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Abstract. We consider solving three-dimensional electromagnetic problems in parameter regimes
where the quasi-static approximation applies and the permeability, permittivity, and conductivity
may vary significantly. The difficulties encountered include handling solution discontinuities across
interfaces and accelerating convergence of traditional iterative methods for the solution of the linear
systems of algebraic equations that arise when discretizing Maxwell’s equations in the frequency
domain.

The present article extends methods we proposed earlier for constant permeability [E. Haber,
U. Ascher, D. Aruliah, and D. Oldenburg, J. Comput. Phys., 163 (2000), pp. 150–171; D. Aruliah,
U. Ascher, E. Haber, and D. Oldenburg, Math. Models Methods Appl. Sci., to appear.] to handle
also problems in which the permeability is variable and may contain significant jump discontinuities.
In order to address the problem of slow convergence we reformulate Maxwell’s equations in terms
of potentials, applying a Helmholtz decomposition to either the electric field or the magnetic field.
The null space of the curl operators can then be annihilated by adding a stabilizing term, using
a gauge condition, and thus obtaining a strongly elliptic differential operator. A staggered grid
finite volume discretization is subsequently applied to the reformulated PDE system. This scheme
works well for sources of various types, even in the presence of strong material discontinuities in
both conductivity and permeability. The resulting discrete system is amenable to fast convergence
of ILU-preconditioned Krylov methods.

We test our method using several numerical examples and demonstrate its robust efficiency.
We also compare it to the classical Yee method using similar iterative techniques for the resulting
algebraic system, and we show that our method is significantly faster, especially for electric sources.
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1. Introduction. The need for calculating fast, accurate solutions of three-
dimensional electromagnetic equations arises in many important application areas
including, among others, geophysical surveys and medical imaging [34, 40, 3]. Con-
sequently, a lot of effort has recently been invested in finding appropriate numerical
algorithms. However, while it is widely agreed that electromagnetic phenomena are
generally governed by Maxwell’s equations, the choice of numerical techniques to solve
these equations depends on parameter ranges and various other restrictive assump-
tions, and as such is to a significant degree application-dependent [24, 40, 3].

The present article is motivated by remote sensing inverse problems, e.g., in geo-
physics, where one seeks to recover material properties—especially conductivity—in
an isotropic but heterogeneous body, based on measurements of electric and magnetic
fields on or near the earth’s surface. The forward model, on which we concentrate
here, consists of Maxwell’s equations in the frequency domain over a frequency range
which excludes high frequencies. Assuming a time-dependence e−ıωt, these equations
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are written as

∇× E − ıωµH = 0,(1.1a)

∇× H − σ̂E = J
s,(1.1b)

∇ · (εE) − ρ = 0,(1.1c)

∇ · (µH) = 0,(1.1d)

where µ is the magnetic permeability, σ is the conductivity, ε is the electrical permit-
tivity,

σ̂ = σ − ıωε,(1.2)

J
s is a known source current density, and ρ is the (unknown) volume density of free

charges. In our work we assume that the physical properties µ > 0, ε > 0, and σ ≥ 0
can vary with position, and µεω2L2 � 1, where L is a typical length scale (cf. [43]).
The electric field E and the magnetic field H are the unknowns, with the charge
density defined by (1.1c). Note that as long as ω 6= 0, (1.1d) is redundant and can
be viewed as an invariant of the system, obtained by taking the ∇· of (1.1a). The
system (1.1) is defined over a three-dimensional spatial domain Ω. In principle, the
domain Ω is unbounded (i.e., Ω = R

3), but, in practice, a bounded subdomain of
R

3 is used for numerical approximations. In this paper we have used the boundary
conditions (BCs)

H × n

∣∣∣
∂Ω

= 0,(1.3)

although other BCs are possible.
A number of difficulties arises when attempting to find numerical solutions for this

three-dimensional PDE system. These difficulties include handling regions of (almost)
vanishing conductivity, handling different resolutions in different parts of the spatial
domain, handling the multiple scale lengths over which the physical properties can
vary, and handling regions of highly varying conductivity, magnetic permeability, or
electrical permittivity, where jumps in solution properties across interfaces may occur.

On the other hand, the nature of the data (e.g., measurements of the electric
and/or magnetic fields at the surface of the earth) is such that one cannot hope to
recover to a very fine detail the structure of the conductivity σ or the permeability µ.
We therefore envision, in accordance with the inverse problem of interest, a possibly
nonuniform tensor product grid covering the domain Ω, where σ̂ and µ are assumed
to be smooth or even constant inside each grid cell, but they may have significant
jump discontinuities that can occur anywhere in Ω across cell interfaces. The source
J
s is, however, assumed not to have jumps across interfaces. The relative geometric

simplicity resulting from this modeling assumption is key in obtaining highly efficient
solvers for the forward problem.

Denoting quantities on different sides of an interface by subscripts 1 and 2, it can
be easily shown [41] that across an interface

n · (σ̂1E1 − σ̂2E2) = 0,(1.4a)

n × (E1 − E2) = 0,(1.4b)

n · (µ1H1 − µ2H2) = 0,(1.4c)

n × (H1 − H2) = 0.(1.4d)
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These conditions imply that neither E nor H are continuous in the normal direction
when σ̂ and µ have a jump discontinuity across a cell face, and likewise, σ̂E and
µH are not necessarily continuous in tangential directions. Care must therefore be
exercised when numerical methods are employed which utilize these variables if they
are to be defined where they are double-valued.

