) ∈ C∞(D,R×M),

∂̄J̃ (ũ) = 0,

u(S1) ⊂ D1 \ {e} and a|S1 ≡ 0,

u|S1 winds once positively around e in D1,

ũ is an embedding,

ũ : (D, S1) → (R×M, {0} × D∗
1) is homotopic to e,

and set

(36) M(J) := {ũ ∈ C∞(D,R×M) : ũ solves (35)}.
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Here J (ξ, dλ) denotes the set of dλ-compatible complex structures on ξ and J̃ is
given by (5).

Theorem 5.6 (Hofer, Wysocki and Zehnder). Let the closed 3-manifold M be
equipped with a tight contact form λ. Assume every contractible closed Reeb orbit
P̂ is non-degenerate, c1(ξ) vanishes along P̂ and μCZ(P̂ ) ≥ 3. Let P = (x, T )
be an unknotted, simply covered, periodic Reeb orbit satisfying sl(P, disk) = −1.
Suppose D1 is an embedded disk spanning P such that its characteristic foliation
has precisely one positive nicely elliptic singular point e, and that D1\x(R) contains
no contractible periodic orbits. There exists J ∈ J (ξ, dλ|ξ) for which the following
holds. The disk D1 can be smoothly perturbed on an arbitrarily small neighborhood of
e so that e is still the only (nicely elliptic) singularity of the characteristic foliation.
Moreover, there exists a smooth 1-parameter family {ũt = (at, ut)}t∈(0,1) ⊂ M(J)
satisfying the following.

(1) ũt converges in C∞ to the constant map (0, e) as t → 0.
(2) There exists η > 0 such that

lim sup
t→1

[
sup{|dũt(z)| : 1− η ≤ |z| ≤ 1}

]
< ∞.

Here the norms are taken with respect to euclidean metric on D and to any
R-invariant Riemannian metric on R×M .

(3) Given any tn → 1−, there exists a subsequence still denoted tn, such that if
we define

Γ := {z ∈ D : ∃nj → ∞ and {zj} such that zj → z and |dũtnj (zj)| → ∞},
then #Γ = 1 and Γ ⊂ D̊. Moreover, one can find a sequence gn ∈ Möb(D)
such that ũtn ◦ gn → fP in C∞

loc(D \ {0},R×M) where fP is the map

fP (z) =

(
T

2π
log |z|, x

(
T

2π
arg z

))
.

In particular, the loops utn ◦ gn(ei2πt) converge to xT in C∞(S1,M).
(4) ut(D) ∩ x(R) = ∅, ∀t ∈ (0, 1).

Here Möb(D) denotes the group of holomorphic diffeomorphisms of D. The
arguments for proving Theorem 5.6 are very delicate, and we refer to [16] for details.

5.3. Obtaining the fast plane. Now suppose we are under the assumptions of
Theorem 2.4. Let D1 be the smooth embedded disk spanning the orbit P = (x, T )
obtained by Theorem 5.5. As explained in Subsection 5.2.3 we can assume, in
addition and without loss of generality, that D1 contains no contractible periodic
Reeb trajectories other than x(R). Consequently, we can apply Theorem 5.6 to
obtain a 1-parameter family {ũt}t∈(0,1) of solutions of (35). Select a sequence

tn → 1+ and denote
ũtn = ũn = (an, un).

Theorem 5.6 tells us that, after selecting a subsequence, we can assume there exists
gn ∈ Möb(D) such that ũn ◦ gn → fP in C∞

loc(D \ {0},R × M). Replacing ũn by
ũn ◦ gn, we assume gn = id ∀n.

In the following we denote fP (z) = (d, w) ∈ R×M and follow [18] closely. The
bubbling-off point 0 has a well-defined mass

m(0) = lim
ε↓0

lim
n↑+∞

∫
Bε(0)

u∗
ndλ.
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This limit exists since

mε(0) = lim
n↑+∞

∫
Bε(0)

u∗
ndλ = lim

n↑+∞

∫
∂Bε(0)

u∗
nλ =

∫
∂Bε(0)

w∗λ

is a continuous, increasing and positive function of ε. This shows m(0) = T . If we
define {zn} ⊂ D by

(37) an(zn) = inf
D

an,

then zn → 0. Choose δn > 0 so that∫
Bδn (zn)

u∗
ndλ = m(0)− γ

2
= T − γ

2
> 0,

where γ is the constant (6). It follows easily from the definition of m(0) that
δn → 0+. Now define

ṽn(z) = (bn(z), vn(z)) := (an(zn + δnz)− an(zn + 2δn), un(zn + δnz))

for z ∈ Bδ−1
n (1−|zn|)(0). Consider

Γ̂ := {z ∈ C | ∃nj → ∞ and ζj → z such that |dṽnj
(ζj)| → ∞}.

Then Γ̂ ⊂ D and, up to a subsequence, we may assume #Γ̂ < ∞. Thus we have
C1

loc-bounds since ṽn(2) ∈ {0} × M . Standard elliptic boot-strapping arguments

give C∞
loc-bounds for the sequence ṽn on C \ Γ̂. A particular subsequence, again

denoted {ṽn}, must have a J̃ -holomorphic limit

(38) ṽ = (b, v) : C \ Γ̂ → R×M

in C∞
loc(C \ Γ̂,R×M) satisfying

E(ṽ) ≤ lim supE(ũn) ≤ areaλ(D1) < ∞,

where

areaλ(D1) = sup

{∣∣∣∣
∫
U

dλ

∣∣∣∣ : U ⊂ D1 is open

}
.

The following important lemma can be extracted from [16]. Note that very similar
arguments were used to prove Lemma 4.17 above.

Lemma 5.7 (Hofer, Wysocki and Zehnder). The map ṽ (38) satisfies the following
properties:

(1) E(ṽ) > 0 and
∫
C\Γ̂ v

∗dλ > 0.

(2) All punctures z ∈ Γ̂ are negative and ∞ is the unique positive puncture. If

Γ̂ 	= ∅, then 0 ∈ Γ̂.
(3) ṽ is asymptotic to P = (x, T ) at the puncture ∞.

Proof. We only show here that
∫
C\Γ̂ v

∗dλ > 0 and that 0 ∈ Γ̂ if Γ̂ 	= ∅. The other

properties follow from arguments easily found in the literature; see [18] for example.

This is the so-called “soft-rescaling”. Arguing indirectly, suppose Γ̂ 	= ∅ and 0 	∈ Γ̂.
Then ∃z0 ∈ C \ Γ̂ : b(z0) < b(0) − 2 since every puncture in Γ̂ is negative. Hence
bn(z0) < bn(0)− 1 if n is large. Consequently, an(zn+ δnz0) < an(zn) = infD an for

large n, a contradiction. This shows 0 ∈ Γ̂ if Γ̂ 	= ∅.
Let π : TM → ξ be the projection, along the Reeb direction. If π · dv ≡ 0,

then we can apply Lemma 4.6 to find a non-constant polynomial p and a periodic
orbit P̂ = (x̂, T̂ ) such that p−1(0) = Γ̂ and ṽ = f(x̂,T̂ ) ◦ p. Here f(x̂,T̂ )(e

2π(s+it)) =
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(T̂ s, x̂(T̂ t)). Let k := deg p. Since ṽ is asymptotic to the orbit P at the unique

positive puncture ∞, we must have (x, T ) = (x̂, kT̂ ). Thus x = x̂ and k = 1. In
fact, if k ≥ 2, then T is not the minimal period of x, contradicting our assumptions
on P . Consequently, we must have p(z) = Az +D and Γ̂ = {−D/A} ⊂ D for some

A ∈ C∗. Thus D = 0 since 0 ∈ Γ̂. We now get the following contradiction

(39) T =

∫
|z|=1

v∗λ = lim
n→+∞

∫
|z−zn|=δn

u∗
nλ = T − γ/2.

�

Remark 5.8. Further bubbling-off analysis would reveal an entire bubbling-off tree.
The first level of this tree has only one vertex representing the sphere ṽ. All this
is showed in [18] via the so-called “soft-rescaling”. We shall not make any use of
these facts.

We fix a small tubular neighborhood U of x(R) and a non-vanishing section

(40) Z : U → ξ|U satisfying x∗
TZ ∈ βP .

Here βP is the special homotopy class of non-vanishing sections of x∗
T ξ discussed

in Remark 3.3. Theorem 5.6 tells us that the sequence of loops t 
→ un(e
i2πt)

converges in C∞ to xT . Thus un(S
1) ⊂ U for n � 1. By Lemma 3.4 the sections

t 
→ Z ◦ un(e
i2πt) extend to non-vanishing sections

(41) Zn : D → u∗
nξ.

As usual, π : TM → ξ denotes the projection along the Reeb direction.

Lemma 5.9. If n is large enough, then the sections π · dun do not vanish on D.

Proof. In view of Theorem 5.5 there exists a neighborhood O ⊂ D1 of ∂D1 such
that Rp 	∈ TpD1 for every p ∈ O \ ∂D1. There exists n0 ∈ Z

+ such that n ≥ n0

implies un(S
1) ⊂ O. We can, of course, assume O ⊂ U . From now on we consider

only n ≥ n0. For every z ∈ S1, the linear map π · dun(z) does not vanish. In fact,
π · dun(z) has rank 0 or 2, since it satisfies

(42) π · dun(z) · i = J · π · dun(z).

Denote ∂θun(z) = d
dθ

∣∣
θ=0

un(e
i2πθz). The strong maximum principle tells us

λ(un(z)) · ∂θun(z) 	= 0. If the rank is zero, then ∂θun(z) ∈ RR ∩ Tun(z)(D1).

This is a contradiction with un(z) ∈ O and shows rank π · dun(z) = 2, ∀z ∈ S1.
Let x + iy be usual euclidean coordinates on D. Since the π · dun satisfy (42),

we compute

(43) wind(t 
→ π · ∂xun(e
i2πt), t 
→ π · ∂θun(e

i2πt), J) = wind(1, iei2πt, i) = −1.

Recall the section V of ξ|D1
∩ TD1 from (33). We claim π · ∂θun(e

i2πt) and
V (un(e

i2πt)) are not parallel, for every t ∈ R. In fact, suppose ∃c ∈ R such that
π · ∂θun(e

i2πt) = cV (un(e
i2πt)) for some t ∈ R. Then

π·
(
∂θun(e

i2πt)− cV (un(e
i2πt))

)
= 0

⇒ ∂θun(e
i2πt)− cV (un(e

i2πt)) ∈ Tun(ei2πt)D1 ∩ RR = {0}
⇒ ∂θun(e

i2πt) = cV (un(e
i2πt))

⇒ λ(un(e
i2πt)) · ∂θun(e

i2πt) = 0.
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However, by the strong maximum principle, we have λ(un(e
i2πt)) · ∂θun(e

i2πt) > 0.
This is a contradiction. We proved

(44) wind(t 
→ π · ∂θun(e
i2πt), t 
→ V (un(e

i2πt)), J) = 0.

The section V of ξ|D1
has a unique simple positive zero inside D1. By Lemma 3.4

the section Z|∂D1
extends to a non-vanishing section of ξ|D1

. It follows from stan-
dard degree theory that

(45) wind(t 
→ V (x(Tt)), t 
→ Z(x(Tt)), J) = 1.

Consequently, wind
(
t 
→ V ◦ un

(
ei2πt

)
, t 
→ Z ◦ un

(
ei2πt

)
, J
)
→ 1, proving

(46) wind
(
t 
→ V ◦ un

(
ei2πt

)
, t 
→ Z ◦ un

(
ei2πt

)
, J
)
= 1 if n � 1,

because winding numbers are Z-valued and un

(
ei2πt

)
converges in C∞ to x(Tt).

Now recall the non-vanishing sections Zn of u∗
nξ (41) and compute, for n � 1,

wind
(
t 
→ π · ∂xun

(
ei2πt

)
, t 
→ Zn

(
ei2πt

)
, J
)

= wind
(
t 
→ π · ∂xun

(
ei2πt

)
, t 
→ π · ∂θun

(
ei2πt

)
, J
)

+wind
(
t 
→ π · ∂θun

(
ei2πt

)
, t 
→ V ◦ un

(
ei2πt

)
, J
)

+wind
(
t 
→ V ◦ un

(
ei2πt

)
, t 
→ Z ◦ un

(
ei2πt

)
, J
)

= −1 + 0 + 1 = 0.

The last line follows from (43), (44) and (46). This proves the algebraic count of
zeros of the section π · ∂xun on D is zero. Since zeros count positively (this follows
from (42)), we conclude π · ∂xun never vanishes on D, if n � 1. �

We write Γ̂ = {z2, . . . , zN} and z1 = ∞. The map ṽ was obtained by bubbling-off
analysis of the disks ũn, following a standard procedure described in [18]. Further
bubbling-off analysis would reveal an entire bubbling-off tree.

By Lemma 4.12 the section Z ◦ v near ∞ can be extended to a non-vanishing
section B of the (symplectic) bundle v∗ξ → C \ Γ̂. Let δ be the homotopy class of
B.

Lemma 5.10. wind∞(ṽ, δ,∞) = 1.

Proof. We can assume t 
→ v(Rei2πt) converges to t 
→ x(Tt) in C∞, as R → +∞.
Let z = rei2πθ be polar coordinates centered at 0, and let z − zn = ρei2πϕ be
polar coordinates centered at zn. Here zn is the sequence defined in (37). There
exists R0 � 1 such that r ≥ R0 implies v(rei2πθ) ∈ U , π · dv(rei2πθ) 	= 0 and
B(rei2πθ) = Z ◦ v(rei2πθ). This follows from Lemma 5.7, Theorem 3.13 and from
the asymptotic behavior described in Definition 3.11. We compute for R � R0

wind

(
π · d

dr

∣∣∣∣
r=R

v
(
reiθ

)
, B
(
Reiθ

)
, J

)

= wind

(
π · d

dr

∣∣∣∣
r=R

v
(
reiθ

)
, Z ◦ v

(
Reiθ

)
, J

)

= lim
n→+∞

wind

(
π · d

dr

∣∣∣∣
r=R

vn
(
reiθ

)
, Z ◦ vn

(
Reiθ

)
, J

)

= lim
n→+∞

wind

(
π · d

dρ

∣∣∣∣
ρ=Rδn

un

(
zn + ρeiϕ

)
, Z ◦ un

(
zn + δnReiϕ

)
, J

)
.
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All windings are taken with respect to angular variables.

Claim. If n � 1, then

wind

(
π · d

dρ

∣∣∣∣
ρ=Rδn

un

(
zn + ρeiϕ

)
, Z ◦ un

(
zn + δnReiϕ

)
, J

)

= wind

(
π · d

dρ

∣∣∣∣
ρ=Rδn

un

(
zn + ρeiϕ

)
, Zn

(
zn + δnReiϕ

)
, J

)
.

Here Zn are the sections (41).

Proof of Claim. If n � 1, then the loop ϕ 
→ un

(
zn +Rδne

iϕ
)
= vn

(
Reiϕ

)
is

arbitrarily C∞-close to the loop ϕ 
→ v
(
Reiϕ

)
, which can be made arbitrarily C∞-

close to the loop t 
→ x(Tt) if R is fixed large enough. By Lemma 3.4 the section
ϕ 
→ Z

(
un

(
zn +Rδne

iϕ
))

extends to a non-vanishing section of u∗
nξ|{|z−zn|≤Rδn}.

