
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2006 1719

Fast Floorplanning by Look-Ahead Enabled
Recursive Bipartitioning

Jason Cong, Fellow, IEEE, Michail Romesis, Member, IEEE, and Joseph R. Shinnerl, Member, IEEE

Abstract—A new paradigm is introduced for floorplanning
any combination of fixed-shape and variable-shape blocks under
tight fixed-outline area constraints and a wirelength objective.
Dramatic improvement over traditional floorplanning methods is
achieved by the explicit construction of strictly legal layouts for
every partition block at every level of a cutsize-driven top-down hi-
erarchy. By scalably incorporating legalization into the hierarchi-
cal flow, post hoc legalization is successfully eliminated. For large
floorplanning benchmarks, an implementation, called partitioning
to optimize module arrangement (PATOMA), generates solutions
with half the wirelength of state-of-the-art floorplanners in orders
of magnitude less run time. Experiments on standard Gigascale
Systems Research Center benchmarks compare PATOMA to the
Capo macro placer, the Traffic floorplanner, and to both the de-
fault and high-effort modes of the Parquet 4.0 floorplanner. With
all blocks hard, PATOMA’s average wirelength is comparable to
the high-effort mode of Parquet 4.0 floorplanner and Capo, while
PATOMA runs significantly faster. With all blocks soft, PATOMA
produces wirelength 9% shorter on average than that of Parquet’s
default mode, and PATOMA runs seven times faster. For a new
set of benchmarks with a mix of 500 to 2000 hard and soft
blocks, PATOMA produces results with wirelengths roughly half
of Parquet’s, with a speedup of almost 200×.

Index Terms—Floorplanning, optimization, partitioning, physi-
cal design.

I. INTRODUCTION

G IVEN a collection of interconnected variable-dimension
“soft” rectangular blocks and fixed-dimension “hard”

rectangular blocks, each block with its own prescribed fixed
area, the floorplanning problem is to shape the soft blocks
and arrange them together with the hard blocks in the plane
without overlap. The objective is typically to minimize: 1) the
estimated total wirelength of the circuit; 2) its estimated timing
performance; 3) the area of the smallest rectangle circumscrib-
ing the blocks; or, usually, 4) some combination of these. The
most useful algorithms target wirelength minimization under
a fixed outline constraint, the aspect ratios of the soft blocks
constrained by simple upper and lower bounds.

Manuscript received June 16, 2004; revised December 6, 2004 and
May 14, 2005. This work was supported in part by the Semiconductor Research
Consortium Contract 2003-TJ-1091, by the National Science Foundation
under Grant CCF-0430077, and by Magma Design Automation, Inc., under
UC Micro Program 04-019. This paper was recommended by Associate Editor
T. Yoshimura.

J. Cong and J. R. Shinnerl are with the Computer Science Department,
University of California, Los Angeles, CA 90095 USA (e-mail: cong@
cs.ucla.edu; shinnerl@cs.ucla.edu).

M. Romesis is with Magma Design Automation, Eindhoven, 5615 LE, The
Netherlands (e-mail: michalis@magma-da.com).

Digital Object Identifier 10.1109/TCAD.2005.859519

Fast floorplanning is critical in the hierarchical physical
design of very large-scale integration (VLSI) circuits, for two
reasons. First, system designers require a means of rapidly
estimating the variation in performance of alternative architec-
tures and logic designs. Second, multilevel [10], [11], [21], [32]
and mixed-size [3], [4], [20], [23], [34] placement algorithms
typically solve some form of floorplanning problem at the
coarsest level of approximation in order to generate an initial
coarse placement for subsequent iterative refinement. With the
reuse of intellectual property (IP) blocks for multimillion-gate
application-specific integrated circuits (ASICs) and system-
on-a-chip (SoC) designs, most modern IC designs consist of
a very large number of standard cells mixed with many big
macros, such as ROMs, RAMs, and IP blocks. When clusters
of standard cells are placed simultaneously with macros, the
clusters may be treated as soft blocks [3], [4].

Many floorplanning algorithms have been developed in re-
cent years, varying mostly in the representation of geometric
relationships among modules. They can be divided into two ma-
jor categories: slicing and general algorithms. The first slicing
algorithms were developed in the 1980s [28], [39]. In the 1990s,
general algorithms that do not require slicing cuts became more
popular, especially after the introduction of the bounded slicing
grids (BSG) [27] and sequence pair [26] representations. Other
nonslicing representations include transitive closure graph-
based (TCG) [25], B∗-tree [12], corner block list (CBL) [17],
O-tree [15], [29], and so on. With the exception of the
O-tree-based work [15], [29], simulated annealing (SA) has
been used to minimize the area and/or the wirelength under
each of these representations. The floorplanner employing the
O-tree representation [15], [29] is deterministic, but it does not
support a fixed-outline constraint, and its run time is O(n2) in
the number of blocks.

The precise purpose and the best formulation of floorplan-
ning are subject to some debate. In 2000, Kahng [18] cited five
key problems with conventional approaches: 1) packing-driven
rather than connectivity-driven algorithms and benchmarks;
2) an unnecessary restriction to rectangular shapes, includ-
ing “L” or “T” shapes; 3) a lack of attention to scalability;
4) the inability to handle a fixed-outline constraint; 5) the
lack of attention to the register-transfer level (RTL)-down
methodology context. Recent efforts [2] to address some of
these concerns have met with only partial success, highlight-
ing in particular the difficulty of simultaneously considering
3) and 4). In this context, our paper can be viewed as a
way of achieving scalability under even the tightest fixed-
outline constraint. Surprisingly, our results are obtained without
recourse to nonrectangular shapes. Moreover, in contrast to

0278-0070/$20.00 © 2006 IEEE

1720 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2006

1) our method shows how scalable area-driven floorplanners
can support an extremely robust connectivity driven flow.