By far the most popular discretization for Maxwell’s equations is Yee’s method [46]
(see discussions and extensions in [40, 30, 21]). This method employs a staggered grid,
necessitating only short, centered first differences to discretize (1.1a) and (1.1b). In the
more usual application of this method, the electric field components are envisioned on
the cell’s edges and the magnetic field components are on the cell’s faces—see Figure
1. It is further possible to eliminate the components of the magnetic field from the
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Fig. 1. A staggered discretization of E and H in three dimensions: E-components are on the
edges, and H-components are on the faces.

discrete equations, obtaining a staggered discretization for the second order PDE in
E,

∇× (µ−1
∇× E) − ıωσ̂E = ıωJ

s.(1.5)

Related methods include the finite integration technique and certain mixed finite
element methods [44, 6, 29, 16]. Although these methods are often presented in
the context of time-domain Maxwell’s equations, the issues arising when applying an
implicit time-discretization (a suitable technique under our model assumptions) are
somewhat similar to the ones we are faced with here.

The popularity of Yee’s method is due in part to its conservation properties and
other ways in which the discrete system mimics the continuous system [21, 17, 6, 5].
However, iterative methods to solve the discrete system may converge slowly in low
frequencies, due to the presence of the nontrivial null space of the curl operator, and
additional difficulties arise when highly discontinuous coefficients are present [34, 28,
38, 19]. There are two major reasons for these difficulties. First, the conductivity
can essentially vanish (for example, in the air, which forms part of Ω); from an
analytic perspective, the specific subset of Maxwell’s equations used typically forms
an almost-singular system in regions of almost-vanishing σ̂. Even in regions where the
conductivity is not close to vanishing, the resulting differential operator is strongly
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coupled and not strongly elliptic [7, 2]. Second, in cases of large jump discontinuities,

care must be taken to handle H and Ĵ = σ̂E carefully, since these are located, as in
Figure 1, where they are potentially discontinuous.

In [2], we addressed the often slow convergence of iterative methods when used
for the equations resulting from the discretization of (1.5) by applying a Helmholtz
decomposition first, obtaining a potential formulation with a Coulomb gauge condi-
tion. This change of variables (used also in [4, 13, 26, 32], among many others) splits
the electric field into components in the active and the null spaces of the curl oper-
ator. A further reformulation, reminiscent of the pressure-Poisson equation for the
incompressible Navier–Stokes equations [15, 37], yields a system of strongly elliptic,
weakly coupled PDEs for which more standard preconditioned Krylov space methods
are directly applicable.

In [17], we further addressed possible significant jumps in the conductivity while
µ is assumed constant by employing a finite volume discretization on a staggered grid,
akin to Yee’s method with the locations of E- and H-components exchanged, as in
Figure 2. The normal components of E are now double-valued, but this is taken care
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Fig. 2. A staggered discretization of E and H in three dimensions: E-components are on the
faces, and H-components are on the edges.

of in an elegant way by the Helmholtz decomposition of E and by introducing the
(generalized) current

Ĵ = σ̂E = (σ − ıωε)E(1.6)

into the equations. The curl operators in (1.5) are replaced by the vector Laplacian
according to the vector identity

∇× ∇× = −∇2I + grad∇·(1.7)

for sufficiently smooth vector functions (not E).
In this paper we generalize our approach from [2, 17] to the case where the mag-

netic permeability µ may be highly discontinuous as well. This is a realistic case of
interest in geophysical applications, although usually the jump in conductivity domi-
nates the jump in permeability. Now the roles of E and H are essentially dual, and
it is possible to apply a Helmholtz decomposition to either E or H, keeping the other
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unknown vector function intact. We choose to decompose the electric field E, refer-
ring to Figure 2 for the locations of the H-unknowns in the ensuing discretization.
The major departure from our previous work is in the fact that the identity (1.7)
does not directly extend for the operator ∇× (µ−1

∇× ) appearing in (1.5). We can,
however, stabilize this operator by subtracting grad(µ−1∇· ) (see, e.g., [24]), and this
forms the basis for our proposed method. In cases of constant magnetic permeability
or electric conductivity the formulation can be reduced to our previous formulation
in [17] or a variant thereof.

Our approach to dealing with possible discontinuities can be viewed as using
a set of variables which are continuous across cell faces and another set which are
continuous along cell edges. The introduction of such unknowns is strongly connected
to mixed finite elements which are used for highly discontinuous problems [8, 9, 19].

The paper is laid out as follows. In section 2, we reformulate Maxwell’s equations
in a way which enables us to extend our methods. The resulting system is amenable
to discretization using a finite volume technique described in section 3.

The extension and generalization of our approach from [2] through [17] to the
present article is not without a price. This price is an added complication in the spar-
sity structure of the resulting discrete system and a corresponding added cost in the
iterative solution of such systems. We briefly describe the application of Krylov space
methods to solve the system of algebraic equations in section 4. We use BICGSTAB
(see, e.g., [35]) together with one of two preconditioners: an incomplete block LU
decomposition (which is a powerful preconditioner in the case of diagonally dominant
linear systems) and SSOR. The system’s diagonal dominance is a direct consequence
of our analytic formulation.

We present the results of numerical experiments in section 5 and compare re-
sults obtained using our method with those obtained using a more traditional Yee
discretization. If the source is not divergence-free, as is the case for electric (but not
magnetic) sources, then our method is better by more than two orders of magnitude.
The method works well also for a case where the problem coefficients vary rapidly.
We conclude with a short summary and further remarks.