Consequently, it does not wind with respect to ϕ 
→ Zn

(
zn + δnReiϕ

)
. �

It follows from Lemma 5.9 and from the above claim that

lim
n→+∞

wind

(
π · d

dρ

∣∣∣∣
ρ=Rδn

un

(
zn + ρeiϕ

)
, Z ◦ un

(
zn + δnReiϕ

)
, J

)

= lim
n→+∞

wind

(
π · d

dρ

∣∣∣∣
ρ=Rδn

un

(
zn + ρeiϕ

)
, Zn

(
zn + δnReiϕ

)
, J

)

= lim
n→+∞

wind

(
π · d

dr

∣∣∣∣
r=1

un

(
reiθ

)
, Zn

(
eiθ
)
, J

)

= lim
n→+∞

wind

(
π · d

dr

∣∣∣∣
r=1

un

(
reiθ

)
, Z ◦ un

(
eiθ
)
, J

)

= lim
n→+∞

wind

(
π · d

dr

∣∣∣∣
r=1

un

(
reiθ

)
, π · ∂xun

(
eiθ
)
, J

)
+wind

(
π · ∂xun

(
eiθ
)
, Z ◦ un

(
eiθ
)
, J
)
= 1 + 0 = 1.

�

Let ṽ be the finite-energy sphere obtained from Lemma 5.7. If Γ̂ 	= ∅, then
Lemmas 5.10 and 4.15 provide a contradiction to μCZ(Pj) ≥ 3 ∀j ≥ 2. We showed

Γ̂ = ∅. Consequently, ṽ is a finite-energy plane satisfying wind∞(ṽ) ≤ 1. By
Lemma 3.19 we must have wind∞(ṽ) = 1. By Lemma 5.7, ṽ is asymptotic to
the orbit P at the puncture ∞. We must now show that ṽ is an embedding. To
that end we argue as in Subsection 4.7. The map ṽ must be an immersion since
windπ(ṽ) = wind∞(ṽ)− 1 = 0 implies π · dv does not vanish. Thus, if it is not an
embedding, we find self-intersections. Let Δ be the diagonal in C×C and consider

D = {(z1, z2) ∈ C× C \Δ : ṽ(z1) = ṽ(z2)}.
If D has a limit point in C × C \ Δ, then we find, using the similarity principle

as in [26], a polynomial p : C → C of degree at least 2 and a J̃-holomorphic map
f : C → R×M such that ṽ = f ◦ p. This forces zeros of dṽ, a contradiction. Thus
D is closed and discrete in C × C \Δ. By stability and positivity of intersections
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of pseudo-holomorphic immersions, we find self-intersections of the maps ũn for
large values of n if D 	= ∅. This is a contradiction since each ũn is an embedding.
Theorem 2.4 is proved.

6. Fredholm theory

Our goal in this section is to prove Theorem 2.3.

6.1. The asymptotic analysis for ∂̄0. In order to understand the asymptotic
behavior of finite-energy surfaces near non-removable punctures, we need the fun-
damental analytical tools from [11]. The next three statements cannot be explicitly
found in the literature, but the proofs are completely contained in [11]; see also [14]
and the appendix of [2]. We include the arguments in Appendix B for completeness.

We denote Z = R× S1, Z+ = [0,+∞)× S1, and

J0 =

(
0 −IRn

IRn 0

)
∈ R

2n×2n,

where n will be clear from the context. We always identify S1 = R/Z.

Theorem 6.1. Fix l ≥ 3. Let S(s, t) : Z+ → R2k×2k be Cl and let N(t) : S1 →
R

2k×2k be smooth. Suppose N(t)T = N(t) ∀t and
lim

s→+∞
sup
t∈S1

eds |Dγ [S(s, t)−N(t)]| = 0 ∀|γ| ≤ l

for some d > 0. Denote LN = −J0∂t −N(t). If ζ(s, t) ∈ Cl(Z+,R2k) satisfies

ζs + J0ζt + Sζ = 0 and lims→+∞ supt∈S1 eds |ζ(s, t)| = 0,

then either ζ ≡ 0 or the following holds: ∃s0 > 1, μ < 0 and a smooth vector
e : S1 → R

2k \ {0} satisfying LNe = μe such that

(47) ζ(s, t) = e
∫

s
s0

α(τ)dτ
(e(t) +R(s, t))

if s ≥ s0. The functions α and R are Cl−2 and satisfy

(48)
lim

s→+∞

∣∣Dj [α(s)− μ]
∣∣ = 0 ∀j ≤ l − 2,

lim
s→+∞

sup
t

|DγR(s, t)| = 0 ∀Dγ = ∂γ1
s ∂γ2

t with |γ| ≤ l − 2.

Lemma 6.2. Let K : Z+ → R2k×2k and X : Z+ → R2k be smooth functions
satisfying

(49) Xs + J0Xt +KX = 0.

If

(50) supZ+ |DγK(s, t)| < ∞, ∀γ and lims→+∞ supt∈S1 eds |X(s, t)| = 0

for some d ≥ 0, then

lim
s→+∞

sup
t∈S1

eds |DγX(s, t)| = 0 ∀γ.

Lemma 6.3. Let X,h : Z+ → R
2k be smooth functions satisfying

(51)

Xs + J0Xt = h,

lim
s→+∞

sup
t∈S1

eds |Dγh(s, t)| = 0, ∀γ and lim
s→+∞

sup
t∈S1

|X(s, t)| = 0,
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for some d > 0. Then ∃r > 0 such that

lim
s→+∞

sup
t∈S1

ers |DγX(s, t)| = 0 ∀γ.

6.2. Asymptotic behavior. Let P = (x0, T0) be a periodic Reeb orbit with min-
imal period Tmin > 0. Set k := T0/Tmin ∈ Z

+ and write Pmin = (x0, Tmin). We
choose a Martinet Tube

Ψ : U
∼→ R/Z×B

for P , as described in Definition 3.5. Here U is an open tubular neighborhood of
x0(R) in M and B ⊂ R

2 is an open ball centered at the origin. We equip R/Z×R
2

with coordinates (θ, z = (x, y)). The contact form is represented as fλ0, where
λ0 = dθ+xdy and f satisfies f |R/Z×{0} ≡ Tmin and df |R/Z×{0} ≡ 0. The bundle ξ|U
is framed by ∂x and −x∂θ + ∂y. Setting e1 = f−1/2∂x and e2 = f−1/2(−x∂θ + ∂y),
then {e1, e2} is a dλ-symplectic for ξ|Pmin

. We denote by

βΨ
P ∈ SP

the homotopy class of t ∈ R/Z 
→ ∂x|(kt,0). The Reeb vector field is locally written
as

(52) R = (R1, R2, R3) =
1

f2
(f + xfx, fy − xfθ,−fx) .

Moreover, dλ = Tmindx∧ dy on ξ|Pmin
. We lift the variable θ to the universal cover

R. Since the Reeb flow φt preserves λ and ξ|(θ,0) � 0× R2 ∀θ, we can write

(53) DφTmint(0, 0) �
(
1 0
0 ϕ(t)

)

in these coordinates. Here ϕ : R → Sp(1) satisfies ϕ(0) = I and represents the
linearized Reeb flow restricted to ξ along the curve x0(Tmint). The matrix Dφt

satisfies
d

dt
Dφt(0, 0) = DR(T−1

mint, 0)Dφt(0, 0).

If we set Y = (R2, R3), then TminD2Y (t, 0) = ϕ̇ϕ−1. The periodic orbit P is non-
degenerate if, and only if, det [ϕ(k)− I] 	= 0, that is, ϕ(k) ∈ Σ∗ where ϕ(k)(t) =
ϕ(kt). Moreover, μCZ

(
P, βΨ

P

)
= μ(ϕ(k)).

Let J be any dλ-compatible complex structure on ξ. Then J can be represented
by a 2× 2 matrix

(54) J(θ, x, y) =

[
J11 J12
J21 J22

]

using the frame {e1, e2}. J induces J̃ on R×M by (5).

Suppose ũ = (a, u) : (C, i) → (R × M, J̃) is a finite-energy plane. We write

ũ(s, t) = ũ
(
e2π(s+it)

)
. For the moment we only assume ∃σ, d̂ ∈ R such that

(55)

lim
s→+∞

u(s, t) = x0(T0(t+ d̂)) in C0(S1,M),

lim
s→+∞

sup
t∈S1

|a(s, t)− T0s− σ| = 0.
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Then u(s, t) ∈ U for s large enough and we have well-defined maps

(56)
w(s, t) := Ψ ◦ u(s, t) = (θ(s, t), z(s, t)); z(s, t) := (x(s, t), y(s, t)),

w̃(s, t) = (a(s, t), w(s, t)).

Theorem 3.9 and (55) imply that u(s, t) → x0(T0(t+ d̂)) in C∞(S1,M) as s → +∞.

We can write Y = Dz where D(θ, z) =
∫ 1

0
D2Y (θ, τz)dτ . The Cauchy-Riemann

equations dũ · i = (J̃ ◦ ũ) · dũ become

(57)

{
as − (f ◦ w)(θt + xyt) = 0,

θs + (f ◦ w)−1at + xys = 0,

and

(58) zs + (J ◦ w)zt + Sz = 0,

where

(59) S(s, t) = [atI − as(J ◦ w)]D ◦ w.
We refer to [11] for more details.

Lemma 6.4. If ũ satisfies (55), then

(60) lim
s→+∞

sup
t∈S1

∣∣∣Dγ [w̃(s, t)− (T0s+ σ, kt+ kd̂, 0, 0)]
∣∣∣ = 0 ∀Dγ = ∂γ1

s ∂γ2

t .

The proof is exactly the same as that of Lemma 2.4 from [11] and is omitted.
We need one more computation: π · ∂su(s, t) = U(s, t)∂x + V (s, t)(−x∂θ + ∂y),

where

(61)

[
U(s, t)
V (s, t)

]
=

[
xs

ys

]
+Δ(s, t)

and

Δ(s, t) = −θs + xys
f

[
fy − xfθ
−fx

]
.

The values of f and its partial derivatives are evaluated at w(s, t) = Ψ ◦ u(s, t).
Since df ≡ 0 on R/Z × {0}, we can use Lemma 6.4 to obtain |Δ| = o (|z(s, t)|) as
s → +∞.

Lemma 6.5. Suppose ũ satisfies (55). Then ũ has non-degenerate asymptotics as
in Definition 3.12 if, and only of, ∃b > 0 such that ebs |z(s, t)| is bounded. In this
case ∃r > 0 such that

(62) lim
s→+∞

sup
t∈S1

ers
∣∣∣Dγ [w̃(s, t)− (T0s+ σ, kt+ kd̂, 0, 0)]

∣∣∣ = 0 ∀Dγ = ∂γ1
s ∂γ2

t .

The technical proof is postponed to Appendix C. The arguments are essentially
found in section 4 of [11]. We include them here since Lemma 6.5 is not proved
in [11], and it is crucial for our results.

For the remainder of this subsection we assume, for simplicity, that σ = d̂ = 0
in (55). Write N(t) = −T0J(kt, 0)D2Y (kt, 0). Lemma 6.5 implies

(63) lim
s→+∞

sup
t∈R/Z

ers |Dγ [S(s, t)−N(t)]| = 0 ∀γ

for some r > 0. The identity

(−J(kt, 0)∂tϕ
(k) −N(t)ϕ(k))[ϕ(k)]−1 = −T0JD2Y + T0JD2Y = 0
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shows that

(64) −J(kt, 0)∂tϕ
(k) −N(t)ϕ(k) = 0.

By (64) the operator

(65) LN := −J(kt, 0)∂t −N(t)

represents the asymptotic operator AP in the dλ-symplectic frame {e1, e2} of ξ|P .
Moreover, N(t) is symmetric with respect to the inner product 〈·,−J0J(kt, 0)·〉.
Here we denote by 〈·, ·〉 the standard euclidean inner product on R2. In fact, it
follows from (52) that T 2

minJ0D2Y (θ, 0) = ∇2f(θ, 0) ∀θ.
The proof of the following corollary of Theorem 6.1 is found in [11] and is included

in Appendix C for completeness.

Corollary 6.6. If the finite-energy plane ũ has non-degenerate asymptotic behavior
at ∞, either z(s, t) ≡ 0 or it has the form

(66) z(s, t) = e
∫ s
s0

α(τ)dτ
(e(t) +R(s, t)) ,

where μ < 0 and the smooth vector e : R/Z → R2 \ {0} satisfies LNe = μe. Here
LN is the operator (65). The functions α and R satisfy (48) for every l. In other
words, μ ∈ σ(AP )∩ (−∞, 0) and e(t) represents an eigenvector of AP in the frame
{e1, e2} discussed in Remark 3.6.

Lemma 6.7. Define ς(z) := e1 ◦ u(z) for |z| � 1 and write ς(s, t) = ς
(
e2π(s+it)

)
.

π·du(s, t) does not vanish identically if, and only if, z(s, t) 	= 0 for s � 1. Moreover,

lim
s→+∞

wind (π · ∂su(s, t), ς(s, t), J) = lim
s→+∞

wind (z(s, ·)) .

Proof. The lemma is an easy consequence of (61) and (66) since |Δ| = o(|z(s, t)|)
as s → +∞. �

Given any β ∈ SP we recall the winding numbers (μ, β) ∈ Z associated to
eigenvalues of AP . Those were defined in [12] and are discussed in Section 4.

Lemma 6.8. If the finite-energy plane ũ = (a, u) has non-degenerate asymptotics
and if βΨ

P = βũ, then wind∞(ũ) = (μ, βΨ
P ). Here μ < 0 is the negative eigenvalue

of AP given by an application of Corollary 6.6 to the function z(s, t).

Proof. If βΨ
P = βũ, then ς extends to a non-vanishing section of u∗ξ. �

Lemma 6.9. Let ũ = (a, u) be a fast finite-energy plane asymptotic to P = (x0, T0)
at the (positive) puncture ∞. Suppose μ(ũ) ≥ 3. Denote by φt the Reeb flow and
fix q ∈ M \ x0(R). If the ω-limit (α-limit) set of q intersects x0(R), then ∀n ∈ Z

∃t > n (t < n) such that φt(q) ∈ u(C).

Proof. This argument can be found in section 5 of [17]. Assume Tmin = 1 for
simplicity. We only prove the first assertion. By Definition 1.10 we must have
k = 1, P = Pmin, and ϕ(k) = ϕ(1) = ϕ. By Remark 3.6 we can assume βΨ

P = βũ,
which implies μ(ϕ) ≥ 3. It follows from the geometrical characterization of the
Conley-Zehnder index, discussed in Appendix A, that ∃r > 0 such that arg(v(1))−
arg(v(0)) ≥ 2π + r for every non-trivial solution v of (109). The number r is
independent of v(0) 	= 0. If a non-vanishing smooth vector e : R/Z → C satisfies
wind(e) ≤ 1, then

arg (vē|t=1)− arg (vē|t=0) ≥ r.
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Iterating and using as an initial condition the vectors v(n), we obtain

(67) arg (vē|t=k+n)− arg (vē|t=k) ≥ nr

whenever k ∈ Z and n ∈ Z
+. Here arg is any continuous choice of the argument.

Lift the θ-variable to the universal cover R, and work with (θ, z) ∈ R×R2. Since
the Reeb vector at x0(0) = (0, 0, 0) is transversal to ξ|(0,0,0) = 0 × R2, we can use

the implicit function theorem to find tn → +∞, {kn} ⊂ Z+ and {zn} ⊂ R2 \ {0}
satisfying kn → +∞, zn → 0, and Ψ ◦ φtn(q) = (kn, zn). By differentiability
properties of the flow, we know that ∀L > 0 ∃C > 0, n0 ≥ 1 such that n ≥ n0

implies

(68) Ψ ◦ φt+tn(q) = (kn + t, ϕ(t)zn) + Δn(t), ∀t ∈ [0, L],

where |Δn|C1([0,L],R×R2) ≤ C|zn|2.
Let LN = −J(t, 0)∂t −N(t) be the representation of AP in the frame {e1, e2}.