Until a few years ago, the inherent slowness of SA was
partially hidden by the lack of any need to floorplan more than
100 blocks at a time. Recently, however, growing numbers of IP
blocks have increased the sizes of most floorplanning instances,
prompting researchers to seek nonstochastic approaches.
Ranjan et al. [31] propose a two-stage fast floorplanning al-
gorithm. In the first stage, a hierarchy is generated by top-
down recursive bipartitioning. Cutline orientations are selected
from the bottom up in a way that keeps subregion aspect ratios
close to one. In the second stage, low-temperature SA improves
the wirelength by reshaping the blocks to produce a more
compact layout. Finally, the total wirelength is comparable to or
better than that obtained by an SA-based algorithm [39], with
speed up of over 1000× in predictor mode (high speed) and
20× in constructor mode (high efsfort). More recently, a fast
algorithm called Traffic [33] has been used to generate compact,
low-wirelength floorplans without SA. Traffic also uses two
stages. In the first stage, the blocks are divided into layers by
linear multiway partitioning. In the second stage, every layer is
optimized individually; the blocks in each layer are separately
arranged into rows and then moved among the rows to balance
row widths and reduce wirelength. In the end, pairs of rows are
squeezed tightly after being transformed into trapezoids. This
final step leads to very compact floorplans, but it also increases
the wirelength, because the cells are ordered according to
their heights.

The impressive speedups obtained by the last two algorithms
raise the question of whether a fast deterministic approach can
be used to replace the widely used SA engine with the same or
better solution quality on fixed-outline problems. Fast recursive
cutsize-driven area bisection by multilevel netlist partitioning is
very successfully and widely used in large-scale placement [7],
[8], [23], [37]. To date, however, the quality of bisection-based
floorplanners has generally fallen short of that of the best SA-
based implementations. We believe that this deficiency has been
caused largely by a thorny legalization problem that tradition-
ally accompanies the recursive bipartitioning paradigm. Legal-
ization is the process of transforming the end result of recursive
bipartitioning, or any so-called global floorplan, which may still
contain overlap and/or other constraint violations, to a config-
uration in which all shape nonoverlap floorplanning boundary
constraints are strictly satisfied. As commonly practiced, floor-
planning by recursive bipartitioning makes no guarantee that
the blocks assigned to a subregion can actually be shaped and
arranged there without overlap. In this scenario, defining base
cases may be difficult, as many base cases may fail to have legal
solutions. Local refinement usually suffices to legalize, but, in
general, some form of global legalization strategy is necessary
to ensure proper termination. Recently, reported progress in
the legalization of mixed-size [23] placements depends on the
significant amount of available white space (20% or more).
When the area constraints are tight, legalization based on local
heuristics alone usually increases the wirelength significantly,
if it succeeds at all.

The main idea of the work presented here is simple. The
legalizability of a given instance is explicitly determined first,

by construction, in fast and scalable run time, before any wire-
length optimization is attempted.1 Once a legal floorplan has
been constructed, it is recursively replaced by legal floorplans
of decreasing wirelength. While this approach might appear
to sacrifice the wirelength for increased robustness on low
white space fixed-outline designs, our empirical results show
decreased total wirelength compared to that of the leading top-
down tools. For example, our implementation beats a leading
SA-based engine on the gigascale systems research center
benchmarks by 10%–20% in average wirelength and by orders
of magnitude in run time. Thus, the contribution of this work
is not only a methodology for enhanced robustness for fixed-
outline top-down floorplanning, but also a means to scalably
attain solutions of superior quality, as measured by the total
half-perimeter wirelength.

CPLACE [35] is the first partitioning-based placer to incor-
porate explicit legalization into every level of the top-down
partitioning hierarchy. In CPLACE, this progressive legal-
ization supports accurate modeling of complex constraints
such as “irregular images, fixed objects, fixed IOs, large ob-
jects, timing-driven placement, and free-space distribution.”
But in CPLACE, legalization at each level is performed after
partitioning, without any formal assurance of its success. In
contrast to CPLACE, partitioning to optimize module arrange-
ment (PATOMA) (pronounced PAH-toh-ma from the Greek for
“floor”) is more narrowly focused on wirelength minimization
under a formal assurance of legal termination, which is obtained
by applying legalization at each level before the cut-size driven
partitioning.

The most similar work to our look-ahead enabled recursive
bipartitioning flow is found in Capo 9.0 [4] for mixed-size
placement and floorplanning. Capo 9.0 proceeds top down by
cutsize-driven recursive bipartitioning until certain ad hoc tests
suggest that newly generated subproblems may be difficult
to legalize. At that point, standard cells in each subproblem
are clustered, and these clusters are treated as soft macros.
SA-based fixed-outline floorplanning is then attempted on the
hard macros and soft clusters for the given subregion. If it
succeeds, the locations of the macros are then fixed, and further
refinement proceeds on the declustered soft macros. If it fails,
then the subproblem is merged with its sibling, the previous
partition of the parent subproblem is discarded, and floor-
planning is attempted for the parent subproblem. In principle,
this backtracking may continue repeatedly until some ancestor
is successfully floorplanned or until failure at the top level
occurs. In practice, the ad hoc tests used to determine when to
commence floorplanning are observed to be good enough that
backtracking is only rarely needed.

However, as the tests are set conservatively, their use seems
likely to increase the wirelength by fixing the macro positions
somewhat earlier than necessary. Moreover, while they typi-
cally prevent backtracking, they provide no guarantee of such
prevention. Essentially, the ad hoc tests amount to a tradeoff

1Throughout this paper, legal means “explicitly satisfying all aspect-ratio,
nonoverlap, and fixed-outline-boundary constraints.” Extension of our method-
ology to more complex constraints such as routability and timing is left as an
open question.

CONG et al.: FAST FLOORPLANNING BY LOOK-AHEAD ENABLED RECURSIVE BIPARTITIONING 1721

between: 1) robustness and 2) quality and run time. The main
differences between our approach and that of Capo 9.0 can be
summarized as follows.

1) In our method, neither ad hoc tests nor backtracking is
ever needed, and thus unnecessary tradeoffs associated
with such a flow are avoided.

2) Our look-ahead floorplanners explicitly compute the fea-
sible floorplans to all subproblems to which cutsize-
driven partitioning is applied, before it is applied.

3) Capo 9.0 still employs a simulated-annealing engine to do
floorplanning, while our method is totally deterministic
and is guaranteed scalable in all cases.

4) In our method, a failure to obtain a legal solution is
extremely rare. If such a failure occurs, however, it occurs
at the initialization of the flow, and therefore in much less
run time than would be used by a success on the same
circuit.

In its current implementation, our method generates slicing
floorplans only. The generality of slicing floorplans augmented
by simple compaction has been shown by Lai and Wong [24].
The results presented here confirm that a good slicing algorithm
can produce superior results, even without any compaction,
particularly on relatively large floorplanning instances. It is
possible to extend our method to the construction of general
nonslicing floorplans; however, such extensions are not consid-
ered here.