2. Reformulation of Maxwell’s equations. Maxwell’s equations (1.1a) and
(1.1b) can be viewed as flux balance equations, i.e., each term describes the flux
which arises from a different physical consideration, and the equations are driven by
the conservation of fluxes. (In fact, this was how they were originally developed [27].)
Therefore, in both (1.1a) and (1.1b) we have a flux term which should be balanced.

In (1.1b) the generalized current density Ĵ defined in (1.6) is balanced with the source
and the flux which arise from magnetic fields, and in (1.1a) the magnetic flux

B = µH(2.1)

is balanced with the flux which arises from electric fields. In our context these fluxes
are well defined on cell faces, but they may be multivalued at cell edges.1

Furthermore, the leading differential operator in (1.5), say, has a nontrivial null
space. Rather than devising iterative methods which directly take this into account
(as, e.g., in [3, 19, 39, 33]), we transform the equations before discretization.

We decompose E into its components in the active space and in the null space of

1Under appropriate conditions, B, Ĵ ∈ H(div; Ω), whereas E,H ∈ H(curl; Ω); see, e.g., [14].
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the curl operator:

E = A + gradφ,(2.2a)

∇ · A = 0.(2.2b)

We could decompose H instead in a similar way, but we would not decompose both.
Here we have chosen to concentrate on the decomposition of E. Substituting (2.2)
into Maxwell’s equations, we obtain

∇× A − ıωµH = 0,(2.3a)

∇× H − σ̂(A + gradφ) = J
s,(2.3b)

∇ · A = 0.(2.3c)

Furthermore, (1.5) becomes

∇× (µ−1
∇× A) − ıωσ̂(A + gradφ) = ıωJ

s,(2.4a)

∇ · A = 0.(2.4b)

Note that across an interface between distinct conducting media we have, in
addition to (1.4),

n × (A1 − A2) = 0,(2.5a)

n · (A1 − A2) = 0,(2.5b)

n · (ε1 gradφ1 − ε2 gradφ2) = ρs,(2.5c)

n · (Ĵ1 − Ĵ2) = 0,(2.5d)

where ρs in (2.5c) is an electric surface charge density. These conditions and the

differential equations (1.1) imply that while Ĵ ·n is continuous, E ·n is not. Moreover,
gradφ inherits the discontinuity of E ·n, while A is continuous, and both ∇ · A and
∇× A are bounded (cf. [14]).

In [17] we had the relation ∇ × ∇ × A = −∇2A holding. However, when µ
varies, the identity (1.7) does not extend directly, and we must deal with the null
space of ∇× A in a different way.

Let us define the Sobolev spaces

W (Ω) = {v ∈ [L2(Ω)]3; ∇× v ∈ [L2(Ω)]3,∇ · v ∈ L2(Ω)}(2.6a)

equipped with the usual norm (see, e.g., [14])

‖v‖W (Ω) = {‖v‖2 + ‖∇× v‖2 + ‖∇ · v‖2}1/2(2.6b)

(the L2(Ω)- and [L2(Ω)]3- norms are used on the right-hand side of (2.6b)), and

W 0(Ω) =
{

v ∈ W (Ω); ∇ · v

∣∣∣
∂Ω

= 0, ∇× v × n

∣∣∣
∂Ω

= 0
}
.(2.6c)

Green’s formula yields, for any u ∈ W (Ω), v ∈ W 0(Ω),

(∇× (µ−1
∇× u),v) − (grad(µ−1∇ · u),v)

= µ−1[(∇× u,∇× v) + (∇ · u,∇ · v)]
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(see, e.g., [24]), where the usual notation for inner product in L2(Ω) and [L2(Ω)]3 is
used. Thus, for any u ∈ W 0(Ω), if u 6= 0, then

(∇× (µ−1
∇× u),u) − (grad(µ−1∇ · u),u) > 0.

We may therefore stabilize (2.4a) by subtracting a term which by (2.4b) vanishes:

∇× (µ−1
∇× A) − grad(µ−1∇ · A) − ıωσ̂(A + gradφ) = ıωJ

s,(2.7)

obtaining a strongly elliptic operator for A, provided A ∈ W 0(Ω). The latter condi-
tion is guaranteed by the choice (2.10b) together with (2.10a), as elaborated below.

A similar stabilization (or penalty) approach was studied with mixed success in
[11, 24]. However, our experience and thus our recommendation are more positive
because of the discretization we utilize. We elaborate further upon this point in the
next section.

Using (2.3c), we can write (2.3b) as

∇× H − gradψ − Ĵ = J
s,(2.8a)

ψ − µ−1∇ · A = 0.(2.8b)

This may be advantageous in the case of discontinuous µ, similarly to the mixed
formulation used for the simple div-grad system

∇ · (σ gradφ) = q

in [8, 31, 9, 12] and elsewhere.
Our final step in the reformulation is to replace, as in [17], the gauge condition

(2.3c) on A by an indirect one, obtained upon taking ∇· of (2.8a) and simplifying
using (2.8b) and (2.3c). This achieves only a weak coupling in the resulting PDE
system. We note that the replacing of the gauge condition (2.3c) is similar to the
pressure-Poisson equation in computational fluid dynamics [37, 15]. The complete
system, to be discretized in the next section, can now be written as

∇× H − gradψ − Ĵ = J
s,(2.9a)

ıωµH −∇× A = 0,(2.9b)

µψ −∇ · A = 0,(2.9c)

−∇ · Ĵ = ∇ · J
s,(2.9d)

