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Abstract The floating random walk (FRW) algorithm has 
several advantages for extracting 3D interconnect capacitance. 
However, for multi-layer dielectrics in VLSI technology, the 
efficiency of FRW algorithm would be degraded due to frequent 
stop of walks at dielectric interface and constraint of first-hop
length especially in thin dielectrics. In this paper, we tackle 
these problems with the numerical characterization of Green s
function for cross-interface transition probabilities and the 
corresponding weight value. We also present a space 
management technique with Octree data structure to reduce the
time of each hop and parallelize the whole FRW by 
multi-threaded programming. Numerical results show large 
speedup brought by the proposed techniques for structures
under the VLSI technology with thin dielectric layers.1

I. Introduction
As the feature size of IC technology decreases and the 

number of transistors increases, interconnect capacitance has 
a growing impact on circuit performance. Therefore, 
effective algorithms to extract the capacitances of 
interconnect conductors are crucial in the design of high 
performance integrated circuits. Traditional deterministic 
algorithms, such as the boundary element method with fast 
multi-pole acceleration [1] or quasi-multiple medium 
acceleration [13, 14], are fast and accurate, but not scalable
to large structure due to the large demand of computational
time or the bottleneck of memory usage.

A 2-D floating random walk (FRW) algorithm, which is 
discretization-free, was proposed to extract the interconnect 
capacitance [2]. The FRW algorithm is based on the Monte 
Carlo method for integral calculation, and converts the 
procedure of capacitance extraction to the random walks in 
dielectric space. It does not rely on assembling any linear 
systems of equation, and has a variety of computational 
advantages. Compared with the deterministic methods [1], 
the advantages include lower memory usage, more 
scalability for large structures, tunable accuracy, and better 
parallelism. The FRW algorithm has evolved to the
commercial capacitance solver (such as QuickCap of Magma
Inc.) for the design and analysis of VLSI circuits [3, 4], and 
has also some recent advances on the variance reduction 
technique [7] or for variation-aware capacitance extraction 
[5]. However, there is little literature which reveals the 
algorithm details of the 3-D FRW for multi-dielectric 
capacitance extraction. 

The FRW algorithm is able to handle the multi-dielectric 
structure by introduction of sphere transition domain. For 
actual VLSI interconnects embedded in five to ten layers of 
dielectrics, this strategy will largely sacrifice the efficiency 
because the walk stops frequently at the dielectric interface.
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Another approach is to numerically generate the Green s
function for the transition domain across dielectric interface. 
This was first seen in [6] for a Dirichlet problem (not 
capacitance extraction), where a FRW algorithm was used to 
generate the Green s function for sphere transition domain. It 
should be pointed out that the FRW slowly converges for 
generating the Green s function [6], and the sphere transition 
domain does not suit to the Manhattan shape of VLSI 
interconnects. This similar idea of generating Green s
function was employed by the FRW-based capacitance 
extractor CAPEM [8]. However, the technical details of
CAPEM are not published yet.

In this paper, the techniques based on finite difference 
method (FDM) are proposed to characterize the 
multi-dielectric Green s function and weight value for cubic 
transition domain. The pre-characterization procedure is 
compared with CAPEM, and exhibits speedup to the latter.
Utilizing the multi-dielectric Green s function and weight 
value, the FRW is accelerated by several tens of times, with a 
little of memory overhead. To improve the FRW for structure 
with many conductors, a space management technique is 
proposed, which largely reduces the time of enquiring 
nearest conductors for each hop. Finally, the FRW algorithm 
is parallelized. The numerical results are carried out for 
45nm-technology multi-dielectric structures, and the results 
including comparison with FastCap [1] and CAPEM [8] 
validate the accuracy and efficiency of proposed techniques. 
And, the experiments on a multi-core machine show that the 
paralleled FRW achieves more than 90% efficiency of 
parallelization.