The paper is organized as follows. Section II gives an
overview of our implementation called PATOMA. Section III
describes a zero-dead-space (ZDS) floorplanning algorithm for
soft blocks and proves its properties. Section IV presents the
adaptation of ZDS to wirelength minimization in PATOMA.
Section V describes the row-oriented block packing (ROB)
heuristic for floorplanning a combination of hard and soft
blocks. Section VI compares PATOMA’s performance with that
of Parquet [1] and other nonannealing-based floorplanners. The
paper is concluded in Section VII.

II. OVERVIEW OF PATOMA ALGORITHM

PATOMA attempts to minimize the total wirelength under a
fixed-outline area constraint. It couples top-down cutsize-driven
recursive bipartitioning with fast area-driven floorplanning on
all subproblems. The flow is outlined in Fig. 1.

The initialization stage is the explicit construction of a legal
floorplan in extremely fast linear time by simple block-packing
heuristics. Because floorplanning is NP-hard, even in the ab-
sence of any netlist connectivity, the success of this initializa-
tion cannot be guaranteed a priori. In practice, however, we
have not observed any failure on any circuit, even with as little
as 1% white space. With the relative amount of white space
held constant, a large set of blocks is empirically observed to
be much easier to legally floorplan than a small set of blocks.
Therefore, placing the burden of legalization at the top level of
hierarchy, with all blocks present, greatly enhances robustness.
The success of this initialization stage constitutes a guarantee
of the legal termination of the main stage (discussed next).

The main stage is a recursive cutsize-driven bisection in
which the satisfiability of all constraints is explicitly en-

forced at every step. At every level of the cutsize-driven area-
bipartitioning hierarchy, each node corresponds to a subset of
blocks assigned by terminal propagation to a specific rectan-
gular subregion of the chip. The invariant that the parent of
every subproblem has a legal floorplan is maintained as follows.
Before each application of cutsize-driven bipartitioning, one
of two separate fast area-driven floorplanners, ZDS or ROB,
is used to check whether the given subproblem can be legal-
ized. The fast floorplanner determines by a slicing construction
whether the blocks assigned to each given subregion can in
fact be shaped and laid out within that subregion without
overlap. If so, then recursive cutsize-driven area bipartitioning
continues in both subregions at the current level. If not, then
the cutsize-driven solution at that level is discarded, and a
wirelength-reducing symmetry of the previously computed le-
gal “look-ahead” solution to the parent subproblem is used
instead. Thus, a legal solution strictly satisfying all nonover-
lapping, area, and shape constraints, is explicitly and separately
constructed for every subproblem at each level.

The legalized parent of a failed subproblem constitutes an
interrupt case because the cutsize-driven partition computed for
it cannot be accepted as is. An interrupt case is not actually
an end case, however, because its legalized solution is used
to generate legalized child subproblems, on which the main
recursion, including the cutsize-driven partitioning, continues.
Because ZDS and ROB both produce slicing structures, their
top-level cuts define floorplanning subproblems with known
legal solutions. Cutsize-driven partitioning coupled with sub-
problem legalization resumes recursively on each of these
legalized child subproblems until single-block base cases are
reached.

The feedback provided to the recursive bisection by the
explicit legalization at each level enables it to proceed signifi-
cantly longer, deepening the partitioning hierarchy, and thereby
improving the wirelength quality.

The area-driven look-ahead floorplanners determine whether
a legal solution exists for a given fixed-shape subregion and
block subset. These algorithms must be fast and must usually
find legal solutions if they exist. The first area-driven floorplan-
ner ZDS is based on a recent study [13] of sufficient conditions
for ZDS floorplanning of soft blocks. ZDS is used only when all
the blocks in the subregion are soft. Otherwise, a second area-
driven floorplanner based on ROB is used. ROB is somewhat
similar to Traffic [33]; however, it handles both soft and hard
blocks under a fixed-outline constraint. Both ZDS and ROB
perform well in reasonable run time. They are reviewed in
Sections IV and V below.

PATOMA uses hMetis [22], the well-known cutsize-driven
multilevel hypergraph partitioning package. Terminal propaga-
tion [14] is used to account for connections between partitions.
For a given user-specified area-imbalance tolerance t, hMetis
attempts to find a partition V = V1 ∪ V2 of the vertex set V
subject to the constraints 0.5 − t ≤ a(Vi)/a(V) ≤ 0.5 + t, i =
1, 2, where a(Vi) denotes the sum of the areas of the vertices
in Vi, such that the number of hyperedges containing vertices
in both V1 and V2 is minimized. Different area-imbalance
tolerances t were tried for hMetis in PATOMA—0.05, 0.1,
0.16, and 0.20. The value t = 0.1 consistently produced the

1722 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2006

Fig. 1. PATOMA floorplanning algorithm.

best results in our experiments, yielding total wirelengths up
to 3%–5% shorter than the other choices, i.e., neither of the two
block subsets produced by hMetis is allowed to hold more than
60% of the total area of all blocks in both subsets.

Using feedback from the look-ahead floorplanners,
PATOMA redistributes white space in order to make the
result of cutsize-driven partitioning legalizable as often as
possible. The exact location of the cutline is initially set in
direct proportion to the total areas of the blocks in every
partition. If a legal solution is found initially for R1 but not for
its sibling R2, it may still be possible to find a legal solution for
both partitions by moving the white space from R1 to R2, i.e.,
by moving the cutline away from R2 and toward R1. Candidate
cutline positions can be generated by binary search, as long as
each cutline position results in a legal solution in at least one of
the partitions.

Various uses of multilevel partitioning and white space redis-
tribution by cutline adjustment are already familiar in min-cut
placers Capo [3], [4], [9] and Feng Shui [5], [23], [40], [41].
Feedback to min-cut placement by relocation of ambiguous
terminals has been considered by Kahng and Reda [19]. What

distinguishes PATOMA’s use of feedback from these other
forms is both its source—area-driven look-ahead floorplanners,
and its result, the guaranteed legality of its final floorplan.

III. ZDS ALGORITHM

The ZDS algorithm generates a ZDS floorplan for a set of
soft blocks inside a fixed-dimension region. The aspect ratios of
the blocks of the final floorplan are uniformly bounded by the
properties of the blocks. We will show that these bounds are re-
alistic and satisfy the constraints for most existing benchmarks.
Previous work on this subject either analyzed the theoretical
upper bounds on the total area achieved by slicing floorplans
of soft blocks [30], [42], or generate ZDS floorplans with no
consideration of aspect-ratio constraints [36], [38]. The section
also proves the properties of the algorithm.