Ĵ − σ̂(A + gradφ) = 0.(2.9e)

In order to complete the specification of this system, we must add appropriate
BCs. First, we note that the original BC (1.3) can be written as

(∇× A) × n

∣∣∣
∂Ω

= 0.(2.10a)

An additional BC on the normal components of A is required for the Helmholtz
decomposition (2.2) to be unique. Here we choose (corresponding to (2.6c))

A · n
∣∣∣
∂Ω

= 0.(2.10b)

This, together with (2.2), determines A for a given E.
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Moreover, since (2.9d) was obtained by taking the ∇· of (2.9a), additional BCs
are required on either ∂φ/∂n or φ. For this we note that the original BC (1.3) together
with the PDE (1.1b) imply also

Ĵ · n
∣∣∣
∂Ω

= −J
s · n

∣∣∣
∂Ω
.(2.10c)

The latter relation (2.10c), together with (2.10b), implies ∂φ
∂n = 0 at the boundary.2,3

The above conditions determine φ up to a constant. We pin this constant down
arbitrarily, e.g., by requiring

∫

Ω

φ dV = 0.(2.10d)

Finally, we note that (2.10c), together with (2.9a) and (1.3), imply, in turn, that
∂ψ
∂n = 0 at the boundary. Since (2.9a) and (2.9d) imply that

∇2ψ = 0,

we obtain ψ ≡ 0, and thus we retrieve (2.3c) by pinning ψ down to 0 at one additional
point. From this and (2.10a) it then follows that A ∈ W 0(Ω) (see (2.6c)).

The system (2.9) subject to the BCs (2.10) and ψ pinned at one point is now
well-posed.

3. Deriving a discretization. As in [17], we employ a finite volume technique

on a staggered grid, where Ĵ and A are located at the cell’s faces, H is at the cell’s
edges, and φ and ψ are located at the cell’s center. Correspondingly, the discretizations
of (2.9d) and (2.9c) are centered at cell centers, those of (2.9e) and (2.9a) are centered
at cell faces, and that of (2.9b) is centered at cell edges. The variables distribution
over the grid cell is summarized in Table 1.

Table 1

Summary of the discrete grid functions. Each scalar field is approximated by the grid functions
at points slightly staggered in each cell ei,j,k of the grid.

Axi+ 1
2
,j,k ≈ Ax(xi+ 1

2
, yj, zk) Ĵx

i+ 1
2
,j,k

≈ Ĵx(xi+ 1
2
, yj, zk)

Ayi,j+ 1
2
,k ≈ Ay(xi, yj+ 1

2
, zk) Ĵy

i,j+ 1
2
,k

≈ Ĵy(xi, yj+ 1
2
, zk)

Azi,j,k+ 1
2
≈ Az(xi, yj, zk+ 1

2
) Ĵz

i,j,k+ 1
2

≈ Ĵz(xi, yj, zk+ 1
2
)

Hx
i,j+ 1

2
,k+ 1

2

≈ Hx(xi, yj+ 1
2
, zk+ 1

2
)

Hy

i+ 1
2
,j,k+ 1

2

≈ Hy(xi+ 1
2
, yj, zk+ 1

2
)

Hz
i+ 1

2
,j+ 1

2
,k

≈ Hz(xi+ 1
2
, yj+ 1

2
, zk)

ψi,j,k ≈ ψ(xi, yj, zk)
φi,j,k ≈ φ(xi, yj, zk)

To approximate ∇ · u for u = (ux, uy, uz)T over a grid cell ei,j,k, we integrate at
first over the cell using the Gauss divergence theorem

1

|ei,j,k|

∫

ei,j,k

∇ · u dV =
1

|ei,j,k|

∫

∂ei,j,k

u · n dS,

2In cases where the original BC is different from (1.3) we still use the BC ∂φ/∂n = 0 as an
asymptotic value for an infinite domain. Alternatively, note the possibility of applying the Helmholtz
decomposition to H, although generally there are good practical reasons to prefer the decomposition
(2.2) of E (for one, because the jumps in σ are typically much larger than in µ—see section 5).

3In our geophysical applications, J
s
· n vanishes at the boundary.
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and then we use midpoint quadrature on each face to evaluate each component of the
surface integrals appearing on the right-hand side above. Thus, define

∇i,j,k · u =
ux
i+ 1

2
,j,k

− ux
i− 1

2
,j,k

hx
i

+
uy
i,j+ 1

2
,k
− uy

i,j− 1
2
,k

hyj
+
uz
i,j,k+ 1

2

− uz
i,j,k− 1

2

hz
k

(3.1)

and express the discretization of (2.9d) and (2.9c) on each grid cell as

∇i,j,k · Ĵ + ∇i,j,k · J
s = 0,(3.2a)

ψi,j,k = µ−1
i,j,k∇i,j,k · A,(3.2b)

where µi,j,k = µ(xi, yj , zk). Note that we are not assuming a uniform grid: each cell
may have different widths in each direction. The BCs (2.10) are used at the end
points of (3.2).