II. Background

In the FRW algorithm, the fundamental formula is:
,          (1)

where is the electric potential on point , is a 
closed surface surrounding . is called the 
Green s function. If is the surface of a homogeneous cube 
or sphere centered at , only depends on the 
relative position of with respect to , and can be 
regarded as the probability density function (PDF) for 
selecting a random point on . In this sense, can be 
estimated by , if sufficiently large number of 
random samples are evaluated. In [2, 3], the Green s function 
for the cubic surface is derived analytically. And, the 
corresponding discrete probabilities for small pieces of cube 
surface are pre-computed, which forms the basis for an 
efficient FRW algorithm.

For the multi-conductor system within a single dielectric, 
(1) can be converted to a nested integral formula:
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,     (2)
where is the ith cubic surface with 
center at . are the Green s
functions relating the potentials at and . Once the 
potentials (voltages) on conductors are known, according to 
(2), the potential at can be calculated with the following
floating random walk procedure. Firstly, a maximum 
homogeneous cube centered at is constructed, and a point 

is randomly selected on the cube surface 
according to the discrete probabilities resulted from the 
function. If is known (e.g. is on conductor 
surface), we can get an estimation of . Otherwise, 
another cube centered at is constructed similarly, and 

is then randomly picked on . These steps are 
repeated until is on conductor surface or remote from 
conductors, such that is known and becomes an 
estimation of . This procedure is called a walk, for 
which the major cost is the geometric operation, since the 
probabilities are calculated in advance. After performing 
many walks, the mean value of these estimations becomes a
fairly accurate .

For extracting capacitances, the relationship between 
conductor charge and conductor potential is needed. So, a 
Gaussian surface is constructed to enclose conductor i,
and according to the Gauss theorem,

, (3)
where is the charge on conductor i, D is the electric 
displacement, and is the dielectric permittivity at point 
. Substituting (2) into (3), we get:

, (4)
where

(5)
is called the weight value, and constant satisfies 

. Now, the second integral in (4) can be 
calculated with the above FRW algorithm for potential, 
except for the extra calculation of . Similarly, the first 
integral in (4) also suggests a procedure of selecting points 
on randomly. This results in a FRW algorithm for 
capacitance extraction [2, 3].

Though not explicitly presented in literature, the analytical 
Green s function for a sphere domain [9] can help the FRW 
to handle the situation with multiple dielectrics. Since the 
single-dielectric FRW relies on that the cube for point 
transition is in a single dielectric, a sphere transition domain 
can be used to continue the walk stopping at dielectric 
interface. This strategy is illustrated in Fig. 1(a), and 

described by the following Algorithm 1.

Algorithm 1 FRW for multi-dielectric problem
1: Load the pre-computed probabilities and weight values for 

single-dielectric cubic transition domain;
2: Construct the Gaussian surface enclosing master conductor j;
3: ; ;
4: Repeat
5: ;
6: Pick a point on Gaussian surface, and then generate a

single-dielectric cubic transition domain T centered at it; pick 
a point on the surface of T, and then calculate the 
weight value ;

7: Repeat
8: If the current point is on dielectric interface, construct a 

sphere transition domain, otherwise construct a 
single-dielectric cubic domain;

9: Pick a point on the domain surface, according to the
probabilities of cubic domain or sphere domain;

10: Until the current point touches a conductor i
11: ;
12: Until the stopping criterion is met

However, while extracting the actual VLSI interconnect 
structure with multiple dielectrics, Algorithm 1 would be 
very time consuming. If the Green s function, i.e. the 
probabilities, for a cube domain involving multiple 
dielectrics is available, the walk will cross dielectric 
interface. This can reduce the number of hops in a walk (e.g. 
see Fig. 1(b)), thus reduce the computing time of FRW.

The total computing time of FRW algorithm is roughly: 
. is the number of 

random walks/paths, is the number of hops in a walk,
and is the time required for a hop. The techniques 
presented in the following two sections will reduce ,

and in turn.