The ZDS algorithm used here is based on a recursive top-
down area bipartitioning. At each step, the blocks in a re-
gion are separated into two groups such that the groups’
total areas are as nearly equal as possible. That is, given
a group of blocks a1, . . . , an, index j is found such that

CONG et al.: FAST FLOORPLANNING BY LOOK-AHEAD ENABLED RECURSIVE BIPARTITIONING 1723

Fig. 2. Top-Down fixed-outline ZDS floorplanning algorithm.

Dj = |
∑j

1 ai −
∑n

j+1 ai| is minimized. The region is then cut
parallel to its shorter side such that each group fits exactly into
one of the regions. Cutting parallel to the shorter side keeps
the aspect ratios of the subregions bounded in terms of the area
variation among the blocks. Blocks are placed once they fill a
sufficient fraction of their subregions; this fraction is expressed
as the reciprocal of the parameter γ introduced below.

Fig. 2 shows the pseudocode for the ZDS algorithm. The
notation is as follows. Given N rectangles r1, . . . , rN with
fixed areas a1 ≥ a2 ≥ · · · ≥ aN but variable lengths �i and
widths wi, we seek to arrange them without overlap in a given
rectangle R of area A =

∑N
1 ai, such that the aspect ratios

ρi = ρ(ri) = max
(

�i

wi
,

wi

�i

)

are bounded close to 1.2 The rectangle R is the floorplanning
region. The rectangles ri are the blocks.

2By this definition of ρi, which we use for the remainder of the paper, the
aspect ratio of every block is always at least one.

Algorithm 3.1 is parameterized by ρ(R) ≥ 1 and γ ≥ 1. By
construction, Algorithm 3.1 has the following property.

Theorem 3.1: For ρ(R) ≥ 1 and γ ≥ 1, Algorithm 3.1 gen-
erates a slicing floorplan with ZDS. �

A trace of the algorithm on a simple five-block example is
illustrated in Fig. 3.

Although Algorithm 3.1 can accept any values ρ(R) ≥ 1
and γ ≥ 1 as input, the analysis in the next section shows that
the generated floorplans display attractive properties for certain
choices of ρ(R) and γ. Specifically, if we define

β = max
i

ai

ai+1
(1)

and let

γ = max{2, β} and ρ(R) ∈ [1, γ + 1] (2)

then Algorithm 3.1 produces a ZDS floorplan with all blocks’
aspect ratios in [1, γ + 1].

1724 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2006

Fig. 3. (a) Creation of ZDS benchmark with five blocks, where a1 = 8, a2 =
a3 = 3, a4 = a5 = 2. In this case, γ = 2.67. Region R has area 18 and is
initialized to an aspect ratio of 1.125. (b) Since a1 ≥ 18/2.67, block r1 is
placed. After partitioning of remaining blocks, region R1 is assigned to blocks
r2 and r3, and region R2 to blocks r4 and r5. (c) Final placement of all blocks.
Maximum aspect ratio is 2 ≤ γ + 1.

A. Analysis

The utility of Algorithm 3.1 rests in the fact that the max-
imum aspect ratio of any block in the floorplan it generates
is guaranteed to lie within a single small interval of the form
[1, γ + 1], when γ is defined as in (2). In other words, the
maximum aspect ratio of any block will not be large, as long as
the areas of the blocks decay relatively gradually from largest
to smallest.

These facts are established here, under Assumptions 3.1
below.

Assumptions 3.1: Block-locking threshold and floor-
planning-region aspect-ratio bound:

1) for β as defined in (1), γ ≥ max{2, β};
2) the aspect ratio of the floorplanning region satisfies

ρ(R) ≤ γ + 1.

In Assumption 3.1, 1) can be rephrased as follows: the threshold
fraction of the subregion area that a block must occupy in order
to be shaped and locked in place is not set above the minimum
of 1/2 and 1/β. Although these assumptions are stronger than
necessary to achieve ZDS and acceptably bounded block aspect
ratios, they are not very restrictive on the sets of block areas that

Fig. 4. Aspect ratio of block (shaded) compared to aspect ratio of its enclosing
subregion.

may be considered. In fact, for realistic circuits, the algorithm
can be extended to handle most abrupt jumps in block area
as well as regions R with ρ(R) > γ + 1 (see Section III-C).
However, such extensions are not used in PATOMA.

B. Derivation of Aspect-Ratio Bound

Throughout this section, we consider the properties of Algo-
rithm 3.1 under Assumptions 3.1. The first lemma shows that,
in order to bound the aspect ratios of the blocks, it suffices to
bound the aspect ratios of the regions in which they are placed.

Lemma 3.1: The aspect ratio ρi of any placed block ri

satisfies

ρi ≤ max {γ, ρ (R(ri))}

where ρ(R(ri)) denotes the aspect ratio of the smallest subre-
gion in which ri is placed.

Proof: Suppose that subregion R has an aspect ratio ρ =
ρ(R), if R contains just one block, then that block ri will also
have ρ(ri) = ρ. Hence, R contains more than one block. By
Algorithm 3.1, the blocks {ri, . . . , rp} in R form a contiguous
subsequence of the original set of blocks {r1, . . . , rN} and,
therefore, satisfy the area decay bounds ak ≥ ak+1 ≥ ak/γ.
Moreover, the block ri placed in R will have one of its side
lengths w equal to the shorter side length of R, as shown in
Fig. 4. Let �i denote the length of the other side of ri, and let �
denote the length of the longer side of R.

First, suppose �i < w, because the algorithm requires the
area ai of ri be at least 1/γ times the area of R; the other side
�i of ri is at least 1/γ times the length of the longer side � of R.
Hence

w

�i
≤ w

�
γ

=
γ

ρ
≤ γ

since ρ ≥ 1. Second, suppose �i ≥ w, because the blocks rk

in R satisfy ak ≥ ak+1 ≥ ak/γ, the subregion of R containing
these other blocks must occupy an area at least 1/(γ + 1) times
the area of R, and therefore �i ≤ (γ/(γ + 1))�. Hence

�i

w
≤ γ

(γ + 1)
�

w
=

γ

γ + 1
ρ < ρ. (3)

�
The next lemma bounds the aspect ratio of sibling subregions

in terms of their area ratio and the aspect ratio of their common
parent subregion.