Next, consider the discretization at cell faces. Following [17], we define the har-

monic average of σ̂ between neighboring cells in the x-direction by

σ̂i+ 1
2
,j,k = hx

i+ 1
2

(∫ xi+1

xi

σ̂−1(x, y, z)dx

)−1

,(3.3a)

where hx
i+ 1

2

= xi+1 − xi = (hx
i+1

+ hx
i
)/2. If σ̂ is assumed constant over each cell, this

integral evaluates to

σ̂i+ 1
2
,j,k = hx

i+ 1
2

(
hx

i

2σ̂i,j,k
+

hx
i+1

2σ̂i+1,j,k

)−1

.(3.3b)

Then, the resulting approximation for the x-component of (2.9e) is (see [17])

Ĵxi+ 1
2
,j,k = σ̂i+ 1

2
,j,k

(
Axi+ 1

2
,j,k +

φi+1,j,k − φi,j,k
hx

i+ 1
2

)
.(3.3c)

Next, we discretize (2.9a) as in [46]. Writing the x-component of these equations,

(∂zH
y − ∂yH

z) − ∂xψ − Ĵx = sx,

where we denote J
s = (sx, sy, sz)T , a discretization centered at the center of the cell’s

x-face results in

Hy

i+ 1
2
,j,k+ 1

2

−Hy

i+ 1
2
,j,k− 1

2

hz
k

−
Hz
i+ 1

2
,j+ 1

2
,k
−Hz

i+ 1
2
,j− 1

2
,k

hyj

−
ψi+1,j,k − ψi,j,k

hx
i+ 1

2

− Ĵxi− 1
2
,j,k = sxi+ 1

2
,j,k.(3.4)

Similar expressions to those in (3.3c) and (3.4) can be derived in the y- and z-

directions. The BCs (1.3) are used to close (3.4). Using (3.3c), we can eliminate Ĵ

from (3.2a) and obtain a discrete equation in which the dominant terms all involve φ.
The resulting stencil for φ has seven points. We also apply the obvious quadrature
for the single condition (2.10d).

Finally, we discretize the edge-centered (2.9b). Consider, say, the x-component
of (2.9b), written as

∂zA
y − ∂yA

z = ıωµHx.
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Integrating this equation over the surface of a rectangle with corners

(xi, yj, zk), (xi, yj+1, zk), (xi, yj+1, zk+1), (xi, yj, zk+1),

the expression on the left-hand side is integrated using the Gauss curl theorem, and
µ on the right-hand side is averaged over the rectangular area to obtain a value on
the edge. We do not divide through by µ before this integration because we wish to
integrate the magnetic flux, which is potentially less smooth around an edge than the
magnetic field. This yields

µi,j+ 1
2
,k+ 1

2
= [hy

j+ 1
2

hz
k+ 1

2
]−1

(∫ yj+1

yj

∫ zk+1

zk

µ(xi, y, z)dydz

)
.(3.5a)

If µ is assumed to be constant over each cell, this integral evaluates to

(3.5b)

µi,j+ 1
2
,k+ 1

2

= [hy
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2

hz
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2
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(
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y
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z
k

+ µi,j+1,k+1h
y
j+1h

z
k+1

+ µi,j,k+1h
y
j h
z
k+1

4

)
.

Then, the resulting approximation for the x-component of (2.9b) is

Hx
i,j+ 1

2
,k+ 1

2

= (ıωµi,j+ 1
2
,k+ 1

2
)−1

(
Ay
i,j+ 1

2
,k+1

−Ay
i,j+ 1

2
,k

hz
k+ 1

2

(3.5c)

−
Az
i,j+1,k+ 1

2

−Az
i,j,k+ 1

2

hy
j+ 1

2

)
.

Using (3.2b) as well as (3.5c) and similar expressions derived in the y- and z-directions,
we substitute for H and ψ in (3.4) and obtain a discrete system of equations for
A. The resulting stencil for A has 19 points and the same structure as for the
discretization of the operator

∇× (µ−1
∇× ) − grad(µ−1∇· ) .

The difference between this discretization and a direct discretization of the latter is
that µ at the interface is naturally defined as an arithmetic average and not a harmonic
average.

The discretization described above can be viewed as a careful extension of Yee’s
method, suitable for discontinuous coefficients and amenable to fast iterative solution
methods. It is centered, conservative, and second order accurate. Note that through-
out we have used a consistent, compact discretization of the operators ∇· , ∇× , and
grad. We can denote the corresponding discrete operators by ∇h· , ∇h× , and gradh
and immediately obtain the following identities (cf. [38, 23, 22, 20]):

(∇h× ) gradh = 0,(3.6a)

(∇h· )(∇h× ) = 0,(3.6b)

gradh(∇h· ) − (∇h× )(∇h× ) = (∇h· ) gradh .(3.6c)



SIMULATION OF 3D ELECTROMAGNETIC PROBLEMS 1953

These are, of course, analogues of vector calculus identities which hold for sufficiently
differentiable vector functions. The BCs (2.10) are discretized using these discrete
operators as well.

Next, note that upon applying ∇h· to (3.4) and using (3.6b) and (3.2a), we obtain

∇h · gradh ψ = 0.

Moreover, from (3.4) and (2.10c), the discrete normal derivative of ψ vanishes at the
boundaries as well. Setting ψ to 0 arbitrarily at one point,

ψ1,1,1 = 0

then determines that ψ ≡ 0 throughout the domain (as a grid function). We obtain
another conservation property of our scheme, namely, a discrete divergence-free A:

∇h · A = 0.(3.7)

Recall the stabilizing term added in (2.7). For the exact solution this term obvi-
ously vanishes. Now, (3.7) assures us that the corresponding discretized term vanishes
as well (justifying use of the term “stabilization,” rather than “penalty”). This is not
the case for the nodal finite element method which was considered in [24, 11]. For an
approximate solution that does not satisfy (3.7), the stabilization term may grow in
size when µ varies over a few orders of magnitude, or else ∇h · A grows undesirably
in an attempt to keep µ−1∇h · A approximately constant across an interface [24].