III. Numerical Characterization of the Multi-Dielectric
Green s Function and Weight Value

the center point and boundary points of a transition domain, 
from the view point of potential. This guides the selection of 
random point on boundary of transition domain. The weight 
is the estimation of desirable capacitance, and is only related 
with the transition in the first cube. In this section, the 
numerical techniques for calculating the Green s function 
and weight value for multi-dielectric cube are introduced.

A. Problem Formulation
In this work, we consider the unit-size cube domain 

including two dielectric layers (see Fig. 2 for cross-section 
view), and derive the Green s function and weight value. In 
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each homogeneous sub-domain, the Laplace equation holds:
. (6)

At the dielectric interface, there is the continuous condition:
, (7)

where and are the permittivities of up and down 
dielectric, respectively. The problem is to solve equations (6), 
(7), and obtain the probabilities and weight values.

B. Generating the Green s Function
The FDM can be used to solve the Laplace equation with 

multi-dielectric region. After discretization (as shown in Fig. 
2), the following matrix equation is got:

(8)

where , and are the potential unknowns on inner 
grid points, boundary, and interface respectively. is the 
boundary potentials, which may be given as the Dirichlet 
boundary condition. The third block row of (8) is derived 
from (7), so that is a diagonal matrix. Also note that 
is an identity matrix. We then have:

(9)
It expresses the relationship between the inner points and the 
boundary points. Suppose the center of the cube is the kth 
grid point of FDM. Then,

. (10)
The row vector

(11)
represents the discrete probabilities for transition from the 
center point to the boundary panels, and is what we want. It
can be proved that .

The above deduction assumes that both the center point 
and dielectric interface are adapted to the FDM grid. This 
requests that each edge of the domain is divided into 2N+1
segments, and one unknown is attached to each grid cell s
center. They form the for inner grid points. For each 
boundary panels, its center point is attached by an unknown, 
which forms . Extra unknowns are defined on the 
interface surface. Note that the height of interface has the 
value of or (see Fig. 2). 

Different FD schemes are used to generate the coefficient 
matrix blocks in (8). For the inner grid point, the standard 
seven-point differential scheme is used (see Fig. 3(a)). For 
the grid point near boundary as shown in Fig. 3(b), its 
distance to boundary face is only (we assume the inner 
grid size is ). The Lagrange interpolation is used to derive 
the differential scheme. For example, we approximate the 
z-direction derivative for the point in Fig. 3(b) with:

(12)
Here denotes the potential on grid point. For the point on 

interface, another FD equation is needed to approximate (7). 
In order to be consistent with the scheme for (6), the formula 
with second-order accuracy is required. As shown in Fig. 
3(c), on each side of interface the Lagrange interpolation 
with three points is used to derive the approximate formula 
for or . Finally, we get the following 
difference equation for the example in Fig. 3(c):

     (13)
With this formula, the severe discontinuous problem for 
generated Green s function solutions can be avoided.

In the FDM solution, the height of interface cannot be 
1/2, which omits an important situation like the cube (2) in 
Fig. 1(b). The special treatment should be taken. As shown in 
Fig. 4(a), which is a side view, the cube edge should be 
divided into even segments, so that there is no boundary 
panel across the interface. Therefore, the center point is not 
an inner grid point. As shown in Fig. 4(b), the potential of 
center point can be approximated by its eight neighbors. By 
modifying (11), an efficient approach is found to calculate 
the discrete probabilities for the transition cube whose 
dielectric interface is at height 1/2. Due to the limit of space, 
its detail is omitted here.

The multi-layer Green s function can be pre-computed for 
all possible pairs. For each pair, a set of Green s
function table (GFT) are generated for different interface 
positions. Fig. 5 shows the examples of GFTs for the 
situation: . Note that the picture in Fig. 5(a) 
is consistent with that of single dielectric Green s function in 
[3], and the plots in Fig. 5(b), (c) demonstrate that there is 
much larger probability to walk towards the dielectric with 
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higher permittivity. By setting , we have used the 
single-dielectric Green s function to validate the accuracy of 
the GFTs obtained with the FDM.