CONG et al.: FAST FLOORPLANNING BY LOOK-AHEAD ENABLED RECURSIVE BIPARTITIONING 1725

Fig. 5. Aspect ratios of two sibling subregions compared to aspect ratio of
parent subregion.

Lemma 3.2: Suppose the subregion R is partitioned into
subregions R1 and R2 with areas A1 and A2, let

y = max
{

A1

A2
,

A2

A1

}
.

Then

max {ρ(R1), ρ(R2)} = max
{

y + 1
ρ(R)

,
y

y + 1
ρ(R)

}
.

Proof: Following the notation in Fig. 5, let A ≡ A1,
ρA = ρ(R1), a ≡ A2, ρa = ρ(R2), and assume without loss of
generality that A > a, so that y = A/a. The longer side of R
has length �, and the shorter side has length w. Now

A + a = (y + 1)a = �w

and therefore

�a =
a

w
=

�

(y + 1)
and �A = y�a =

y

y + 1
�.

If ρA ≥ ρa, then ρA = �A/w (otherwise, ρA = w/�A <
w/�a = ρa); hence, ρA = (y/(y + 1))ρ(R). Similarly, if ρa ≥
ρA, then ρa = w/�a, and therefore ρa = (y + 1)/ρ(R). �

Lemma 3.3: With the notation in Algorithm 3.1

Dj ≤
{

aj , if Aj > Āj

aj+1, if Aj ≤ Āj
.

Proof: Suppose Aj > Āj ; in this case, Dj = Aj − Āj .
First, observe that Dj < 2aj ; otherwise, Dj−1 < Dj —
contradicting the minimality of Dj . Next, suppose that
Dj > aj , i.e.,

2aj >

j∑
1

ai −
N∑

j+1

ai > aj .

But, then subtracting 2aj gives

0 >

j−1∑
1

ai −
N∑
j

ai > −aj

and hence

0 <

N∑
j

ai −
j−1∑
1

ai < aj

which is another contradiction to the minimality of Dj . The
case Aj ≤ Āj is similar. �

Theorem 3.2: In Algorithm 3.1, under Assumptions 3.1

1
γ
≤ Aj

Āj
≤ γ.

Proof: As before, let A = Aj + Āj . We first express the
conclusion of the theorem in terms of Dj . The conclusion can
be rewritten as

1
γ + 1

A ≤ Aj ≤ γ

γ + 1
A. (4)

But, the conclusion can also be written as 1/γ≤(Āj/Aj)≤γ or

1
γ + 1

A ≤ Āj ≤ γ

γ + 1
A. (5)

From (4) and (5), the conclusion can be equivalently expressed
as

Dj ≤ γ − 1
γ + 1

A.

Now, for all γ ≥ 2, it suffices to show that Dj ≤ A/3 or

1
3
A ≤ Aj ≤ 2

3
A.

Now, if j ≥ 3, then Lemma 3.3 ensures that Dj ≤ a3, and be-
cause a1 ≥ a2 ≥ a3 ≥ · · · ≥ an > 0, it follows that a3 ≤ A/3.
The same result also holds if j = 2 and Aj ≤ Āj . Therefore, we
need only consider the following two cases.

Case 1: j = 2, and a1 + a2 >
∑N

3 ai.
By Lemma 3.3, a1 + a2 −

∑N
3 ai ≤ a2; hence

a1 ≤
N∑
3

ai

and since a1 ≥ a2, we have a2 ≤
∑N

3 ai as well. Thus, in
this case

1
γ
≤ 1 ≤ Aj

Āj
≡ a1 + a2∑N

3 ai

≤ 2 ≤ γ.

Case 2: j = 1.
By Assumptions 3.1

Aj

Āj
≡ a1∑N

2 ai

≤ a1

a1
γ +

∑N
3 ai

< γ.

Hence, it suffices to show that Aj/Āj > 1/γ in this case.
If A1 ≥ Ā1, then we are done. Hence, we assume that
a1 <

∑N
2 ai. Lemma 3.3 therefore gives D1 ≡

∑N
2 ai −

a1 ≤ a2; i.e.,

a1 ≥
N∑
3

ai. (6)

Now if a2 >
∑N

3 ai, then

a1∑N
2 ai

=
a1

a2 +
∑N

3 ai

≥ a1

a2 + a2
≥ a1

a1 + a1
=

1
2
≥ 1

γ
.

1726 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2006

Otherwise, if a2 ≤
∑N

3 ai, then (6) implies that

a1∑N
2 ai

≥
∑N

3 ai

a2 +
∑N

3 ai

=
1(

a2∑N

3
ai

)
+ 1

≥ 1
2
≥ 1

γ
.

�
From Lemma 3.2 and Theorem 3.2, we immediately obtain

the following bound.
Corollary 3.1: Suppose subregion R is partitioned into sub-

regions R1 and R2, then

max {ρ(R1), ρ(R2)} ≤ max
{

γ + 1
ρ(R)

,
γ

γ + 1
ρ(R)

}
.

Theorem 3.3: Under Assumptions 3.1, the result of Algo-
rithm 3.1 is a slicing floorplan with ZDS and every block’s
aspect ratio bounded above by γ + 1.

Proof: Follows directly from Corollary 3.1 and Assump-
tions 3.1, by induction. �

C. Remarks and Extensions

The implementation of ZDS in PATOMA follows the above
description and has been found to be very effective and robust
in practice. For all the Gigascale Systems Research Center
(GSRC) benchmarks, the value of γ is always two. It is interest-
ing that for the soft block version of these examples, the aspect-
ratio constraint for all the blocks is in the range [0.3, 3], which
means that ZDS can find a ZDS solution for all of them. This
shows that the conditions required by ZDS are realistic and the
algorithm itself can be used for the manipulation of soft blocks
in a floorplanning algorithm.

Nevertheless, a number of obvious improvements can be
made, and the possibilities are intriguing. Some of these are
sketched in this section.

1) Weakening Subregion Aspect-Ratio Constraint: It is easy
to show that 2) of Assumption 3.1 can be replaced by the
weakest possible restriction, namely that ρ(R) is small enough
that the largest block r1 can be shaped and placed in R
without violating the aspect-ratio constraint of r1, when all
other blocks are ignored.3 Assuming that the maximum aspect
ratio allowed for any block is γ + 1, this requirement can be
written w(R) ≥

√
a1/(γ + 1), where w(R) denotes the length

of the shorter side of R, and a1 is the area of r1. This result
follows by a simple inductive argument, a sketch of which
follows. Throughout this sketch, we maintain 1) of Assumption
3.1; namely, that γ = max{2, max ai/ai+1}. The weakening
of 1) of Assumption 3.1 is discussed subsequently.