The particular way we average across discontinuities, namely, arithmetic averag-
ing of µ at cell edges and harmonic averaging of σ̂ at cell faces, can be important. The
averaging can be viewed as a careful approximation of the constitutive relationship
for discontinuous coefficients (see, e.g., [36, 38, 1] and many others). To show that,
we look first at the relation

Ĵx = σ̂Ex

across a face whose normal direction is x. This flux flows in series, and therefore
an approximate σ̂ that represents the bulk property of the flow through the volume
is given by the harmonic average (corresponding to an arithmetic average of the
resistivities). Next, we look at the relation

Bx = µHx,

where µ is an edge variable and Bx is the flux through four cells which share that
edge. Here the flow is in parallel, which implies that we need to approximate µ on
the edge by an arithmetic average.

Note also that if we use the more common implementation of Yee’s method (i.e.,
H on the cell’s faces and E on the cell’s edges), then the roles of σ̂ and µ interchange
and we need to average µ harmonically and σ̂ arithmetically (see also [1]).

4. Solution of the discrete system. After the elimination of H, ψ, and Ĵ

from the discrete equations, we obtain a large, sparse system for the grid functions
corresponding to A and φ:

K u =

(
H1 − ıωS ıωSDT

−DS H2

)(
A

φ

)
=

(
bA
bφ

)
= b.(4.1)



1954 E. HABER AND U. M. ASCHER

Here

H1 = CTMC +DTMcD

is the result of the discretization of the operator ∇ × µ−1
∇ × − gradµ−1∇· , C

corresponds to the discretization of the operator ∇× , D likewise corresponds to the
discretization of the operator ∇· , the diagonal matrix S results from the discretization
of the operator σ̂(·), M and Mc similarly arise from the operator µ−1(·) at cell edges
and at cell centers, respectively, and H2 = DSDT represents the discretization of
∇ · (σ̂ grad(·)). In regions of constant µ the matrix H1 simplifies into a discretization
of the vector Laplacian. The blocks are weakly coupled through interfaces in µ.
A typical sparsity structure of H1 for variable µ, as contrasted with constant µ, is
displayed in Figure 3. The structure of the obtained system is similar to that in [17],

Fig. 3. Sparsity structure of the matrix H1 corresponding to variable µ (right) and to constant
µ (left).

although the main block diagonal is somewhat less pleasant.
Note that as long as the frequency is low enough that the diffusion number satisfies

d = ωµσh� 1

(where h is the maximum grid spacing), the matrix is dominated by the diagonal
blocks. This allows us to develop a block preconditioner good for low frequencies ω
based on the truncated ILU (ILU(t)) decomposition of the major blocks [35]. Thus,
we approximate K by the block diagonal matrix

K̂ =

(
H1 0
0 H2

)
(4.2)

and then use ILU(t) to obtain a sparse approximate decomposition of the matrix
K̂. This decomposition is used as a preconditioner for the Krylov solver. Note that,
although K is complex, the approximation K̂ is real, and therefore we need to apply
the ILU decomposition only to two real matrices, which saves memory.

The block approximation (4.2) makes sense for our discretization but not for the
direct staggered grid discretization of (1.1). Thus, the reformulation and subsequent
discretization of Maxwell’s equations allow us to easily obtain a good block precondi-
tioner in a modular manner, while the discretization of (1.1) does not.

5. Numerical examples. In this section we present numerical results using
our method with standard Krylov-type methods and preconditioners for solving the
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resulting discrete systems. We vary the type of source used, the size of jumps in the
coefficients σ and µ, the preconditioner, and the grid size.

We have verified second order convergence of the method and compared our results
to those from another code in [17, 18]. Here our goal is to demonstrate the efficacy
of our proposed method for variable µ.

In the tables below, “iterations” denotes the number of BICGSTAB iterations
needed for achieving a relative accuracy of 10−7, “operations” denotes the number of
giga-flops required, the SSOR parameter (when used) equals 1, and the ILU threshold
(when used) equals 10−2. The latter threshold is such that in our current Matlab

implementation iterations involving these two preconditioners cost roughly the same.

5.1. Example set 1. We derive the following set of experiments. Let the air’s
permeability be µ0 = 4π · 10−7 H/m and its permittivity be ε0 = 8.85 · 10−12 F/m.
We assume a cube of constant conductivity σc and permeability µc embedded in
an otherwise homogeneous earth with conductivity σe = 10−3 S/m and permeability
µe = µ0; see Figure 4. In a typical geophysical application, the conductivity may range
over four orders of magnitude and more, whereas the permeability rarely changes over
more than one order of magnitude. Therefore, we experiment with conductivity σc
ranging from 10−2 S/m to 103 S/m and permeability µc ranging from µ0 to 1000µ0.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 4. The setting of our first numerical experiment. A cube of conductivity σc and perme-
ability µc is embedded inside a homogeneous earth with conductivity σe and permeability µe. Also,
in the air σ̂ = −ıωε0 and µ = µ0.

We experiment with two different sources: (i) a magnetic source (a plane wave),
and (ii) an electric dipole source in the x direction centered at (0, 0, 0). The fact
that the first source is magnetic implies that it is divergence-free. This source lies
entirely in the active space of the curl operator. In contrast, the electric source is not
divergence-free.