C. Generating the Weight Values
To calculate the weight value in (5), we firstly derive:

,     (14)
where L is the size of the first cube, and P is the Green s
function for the unit-size cube. With the technique in last 
subsection the values of P is available, and its parital 
derivatives can also be calculated with the FDM. For 
example, stands for the sensitivity of the 
probabilites with respect to the x-axis position of the center 
point of cube. Suppose n is the number of inner points per 
edge of cube. Since in (11) is the GFT associated with 
the center point, we denote the GFTs associated with its six 
neighbor points to be and 

. Then, with the centered difference formula we have:
   (15)

    (16)

     (17)
Here vector is defined as:

.          (18)

Eq. (15)~(17) give the calucating formulas for the partial 
derivatives in (14). And for a small value of h, they would 
have sufficient accuracy. In practice, the values of ,

and for each boundary panels (the position of 
) are pre-computed and stored as the weight value table 

(WVT). As the same as the GFT, for each pair of dielectric 
permittivities a set of WVTs are needed for different 
interface positions.

With the WVTs, the first transition cube is not required to 
be within single dielectric (see Fig. 1(c) for an example). 
This enlarges the length of hop again with a little of memory 
overhead. Another noticeable advantage is that, by using 
WVT the MC procedure of FRW can converge much quickly. 
This is because is inversely proportional to the size of the 
first transition cube L, as shown in (14). Thus, increasing L
largely reduces the probability of getting an unreasonably 
large MC sample value, especially for the situation there is a 
thin dielectric near the Gaussian surface (see Fig. 1). This 
will reduce the number of walks to attain a certain accuracy 
goal, therefore reduce the total computing time of FRW. The 
analysis is validated in Section V.

D. The FRW Algorithm with Multi-Dielectric GFT and WVT
The following algorithm describes the FRW algorithm 

utilizing the multi-dielectric GFT and WVT.

Algorithm2 FRW for multi-dielectric problem (with GFT and WVT)
1: (1) Load the pre-computed transition probabilities, weight

values for single-dielectric cubic transition domain;
(2) Load the multi-dielectric GFTs and WVTs;

2: Construct the Gaussian surface enclosing master conductor j;
3: ; ;
4: Repeat
5: ;

6: Pick a point on Gaussian surface, and then generate a
cubic transition domain (may contain multiple dielectrics) T
centered at it; pick a point on the surface of T, and then 
calculate the weight value according to the WVTs;

7: Repeat
8: Construct the largest cubic domain contains at most two

dielectrics;
9: Shrink the domain a little to make the height of interface

to match that in the GFTs, if needed;
10: Pick a point on the domain surface, according to the

probabilities of cubic domain;
11: Until the current point touches a conductor i
12: ;
13: Until the stopping criterion is met

In the step 9 of Algorithm 2, a shrinking operation may be 
performed. Its aim is to adjust the size of transition cube to 
match its height of dielectric interface to that in the GFTs.
This minimizes the numerical error induced by using GFTs.

The FDM-based method to generate the GFT and WVT is 
implemented in MATLAB, using the functions for sparse 
matrix. The proposed method is compared with CAPEM [8], 
which is a binary-coded program. For different segment 
numbers (2N+1) along one edge of cube, the computational 
time of both programs for each set of GFT and WVT are 
given in Fig. 6. From this figure, we can see that our 
MATLAB program is more efficient than CAPEM.

IV. Improving the Efficiency by Space Management 
and Parallel Computing

In this section, two techniques are presented to accelerate 
the FRW algorithm for capacitance extraction.