Suppose ρ(R) � 1, but w(R) ≥
√

a1/(γ + 1). The ZDS
algorithm will repeatedly cut R, by lines parallel its shorter
side, into subregions of ever smaller aspect ratios (i.e., ever
closer to one). Once cuts are chosen in the direction orthogonal
to R’s shorter side, it must be the case that 2) of Assumption
3.1 holds for the subregions these orthogonal cuts separate and,

3If the aspect-ratio bounds on the different blocks are different, we must
check that the restriction on ρ(R) is strong enough that any block will fit in R
when all other blocks are ignored.

Fig. 6. Block aspect ratios may all remain small, even when some subregion
has a large aspect ratio.

Fig. 7. Given blocks r1, . . . , r7 with a1 = 4a2 and a2 = a3 = · · · = a7,
(a) default area-balancing cut shown in will typically result in large aspect ratio
for r2, which is unwisely paired with r1. (b) Better set of cuts. First cut is made
between r1 and r2, because a1/a2 is both maximal and larger than two. Next
cut, between r4 and r5, is made in order to balance cluster sizes.

therefore, all subsequent subregions they contain. If, on the
other hand, a block is shaped and placed before any cut is made
in the direction orthogonal to R’s shorter side, it is placed flush
against that shorter side of R, and since the length w(R) of that
side satisfies w(R) ≥

√
a1/(γ + 1), the aspect-ratio constraint

of the block will be satisfied.
2) ZDS Floorplanning of Mixed-Size Blocks: The assump-

tion that γ ≥ 2 presents no practical restriction on the sets of
blocks that may be considered. It just means that the upper
bound on block aspect ratios guaranteed by the analysis here
for the given algorithm is at least 3. That is, consecutive-
pairwise area bounds tighter than two (e.g., ai/ai+1 ≤ 1.5) are
not guaranteed to reduce the maximum aspect ratio below what
can be attained with ai/ai+1 ≤ 2.

Similarly, a large value of γ does not necessarily indicate any
large aspect ratios in the final floorplan, as Fig. 6 illustrates. In
the figure, one large block occupies one subregion, and several
small blocks occupy another subregion. Although the area ratio
of the subregions may be arbitrarily large, the presence of
sufficiently many small blocks used to fill the small subregion
prevents any single block’s aspect ratio from becoming large.

For some designs, the presence of a few very large or very
small blocks may result in a large value of γ, if γ is defined
simply as max{2,maxi ai/ai+1}. In such cases, a simple par-
titioning step can be used to reduce this value significantly (as
illustrated in Fig. 7).

The idea is to partition the sorted list of blocks into clusters
such that the areas of any two consecutive blocks in the same
cluster are comparable, i.e., within a factor of two. Areas of
clusters, computed simply as sums of contained blocks’ areas,
must also be somewhat comparable, but, as explained below,
the limit on cluster area ratios is higher than that for the areas
of blocks within any cluster. Each cluster is simply a contiguous
subsequence of the list of blocks ordered by the nonincreasing

CONG et al.: FAST FLOORPLANNING BY LOOK-AHEAD ENABLED RECURSIVE BIPARTITIONING 1727

area. The partition is therefore simply a set P ⊂ {1, . . . , n} of
“cluster cuts” in the ordered list of blocks; the precise choice
of P is discussed briefly. Treating the clusters in this partition
as individual blocks, we find a ZDS floorplan for them. The
aspect ratios of the clusters in this floorplan will be governed by
the maximum ratio of successive cluster areas, when these are
ordered nonincreasing. A separate fixed-outline ZDS floorplan
can then be separately computed for each individual cluster;
the largest aspect ratio ρi of any block in any cluster C ⊂
{r1, . . . , rn} is governed entirely by the blocks in that cluster

max
ri∈C

ρi ≤ 1 + max
{

2, max
ri∈C

ai

ai+1

}
.

The choice of P is motivated by the desire to reduce the
upper bound γ + 1 on the maximum aspect ratio of any block
as much as possible. By the result of Section III-C1, the only
restriction on the aspect ratios of the clusters is that the largest
blocks they contain can be shaped and placed within them. As
long as this condition holds, then the conclusion of Theorem 3.3
holds with β ≡ maxi�∈P ai/ai+1 and γ = max {β, 2}. There-
fore, the priority in selecting cluster cuts should be placed on
separating blocks of disparate areas rather than on balancing
cluster areas, i.e., P can contain as many i’s as possible such
that ai/ai+1 > 2, subject only to the constraint that the largest
block in each cluster can be legally shaped and placed within
that cluster’s assigned subregion of the ZDS cluster floorplan.

This restriction on cluster shapes can be enforced by im-
posing a low-enough upper bound on the ratios of successive
cluster areas, when these are sorted in nonincreasing order.
However, many clusters will likely be able to take aspect ratios
far above the bound without adversely affecting any blocks’
aspect ratios; therefore, it is not generally necessary to enforce
the bound strictly. In general, it is enough that clusters assigned
to the same ZDS subregion satisfy area-ratio bounds specific to
their own set of aspect-ratio constraints. That is, clusters can
also be partitioned, and the restrictions on their area ratios are
considerably looser than those on the blocks.

For generality and efficiency, partitioning can proceed adap-
tively and recursively. For example, an initial partition P0 ⊂
{1, . . . , n} may be kept small by limiting the cuts to only
the most abrupt area changes. After a ZDS floorplan for the
clusters defined by P0 has been computed, some clusters, e.g.,
C, may still contain two consecutive blocks ri and ri+1 for
which ai/ai+1 is large. If so, then the blocks within C can
be partitioned, and the ZDS floorplan of the resulting clusters
in C can be computed. Partitioning of the blocks within these
clusters and ZDS floorplanning of the result can continue
recursively, as necessary, to reduce the largest ratio ai/ai+1

of the consecutive blocks in the same cluster, until all clusters
either have no such large ratios or consist of three blocks or
fewer. This approach amounts to multilevel ZDS floorplanning.