Suppose e : R/Z → C \ {0} satisfies LNe = μe and wind(e) ≤ 1, for some μ < 0.
By Corollary 6.6, the function z(s, t) has the form (66) for such e(t). If n is large,

define sn by e
−

∫ sn
s0

α(r)dr
= |zn|−1 and set

Tn : (t, ζ) 
→ (t− kn, e
−

∫ sn
s0

α(r)dr
ζ) = (t− kn, |zn|−1ζ).

We can assume zn/|zn| → z∗ ∈ S1. Consider the maps

hn(s, t) := Tn (θ(s+ sn, t) + kn, z(s+ sn, t)) ,

γn(t) := Tn ◦Ψ ◦ φt+tn(q).

It follows from (66), Lemma 6.5 and (68) that

hn → h(s, t) := (t, eμse(t)) in C∞
loc,

γn(t) → γ∞(t) := (t, ϕ(t)z∗) in C1
loc.

It is an immediate consequence of (67) that γ∞ intersects the embedded surface
h (R× R) at some time t > 0. We now argue, following [17], that this intersection
is transverse.

For every θ ∈ R, the matrix J(θ, 0) (54) is a complex multiplication in R
2

compatible with the standard area form dx ∧ dy. This is so because the frame
{e1, e2} is dλ-symplectic over R/Z×0. We find a 1-periodic smooth map θ 
→ L(θ) ∈
Sp(1) satisfying J0L(θ) = L(θ)J(θ, 0). Set ζ(t) = L(t)ϕ(t)z∗ and E(t) = L(t)e(t),
M(t) = (L(t)N(t)− J0L

′(t))L(t)−1. Viewing ζ and E as complex numbers, we set

u(t) = ζ(t)E(t). Then −J0ζ
′ −Mζ = 0, −J0E

′ −ME = μE and

−J0u
′ = (Mζ)Ē − ζ(ME)− μu.

If γ∞ intersects h (R× R) at time t, then u(t) ∈ R, (Mζ)Ē − ζ(ME) is purely
imaginary and the real part r of u′(iu)−1 is equal to −μ > 0. However r is the
derivative of the argument of u. It follows that γ∞ intersects the embedded surface
h (R× R) transversely at time t.

As a consequence we obtain (transverse) intersections of γn with the surface hn

for n large enough, proving that φt(q) intersects the surface u(C) for t > tn. �
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6.3. Fredholm theory. In this subsection we prove

Lemma 6.10. Let ũ = (a, u) be an embedded fast finite-energy plane with asymp-
totic limit P0 = (x0, T0). Suppose μ(ũ) ≥ 3. Then, for every l ≥ 1, there exists a
Cl embedding f : C × Br(0) → R × M satisfying properties (1) and (2) listed in
Theorem 2.3.

T0 is the minimal positive period of x0 since ũ is fast. We write ũ(s, t) =
(a(s, t), u(s, t)) = ũ

(
e2π(s+it)

)
and assume, without loss of generality, that

(69)

lim
s→+∞

u(s, t) = x0(T0t) in C0(S1,M),

lim
s→+∞

sup
t∈S1

|a(s, t)− T0s| = 0.

6.3.1. Normal coordinates at ũ. We work on a Martinet Tube Ψ (12) defined on
an open neighborhood U of the set x0(R). We assume βΨ

P = βũ and use all the

notation from Subsection 6.2. Define the complex structure Ĵ on R× S1 ×B by

(idR ×Ψ)∗Ĵ ≡ J̃ on R× U.

The basis {e1, e2} is a dλ-symplectic frame for ξ|U . Ĵ is represented by

(70)

⎡
⎢⎢⎣

0 −f 0 −xf
R1 xf(J21R2 + J22R3) −xJ21 x2f(J21R2 + J22R3)− xJ22
R2 −f(J11R2 + J12R3) J11 −xf(J11R2 + J12R3) + J12
R3 −f(J21R2 + J22R3) J21 −xf(J21R2 + J22R3) + J22

⎤
⎥⎥⎦

with respect to the basis {∂a, ∂θ, ∂x, ∂y}, where J = (Jij) is the matrix (54). Note
that (70) is independent of the first coordinate. For s large enough we have a
well-defined map

w̃(s, t) := (idR ×Ψ) (ũ(s, t)) = (a(s, t), θ(s, t), z(s, t) = (x(s, t), y(s, t))).

It follows from Lemma 6.5 that Ĵ(s, t) := Ĵ(w̃(s, t)) satisfies

lim
s→+∞

ers

∣∣∣∣∣∣∣∣
Dγ

⎡
⎢⎢⎣Ĵ(s, t)−

⎡
⎢⎢⎣

0 −T0 0 0
T−1
0 0 0 0
0 0 J11(x0(T0t)) J12(x0(T0t))
0 0 J21(x0(T0t)) J22(x0(T0t))

⎤
⎥⎥⎦
⎤
⎥⎥⎦
∣∣∣∣∣∣∣∣
= 0 ∀γ

for some r > 0.
On R ×M we have projections πR : R ×M → R and πM : R ×M → M . The

metric g0 (16) is R-invariant, and J̃ is a pointwise isometry with respect to g0.
Fix two non-vanishing smooth sections n and m of ξ|U such that m = Jn. We
can assume in addition that {n,m} is dλ-symplectic since GL(1,C) is homotopy
equivalent to U(1). Then ñ = π∗

Mn and m̃ = π∗
Mm are smooth sections of π∗

Mξ

over R× U satisfying J̃ ñ = m̃. Define

(71)

n̂(s, t) = d(idR ×Ψ)ũ(s,t) · ñ ◦ ũ(s, t) ∈ 0× R
3 ⊂ R

4,

m̂(s, t) = d(idR ×Ψ)ũ(s,t) · m̃ ◦ ũ(s, t) ∈ 0× R
3 ⊂ R

4,

n̂∞(t) = dΨ|x0(T0t) · n(x0(T0t)) ∈ R
3,

m̂∞(t) = dΨ|x0(T0t) ·m(x0(T0t)) ∈ R
3.
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Lemma 6.5 gives b > 0 such that

(72)

lim
s→+∞

sup
t∈S1

ebs |Dγ [n̂(s, t)− (0, n̂∞(t))]| = 0 ∀γ,

lim
s→+∞

sup
t∈S1

ebs |Dγ [m̂(s, t)− (0, m̂∞(t))]| = 0 ∀γ.

The bundle with fibers E(s,t) = π∗
Mξ|ũ(s,t) is smooth, J̃-invariant, and transverse

to T ũ over [s0,+∞)×S1 for a fixed s0 > 0 large. Thus we can assume there exists

a smooth J̃-invariant subbundle L of ũ∗T (R×M) such that

(1) L = E over points z = e2π(s+it) with s ≥ s0 + 1.
(2) L = Nũ over points z = e2π(s+it) with s ≤ s0 + 1/2.

Here Nũ is the normal bundle to ũ with respect to the metric g0. Nũ is also
J̃-invariant. Standard degree theory shows that there is precisely one homotopy
class βN ∈ SP with the following property: the section ñ extends to a smooth
non-vanishing section of L if, and only if, the section t 
→ n(x0(T0t)) is in class βN .
From now on we assume this is the case and that ñ can be extended. We extend
m̃ by m̃ = J̃ ñ. The following non-trivial identity is proved in [13]

(73) wind(βN , βũ, J) = +1.

Now fix a metric g on R×M agreeing with (idR ×Ψ)∗
(
da2 + dθ2 + dx2 + dy2

)
on R× U . Consider Φ defined by

(74)
Φ : C×B′ → R×M,

(z, v) 
→ expũ(z)(v1ñ(z) + v2m̃(z)),

where exp is the exponential map associated to g and B′ is a small open ball around
0 ∈ R2. We need to examine the map Φ in more detail. Let us define

(75) F (s, t, v) = (idR ×Ψ) ◦ Φ ◦ (σ × id)(s, t, v),

where σ(s, t) = e2π(s+it). By the asymptotic behavior of w̃, n̂, and m̂ there exists
b > 0 such that

(76) lim
s→+∞

ebs|Dγ [F (s, t, v)− F∞(s, t, v)]| = 0 ∀γ,

where F∞(s, t, v) = (T0s, t, v1n̂∞(t)+v2m̂∞(t)). We used Lemma 6.5. In particular,

(77) lim
s→+∞

ebs|Dγ [DF −DF∞]| = 0 ∀γ,

where the smooth matrix

(78) DF∞(t, v) =

⎡
⎢⎢⎣
T0 0 0 0
0 1 0 0
0 v1[n̂

′
∞(t)]1 + v2[m̂

′
∞(t)]1 [n̂∞(t)]1 [m̂∞(t)]1

0 v1[n̂
′
∞(t)]2 + v2[m̂

′
∞(t)]2 [n̂∞(t)]2 [m̂∞(t)]2

⎤
⎥⎥⎦

is independent of s. Define J̄ := Φ∗J̃ on C×B′, and write

(79) J̄(z, v) =

[
j1(z, v) Δ1(z, v)
Δ2(z, v) j2(z, v)

]
.

Note that

(80) J̄(z, 0) ≡
[
J0 0
0 J0

]

since ũt = J̃ ũs and m̃ = J̃ ñ.
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Lemma 6.11. Consider J = F ∗Ĵ = (σ × idR2)∗J̄ . There exists a smooth map
J∞ : S1 ×B′ → R4×4 and b > 0 such that (J∞)2 = −I and

(81) lim
s→+∞

sup
(t,v)∈S1×K

ebs|Dα[J(s, t, v)− J∞(t, v)]| = 0 ∀α

for every compact set K ⊂ B′.

Proof. The lemma follows easily from the formula

J(s, t, v) = DF (s, t, v)−1 · Ĵ(F (s, t, v)) ·DF (s, t, v)

and the estimates (76) and (77), where Ĵ is the matrix (70). It is only important

to note that Ĵ is defined on R×S1×B and is independent of the first variable. �

6.3.2. The non-linear Cauchy-Riemann equations in normal coordinates. We look
for smooth maps z 
→ v(z) such that z 
→ Φ(z, v(z)) has a J̃-invariant tangent
space. This is equivalent to

(82) H(v) := Δ2(z, v) + j2(z, v) ◦ dv − dv ◦ j1(z, v)− dv ◦Δ1(z, v) ◦ dv = 0.

In view of (80) one can write

(83)

j1(z, v) = J0 +

∫ 1

0

j′1(z, rv)dr · v = J0 + δj1(z, v) · v,

j2(z, v) = J0 +

∫ 1

0

j′2(z, rv)dr · v = J0 + δj2(z, v) · v,

Δ1(z, v) =

∫ 1

0

Δ′
1(z, rv)dr · v = δΔ1(z, v) · v,

Δ2(z, v) =

∫ 1

0

Δ′
2(z, rv)dr · v = δΔ2(z, v) · v,

where the prime denotes a derivative with respect to the v-variable. Analogously
we write

(84)
δΔ2(z, v) = Δ′

2(z, 0) +

∫ 1

0

∫ 1

0

Δ′′
2 (z, rτv)rdrdτ · v

= C(z) + δΔ′
2(z, v) · v.

Plugging (83) and (84) into (82) we find

(85) J0 · dv − dv · J0 + C · v +W (z, v, dv) · v = 0,

where
W (z, v, L) · u = [δΔ′

2(z, v) · v] · u+ [δj2(z, v) · u]L
− L[δj1(z, v) · u]− L[δΔ1(z, v) · u]L.

Note that C(z) and W (z, v, L) are linear maps R2 → R2×2 for fixed (z, v, L),

and (85) is an identity on 2× 2 matrices. Let C̃(s, t) be the 2× 2 matrix given by

C̃(s, t)u = [C(e2π(s+it))u]∂t. Then by Lemma 6.11,

(86) lim
s→+∞

sup
t∈S1

ebsDγ [C̃(s, t)− C∞(t)] = 0 ∀ Dγ = ∂γ1
s ∂γ2

t ,

where b > 0 and C∞(t) is some smooth matrix loop. Later we will need the following
statement, which is an easy consequence of the chain rule and Lemma 6.11.
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Lemma 6.12. Fix m ≥ 1 and suppose v : C → B′ solves H(v) = 0 and satisfies

lim
s→+∞

sup
t∈S1

eds|Dγv(s, t)| = 0 ∀|γ| ≤ m

for some d > 0, where we write v(s, t) = v(e2π(s+it)). Then the matrix

W̃v(s, t)u := [W (z, v(z), dv(z)) · u]∂t
with z = σ(s, t) satisfies

lim
s→+∞

sup
t∈S1

eds|DγW̃v(s, t)| = 0 ∀|γ| ≤ m− 1.

6.3.3. The asymptotic operator and the Fredholm index. The frame {n,m} of ξ|U
is (dλ, J)-unitary, that is, Jn = m and dλ(n,m) ≡ 1. The following important
lemma is proved in [13].

Lemma 6.13. The matrix C∞(t) is symmetric. The solution t 
→ ψ(t) ∈ Sp(1)
of −J0ψ

′ − C∞ψ = 0, ψ(0) = I, is the linearized Reeb flow restricted to ξ along
t 
→ x0(T0t) represented in the basis {n,m}. In other words, the differential operator
LC∞ = −J0∂t −C∞(t) represents the asymptotic operator AP in the frame {n,m}.

H is smooth in the following Banach space set-up defined in [13].

Definition 6.14. Fix l ∈ Z
+, α ∈ (0, 1) and δ < 0. The space Cl,α,δ

0 (C,R2)

is defined in [13]. Introducing cylindrical coordinates z = e2π(s+it) and writing

f(s, t) = f(z) for z 	= 0, one says that f ∈ Cl,α,δ
0 (C,R2) if

(1) f ∈ Cl,α(C,R2).
(2) e−δsDβf(s, t) ∈ C0,α([R,+∞)× S1,R2) ∀ |β| ≤ l and R ∈ R.
(3) limR→+∞ e−δs‖Dβf(s, t)‖C0,α([R,+∞)×S1,R2) = 0 ∀ |β| ≤ l.

Cl,α,δ
0 (C,R2) is a Banach space with the norm

|f |l,α,δ =‖z 
→ f(z)‖Cl,α(D,R2)

+ ‖(s, t) 
→ e−δsf(e2π(s+it))‖Cl,α([−1,+∞)×S1,R2).

The vector bundle Y → C with fiber Yz = {R-linear maps TzC → R2} admits
a splitting Y = Y 1,0 ⊕ Y 0,1 into C-linear and C-anti-linear maps. The space

Cl−1,α,δ
0 (Y ) consists of sections A : C → Y of class Cl−1,α such that (s, t) 
→

A(σ(s, t)) · ∂tσ(s, t) belongs to Cl−1,α,δ
0 on R+ ×S1. Cl−1,α,δ

0 (Y 0,1) is defined anal-
ogously.

By (81), equation (85) defines a smooth map

H : Cl,α,δ
0 (C, B′) → Cl−1,α,δ

0 (Y )

satisfying H(0) = 0 and DH(0)ζ = J0dζ − dζJ0 + Cζ. Differentiating the identity

J̄2 = −I one checks that DH(0)ζ ∈ Cl−1,α,δ
0 (Y 0,1) ⊂ Cl−1,α,δ

0 (Y ), ∀ζ. There

exists a Banach bundle over Cl,α,δ
0 (C, B′) (with fibers modeled on Cl−1,α,δ

0 (Y 0,1)),
and a smooth Fredholm section η such that η(v) = 0 ⇔ H(v) = 0. Moreover,
Dη(0)ζ = [DH(0)ζ]0,1 = DH(0)ζ, ∀ζ. The details are spelled out in Section 5
from [13]. We will fix δ later. The following theorem is proved in [13]; see also [30].