Both sources are assumed to oscillate with different frequencies ranging from 1
to 106 Hz. The solution is obtained, unless otherwise noted, on a nonuniform tensor
grid (see Figure 4) consisting of 323 cells. There are 95232 (complex) E unknowns
corresponding to this grid and 128000 (complex) A, φ unknowns. We then solve the
system using the method described in the previous section.
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5.1.1. Example 1a. In order to be able to compare the resulting linear algebra
solver with that corresponding to Yee’s method, we discretize the system

∇× [µ−1
∇× (Ĵ/σ̂)] − ıωĴ = ıωJ

s(5.1)

using the staggered grid depicted in Figure 2, i.e., where Ĵ is on the cell’s faces, which
is similar to the discretization in [28]. This yields the discrete system

(CTMC − ıωS)e = b̂

for the unknown vector e corresponding to grid values of Ĵ/σ̂, where the matrices

C,M , and S are defined in section 4 and b̂ depends on the source. In order to solve
this system as well as ours, we use BICGSTAB and an SSOR preconditioner. The
comparison between the methods for the case σc = 103σe, µc = 100µ0, and different
frequencies is summarized in Table 2.

Table 2

Iteration counts and computational effort for our method (A, φ) and the traditional implemen-

tation of Yee’s method (applied to E, or Ĵ) for example set 1 using both an electric source and a
magnetic source.

Electric source Magnetic source
ω Iterations Operations Iterations Operations

A, φ E A, φ E A, φ E A, φ E

100 46 9856 3.8 640 77 86 5.0 5.6
102 66 10323 4.3 670 82 91 5.3 5.9
104 77 10878 5.0 706 89 103 5.8 6.7
106 97 11212 6.3 728 99 113 6.4 7.3

Table 2 shows that our method converges in a moderate number of iterations
for both sources, despite the presence of significant jumps in µ and σ. On the other
hand, the more traditional discretization performs poorly for the electric source and
comparably to our method for the magnetic source. Slow convergence of the direct
staggered discretization of Maxwell’s equations in the case of an electric source will
happen also when E is defined on the grid’s edges.

These results clearly show an advantage of our formulation over the original Yee
formulation, even for a simple preconditioning, especially for electric sources and in
low frequencies. In such circumstances, the discretized first term on the left-hand
side of (5.1) strongly dominates the other term, and the residual in the course of the
BICGSTAB iteration has a nontrivial component in the null space of that operator;
hence its reduction is very slow. The magnetic source, on the other hand, yields a
special situation where, so long as the discrete divergence and the roundoff error are
relatively small, the residual component in the null space of the leading term operator
is also small; hence the number of iterations using the traditional method is not much
larger than when using our method.

5.1.2. Example 1b. Next, we test the effect of discontinuities on our method.
We use the electric source and record the number of BICGSTAB iterations needed
for our method to converge for various values of µ̃ = µc/µe and σ̃ = σc/σe, when
using block ILU(t) preconditioning as described in the previous section. The results
are summarized in Table 3.

Note that large jump discontinuities in σ do not significantly affect the rate of
convergence of the iterative linear system solver for our method, but large jump dis-
continuities in µ have a decisive effect. Results in a similar spirit were reported in [19]
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Table 3

Iteration counts for different frequencies, conductivities, and permeabilities in example set 1.
The conductivity/permeability structure is a cube in a half-space.

σ̃
ω µ̃ 101 102 103 104 105 106

0 101 35 36 36 31 27 28
102 67 55 54 52 47 51
103 143 143 140 142 140 148

1 101 41 40 35 34 35 32
102 63 51 50 53 63 51
103 165 158 169 160 161 165

10 101 42 39 39 39 35 36
102 75 59 60 61 61 60
103 201 166 182 178 185 187

102 101 46 43 44 40 47 39
102 71 64 66 64 63 63
103 201 190 199 184 220 177

103 101 44 44 39 38 38 41
102 75 69 59 61 67 69
103 219 224 202 240 216 204

104 101 47 44 41 44 44 44
102 85 72 80 80 65 68
103 238 246 201 259 293 252

105 101 57 50 44 44 47 48
102 91 79 78 82 75 81
103 321 232 245 244 261 242

106 101 62 56 50 52 57 53
102 105 95 89 89 91 80
103 365 290 301 270 286 287

regarding the effect of discontinuities in µ on a specialized multigrid method for an
edge-element discretization. However, even for large discontinuities in µ the number
of iterations reported in Table 3 remains relatively small compared with similar ex-
periments reported in [34] (for constant µ) and [10]. We attribute the increase in the
number of iterations as the jump in µ increases in size to a corresponding degradation
in the condition number of K in (4.1). This degradation, however, does not depend
strongly on grid size, as we verify next.

5.1.3. Example 1c. In the next experiment, we use the cube model with the
electric source to evaluate the influence of the grid on the number of iterations. We
fix ω = 102 and test our method on a case with a modest coefficient jump µ̃ = 10 and
on a case with a large jump µ̃ = 103. A set of uniform grids in the interval [−1, 1]3 is
considered. For each grid we record the resulting number of iterations using both the
SSOR and the block ILU preconditioners. The results of this experiment are gathered
in Table 4.

Table 4

Iteration counts for different grids, for two sets of problem coefficients and using two precon-
ditioners.