A. Space Management Technique
For each hop in the FRW algorithm, the distance from the 

current point to conductors should be measured for 
constructing the maximum transition cube. This is the 
procedure of finding the nearest conductor, whose time 
should be reduced as short as possible because millions of 
hops may be needed in the FRW algorithm. A space 
management technique is presented here to organize the 
conductors in the problem, such that the distance is 
calculated for only a few of conductors each time. Therefore, 
the computing time of each hop can be remarkably reduced, 
especially for the case involving many conductors. In this 
technique, the Octree spatial data structure [10] is used. Each
Octree node represents a cubic spatial domain, which may be 
decomposed into eight subdomains and each one 
corresponds to a child node in the tree. For each node of 
Octree, we want to have a number possible nearest 
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conductors (candidate list) for its correspond domain. To 
build such an Octree, we firstly define the dominant
relationship.
Definition 1: T is a cubic space, B1 and B2 are conductors. B1

dominate B2 regarding T, iff. P T, d(P, B1) d(P, B2), 
where d( , ) is the function of the -norm distance.

By inserting the conductors into a null Octree, the Octree
can be constructed. Such an insertion procedure is described 
by Algorithm 3. A threshold is predefined as the maximum 
size of the candidate list.

Algorithm 3 Insert conductor B into node T
1: If is a leaf node then
2: For each in the candidate list of do
3: If then return
4: Elseif then 
5: Remove from ;
6: Endif
7: Endfor
8: Add to the candidate list of ;
9: If the size of s candidate list is larger than threshold then 
10: Divide into 8 child nodes, and then redistribute its 

candidate list to them
11: Endif
12: Else
13: For each child of do
14: Insert conductor B into node c
15: Endfor
16: Endif

Once the Octree is established for the extracted structure,
in each hop only the conductors in the candidate list of the 
leaf node that the current point belongs to are enquired to 
calculate distance. So, the time complexity of each hop is
about O(h+t), where h is the height of Octree and t is the 
threshold. We have tested two structures with 201 and 402 
wires respectively. Numerical results show the running time 
of FRW algorithm is reduced by 72% or 88%, with 
negligible memory overhead.

B. The Parallel FRW Algorithm
The FRW algorithm is very suitable for parallelization,

since the walks are independent to each other. Fig. 7 shows 
the flowchart of the parallel FRW algorithm on a 
multi-core/multi-CPU platform. Multiple threads are 
allocated to execute the random walk procedure (steps 6~11 
in Algorithm 2; denoted by FRW core in Fig. 7). In order 
to reduce the expense of communication, a unique random 
number generator [11] is kept for each thread. The lock
operation only happens when updating the value of 
capacitance and checking the program termination criteria 
with total number of walks or convergence test. This check is 
performed for every m walks (m=1000). The work of loading 
GFTs and WVTs is also parallelized without difficulty. Thus, 
only the works of parsing input, building the Octree and 
constructing the Gaussian surface are executed serially. The 
pthread APIs are used in our implementation.

V. Numerical Results

We have developed a C++ program RWCap with the 
proposed techniques. To evaluate the efficiency of different 
technique, three subversions of RWCap are defined:

RWCap(O): The original multi-dielectric FRW
(Algorithm 1).

RWCap(G): The FRW using the multi-dielectric GFTs.
RWCap(GW): The FRW using the multi-dielectric GFTs 

and WVTs (Algorithm 2).
The typical 45nm technology described in [12] is 

considered, and structures with three metal layers are tested. 
The cross section of the structures is shown in Fig. 8, where 
the relative permittivity of each dielectric layer is labeled.
The stop criteria of RWCap is that the standard deviation of 
total capacitance estimations becomes smaller than 3% of the 
mean value. All experiments are carried out on a Linux 
server with Xeon E5620 8-core CPU of 2.40GHz.

A. Experiments of Serial Computing
The first case includes 3 parallel wires in M2 layer. The 

width, height and length of each wire are 70nm, 140nm and
2000nm, respectively. The wire spacing is 70nm. For the 
second case, two sets of 19 wires are added to M1 and M3 
layers respectively, with random width and spacing. The 
results of RWCap for the two cases are listed in Table I.