Theorem 6.15 (Hofer, Wysocki and Zehnder). If δ 	∈ σ (LC∞) and δ < 0, then
Dη(0) is a Fredholm operator with index μ̃δ (LC∞)+1 = μδ

CZ(P, βN)+1=μδ
CZ(P, βũ)

− 1.
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6.3.4. The choice of δ < 0. By the inequality μ(ũ) ≥ 3, we can choose δ so that

(87) δ ∈ (−∞, 0) \ σ(AP ), (νposδ , βũ) = 2 and (νnegδ , βũ) = 1.

This follows from the characterization of μCZ explained in Section 4. For this choice
we have μδ

CZ(P, βũ) = 3. The index of Dη(0) is 3− 1 = 2, by Theorem 6.15.

6.3.5. Automatic transversality. Let ζ ∈ kerDη(0) = kerDH(0). Then

0 = [DH(0)ζ]∂t = ζs + J0ζt + C̃ζ.

It follows from Theorem 6.1 that either ζ vanishes identically or

ζ(s, t) = e
∫ s
s0

α̃(r)dr
(ẽ(t) + R̃(s, t))

holds for s ≥ s0 � 1. Here ẽ is the representation of an eigenvector for η̃ ∈
σ(AP ) ∩ (−∞, 0) in the (unitary) frame {n,m}. The functions α̃ and R̃ satisfy

lim
s→+∞

|α̃(s)− η̃| = 0,

lim
s→+∞

sup
t

|R̃(s, t)| = 0.

The definition of the space Cl,α,δ
0 (C,R2) forces η̃ < δ. The map ζ satisfies a per-

turbed Cauchy-Riemann equation. By the similarity principle, it has only isolated
zeros or vanishes identically; see [9]. Moreover, each zero counts positively in the
algebraic count of the intersection number with the zero map z 
→ (z, 0). The above
asymptotic behavior tells us that if ζ does not vanish identically, then it does not
vanish near ∞. Standard degree theory implies

0 ≤ #{zeros of ζ} = lim
R→+∞

wind
(
ζ(Rei2πt)

)
= wind(ẽ(t)).

By the choice of δ < 0 in (87)

0 ≤ wind(ẽ(t)) = (η̃, βN ) = (η̃, βũ) + wind(βũ, βN ) ≤ 1− 1 = 0.

Thus ζ never vanishes or vanishes identically. If there are three linearly independent
sections in kerDH(0), then a linear combination of them would have to vanish at
some point, which is impossible by the above discussion. This proves that Dη(0) is
surjective.

6.3.6. Consequences of the implicit function theorem. We fix δ < 0 as in (87) and
an integer l ≥ 4.

Since the linearization Dη(0) is surjective, the implicit function theorem yields

an open neighborhood O ⊂ Cl,α,δ
0 (C,R2) of 0, an open neighborhood U ⊂ R

2 of 0,
and a smooth embedding τ ∈ U 
→ v(τ ) ∈ O satisfying

(88)
{v(τ ) : τ ∈ U} = O ∩H−1(0),

Dη(v(τ )) is a surjective Fredholm map of index 2.

Writing v(τ )(z) = v(τ, z), the maps z 
→ Φ(z, v(τ, z)) are not necessarily J̃-
holomorphic. This is taken care of in the appendix of [13]. Analyzing a suitable
Fredholm problem, fixing 0 < ε < 2π, and possibly making U smaller, it is possible
to find a smooth function

(89) τ ∈ U 
→ (Cτ , Dτ , φτ (z)) ∈ C× C× C
l,α,−ε
0 (C,R2)

with the following properties: C0 = 1, D0 = 0, φ0(z) ≡ 0,

(90) ψτ (z) = Cτz +Dτ + φτ (z)
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is a diffeomorphism of C, and if we define

(91)
f : C× U → R×M,

(z, τ ) 
→ Φ(ψτ (z), v(τ, ψτ (z))),

then the maps f(·, τ ) are J̃-holomorphic.
For τ ∈ U small, t ∈ S1, and s � 1, we can define smooth functions S =

S(τ, s, t) ∈ R and T = T (τ, s, t) ∈ S1 by

(92) e2π(S+iT ) = ψτ (e
2π(s+it)).

Denoting στ = T0(2π)
−1 log |Cτ | and dτ = (2π)−1 argCτ , one easily verifies

(93) lim
s→+∞

e−b̂s |Dγ [(S, T )− (s+ στ/T0, t+ dτ )]| = 0 ∀|γ| ≤ l

uniformly in (τ, t), for max{δ,−ε} < b̂ < 0. Define

(94)

w̃τ (s, t) = (idR ×Ψ) ◦ f(e2π(s+it), τ )

= (idR ×Ψ) ◦ Φ(e2π(S+iT ), v(τ, e2π(S+iT )))

= F (S, T, v(τ, S, T )),

where F is the map (75). We write

w̃τ = (aτ , wτ ) = (aτ , θτ , zτ = (xτ , yτ )).

Note that w0(s, t) = Ψ ◦ u
(
e2π(s+it)

)
and a0(s, t) = a

(
e2π(s+it)

)
.

Lemma 6.16. The map f is Cl, and v(τ ) is smooth ∀τ ∈ U .

Proof. f is Cl because of the definition of the topology of Cl,α,δ
0 (C,R2) and from the

fact that τ 
→ v(τ ) is smooth. By the regularity properties of the Cauchy-Riemann
equations, each f(·, τ ) is a smooth map. Thus the graph z ∈ C 
→ (z, v(τ )(z)) is a
smooth submanifold of C× R

2. It follows that v(τ ) must be smooth. �
Remark 6.17. Each f(·, τ ) is a finite-energy plane with energy E(f(·, τ )) = T0. We
also have

lim
s→+∞

πM ◦ f(e2π(s+it), τ ) = x0(T0(t+ dτ )) in C0(S1,M),

lim
s→+∞

sup
t∈S1

|aτ (s, t)− T0s− στ | = 0.

Consequently, we can apply Lemma 6.4 to obtain

(95) lim
s→+∞

sup
t∈S1

|Dγ [w̃τ (s, t)− (T0s+ στ , t+ dτ , 0, 0)]| = 0 ∀γ ∀τ.

6.3.7. The asymptotic analysis of fast planes. It follows from Lemma 6.5 and Corol-
lary 6.6, as explained in Subsection 6.2, that either z0 vanishes or

(96) z0(s, t) = e
∫ s
s0

α(τ)dτ
(e(t) +R(s, t))

for s ≥ s0 � 1. Here e(t) is an eigenvector corresponding to the eigenvalue μ < 0 of
the asymptotic operator AP , represented in the trivializing frame {e1, e2} for ξ|P .
The functions α and R satisfy (48).

The homotopy class of t 
→ e1(x0(T0t)) is βũ. We must have μ < δ. In fact,
if μ > δ, then wind(e) = (μ, βũ) ≥ (νposδ , βũ) = 2. Using Lemma 6.8, we have
1 = wind∞(ũ) = wind(e) ≥ 2. This is absurd.

Lemma 6.18. Each f(·, τ ) is a fast finite-energy plane.
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Proof. We can write

w̃τ (s, t) = F (S, T, v(τ )(S, T ))

= w̃0(S, T ) +

[∫ 1

0

D3F (S, T, av(τ )(S, T ))da

]
· v(τ )(S, T ),

where ψτ (e
2π(s+it)) = e2π(S+iT ). If zτ (s, t) is as defined in (94), then

|zτ (s, t)− z0(S, T )| ≤ |w̃τ (s, t)− w̃0(S, T )|
≤ C|v(τ )(S, T )|
≤ CeδS ≤ C ′eδs

in view of (76), (93) and of the definition of Cl,α,δ
0 (C,R2). Also

z0(S, T ) = z0(s, t)

+

[∫ 1

0

Dz0((1− a)s+ aS, (1− a)t+ aT )da

]
· (S − s, T − t)

∀ε > 0 ∃C > 0 such that |Dz0(s, t)| ≤ Ce(μ+ε)s in view of formula (96). Conse-
quently,

|z0(S, T )− z0(s, t)| ≤ C sup
a∈[0,1]

e(μ+ε)(s+a(S−s)) ≤ C ′e(μ+ε)s

in view of (93). We proved

(97) |zτ (s, t)− z0(s, t)| ≤ C ′emax{μ+ε,δ}s = C ′eδs for s � 1,

since μ+ ε < δ if ε > 0 is small enough. Again by μ < δ, we estimate

(98) |zτ (s, t)| ≤ |zτ (s, t)− z0(s, t)|+ |z0(s, t)| ≤ C ′′eδs

for some C ′′ > 0. Inequality (98) and Lemma 6.5 prove that each plane f(·, τ ) has
non-degenerate asymptotics.

We can apply Corollary 6.6 and conclude that either zτ ≡ 0 or

(99) zτ (s− T−1
0 στ , t− dτ ) = e

∫ s
s0

ατ (r)dr(eτ (t) +Rτ (s, t))

for s ≥ s0 � 1. Here eτ is the representation in the frame {e1, e2} of an eigen-
vector of the asymptotic operator AP and μ̃τ is the corresponding eigenvalue. The
functions ατ and Rτ satisfy

lim
s→+∞

[
|Dj [ατ (s)− μτ ]|+ sup

t
|DγRτ (s, t)|

]
= 0 ∀j and γ.

It follows from Lemma 6.8 that wind∞(f(·, τ )) = (μ̃τ , βũ). (99) and (98) imply
μ̃τ < δ. Thus, by our choice of δ in (87), we have wind∞(f(·, τ )) = (μ̃τ , βũ) ≤ 1.
Lemma 3.19 proves wind∞(f(·, τ )) = 1. �

6.3.8. Further consequences of the asymptotic analysis. Fix τ ∈ U and ζ in the
kernel of DH(0). We can write

H(v(τ )) = J0dv(τ )− dv(τ )J0 + [C +Wτ ]v(τ ) = 0,

DH(0)ζ = J0dζ − dζJ0 + Cζ = 0

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FAST FINITE-ENERGY PLANES 1911

for suitable Cl−1-function Wτ (z). As a consequence of the definition of the space

Cl,α,δ
0 (C,R2) and of (86), we have

lim
s→+∞

sup
t∈S1

e−δs|DγW̃τ (s, t)| = 0 ∀|γ| ≤ l − 1,

where W̃τ (s, t)u = [Wτ (σ(s, t))u]∂tσ. Since we chose l ≥ 4, these estimates and
Lemma 6.13 allow us to apply Theorem 6.1 and find that either v(τ ) vanishes
identically or

v(τ )(s, t) = e
∫ s
s0

α(r)dr
(e(t) +R(s, t))

for s ≥ s0 � 1. The functions α and R are Cl−3 and satisfy

lim
s→+∞

|Dj [α(s)− η]| = 0 ∀j ≤ l − 3,

lim
s→+∞

sup
t

|DγR(s, t)| = 0 ∀|γ| ≤ l − 3,

where η < 0 is an eigenvalue of AP and e is the representation of an eigenvector
for η in the (unitary) frame {n,m}. Analogously, either ζ vanishes identically or

ζ(s, t) = e
∫ s
s0

α̃(r)dr
(ẽ(t) + R̃(s, t)),

where ẽ is the representation of an eigenvector for η̃ ∈ σ(AP ) ∩ (−∞, 0) in the

(unitary) frame {n,m}. The functions α̃ and R̃ satisfy

lim
s→+∞

|Dj [α̃(s)− η̃]| = 0 ∀j ≤ l − 3,

lim
s→+∞

sup
t

|DγR̃(s, t)| = 0 ∀|γ| ≤ l − 3.

The definition of the space Cl,α,δ
0 (C,R2) forces η < δ and η̃ < δ.

The maps v(τ ) and ζ satisfy perturbed Cauchy-Riemann equations. By the
similarity principle, they have only isolated zeros or vanish identically; see [9].
Moreover, each zero counts positively in the algebraic count of the intersection
number with the zero map z 
→ (z, 0). The above asymptotic behavior tells us that
if vτ or ζ do not vanish identically, then they do not vanish near ∞. Standard
degree theory implies

0 ≤ #{zeros of v(τ )} = lim
R→+∞

wind
(
t 
→ v(τ )(Rei2πt)

)
= wind(e(t)),

0 ≤ #{zeros of ζ} = lim
R→+∞

wind
(
t 
→ ζ(Rei2πt)

)
= wind(ẽ(t)).

By the choice of δ < 0 in (87),

0 ≤ wind(e(t)) = (η, βN ) = (η, βũ)− wind(βN , βũ) ≤ 1− 1 = 0,

0 ≤ wind(ẽ(t)) = (η̃, βN ) = (η̃, βũ)− wind(βN , βũ) ≤ 1− 1 = 0.

Thus v(τ ) and ζ never vanish or vanish identically. This has important conse-
quences. The map

G : (z, τ ) ∈ C× U 
→ (z, v(τ )(z)) ∈ C×B′

is an immersion. In fact, DG(z, 0) is non-singular ∀z ∈ C since non-zero elements
ζ ∈ kerDH(0) never vanish. Now fix any τ ∈ U . Applying the implicit function
theorem and doing the same analysis centered at a given fast plane with image
Πτ := {Φ(z, v(τ )(z)) : z ∈ C}, we conclude that DG(z, τ ) is also nonsingular
∀z ∈ C. Analogously, one shows that G is one-to-one. In fact, if τ 	= 0, then

{(z, v(τ )(z)) : z ∈ C} ∩ C× {0} = ∅
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since v(τ ) has no zeros. This shows that v(τ )(z1) 	= v(0)(z2) for all (z1, z2) ∈ C2.
Doing the same analysis by applying the implicit function theorem centered at a
given map fast plane with image Πτ0 , we conclude that v(τ0)(z1) 	= v(τ1)(z2) for
all (z1, z2) ∈ C2 when τ0 	= τ1.

We proved that the map f in (91) is an embedding. This concludes the proof of
Lemma 6.10. We collect a useful lemma that follows from our arguments so far.

Lemma 6.19. Let f be the map (91). If δτ ∈ R2 is such that D2f(z0, τ ) · δτ = 0
for some (z0, τ ) ∈ C× U , then δτ = 0.

6.4. Completeness. First we need a particular instance of completeness which
will be crucial in the proof of Lemma 6.24 below.

Lemma 6.20. Let ũ be an embedded fast finite-energy plane satisfying μ(ũ) ≥
3. Let f be the map (91) constructed using the implicit function theorem. If the
sequence {cn} ⊂ R \ {0} satisfies cn → 0, then ∃τn → 0 such that f(C, τn) =
(cn · ũ) (C) if n � 1.

The proof is technical but straightforward; we only sketch it here.

Sketch of Proof. Consider the map Φ in (74). Clearly we can find vn : C → B′ of
class C∞ such that

(cn · ũ)(C) = {Φ(z, vn(z)) : z ∈ C}
and vn → 0 in C∞

loc. It follows from wind∞(cn · ũ) = 1 that vn ∈ Cl,α,δ
0 (C,R2). A

long and technical argument, again using the very particular fact that cn · ũ are

translations of ũ, shows that vn → 0 in the space Cl,α,δ
0 (C,R2). The uniqueness

statement in the implicit function theorem concludes the proof. �

The notion of a somewhere injective pseudo-holomorphic curve is well known;
we refer the reader to [12], [13] or [26]. The following theorem follows from the
proof of Theorem 4.4 in [12].