Although it is trivial to construct examples where this mul-
tilevel ZDS approach will be useless (e.g., when N = 2), on
practical examples with large N , the reduction in γ will likely
be considerable.

3) Nonslicing Extensions: For circuits with one block much
smaller in area than all the others, however, the top-down slic-

Fig. 8. When one block is much smaller in area than all others, only nonslicing
ZDS floorplan can possibly satisfy useful bounds on aspect ratios of all blocks.

ing ZDS algorithm presented here obviously cannot produce a
good aspect ratio for the smallest block, irrespective of whether
the blocks are partitioned into clusters as described above. In
these cases, nonslicing ZDS extensions must be considered,
e.g., a wheel with the smallest block at its center, as shown
in Fig. 8. For the blocks r1, . . . , r5 of fixed areas a1 ≥ · · · ≥
a4 � a5 arranged as shown in a subregion of fixed shape w × l,
it can be shown that the horizontal lengths l1 and l3 of blocks
r1 and r3 must satisfy the following 2 × 2 nonlinear system of
equations:

a3

l3
+

a4

w − l1
= l

a1

l1
+

a3

l3
+

a5

l1 + l3 − w
= l. (7)

Two other analogous systems can be written for the two other
arrangements (symmetries) of the blocks in the wheel (these
are obtained by interchanging the relative positions of blocks
r2 and r3 or of blocks r3 and r4). The existence of such a
nonslicing floorplan in which all subregions’ or blocks’ aspect-
ratio constraints are satisfied can be determined by computing
and examining all solutions of (7) and, if necessary, its two
analogs. Further details of such extensions are left as open
questions.

IV. WIRELENGTH-AWARE ZDS FLOORPLANNING

As described in the previous section, the ZDS algorithm
ignores the wirelength. In this section, the extensions of
ZDS for PATOMA including the wirelength consideration are
presented.

PATOMA extends the original ZDS algorithm in two ways.
First, available dead space is used to increase the frequency
with which ZDS satisfies all aspect-ratio constraints. Let ρmax

denote the maximum aspect ratio allowed for any block. When
γ + 1 ≤ ρmax, success of ZDS is guaranteed, because the as-
pect ratios of the subregions for which ZDS is called are also
in the range [1/ρmax, ρmax], by the partitioning and cutline
decisions made at the higher levels of the hierarchy. When
γ + 1 > ρmax, the effective value of γ can be reduced by
padding some of the blocks by dead space. If the reduction
in γ is not enough to guarantee success, the ZDS algorithm
is applied anyway, because its conditions for the creation of a
legal solution are sufficient but not necessary. Second, in the
original ZDS algorithm, the side of a subregion in which a
block or block subset is placed is left unspecified. In PATOMA,
when ZDS must be used instead of cutsize-driven bipartitioning

1728 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2006

Fig. 9. Example of wirelength consideration during enhanced ZDS algorithm.
Two alternatives for relative location of blocks in regions A1 and A2. First
alternative is selected because of its better wirelength.

to guarantee legalizability of the resulting subproblems, each
block subset is placed in the subregion side that reduces the
total lengths of connections between blocks in the subset and
other blocks. An example is shown in Fig. 9.

V. ROW-BASED FLOORPLANNING

The ROB heuristic is used by PATOMA for floorplanning
a combination of fixed and variable-dimension blocks. It is
similar to Traffic [33] in that it organizes the blocks by rows ac-
cording to their dimensions; however, it satisfies a fixed-outline
constraint and handles both hard and soft blocks. Assume that
given a set of blocks to be placed in a region with fixed height H
and fixed width W , if H > W , the blocks will be organized in
rows; otherwise, in columns. By organizing the blocks in rows
along the shorter subregion dimension, there is room to pack
more rows and, therefore, a wider variety of block heights can
be efficiently supported. For the rest of this section, we assume,
for simplicity, that the blocks are packed in rows.

ROB ignores connectivity. It consists of two stages. In the
first stage, the blocks are grouped into rows according to their
dimensions. In the second stage, emptier rows are merged
with fuller rows until all rows fit inside the given fixed-shape
region. The outline of the ROB algorithm is shown in Fig. 10.
During the first stage, the blocks are considered one by one
and either added to the existing rows or used to create new
ones. Hard blocks are considered first. For every block, if one
of its dimensions matches the height of an existing row and
its addition to that row does not create overflow, it is placed
there. Otherwise, a new row is generated with height equal to
the smaller dimension of the block. Soft blocks are considered
next. As they can be reshaped, they are more likely to match the
height of an existing row. When a block can fit in multiple rows,
the shortest one is preferred. If no such row can be found, a new
one is generated with a height equal to the smallest possible
dimension of the block.

At the end of the first stage, a set of rows has been generated.
Each row width is less than the fixed width W of the region,4

but it is possible that the sum of the row heights is larger
than the fixed height H of the region. In the second stage,

4Unless there is a block with both its dimensions larger than W . In that case,
a legal placement under the area constraints obviously cannot be found.

Fig. 10. ROB floorplanning algorithm.

some rows are eliminated by redistributing the blocks one by
one. The rows are scanned in a decreasing height order. The
blocks from the rows shorter than the currently selected one
are added to the selected row where possible. Priority is given
to rows of smallest width. When a block is moved to another
row, it is allowed to be rotated or reshaped for the purpose
of matching the height of its new row as closely as possible
without exceeding it. The procedure is repeated until either
all the rows have been scanned or enough rows have been
eliminated such that the sum of the heights of the remaining
rows is less than H . In the first case, the algorithm ends without
finding a legal solution, while in the second it reports a success.

When legalizability of a cutsize-driven partition of a given
subproblem cannot be ensured, ROB’s solution to that sub-
problem is employed instead, by interpreting it as a partition.
Since the solution of ROB is organized in rows (columns), it is
guaranteed to have at least one slicing horizontal or vertical cut
that can be used as the cutline for a bipartitioning of the blocks.
The bipartitionings generated by these cuts are compared with
their symmetric ones for wirelength, and the best bipartitioning
is selected to replace the infeasible hMetis solution.

In ROB’s current prototype implementation within
PATOMA, its worst case order is O(nr), where n is the
number of blocks and r is the number of rows. However, a
more careful implementation can reduce this asymptotic to
O(nk), for some fixed constant k limiting the length of the list
of candidate rows to which a block can be added.