TABLE I
The Computational Results of RWCap (O), (G) and (GW) 

for Case 1 and 2
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RWCap C11 (10-16 F) # Walks Memory (KB) Time(s) Speedup
Case 1 with 3 wires

O 3.59 891891 1348 257.28 --
G 3.62 908908 5628 90.51 2.8

GW 3.61 22022 13808 2.03 127
Case 2 with 41 wires

O 4.03 674674 1452 68.93 --
G 3.84 718718 5728 29.94 2.3

GW 3.86 19019 13892 0.78 88

From this table we can see that the technique of utilizing 
the multi-dielectric GFT speeds up the original FRW 
algorithm by about 2.5X. While using both GFT and WVT, 
the speedup increases to 127 and 88 for the two cases. And 
the total memory is only 13 MB, which is negligible. The 
larger acceleration brought by WVT is because it avoids the 
first transition domain with very small size, which makes the 
samples of MC procedure become fairly . This 
greatly reduces the number of walks for convergence. Case 1
is also solved with FastCap [1] and CAPEM [8]. Fastcap s
result is 3.55 10-16 F, with time of 34.7 seconds and 1.8GB
memory. It validates the accuracy of RWCap, and shows that 
FastCap is inferior even for the smaller case due to a lot of 
panels caused by discretization of dielectric interfaces. With 
100K walks, CAPEM s result is 3.62 0.18 (5%), while 
consuming 773 seconds. To compare fairly, we also run 
RWCap(GW) for 100K walks, which produces C11 of 3.49
0.045 (1.3%) after 14 seconds. This means RWCap(GW) is 
55X faster than CAPEM and has better convergence rate.

Two more cases are then tested, and the results are given 
in Table II. Case 3 and 4 have the same structure of wires as 
Case 1 and 2, respectively, but they include 5 dielectric 
layers instead of 9 layers. This reduction is accomplished by 
merging the thin dielectric with one of its neighbors. With 
some empirical formula of equivalent permittivity, it may not 
degrade the accuracy a lot. For this experiment, we want to 
investigate the impact of using WVT on case without thin 
dielectric. Comparing the speedup data in Table I and Table 
II, it is obvious that the WVT is much useful for the case 
with thin dielectrics. Table II validates the efficiency of 
presented techniques again.

TABLE II
The Computational Times for Two Cases without Thin Dielectrics

Time (s) Speedup 
of G to O

Time (s) Speedup 
of GW to OO G GW

Case 3 3.62 2.01 1.8 0.21 17
Case 4 4.30 2.81 1.5 0.31 14

B. Exieriments of Parallel Computing
On the 8-core machine, the computational time of the 

parallel implementation of RWCap(GW) vs. the number of 
threads is shown in Table III. We run the first test case for 
300,000 walks with different number of threads. Table III 
verifies the high efficiency of the parallel program. For other 
test cases, over 7X speedup is also achieved by RWCap on 
the 8-core machine, without loss of accuracy.

TABLE III
The Time of Parallel RWCap(GW) for Case 1

# Threads Time (s) Speedup Efficiency
1 33.308 1.00X 100%
2 16.877 1.97X 99.7%
4 8.698 3.83X 96.8%
8 4.45 7.47X 93.4%

VI. Conclusions

An efficient FRW algorithm for multi-dielectric 

function and weight value for two-dielectric cube domain are 
numerically solved and stored as sets of GFTs and WVTs. 
Utilizing these tables for specified process technology, the 
FRW-based capacitance extraction can be accelerated by 
several tens to over a hundred times. The techniques of space 
management and parallel computing are also utilized; the 
former accelerates the FRW by at least several times for 
large structures, while the latter achieves 7.5X speedup on an
8-core machine. Numerical results on 45nm-technology 
interconnects and the comparison with FastCap [1] and 
CAPEM [8] validate the high efficiency, parallelism and 
accuracy of the proposed techniques.
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