Theorem 6.21 (Hofer, Wysocki and Zehnder). Fix P = (x, T ) ∈ P. If ũ = (a, u) :
C → R × M is a somewhere injective finite-energy plane asymptotic to P at the
(positive) puncture ∞windπ(ũ) = 0 and u(C) ∩ x(R) = ∅, then u : C → M \ x(R)
is a proper embedding.

Lemma 6.22. Fix P = (x, T ) ∈ P. If ũ = (a, u) : C → R × M is a fast finite-
energy plane asymptotic to P at the (positive) puncture ∞ and u(C) ∩ x(R) = ∅,
then u : C → M \ x(R) is a proper embedding.

Proof. All we need to show is that ũ is somewhere injective. Suppose not. In the
appendix of [12] it is proved that there exists a somewhere injective J̃-holomorphic
curve f : C → R×M and a polynomial p of degree at least 2 such that ũ = f ◦ p.
This forces zeros of π · du, contradicting windπ(ũ) = wind∞(ũ)− 1 = 0. �

Lemma 6.23. Let P = (x, T ) ∈ P and suppose ũ = (a, u) and ṽ = (b, v) are
embedded fast finite-energy planes asymptotic to P at ∞. Assume u(C)∩x(R) = ∅,
v(C) ∩ x(R) = ∅, and βũ = βṽ. Then u(C) = v(C) or u(C) ∩ v(C) = ∅.

The proof of the above lemma is the same as that of Theorem 4.11 in [12]. One
only needs to check that the assumptions wind∞(ũ) = wind∞(ṽ) = 1 and βũ = βṽ

play the exact same role as the assumption μ(ũ) = μ(ṽ) ≤ 3 made in [12].
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Lemma 6.24. Let ũ = (a, u) be an embedded fast finite-energy plane asymptotic to
the periodic Reeb orbit P = (x, T ) at the (positive) puncture ∞. Suppose μ(ũ) ≥ 3.
Then ũ(C) ∩ R× x(R) = ∅.

Proof. It follows from windπ(ũ) = wind∞(ũ) − 1 = 0 that π · du does not vanish.
Hence u and x only intersect transversely. Let us assume, by contradiction, that
u(C) ∩ x(R) 	= ∅. In view of Definition 3.11, the map u has self-intersections
and we find intersections of the planes ũ and c · ũ for c � 1. Here c · ũ denotes
the translation of the plane ũ in the R-direction of R × M by c, as explained in
Remark 3.10. Consider, for each c > 0, the closed set

Ac = {(z, w) ∈ C× C : ũ(z) = c · ũ(w)} .
Ac cannot accumulate in C×C since otherwise one could argue, using the similarity
principle as in [26], that ũ(C) = (c · ũ)(C). It is not hard to show ∃R0 � 1 such
that

(100) R ≥ R0 ⇒
{
u−1 (u (C \BR(0))) = C \BR(0),

u|C\BR(0) : C \BR(0) → M \ x(R) is an embedding.

This follows essentially from Lemma 6.5 since P is simply covered.
It follows from (100) that given any ε > 0, one finds a compact K ⊂ C such

that Ac ⊂ K × K for every c ≥ ε. This is so since intersections of the plane ũ
with any of its translations c · ũ induce self-intersections of the map u. We can
now use the homotopy invariance of intersection numbers together with positivity
of intersections of pseudo-holomorphic maps to conclude that ũ intersects c · ũ for
any c > 0. Let

f : C×Br(0) → R×M

be the embedding (91) obtained by the implicit function theorem. Choose cn → 0+.
By Lemma 6.20 ∃τn → 0 satisfying τn 	= 0 and (cn · ũ) (C) = f(C, τn) for n large
enough. This is an absurd because f is one-to-one and cn · ũ intersects ũ for every
n. �

Lemma 6.25. Suppose ũ = (a, u) and ṽ = (b, v) are embedded fast finite-energy
planes asymptotic to the periodic Reeb orbit P = (x, T ) at the (positive) puncture
∞. Suppose βũ = βṽ, and denote μ = μ(ũ) = μ(ṽ). Suppose further that μ ≥ 3.
Then either u(C) ∩ v(C) = ∅ or u(C) = v(C). If u(C) = v(C), then we find c ∈ R

and A,B ∈ C, A 	= 0, such that

ũ(Az +B) = (b(z) + c, v(z)) = c · ṽ(z) ∀z ∈ C.

Proof. It is a straightforward consequence of Lemmas 6.23 and 6.24 that either
u(C)∩v(C) = ∅ or u(C) = v(C). Suppose u(C) = v(C). One finds a diffeomorphism
ϕ : C → C such that v = u◦ϕ since both u and v are embeddings of C into M \x(R).
Let s+ it be a complex parameter on C and compute

π · (du ◦ ϕ) · ϕs = π · vs
= −(J ◦ v) · π · vt
= −(J ◦ u ◦ ϕ) · π · (du ◦ ϕ) · ϕt

= π · (du ◦ ϕ) · (−iϕt).

The condition windπ(ũ) = 0 implies that π · du is a linear isomorphism from TzC

to ξ|u(z) for every z ∈ C. Hence so is π · (du ◦ ϕ). We conclude from the above
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computation that ϕs + iϕt = 0, that is, ϕ is a biholomorphism. It must have the
form ϕ(z) = Az + B. The Cauchy-Riemann equations dũ · i = (J̃ ◦ ũ) · dũ imply
(λ ◦ u) · du · i = da. We compute

bs = (λ ◦ v) · vt
= (λ ◦ u ◦ ϕ) · (du ◦ ϕ) · ϕt

= (λ ◦ u ◦ ϕ) · (du ◦ ϕ) · i · ϕs

= (da ◦ ϕ) · ϕs = (a ◦ ϕ)s.
Analogously, bt = (a ◦ ϕ)t. Hence ∃c ∈ R such that b+ c = a ◦ ϕ. �

We now complete the proof of Theorem 2.3. Let f be the Cl-embedding (91),
and write f = (h, g) ∈ R×M . Fix τ0 ∈ Br(0). Let ṽn = (bn, vn) be a sequence of
embedded fast finite-energy planes with μ(ṽn) = μ and ṽn → f(·, τ0) in C∞

loc. We
find (Bn, τn) → (0, τ0) such that ṽn(0) = f(Bn, τn). By Lemma 6.25 we find cn ∈ R,
An → 1 such that (cn · ṽn)(z) = f(Anz + Bn, τn) ∀z ∈ C since vn(0) = g(Bn, τn).
Note that cn = h(Bn, τn)− bn(0) = 0. The conclusion follows.

7. Open book decompositions

In this section we prove Theorem 2.5. Recall the families Λ(H,P ) in (8) and
the C∞

loc-closed subfamilies Λk(H,P ) defined in (11). From now on we assume the
contact form λ and the periodic orbit P satisfy the hypotheses of Theorem 2.5.

7.1. Local foliations.

Lemma 7.1. Fix a point (r, q) ∈ R × M . If {ũ, ṽ} ⊂ Λk({(r, q)}, P ) for some
k ≥ 3, then there exists θ ∈ R such that ũ(eiθz) = ṽ(z) ∀z ∈ C.

Proof. The sets u(C) and v(C) intersect at the point q ∈ M . Lemma 6.25 provides
constants A ∈ C∗ and B ∈ C such that ũ(Az + B) = ṽ(z) for all z ∈ C. The
definition of Λ({(r, q)}, P ) implies B = 0 and A ∈ S1. �

Let x̂ : R → M be a Reeb trajectory. We denote

(101) Λk
t = Λk ({(0, x̂(t))}, P ) ∀t ∈ R.

It follows from Lemma 6.24 that x̂(R) ∩ x(R) = ∅ if Λk
t 	= ∅ for some t ∈ R and

k ≥ 3. In the following Ir(a) denotes the open interval (a− r, a+ r).

Lemma 7.2. Suppose I is an open real interval, k ≥ 3, and ũ = (a, u) : I × C →
R×M is a C1-map such that ũ(t, ·) ∈ Λk

t ∀t ∈ I. Then ∀t0 ∈ I ∃ε > 0 such that u
is one-to-one on Iε(t0)× C.

Proof. By the inverse function theorem we can find ρ > 0 and ε > 0 small so that

(102) (t, z) ∈ Iε(t0)×Bρ(0) 
→ u(t, z) ∈ M

is a C1-embedding onto an open set of M since windπ(ũ(t0, ·)) = 0 and u(t, 0) =
x̂(t). We now argue indirectly. Take sequences tn, t

∗
n → t0 and zn, z

∗
n ∈ C such

that (tn, zn) 	= (t∗n, z
∗
n) and u(tn, zn) = u(t∗n, z

∗
n). By Lemma 6.22 tn = t∗n implies

zn = z∗n. Consequently, we must have tn 	= t∗n. Again by Lemma 6.25 we find a
sequence {ζn} ⊂ C \ {0} such that u(tn, ζn) = x̂(t∗n) since u(tn,C) = u(t∗n,C) ∀n.
The sequence {ζn} is bounded since the compact sets x(R) and x̂

(
Iε(t0)

)
do not

intersect. Suppose lim inf |ζn| = 0. Then we find a subsequence ζnj
→ 0 as j →
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+∞. For j large enough the points (tnj
, ζnj

) and (t∗nj
, 0) are distinct points in

Iε(t0)× Bρ(0) and satisfy u(tnj
, ζnj

) = x̂(t∗nj
) = u(t∗nj

, 0). This is in contradiction

to the injectivity of the map (102). This proves lim infn |ζn| > 0. After selecting
a subsequence, we can assume ζn → ζ∗ 	= 0. Consequently, u(t0, ζ

∗) = u(t0, 0) =
x̂(t0). However, u(t0, ·) is an embedding by Lemma 6.22. This is a contradiction.

�

Lemma 7.3. Suppose k ≥ 3 and ũ0 ∈ Λk
t0 . ∀l ≥ 1 ∃ε > 0 and a Cl-map

ũ = (a, u) : Iε(t0)× C → R×M

satisfying the following properties:

(1) ũ(t0, ·) ≡ ũ0 and ũ(t, ·) ∈ Λk
t ∀t ∈ Iε(t0).

(2) u : Iε(t0)× C → M \ x(R) is an embedding.
(3) Suppose ṽn are embedded fast finite-energy planes asymptotic to P at ∞, as

in Definition 3.11. If ṽn → ũ0 in C∞
loc and μ(ṽn) = k ∀n, then, for n large

enough, one finds {An} ⊂ C \ {0}, {Bn} ⊂ C, {rn} ⊂ R, and {tn} ⊂ R

such that An → 1, Bn → 0, rn → 0, tn → t0 and

ũ(tn, z) = (rn · ṽn) (Anz +Bn) ∀z ∈ C.

Proof. We split the proof into two steps.

Step 1. A Cl-map ũ = (a, u) : Iε(t0)× C → R×M satisfying (1) exists.

Proof of Step 1. Consider the Cl-embedding f : C × Br(0) ↪→ R × M given by
Theorem 2.3 such that f(·, 0) ≡ ũ0. We find ε > 0 small and unique Cl-curves
τ : Iε(t0) → Br(0) and ζ : Iε(t0) → C satisfying τ (t0) = 0, ζ(t0) = 0 and

(0, x̂(t)) = f(ζ(t), τ (t)) ∀t ∈ Iε(t0).

We must have τ ′(t0) 	= 0 since windπ(f(·, τ (t0)) = 0. Write f = (h, g) ∈ R × M ,
and define

F (r, t) :=

∫
|z−ζ(t)|≤r

g(·, τ (t))∗dλ.

Then F (1, t0) = T − γ and ∂rF > 0. By the implicit function theorem we find,
possibly after making ε smaller, a Cl-function t ∈ Iε(t0) 
→ r(t) such that r(t0) = 1
and F (r(t), t) ≡ T − γ. Define ũ : Iε(t0)× C → R×M by the formula

ũ(t, z) = (a(t, z), u(t, z)) = f(r(t)z + ζ(t), τ (t)).

If ε is small enough, then ũ is a Cl-embedding. Clearly, ũ(t, ·) ∈ Λk
t ∀t ∈ Iε(t0). �

By Lemma 7.2 we can assume u is injective.

Step 2. The map u is an immersion.

Proof of Step 2. Suppose not. We find (z∗, t∗) ∈ C × Iε(t0) and a non-zero vector
(δz∗, δt∗) ∈ C× R such that

Dũ(t∗, z∗) · (δt∗, δz∗) = (c, 0) ∈ R× 0 ⊂ Tũ(t∗,z∗) (R×M) .

We must have c 	= 0 since ũ is an immersion. Denote ũ(t∗, ·) by ũt∗ = (at∗ , ut∗).
We claim that δt∗ 	= 0. If not, then R × 0 is a (real) line in Tz∗ ũt∗ . The Cauchy-

Riemann equations dũt∗ · i = J̃ · dũt∗ imply that z∗ is a zero of π · dut∗ since
J̃ maps R × 0 onto 0 × RR. This contradicts windπ(ũt∗) = 0. From now on
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we assume δt∗ = 1 and denote Q(z, t) = (Q1, Q2) = (r(t)z + ζ(t), τ (t)). Setting
Q∗ = Q(z∗, t∗) = (r(t∗)z∗ + ζ(t∗), τ (t∗)), we compute

(103)

(c, 0) = Dũ(t∗, z∗) · (1, δz∗)
= D (f ◦Q) |(z∗,t∗) · (δz∗, 1)
= D1f |Q∗ ·

[
D1Q1|(z∗,t∗) · δz∗ +D2Q1|(z∗,t∗)

]
+D2f |Q∗ ·

[
D1Q2|(z∗,t∗) · δz∗ +D2Q2|(z∗,t∗)

]
= D1f |Q∗ · [r(t∗)δz∗ + r′(t∗)z∗ + ζ ′(t∗)] +D2f |Q∗ · [τ ′(t∗)] .

By Theorem 2.3 we find Cl-curves A(s) ∈ C
∗, B(s) ∈ C, and σ(s) ∈ R

2 defined
on Iδ(0) (δ > 0 small), satisfying σ(0) = τ (t∗), A(0) = r(t∗), B(0) = ζ(t∗), and

(at∗(z) + cs, ut∗(z)) = f(A(s)z + B(s), σ(s)) ∀z ∈ C.

We compute

(104)
(c, 0) =

d

ds

∣∣∣∣
s=0

f (A(s)z∗ +B(s), σ(s))

= D1f |Q∗ · [A′(0)z∗ +B′(0)] +D2f |Q∗ · σ′(0).

Subtracting (104) from (103), we obtain

D1f |Q∗ ·Δ+D2f |Q∗ · [τ ′(t∗)− σ′(0)] = 0,

where Δ = r(t∗)δz∗ + r′(t∗)z∗ + ζ ′(t∗)−A′(0)z∗ −B′(0). Since the images of D1f
and of D2f are transversal, the section

z 
→ D2f(z, τ (t
∗)) · [τ ′(t∗)− σ′(0)]

has a zero at z = r(t∗)z∗ + ζ(t∗). By Lemma 6.19 we have τ ′(t∗)− σ′(0) = 0. We
compute

(105)
(0, R(x̂(t∗))) =

d

dt

∣∣∣∣
t=t∗

f (ζ(t), τ (t))

= D1f |(ζ(t∗),τ(t∗)) · ζ ′(t∗) +D2f |(ζ(t∗),τ(t∗)) · τ ′(t∗)

and

(106)
(c, 0) =

d

ds

∣∣∣∣
s=0

f (B(s), σ(0))

= D1f |(B(0),σ(0)) ·B′(0) +D2f |(B(0),σ(0)) · σ′(0).