µ̃ = σ̃ = 10 µ̃ = σ̃ = 1000
Grid size ILU SSOR ILU SSOR

83 6 20 58 268
163 10 32 108 453
323 23 52 213 789
643 31 76 396 1302
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We observe that the number of iterations increases as the number of unknowns
increases. The increase appears to be roughly proportional to the number of unknowns
to the power 1/3. The growth in number of iterations as a function of grid size is
also roughly similar for both preconditioners, although the block ILU requires fewer
iterations (about 1/4 for µ̃ = 1000) for each grid. However, ILU requires more memory
than SSOR, which may prohibit its use for very large problems. The increase rate
is also similar, as expected, for both values of µ̃. The rate of increase in number of
iterations as µ̃ increases appears essentially independent of the grid size. Practically,
however, this increase is substantial and may be hard to cope with for (perhaps
unrealistically) large values of µ̃ using the present techniques.

5.2. Example 2. In our next experiment we consider a more complicated earth
structure. We employ a random model, which is used by practitioners in order to
simulate stochastic earth models [25]. Two distinct value sets (σ1, µ1), (σ2, µ2) and a
probability P are assumed for the conductivities and permeabilities: for each cell, the
probability of having values σ1, µ1 is P , and the probability of having values σ2, µ2

is 1− P . This can be a particularly difficult model to work with, as the conductivity
and permeability may jump anywhere from one cell to the next, not necessarily just
across a well-defined manifold. A cross-section of such a model is plotted in Figure 5.
We then carry out experiments as before for frequencies ranging from 0 to 106 Hz.
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Fig. 5. The setting of example set 2.

We use the random model with different conductivities, permeabilities, and fre-
quencies and the electric source, with P = 0.5 on the domain [−1, 1]3 (in km). We
employ a uniform grid of size 443 and use both the block ILU and the SSOR precon-
ditioners. The results of this experiment in terms of iteration counts are summarized
in Table 5. The results show that our solution method is effective even for highly
varying conductivity. As before, the method deteriorates when very large variations
in µ are present.

We can also see from Table 5 that the block ILU preconditioner works very well
for low frequencies, but it is not very effective for high frequencies. It is easy to check
that in all cases where the block ILU preconditioner fails to achieve convergence
(denoted “nc,” meaning failure to achieve a residual of 10−7 in 800 iterations) the
maximum grid spacing h satisfies ωµσ h � 1. In such a case the discretization of
the leading terms of the differential operator no longer yields the dominant blocks in
the matrix equations (4.1), and therefore our block ILU preconditioner fails. Thus,
for high frequency and high conductivity we require more grid points in order for this
preconditioner to be effective. This is also consistent with the physics, as the skin
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Table 5

Iteration counts for different frequencies, conductivities, and permeabilities for example set 2.

σ2/σ1

102 104 106

ω µ2/µ1 ILU SSOR ILU SSOR ILU SSOR

0 101 12 35 13 32 13 48
102 27 85 29 69 31 83
103 143 215 142 272 148 229

1 101 14 34 13 35 15 47
102 28 80 34 81 26 81
103 158 270 160 306 165 269

10 101 18 47 17 39 16 44
102 33 90 34 94 35 105
103 201 329 182 303 185 354

102 101 17 47 19 45 19 59
102 37 104 35 101 34 119
103 190 393 184 380 177 365

103 101 21 44 22 45 25 60
102 42 141 47 113 57 136
103 224 434 240 453 204 434

104 101 24 46 23 51 46 65
102 60 140 41 149 nc 151
103 246 503 259 508 252 487

105 101 25 58 27 54 nc 76
102 66 151 72 149 nc 157
103 232 581 244 588 242 591

106 101 26 62 55 62 nc 77
102 56 180 nc 170 nc 157
103 290 641 270 643 241 655

depth [45] decreases and the attenuated wave can be simulated with fidelity only on
a finer grid.

6. Summary and further remarks. In this paper we have developed a fast
finite volume algorithm for the solution of Maxwell’s equations with discontinuous
conductivity and permeability. The major components of our approach are as follows.

• Reformulation of Maxwell’s equations. The Helmholtz decomposition is ap-
plied to E; then a stabilizing term is added, resulting in a strongly elliptic
system; the system is written in first order form to allow flexibility in the
ensuing discretization; and finally, the divergence-free Coulomb gauge condi-
tion is eliminated using differentiation and substitution, which yields a weakly
coupled PDE system enabling an efficient preconditioner for the large, sparse
algebraic system which results from the discretization.

• Discretization using staggered grids, respecting continuity conditions, and
carefully averaging material properties across discontinuities. For this dis-
cretization, the stabilizing term vanishes at the exact solution of the discrete
equations, which is important for cases with large contrasts in µ.

• Solution of the resulting linear system using fast preconditioned Krylov meth-
ods.

The resulting algorithm was tested on a variety of problems. We have shown dra-
matic improvement over the more standard algorithm when the source is electric.
Good performance was obtained even when the coefficients µ and σ were allowed to
vary rapidly on the grid scale—a case which should prove challenging for multigrid
methods.
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The project that has motivated us is electromagnetic inverse problems in geophys-
ical prospecting [42]. Solving the forward problem, i.e., Maxwell’s equations as in the
present article, is a major bottleneck for the data inversion methods—indeed, it may
have to be carried out dozens, if not hundreds, of times for each data inversion. Thus,
extremely fast solvers of the problem discussed in our paper are needed. Based on the
algorithm described here an implementation has been carried out which solves real-
istic instances of this forward problem in less than two minutes on a single-processor
PC, enabling derivation of realistic algorithms at low cost for the inverse problem.

Acknowledgments. We wish to thank Drs. Doug Oldenburg and Dave Moulton
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two sections of our exposition.
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