Subtracting (106) from (105), we obtain

(−c, R(x̂(t∗))) ∈ image
(
D1f |(ζ(t∗),τ(t∗))

)
= Tũt∗ (0)ũt∗ ,

and this is again in contradiction to windπ(ũt∗) = 0. �

We proved ũ satisfies (1) and (2). Let us write ũ0 = (a0, u0) and ṽn = (bn, vn).
We find τn → 0 such that f(C, τn) = ṽn(C) in view of Theorem 2.3. Since vn → u0

in C∞
loc there exists tn → t0 such that x̂(tn) ∈ vn(C) ∀n. We used that x̂ intersects

the embedded surface u0(C) transversally at x̂(t0). Consequently x̂(tn) ∈ vn(C) ∩
u(tn,C) and vn(C) = u(tn,C) by Lemma 6.23. Lemma 6.25 provides {rn} ⊂ R,
{An} ⊂ C

∗, {Bn} ∈ C such that (rn · ṽn)(Anz +Bn) = ũ(tn, z) ∀z ∈ C. �
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Lemma 7.4. Let I and J be two open real intervals. Fix k ≥ 3 and l ≥ 1.
Let ũ : I × C → R × M , and let ṽ : I × C → R × M be Cl-maps such that
ũ(t, ·) ∈ Λk

t ∀t ∈ I and ṽ(t, ·) ∈ Λk
t ∀t ∈ J . If I ∩ J 	= ∅, then there exists a Cl

function t ∈ I ∩ J 
→ θ(t) ∈ R such that

ũ(t, z) = ṽ(t, ei2πθ(t)z)

for every (t, z) ∈ I ∩ J × C.

Proof. Note that x̂(t) = u(t, 0) = v(t, 0) ∀t ∈ I ∩ J . By Lemma 7.1 we can find
a function θ(t) defined on I ∩ J satisfying the desired equation. It remains only
to show that we can arrange θ to be Cl. By Lemma 7.2 ∃η > 0 small such that
v : Iη(t0)×C → M \ x(R) is injective. Since windπ(ṽ(t0, ·)) = 0, we can invoke the
inverse function theorem and assume, without loss of generality, that ∃ρ > 0 such
that v : Iη(t0)×Bρ(0) → M is an embedding onto an open neighborhood of x̂(t0).
If 0 < ε � η, then we find Cl-functions α : Iε(t0) → Iη(t0) and β : Iε(t0) → C

such that u(t, ε) = v(α(t), β(t)). By Lemmas 6.24 and 6.23 we know that u(t,C) =
v(t,C) ∀t ∈ Iε(t0). Thus α(t) ≡ t since v is one-to-one on Iη(t0)× C and β(t) 	= 0
since v(t, 0) = u(t, 0) 	= u(t, ε) and each u(t, ·) is one-to-one. Let θ(t) := 1

2π arg β(t)

be a Cl choice of argument. It follows from Lemma 7.1 that ṽ(t, ei2πθ(t)z) = ũ(t, z)
for every (t, z) ∈ Iε(t0)× C. We proved θ can be locally chosen of class Cl. �

The following statement is an easy consequence of Lemmas 7.3 and 7.4.

Lemma 7.5. Suppose I is an open real interval and l ≥ 1. Let ũ = (a, u) :
I × C → R ×M be a Cl map such that ũ(t, ·) ∈ Λk

t ∀t ∈ I for some k ≥ 3. Then
∀t′ ∈ I ∃ε > 0 such that u : Iε(t

′)× C → M \ x(R) is a Cl-embedding.

Later we will need the following claim.

Claim 7.6. Suppose I and J are two open real intervals. Let ũ : I×C → R×M and
ṽ : J×C → R×M be Cl-maps such that ũ(t, ·) ∈ Λk

t ∀t ∈ I and ṽ(t, ·) ∈ Λk
t ∀t ∈ J .

Suppose v(s0, 0) = u(t0, z0). Then there exists ε > 0 and Cl-functions α : Iε(s0) →
I and ζ : Iε(s0) → C such that Iε(s0) ⊂ J , α′ > 0, α(s0) = t0, ζ(s0) = z0 and
v(s, 0) = u(α(s), ζ(s)) ∀s ∈ Iε(s0).

Proof. By Lemma 7.5 ∃ε0 > 0 such that u : Iε0(t0) × C → M is an embedding
onto an open subset of M . If ε > 0 is small enough, then v (Iε(s0)× {0}) ⊂
u (Iε0(t0)× C). Hence there are unique α and ζ as in the statement satisfying
v(s, 0) = u(α(s), ζ(s)) ∀s ∈ Iε(s0). The inequality α′ > 0 is trivial to check. �

7.2. Proof of Theorem 2.5. From now on we denote k = μ(ũ0) ≥ 3 and proceed
in three steps.

7.2.1. Foliating M \ x(R). The Reeb flow preserves the volume form λ ∧ dλ. By
Poincaré’s recurrence almost every point ofM is a recurrent point, that is, it belongs
to its own α and ω limit sets.

Let ũ0 = (a0, u0) be the embedded fast finite-energy plane asymptotic to P =
(x, T ) as in Theorem 2.5. After translation in the R-direction we can assume
ũ0(0) = (0, q) ∈ {0} × M . Let x̂ : R → M be the Reeb trajectory satisfying
x̂(0) = q. As in Subsection 7.1 we denote

Λk
t = Λk({(0, x̂(t))}, P ) ∀t ∈ R.
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We can reparametrize ũ0 in order to achieve ũ0 ∈ Λk
0 . In view of Lemma 7.3 we

can assume, without loss of generality, that q is a recurrent point. We will prove

Lemma 7.7. There exists L > 0, δ > 0, and a Cl-map

ũ = (a, u) : (−δ, L+ δ)× C → R×M

such that the following hold.

(1) ũ(0, ·) ≡ ũ0 and ũ(t, ·) ∈ Λk
t ∀t ∈ (−δ, L+ δ).

(2) u(0,C) = u(L,C) and each u(t, ·) : C → M \ x(R) is an embedding trans-
verse to the Reeb vector.

(3) u : (0, L)× C → M \ (u0(C) ∪ x(R)) is a Cl-orientation-preserving diffeo-
morphism.

By Lemma 7.3 ∃δ > 0 and ũ : Iδ(0)×C → R×M of class Cl satisfying ũ(0, ·) ≡ ũ0

and ũ(t, ·) ∈ Λk
t ∀t ∈ Iδ(0). In view of Lemma 6.24 we must have q 	∈ x(R), implying

x(R) ∩ x̂(R) = ∅. We define a set

(107) B ⊂ (0,+∞)

by requiring that t ∈ B if, and only if, there exists δ > 0 and a Cl map ũ :
(−δ, t)×C → R×M such that ũ(0, ·) ≡ ũ0 and ũ(s, ·) ∈ Λk

s ∀s ∈ (−δ, t). B 	= ∅ by
our remarks so far.

Lemma 7.8. supB = +∞.

Proof. We argue by contradiction and assume τ = supB < +∞. Fix an increasing
sequence tn → τ− and fast planes ũn ∈ Λk

tn . We can assume, in view of the

assumptions of Theorem 2.5, that ũn → w̃ in C∞
loc for some w̃ ∈ Λk

τ . We used
that the compact set H = {0} × x̂ ([0, τ ]) satisfies H ∩ R × x(R) = ∅. Applying
Lemma 7.3 to the plane w̃, we find η > 0 and a Cl map

ṽ = (b, v) : Iη(τ )× C → R×M

such that ṽ(τ, ·) ≡ w̃ and ṽ(t, ·) ∈ Λk
t for every t ∈ Iη(τ ). Now we fix t1 ∈

(τ − η, τ ) ∩ B and a Cl map ũ : (−δ, t1) × C → R×M such that ũ(0, ·) ≡ ũ0 and
that ũ(t, ·) ∈ Λk

t for every t ∈ (−δ, t1). By Lemma 7.4 we can find a Cl-function
θ : (τ − η, t1) → R such that τ − η < t < t1 implies ũ(t, z) = ṽ

(
t, ei2πθ(t)z

)
∀z ∈ C.

Fix a number 0 < ρ � t1−τ+η and a smooth function φ ∈ C∞(R) such that φ ≡ 1
on (−∞, τ − η+ ρ) and φ ≡ 0 on (t1 − ρ,+∞). The map (t, z) 
→ ṽ

(
t, ei2πφ(t)θ(t)z

)
defined on (τ − η, t1) × C agrees with ũ(t, z) on (τ − η, τ − η + ρ) × C and with
ṽ(t, z) on (t1−ρ, t1)×C. Thus it can be used to glue ũ and ṽ and to provide a map

f̃ : (−δ, τ+η)×C → R×M satisfying f̃(t, ·) ∈ Λk
t ∀t ∈ (−δ, τ+η) and f̃(0, ·) ≡ ũ0.

This is a contradiction to the definition of τ . �

The point q ∈ u0(C) is a recurrent point. We know that x̂ intersects u0 trans-
versely at q since windπ(ũ0) = 0. Hence ∃τ > 0 such that x̂(τ ) ∈ u0(C). By
Lemma 7.8 we find δ > 0 and a Cl-map ũ : (−δ, τ + δ) × C → R × M such that
ũ(t, ·) ∈ Λk

t ∀t ∈ (−δ, τ + δ) and ũ(0, ·) ≡ ũ0. It follows from Lemmas 6.24 and 6.23
that u(τ,C) = u0(C). Consider the set

E = {t ∈ (0, τ ] : u(t,C) = u0(C)} .
It follows easily from Lemma 7.5 that

L := inf E > 0.
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Moreover E is closed in (0, τ ]. In fact, let {tn} ⊂ E satisfy tn → t ∈ (0, τ ]. There
exists a unique sequence {zn} ⊂ C such that x̂(tn) = u(tn, 0) = u0(zn) ∀n. We
must have supn |zn| < ∞ since ũ0 is asymptotic to P and x̂ ([0, τ ]) ∩ x(R) = ∅.
Hence we may assume zn → z∗. It follows that x̂(t) = u(t, 0) = u0(z

∗). Thus
t ∈ E in view of Lemmas 6.24 and 6.23, concluding the proof that E is closed.
Consequently, L ∈ E.

Lemma 7.9. u ((0, L)× C) = M \ (u0(C) ∪ x(R)).

Proof. Set U := M \ (u0(C) ∪ x(R)). Clearly, U is open and connected. It follows
from Lemmas 6.24 and 6.23 and from the definition of L that u ((0, L)× C) ⊂ U .
We claim u ((0, L)× C) is closed in U . In fact, suppose the sequence yn satisfies
∀n∃tn ∈ (0, L) such that yn ∈ u(tn,C) and yn → y for some y ∈ U . One finds a
unique sequence Bn ∈ C such that u(tn, Bn) = yn.

Let W be an S1-invariant neighborhood of the (discrete) set of S1-orbits

{c ∈ C∞(S1,M) : ∃P̃ = (x̃, T̃ ) ∈ P∗ such that c ∈ P̃ and T̃ ≤ T}.

We can assume no connected component of W contains loops in distinct classes of
C∞(S1,M)/S1. Let WP be the component containing the class P . We can assume,

without loss of generality, that c ∈ WP ⇒ c(S1) ∩ {yn} = ∅.
Consider the cylinders Zt(s, ϑ) := ũ

(
t, e2π(s+iϑ)

)
for t ∈ [0, L] and set s0 =

(2π)−1 log 2. The definition of Λk
t implies the following.

(1)
∫
{s}×S1 Z

∗
t λ ≥ T − γ ∀t ∈ [0, L], ∀s ≥ s0.

(2) E(Zt) = T ∀t ∈ [0, L].
(3)

∫
[s0,+∞)×S1 Z

∗
t dλ ≤ γ ∀t ∈ [0, L].

Applying Lemma 4.11, we find r0 � 1 such that |z| ≥ r0 ⇒ ũ(t, z) 	∈ {yn} ∀t ∈
[0, L]. It follows that supn |Bn| < ∞. We can assume Bn → B for some B ∈ C and
tn → t∗ for some t∗ ∈ [0, L]. If t∗ = 0, then yn = u(tn, Bn) → u(0, B) contradicting
y 	∈ u0(C). Hence t∗ 	= 0. Analogously t∗ 	= L and we have t∗ ∈ (0, L). It
follows that yn = u(tn, Bn) → u(t∗, B) and (t∗, B) ∈ (0, L) × C. We proved
y ∈ u ((0, L)× C). Thus u ((0, L)× C) is closed in U . That u ((0, L)× C) is open
in U follows easily from Lemma 7.5. The proof is now complete. �

By the previous lemma we have u ([0, L]× C) = M \ x(R).

Lemma 7.10. u is one-to-one on (0, L)× C.

Proof. Suppose (t0, z0) 	= (t1, z1) are points of (0, L) × C satisfying u(t0, z0) =
u(t1, z1). It follows from Lemmas 6.24 and 6.23 that u(t0,C) = u(t1,C). In view of
Lemma 6.22 every u(t, ·) is one-to-one. Thus t0 = t1 implies z0 = z1. Consequently,
we may assume 0 < t0 < t1 < L. In view of Lemma 7.5, we can cover [0, L] by
finitely many open intervals {Ik} such that u : Ik × C → M is an embedding for
each k. Examining the Lebesgue number of this cover, we find η > 0 such that
u : F × C → M is an embedding whenever F is a subinterval of [0, L] of length at
most η. It follows that t0 ≤ t1 − η.

Fix r > 0 very small. Applying Claim 7.6 to the maps ũ : (t0−r, L]×C → M and
ũ : (t1−r, L]×C → M , we find ε > 0 small, Cl-functions α : Iε(t1) → (t0−r, L], and
ζ : Iε(t1) → C such that α′ > 0, α(t1) = t0 and u(t, 0) = u(α(t), ζ(t)) ∀t ∈ Iε(t1).
By the properties of the number η we must have α(t) ≤ t− η ∀t ∈ Iε(t1). Now fix
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t1 < b0 < t1 + ε, t0 < e < α(b0) and consider the set

D = {b ∈ (t1, L] : ∃d ∈ [e, b− η] such that u(b, 0) ∈ u(d,C)} .
Clearly, b0 ∈ D since d = α(b0) works for b0 ∈ (t1, L]. It follows easily from
Claim 7.6 that D is open in (t1, L].

Let B := supD. We claim B ∈ D and B = L. In fact, take {bn} ⊂ D, bn → B−.
We find dn ∈ [e,B − η] and zn ∈ C such that u(bn, 0) = u(dn, zn). Arguing as in
the proof of Lemma 7.9, we find r0 � 1 such that |z| ≥ r0 ⇒ ũ(t, z) 	∈ x̂([0, L]) ∀t ∈
[0, L]. Thus sup |zn| < ∞ since u(bn, 0) = x̂(bn). Consequently, we can assume,
after selecting a subsequence, that dn → d ∈ [e,B − η] and zn → z∗ ∈ C. We
conclude u(B, 0) = u(d, z∗), proving B ∈ D. Suppose B < L. Since D is open
in (t1, L], we find an element of D larger than B, contradicting the definition
of B. Thus L = supD ∈ D and ∃d ∈ [e, L − η] such that u(L, 0) ∈ u(d,C).
By Lemmas 6.23 and 6.24 we have u(d,C) = u(L,C) = u(0,C) = u0(C). This
contradicts the definition of L. �

The proof of Lemma 7.7 is complete.

7.2.2. Reparametrizing the foliation. We now glue the foliation

ũ : (−δ, L+ δ)× C → R×M

given by Lemma 7.7 near the ends to produce a closed S1-family of planes.
Let z0 ∈ C be defined by u(0, z0) = u(L, 0). Using Claim 7.6, we find ε > 0

small and Cl-functions α : Iε(L) → R, ζ : Iε(L) → C satisfying α′ > 0, α(L) = 0,
ζ(L) = z0 and u(t, 0) = u(α(t), ζ(t)) ∀t ∈ Iε(L).

Fact. There exist r > 0, L− r < c < d < L and an increasing diffeomorphism

F : (L− r, L) → (α(L− r), 0)

such that F (t) = α(t) on (L− r, c) and F (t) = t− L on (d, L).

Proof of Fact. Fix 0 < σ < α′(L). We make some a priori arguments. For fixed
r, c, and d as above, choose φ : R → [0, 1] smooth such that φ ≡ 0 on (−∞, c) and
φ ≡ 1 on (d,+∞). The function G(t) := α(t)(1− φ(t)) + σ(t− L)φ(t) satisfies the
desired properties with t−L replaced by σ(t−L) if r > 0 is small enough. Clearly,
G can be modified to obtain F as required. �

Let ρ(t) > 0 be the Cl-function defined on (L−r, c) characterized by the identity∫
Bρ(t)(ζ(t))

u(α(t), ·)∗dλ ≡ T − γ.

It follows that the Cl-family of (fast) finite-energy planes ṽ(t, z) = (b(t, z), v(t, z))
defined on (L− r, c)× C by

b(t, z) := a(α(t), ρ(t)z + ζ(t))− a(α(t), ζ(t)),

v(t, z) := u(α(t), ρ(t)z + ζ(t))

satisfies ṽ(t, ·) ∈ Λk
t ∀t ∈ (L−r, c). By Lemma 7.4 we find θ : (L−r, c) → R of class

Cl such that ṽ(t, ei2πθ(t)z) = ũ(t, z) ∀(t, z) ∈ (L− r, c)× C. Fix L− r < x < y < c
and choose Cl-functions t 
→ A(t) ∈ C \ {0}, t 
→ B(t) ∈ C and t 
→ τ (t) ∈ R

defined on (L − r, c) satisfying the following properties. If ψt(z) := A(t)z + B(t),
then the following hold.
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(1) ψt(z) = ρ(t)ei2πθ(t)z + ζ(t) and τ (t) = a(F (t), ζ(t)) if t ∈ (L− r, x].
(2) ψt(z) = z and τ (t) = 0 if t ∈ [y, c).

We finally define Ũ : R/LZ× C → R×M by

(108) Ũ(t, z) =

⎧⎪⎨
⎪⎩

ũ(t, z) on [0, L− r]× C,

(−τ (t) · ũ) (α(t), ψt(z)) on (L− r, c]× C,

ũ(F (t), z) on (c, L].

By construction Ũ is Cl since F (t) = t − L near L. Each Ũ(t, ·) is an embedded
fast finite-energy plane asymptotic to P at the positive puncture ∞. It follows that
Ũ satisfies (1) and (2) of Theorem 2.5.

7.2.3. Each page is a global surface of section. Let Ũ = (a, u) be the map (108).
We claim that ∀s ∈ R/LZ, and ∀p ∈ M \ x(R) we find sequences t±n such that
t+n → +∞, t−n → −∞ and φt±n

(p) ∈ u(s,C).

Let p ∈ M \x(R) be arbitrary, and denote by y0 : R → M be the Reeb trajectory
satisfying y0(0) = p. We have to prove that the sets

C+
n = {s ∈ R/LZ : u(s,C) ∩ y0([n,+∞)) 	= ∅},

C−
n = {s ∈ R/LZ : u(s,C) ∩ y0((−∞, n]) 	= ∅}

are equal to R/LZ for every n ∈ Z. We only prove C+
n = R/LZ ∀n; the arguments

for C−
n are analogous. Let ω(p) be the ω-limit set of p. If ω(p) ∩ x(R) = ∅,

then we find a neighborhood O of x(R) in M such that y0([n,+∞)) ∩ O = ∅.
Using Lemma 4.11 exactly as in the proof of Lemma 7.9, we find r > 0 such that
|z| > r ⇒ u(s, z) ∈ O ∀s. It follows that y0([n,+∞)) ⊂ u(R/LZ×Br(0)). It follows
easily that C+

n = R/Z ∀n ∈ N in this case. Thus C+
n = R/LZ ∀n ∈ Z in this case.

Now suppose ω(p)∩x(R) 	= ∅, and fix s ∈ R/LZ. Since Ũ(s, ·) is an embedded fast
finite-energy plane asymptotic the the orbit P at the positive puncture ∞, then we
conclude from Lemma 6.9 that s ∈ C+

n for every n ∈ Z. The conclusion follows.
It is proved in [17] that the Poincaré return map ψ : u(s,C) → u(s,C) is an area-

preserving diffeomorphism with respect to the smooth area form ω = dλ|u(s,C), for
every s. Clearly,

∫
ω = T . They also show that ψ is conjugated to a diffeomorphism

of the open unit disk D̊ preserving the measure T
π dx∧dy. The proof of Theorem 2.5

can now be completed as explained in the introduction.

Appendix A. A geometrical characterization of the index

For a closed interval I of length less than π such that 2πZ∩∂I = ∅, consider the
integer μ̂(I) defined by

μ̂(I) = 2k if 2πk ∈ I,

μ̂(I) = 2k + 1 if I ⊂ (2πk, 2π(k + 1)).

This function can be extended to the set of all intervals of length less that π by

μ̂(I) = lim
ε→0+

μ̂(I − ε).

Fix a smooth ϕ : [0, 1] → Sp(1) with ϕ(0) = I. Let S = −J0ϕ
′ϕ−1. To any

z0 ∈ C \ {0}, we can associate the real number

Δ(z0) := Δarg(z(t)) = arg(z(1))− arg(z(0)),
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where z(t) solves

(109)

{ − J0ż − Sz = 0,

z(0) = z0,

and arg is a continuous choice of argument. The interval Iϕ = {Δ(z0) : z0 	= 0} has
length less than π. This follows easily from the linearity of (109) and is explained
in [18]. Moreover, det[ϕ(1) − I] = 0 if, and only if, 2πZ ∩ ∂Iϕ 	= ∅. It turns out
(see [10]) that the μ-index given by Theorem 1.7 satisfies

μ(ϕ) = μ̂(Iϕ) ∀ϕ ∈ Σ∗.

This discussion provides an extension of the μ-index to paths ϕ 	∈ Σ∗, which coin-
cides with the extension explained in Section 4.

Appendix B. Asymptotical analysis for ∂̄0

B.1. Proof of Theorem 6.1.

Proof. We follow [11] and proceed in four steps.

Step 1. There exists μ ∈ σ(LN ) ∩ (−∞, 0) and a Cl−1-function α : [1,+∞) → R

satisfying lims→+∞ α(s) = μ and

‖ζ(s, ·)‖L2(S1) = e
∫ s
1
α(τ)dτ‖ζ(1, ·)‖L2(S1) for s ≥ 1.

Proof of Step 1. We write L2 = L2(S1,R2k) and abbreviate |·|2 = ‖ · ‖L2(S1). 〈·, ·〉2
denotes the inner product on L2 induced by the standard euclidean structure 〈·, ·〉
on R2k. If ∃s0 > 0 such that |ζ(s, ·)|2 = 0, then the zero set of ζ(s, t) has a limit
point in R+ × S1. It follows from usual arguments using the similarity principle
that ζ ≡ 0 on R+ × S1; see [11]. Thus we assume |ζ(s, ·)|2 	= 0 ∀s > 0. Define

ξ(s, t) := ζ(s, t) |ζ(s, ·)|−1
2 and

(110) α(s) := 〈−J0ξt(s, ·)− S(s, ·)ξ(s, ·), ξ(s, ·)〉2 = 〈−J0ξt − Sξ, ξ〉2 .
It is not hard to see that

(111) |ζ(s, ·)|2 = e
∫ s
1
α(τ)dτ |ζ(1, ·)|2

for s ≥ 1, and that ξ satisfies

ξs = (LN − α+ ε)ξ,(112)

where ε(s, t) := N(t) − S(s, t) and LN = −J0∂t − N(t). By our assumptions we
have estimates |〈εξ, ξs〉2| ≤ o(s) |ξs|2 and |〈εsξ, ξ〉2| ≤ o(s) for some o(s) → 0 as
s → +∞. Since 〈ξs, ξ〉2 ≡ 0 and LN is self-adjoint, we obtain

(113) α′ = 2 |ξs|22 + 〈εξ, ξs〉2 + 〈ξ, εξs〉+ 〈εsξ, ξ〉2 ≥ 2 |ξs|2 [|ξs|2 − o(s)]− o(s).

We claim α(s) has a limit as s → +∞. To see this, define

A = lim infs→+∞ α(s) and B = lim sups→+∞ α(s).

By contradiction, suppose A < B. This establishes an oscillatory behavior for α.
By Kato’s perturbation theory of unbounded self-adjoint operators with compact
resolvent (see [22]), σ(LN ) ⊂ R is discrete and accumulates only at ±∞. Thus we
find r ∈ (A,B)\σ(LN) and s′n → +∞ satisfying α(s′n) = r and α′(s′n) ≤ 0. Denote
a = dist(r, σ(LN )) > 0. Recall that for any (possibly unbounded, closed, and
densely defined) self-adjoint operator T on L2, if x 	∈ σ(T ), then ‖(T − x)−1‖−1 =
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dist(x, σ(T )), where ‖·‖ is the operator norm on L
(
L2
)
. Using this fact with LN ,

ξ(s, ·) and α(s), we obtain

(114)

dist(α(s), σ(LN)) = dist(α(s), σ(LN))|ξ|2
= dist(α(s), σ(LN))|(LN − α(s))−1(LN − α(s))ξ|2
≤ dist(α(s), σ(LN))

∥∥(LN − α(s))−1
∥∥ |(LN − α(s))ξ|2

= |(LN − α(s))ξ|2
whenever α(s) 	∈ σ(LN ). By (112) and (114) we can estimate

(115) |ξs|2 ≥ |(LN − α(s))ξ|2 − o(s) ≥ dist(α(s), σ(LN))− o(s),

proving that |ξs(s′n, ·)|2 ≥ a/3 if n is large enough. Equation (113) implies that
α′(s′n) ≥ a2/9 if n is large enough, contradicting α′(s′n) ≤ 0 ∀n.

This discussion shows that lims→+∞ α(s) = μ exists in [−∞,+∞]. Equation
(111) proves μ ≤ 0 since |ζ(s, ·)|2 is bounded. One can argue similarly as before
to prove μ > −∞. Note that lim infs→+∞ |ξs|2 = 0 since, otherwise, we could use
(113) to get an estimate α′(s) ≥ δ > 0, for s large enough, and use (111) to prove
|ζ(s, ·)|2 → +∞, which is absurd. Pick sn → ∞ such that |ξs(sn, ·)|2 → 0. Then
(115) proves μ ∈ σ(LN ). By assumption we know that lims→+∞ supt e

rs |ζ(s, t)| = 0
for some r > 0. Again (111) proves μ < 0. �

In view of Step 1 we can write

(116) ζ(s, t) = ‖ζ(1, ·)‖L2(S1)e
∫ s
1
α(τ)dτ ξ(s, t),

where ‖ξ(s, ·)‖L2(S1) ≡ 1 for s ≥ 1. In the following we denote Ir(τ ) = [τ − r, τ + r]

and Qr(τ ) = Ir(τ )× S1, for r > 0.

Step 2. For every 1 < p < ∞ the functions ξ and α satisfy

lim sup
τ→+∞

[
|ξ|W l,p(Q1(τ))

+ |α|W l,p(I1(τ))

]
< ∞.

Proof of Step 2. The argument relies on the elliptic estimates (124) for the ∂̄0-
operator. Equation (112) can be rewritten as

(117) ∂̄0ξ + Sξ + αξ = 0,

where α is the function (110). We will prove by induction on m that

(118)

lim sup
τ→+∞

|ξ|Wm,p(Q1(τ))
< ∞ ∀m ≤ l,

lim sup
τ→+∞

|α|Wm,p(I1(τ))
< ∞ ∀m ≤ l

for every 1 < p < ∞. These estimates for m = 0 and p = 2 follow from Step 1 and
from |ξ(s, ·)|2 ≡ 1.

Choose β ∈ C∞(R, [0, 1]) such that β ≡ 1 on [−1, 1] and β ≡ 0 on R \ [−2, 2].
For each τ ∈ R we define βτ (s) := β(s − τ ). Assume m ≥ 1 and 1 < p < ∞ are
arbitrary. Using (117) and (124), we estimate

(119)

|ξ|Wm,p(Q1(τ))
≤ |βτξ|Wm,p(Q2(τ))

≤ cm

(∣∣∂̄0 (βτξ)
∣∣
Wm−1,p(Q2(τ))

+ |βτ ξ|Wm−1,p(Q2(τ))

)
≤ c′m

(
|Sξ + αξ|Wm−1,p(Q2(τ))

+ |ξ|Wm−1,p(Q2(τ))

)
.
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The constant c′m > 0 depends only on cm from (124) and on the derivatives of β
up to order m− 1. Thus c′m is independent of ξ, α and τ .

We have to distinguish two cases: m = 1 and m > 1. If m = 1, then

|αξ|Lp(Q2(τ))
≤
(

sup
s≥τ−2

|α(s)|
)
|ξ|Lp(Q2(τ))

.

Step 1 implies α is bounded. Since S is uniformly bounded on Q2(τ ), independently
of τ , we conclude from (119) that 1 < p < ∞ implies

lim sup
τ→+∞

|ξ|W 1,p(Q1(τ))
≤ c lim sup

τ→+∞
|ξ|Lp(Q2(τ))

for some c > 0 independent of τ . The case p = 2 proves |ξ|W 1,2(Q1(τ)) is bounded in

τ . By the Sobolev embedding theorem W 1,2(Q1(τ )) ↪→ Lp(Q1(τ )) ∀1 < p < ∞, the
embedding constant being independent of τ . This proves |ξ|Lp(Q1(τ)) is bounded in
τ , for every 1 < p < ∞. Repeating the above argument, we conclude that

(120) sup
τ

|ξ|W 1,p(Q1(τ)) < ∞

holds for every 1 < p < ∞. As a consequence

s 
→ |ξs(s, ·)|Lp(S1) and s 
→ |ξt(s, ·)|Lp(S1)

belong to Lp(I1(τ )), for every 1 < p < ∞, their norms being bounded uniformly on
τ . Combining the case p = 2 with (113), we have

|α′(s)| ≤ C(|ξs(s, ·)|2L2(S1) + |ξs(s, ·)|L2(S1) + 1)

for some C > 0. Now fix any 1 < q < ∞. Recall that there is a linear embedding
L2q(S1) ↪→ L2(S1) with norm ≤ 1. We estimate the first term:

||ξs(s, ·)|2L2(S1)|
q
Lq(I1(τ))

≤ ||ξs(s, ·)|2L2q(S1)|
q
Lq(I1(τ))

=

∫ τ+1

τ−1

∫
S1

|ξs(s, t)|2qdtds

= |ξs|2qL2q(Q1(τ))
.

The other terms are easier. We conclude from (120) that

lim sup
τ→∞

|α|W 1,q(I1(τ)) < ∞.

This proves (118) whenever 1 < p < ∞ and m = 1.
Now fix m ≥ 2 and assume that (118) holds for m − 1 and every 2 < p < ∞.

Note that, since m − 1 ≥ 1, pointwise multiplication yields a bilinear continuous
form

Wm−1,p(I2(τ ))×Wm−1,p(Q2(τ )) → Wm−1,p(Q2(τ )).

The norm of this bilinear map in independent of τ . In other words, ∃ĉm > 0
independent of τ , α and ξ such that

|αξ|Wm−1,p(Q2(τ))
≤ ĉm |α|Wm−1,p(I2(τ))

|ξ|Wm−1,p(Q2(τ))
.

Now we argue as before to prove supτ |ξ|Wm,p(Q1(τ)) < ∞ whenever 2 < p < ∞.
The case 1 < p ≤ 2 follows easily. In particular,

sup
τ

||Dγξ(s, ·)|Lp(S1)|Lp(I1(τ)) < ∞ ∀|γ| ≤ m, ∀1 < p < ∞.
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Differentiating (113) and arguing as before, using the linear embedding L2p(S1) →
L2(S1) for p > 1, one proves

sup
τ≥1

|α|Wm,p(I1(τ)) < ∞ for arbitrary 1 < p < ∞.

This concludes the induction argument. �

Step 2 shows that α is not only Cl−1 but is also W l,p
loc, for every 1 < p < ∞.

Step 3. Let E = ker(LN − μ). Then

lim
s→+∞

distW 1,2(ξ(s, ·), E) = 0.

Proof of Step 3. Fix L > 0, and let In be a sequence of closed intervals of length
greater than or equal to L satisfying inf In → +∞. We claim that

(121) An := inf
s∈In

|ξs(s, ·)|L2(S1) → 0.

If not, we can assume, after taking a subsequence, that An ≥ δ for some δ > 0.

It follows from estimates (113) that α′(s) ≥ δ̂ on In if n is large enough, for some

δ̂ > 0. Denoting In = [an, bn], we then obtain α(bn) ≥ α(an)+ δ̂L ∀n, contradicting
α(s) → μ as s → +∞. This proves (121).

By Step 2 there exists c > 0 such that

|ξ(b, ·)− ξ(a, ·)|W 1,2(S1) ≤ c |b− a|

if min{a, b} ≥ 1. Here we used that the assumption l ≥ 3 gives us a linear em-
bedding W l,p(Q1(τ )) ↪→ C2(Q1(τ )) when p > 2, the embedding constant being
independent of τ . Suppose ∃sn → +∞ such that infn distW 1,2(ξ(sn, ·), E) > 0.
The above estimate provides L > 0 and closed intervals In of length ≥ L such that
infs∈In distW 1,2(ξ(s, ·), E) ≥ ε for some ε > 0, and inf In → +∞. Let τn ∈ In satisfy
|ξs(τn, ·)|2 = infs∈In |ξs(s, ·)|2. By (121) we know that |ξs(τn, ·)|2 → 0. Equation
(115) proves |(LN − μ)ξ(τn, ·)|2 → 0. We can assume ∃e ∈ W 1,2 such that

|ξ(τn, ·)− e|W 1,2

n→∞−→ 0

in view of the C2-bounds obtained from Step 2 when l ≥ 3 and p > 2. Thus

(LN − μ)e = lim
n→∞

(LN − μ)ξ(τn, ·) = 0 in L2,

proving e ∈ E. This contradiction concludes the argument. �

Step 4. The functions ξ(s, t) and α(s) satisfy

lim
s→+∞

sup
t∈S1

|Dγ [ξ(s, t)− e(t)]| = 0 ∀|γ| ≤ l − 2

lim
s→+∞

∣∣Dj [α(s)− μ]
∣∣ = 0 ∀j ≤ l − 2,

for some e(t) ∈ E.

Proof of Step 4. First we claim ∃e ∈ E such that

(122) lim
s→+∞

|ξ(s, ·)− e|W 1,2 = 0.
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Proof of (122). By Step 2 we have lim sups→+∞ |ξ(s, ·)|W 2,2 < ∞. Again we used
p > 2 and l ≥ 3. Consequently, for every sequence sn → +∞, one finds e ∈ W 1,2,
|e|2 = 1, and a subsequence snj

such that limj |ξ(snj
, ·)− e|W 1,2 = 0. Fix e ∈ W 1,2

obtained by taking such a limit. Step 3 implies e ∈ E.
We claim ξ(s, ·) → e inW 1,2 as s → +∞. Let P denote the orthogonal projection

onto E. Set ξ̂ := Pξ and η := ξ̂|ξ̂|−1
2 . We have |ξ̂(s, ·)|2 ≥ 1

2 if s is large, in view of
Step 3 and of |ξ|2 ≡ 1. As noted in [11], η satisfies

ηs =
Pεξ

|ξ̂|2
− 〈η, P εξ〉2

|ξ̂|2
η,

where ε(s, t) = N(t)−S(s, t). Since ∃r > 0 such that supt e
rs|Dγε(s, t)| → 0 ∀|γ| ≤ l

as s → +∞, we find C > 0 satisfying |ηs|2 ≤ Ce−rs for s � 1. Consequently, we
estimate using Hölder’s inequality that

|η(τn, ·)− η(τ̂n, ·)|2 ≤
√
|τn − τ̂n|

∫ τn

τ̂n

|ηs(s, ·)|2L2(S1)ds

≤
√
|τn − τ̂n|C

∫ τn

τ̂n

e−2rydy
n−→ 0

for every pair of sequences τ̂n ≤ τn with τ̂n → +∞. This proves lims→+∞ η(s, ·)
exists in L2. By Step 3 we know that |η(s, ·)− ξ(s, ·)|2 → 0 as s → +∞. We proved
lims→+∞ ξ(s, ·) exists in L2. The conclusion follows. �

Since we have C0-convergence of ξ(s, ·) to e, the bounds obtained by Step 2 and
the Arzelà-Ascoli theorem show that

ξ(s, ·) → e in Cl−2(S1,R2k), as s → +∞.

Step 4 follows from an easy induction argument using equations (112) and (113). �

Formula (116) and Step 4 imply Theorem 6.1. �

B.2. Proof of Lemma 6.2.

Proof. This proof can be found in [11], however the statement cannot. Fix 1 < p <
∞ and β ∈ C∞(R, [0, 1]) such that β ≡ 1 on [−1, 1] and β ≡ 0 on R \ [−2, 2]. For
each τ ∈ R, we define βτ (s) := β(s − τ ). Denote Qr(τ ) = [τ − r, τ + r] × S1. We
will prove

(123) lim
τ→+∞

edτ |X|Wk,p(Q1(τ))
= 0 ∀k ≥ 0

by induction on k ≥ 0. The case k = 0 is a direct consequence of (50). Now assume
(123) for k − 1 ≥ 0. There is a semi-Fredholm estimate for the ∂̄0-operator

(124) |f |Wk,p(Z) ≤ ck

(∣∣∂̄0f ∣∣Wk−1,p(Z)
+ |f |Wk−1,p(Z)

)
.

This holds for every smooth f with compact support on Z. Here ∂̄0 = ∂s + J0∂t.
Using (49), we can estimate for τ � 1

(125)

|X|Wk,p(Q1(τ))
≤ |βτX|Wk,p(Q2(τ))

≤ ck

(∣∣∂̄0 (βτX)
∣∣
Wk−1,p(Q2(τ))

+ |βτX|Wk−1,p(Q2(τ))

)
≤ c′k

(
|KX|Wk−1,p(Q2(τ))

+ |X|Wk−1,p(Q2(τ))

)
.
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The constant c′k depends only on ck and on the derivatives of β. By (50) we can
estimate

(126) |KX|Wk−1,p(Q2(τ))
≤ ĉ |X|Wk−1,p(Q2(τ))

.

The constant ĉ ≥ 0 depends on K but is independent of τ . By (125) and (126) we
have an estimate

(127) |X|Wk,p(Q1(τ))
≤ c′′k |X|Wk−1,p(Q2(τ))

for some constant c′′k > 0 independent of τ . The induction hypothesis proves

(128) lim
s→+∞

edτ |X|Wk−1,p(Q2(τ))
= 0.

Equations (127) and (128) complete the induction step. The conclusion now follows
from the Sobolev embedding theorem. �
B.3. Proof of Lemma 6.3.

Proof. The argument can be found in section 4 of [11]. We only include it here
because we are making a more general statement. We proceed in three steps.

Step 1. If
∫ 1

0
X(s, t)dt = 0, ∀s and 0 < d < 1

2 , then ePs‖X(s, ·)‖L2([0,1]) → 0 as
s → +∞ for any 0 < P < d.

Proof of Step 1. We abbreviate |·|2 = ‖ · ‖L2([0,1]) and denote by 〈·, ·〉 the L2 inner

product on L2([0, 1]). Set g(s) := 1
2 |X(s, ·)|22. Then

g′(s) = 〈Xs, X〉 = 〈−J0Xt + h,X〉
and

g′′(s) = 〈−J0Xts, X〉+ 〈−J0Xt, Xs〉+ 〈hs, X〉+ 〈h,Xs〉
= 2 〈−J0Xt, Xs〉+ 〈hs, X〉+ 〈h,Xs〉
= 2 |Xt|22 + 2 〈−J0Xt, h〉+ 〈hs, X〉+ 〈h,−J0Xt + h〉
≥ 2 |Xt|22 − 2 |Xt|2 |h|2 − |hs|2 |X|2 − |h|2 |Xt|2 − |h|22

≥ 2 |Xt|22 − ε
(
|X|22 + |Xt|22

)
− C

ε

(
|h|22 + |hs|22

)
.

Here ε > 0 is arbitrarily small, C > 0 depends only on ε, and they are both
independent of X, h, and s. Our hypotheses imply that |X|2 ∼ |Xt|2. If ε is small
enough, we obtain

g′′(s) ≥ g(s)− ce−2ds

for some c > 0. Choose 0 < ν < 2d, and set L = c
4d2−ν2 . Consider f(s) =

g(s) + Le−2ds. We have a differential inequality f ′′ ≥ ν2f . We used that 4d2 < 1.
Since f(s) → 0 as s → +∞ we must have g(s) ≤ f(s) ≤ f(s0)e

−ν(s−s0). This gives
the desired conclusion since ν/2 ∈ (0, d) can be taken arbitrarily. �
Step 2. If 0 < d < 1

2 , then ePs‖X(s, ·)‖L2([0,1]) → 0 as s → +∞ for every 0 < P < d.

Proof of Step 2. Set α(s) =
∫ 1

0
X(s, τ )dτ and X̄ = X − α. Then

X̄s + J0X̄t = h(s, t)−
∫ 1

0

h(s, τ )dτ =: h̄.

By Step 1 we have
lim

s→+∞
ePs‖X̄(s, ·)‖L2([0,1]) = 0
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for any 0 < P < d. Since

|α′(s)| =
∣∣∣∣
∫ 1

0

hs(s, τ )dτ

∣∣∣∣ ≤ Ke−ds

for some K > 0, we find M∗ > 0 such that |α(s)| ≤ M∗e
−ds. We now estimate

ePs‖X(s, ·)‖L2([0,1]) ≤ ePs
(
‖X̄(s, ·)‖L2([0,1]) + |α(s)|

) s→+∞−→ 0. �

Step 3. If 0 < d < 1
2 , then ePs‖DγX(s, ·)‖L2([0,1]) → 0 as s → +∞ for any γ for

every 0 < P < d.

Proof of Step 3. Fix γ. We have equations

∂sD
γX + J0∂tD

γX = Dγh =: hγ

and supt e
ds
∣∣Dβhγ

∣∣ → 0 as s → +∞, for any β. The conclusion follows from
Step 2. �

Lemma 6.3 follows from Step 3 by the Sobolev embedding theorem, since we can
assume, possibly after making d smaller, that 0 < d < 1

2 . �

Appendix C. Proofs of technical lemmas

C.1. Proofs of Lemma 6.5 and Corollary 6.6. Suppose ebs |z(s, t)| is bounded
for some b > 0. Then we can assume, possibly after making b > 0 smaller, that

(129) lim
s→+∞

sup
t∈S1

ebs |z(s, t)| = 0.

We can find a smooth Sp(1)-valued function L = L(θ, z) defined on a neighborhood
of R/Z× 0 such that LJ = J0L where J is the matrix (54). Recall that z satisfies
(58) where S is given in (59) and J(s, t) = J ◦w(s, t). Denote L(s, t) = L ◦w(s, t).
Then ζ(s, t) := L(s, t)z(s, t) satisfies

ζs + J0ζt + Λζ = 0,

where

Λ(s, t) = (LS − Ls − J0Lt)L
−1.

By Lemma 6.4 we know that |DγΛ(s, t)|, |DγL(s, t)|, and
∣∣DγL−1(s, t)

∣∣ are bounded
∀γ. By (129) we can estimate

(130) lim
s→+∞

sup
t∈S1

ebs |ζ(s, t)| = 0.

Lemma 6.2 implies

lim
s→+∞

sup
t∈S1

eds |Dγζ(s, t)| = 0 ∀γ.

This proves

(131) lim
s→+∞

sup
t∈S1

ebs |Dγz(s, t)| = 0 ∀γ.

Equations (57) can be written as(
as
θs

)
+

(
0 −Tmin

T−1
min 0

)(
at
θt

)
+Bz = 0
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for some smooth matrix B(s, t) satisfying sup |DγB| < ∞ ∀γ. We used f ≡ Tmin

and df ≡ 0 on R/Z× 0. The exponential decay of z and its derivatives prove that
if h := Bz, then

lim
s→+∞

sup
t∈S1

ebs |Dγh(s, t)| = 0 ∀γ.

For simplicity assume Tmin = 1. Then T0 = k. Denoting Δ =

(
a− ks− σ

θ − kt− kd̂

)
, we

have Δs + J0Δt + h = 0. Definition 3.11 implies supt∈S1 |Δ(s, t)| → 0 as s → +∞.
Lemma 6.3 provides r > 0 such that

(132) lim
s→+∞

sup
t∈S1

ers |DγΔ(s, t)| = 0 ∀γ.

Equations (132) and (131) prove (62). Obviously, if ũ has non-degenerate asymp-
totics, then (129) is true. This completes the proof of Lemma 6.5.

We now turn to the proof of Corollary 6.6. For simplicity we assume σ = d̂ = 0.
Define L∞(t) = L(kt, 0). The definition of L(s, t) and Lemma 6.5 together imply

lim
s→+∞

sup
t

ers |Dγ [L(s, t)− L∞(t)]| = 0 ∀γ

for some r > 0. Again Lemma 6.5 and the definition of S(s, t) in (59) imply

lim
s→+∞

sup
t

ers |Dγ [Λ(s, t)− Λ∞(t)]| = 0 ∀γ,

where Λ∞(θ) = [L(kθ, 0)N(θ)− kJ0Lθ(kθ, 0)]L(kθ, 0)
−1. We compute

(−J0∂t − Λ∞)L∞f = −J0(∂tL∞)f − J0L∞ft

− L∞NL−1
∞ L∞f + J0(∂tL∞)L−1

∞ L∞f

= L∞(−J(kt, 0)ft −Nf).

This proves −J0∂t−Λ∞ is just a representation of the asymptotic operator AP in a
different symplectic frame. Moreover, ΛT

∞(θ) = Λ∞(θ) ∀θ since L is Sp(1)-valued.
The asymptotic behavior of Λ and (130) allow us to apply Theorem 6.1 to ζ(s, t).
The conclusion follows immediately from the formula z(s, t) = L−1(s, t)ζ(s, t) and
from the asymptotic behavior of L(s, t).
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