CONG et al.: FAST FLOORPLANNING BY LOOK-AHEAD ENABLED RECURSIVE BIPARTITIONING 1729

TABLE I
COMPARISON OF PATOMA WITH PARQUET 4.0 ON GSRC BENCHMARKS WITH ALL BLOCKS SOFT

VI. EXPERIMENTS AND RESULTS

We compare PATOMA to: 1) Parquet 4.0 [1], a state-of-the-
art SA-based floorplanner using the sequence pair geometric
representation; 2) Traffic [33]; 3) Hierarchical plus simu-
lated annealing (HierPlusSA) the fast floorplanner of Ran-
jan et al. [31]; and 4) Capo 9.3 [4], which can perform
placement of standard cells and macros. For a fair compari-
son, all experiments were performed on the same machine, a
2.4-GHz Pentium IV running RedHat Linux 8.0. We com-
pared on four sets of benchmarks. For all the experiments, the
floorplanners are trying to minimize the total half-perimeter
wirelength under a fixed-outline boundary constraint. For the
benchmarks with soft macros, we compare only to Parquet 4.0,
because in addition to the high-quality floorplans it produces, it
is, as far as we know, the only freely available package online
that can consider both fixed-outline constraints and soft blocks.
We run Parquet 4.0 in two modes. The first mode is the default
and is very fast, due to a shorter simulated-annealing schedule
that degrades the wirelength quality. The second mode is a high-
effort mode, where we impose a time limit of 1 h to allow SA
to attain a better solution.

A. Soft Blocks Only

The first set of benchmarks includes the GSRC circuits
(size 10–300 blocks), where all the blocks are soft. Pad lo-
cations fix the amount of the given white space at approxi-
mately 55%–75%. In order to reduce the wirelength, however,
PATOMA restricts its floorplan to an inner core region with
30% white space for all-hard-block examples and 0% white
space for all-soft-block examples. In the all-soft-block exam-
ples, PATOMA uses only the ZDS algorithm and not the ROB
to enforce the legalizability of all floorplanning subproblems.
All blocks are allowed to be reshaped with any aspect ratios in
[1/3, 3]. Interrupt cases, i.e., subproblems with nonlegalizable
child subproblems, are observed to be small, containing fewer
than 2 blocks on average and at most 27 on any instance.
This result confirms that ZDS failures are quite rare and occur
only for relatively small sets of blocks. The recursive cutsize-
driven flow thus proceeds on average almost all the way to

individual blocks. The results are shown in Table I. The default
mode of Parquet 4.0 produces results that are 9% higher (21%
higher for the largest four benchmarks) in wirelength than
PATOMA, while its runtime is 7× slower (22× slower for the
largest benchmarks). The high-effort mode of Parquet 4.0 is 1%
worse in wirelength (4% worse for the largest benchmarks) and
518× slower (281× slower for the largest benchmarks) than
PATOMA.

B. Hard Blocks Only

The second set of experiments includes the same GSRC
benchmarks, but with all blocks of given fixed dimensions
as specified in the benchmarks. In these examples, PATOMA
uses only ROB and not ZDS to enforce the legalizability of
floorplanning subproblems, because all blocks are hard. Table II
shows the results of this set of experiments. It includes the
results of Capo 9.3, which, although a placer, can perform hard
block floorplanning. Capo 9.3 is based on Parquet to perform
SA for floorplanning subproblems, but its top-down method-
ology allows it to perform much better than plain Parquet.
On these benchmarks, PATOMA produces results of 2% lower
wirelength than the default mode of Parquet 4.0 (11% lower
for the four largest benchmarks only), with a speedup of 15×
(48× for the largest benchmarks), and of 3% higher wirelength
than the high-effort mode of Parquet 4.0, with an average
speedup of 570×. However, when only the largest benchmarks
are considered, PATOMA is better than the high-effort version
of Parquet by 5%, while running 407× faster. PATOMA also
produces better results than Capo 9.3 by 1% with an average
speedup of 3× (5× for the largest benchmarks).

The third set of experiments includes the four largest GSRC
circuits (200–300 blocks), all blocks hard but without pads.
PATOMA was compared with Traffic and FFPC on these
benchmarks, as these floorplanners do not use pads or shape
soft blocks.5 Table III lists the results of these experiments.

5FFPC does support semisoft blocks, whose shapes must be selected from a
fixed finite set. Currently, PATOMA supports only soft blocks, not semisoft. It
is readily adapted to directly handle semisoft blocks as well.

1730 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2006

TABLE II
COMPARISON OF PATOMA WITH CAPO 9.3 AND PARQUET 4.0 ON GSRC BENCHMARKS WITH ALL BLOCKS HARD

TABLE III
COMPARISON OF PATOMA WITH TRAFFIC [33] AND FFPC WITH ALL

BLOCKS HARD. PADS ARE IGNORED

FFPC’s wirelength is 3% longer than PATOMA’s, on average,
while its run time is 6× longer. With Traffic’s run-time limit
set to PATOMA’s run time, Traffic’s average total wirelength
is 60% longer than PATOMA’s. Extending Traffic’s run-time
limit beyond PATOMA’s was attempted but was not observed to
improve its wirelength quality; the results of these experiments
were not tabulated.

C. Hard and Soft Blocks Together

In the fourth set of experiments, we generated large-scale
floorplanning benchmarks from the IBM/ISPD98 suite [6] that
include both hard and soft blocks on a fixed die with 20%
whitespace. The soft blocks are clusters of standard cells gen-
erated by the First Choice clustering heuristic [22]. The hard
blocks are the same macros as in the original benchmarks.
The allowed range of aspect ratios for the soft blocks was set
at [1/3, 3]. The sizes of the benchmarks range from 500 to
2000 blocks. We called this suite of benchmarks the HB-suite
(hybrid blocks). These benchmarks are available online [16].
The characteristics of the benchmarks are shown in Table IV.
The same table lists the results of both PATOMA and Parquet
4.0 (default mode) on them. For these examples, Parquet’s
wirelength is on average 102% higher than PATOMA’s, while it
is 190× slower. We conclude that PATOMA has a big advantage
over other floorplanning methodologies for large benchmarks
and benchmarks that include soft blocks. But even for smaller

TABLE IV
COMPARISON OF PATOMA WITH PARQUET 4.0 ON FLOORPLANNING

BENCHMARKS DERIVED FROM IBM CIRCUITS. PARQUET 4.0
FAILED TO FIND LEGAL SOLUTION FOR CIRCUIT HB12

benchmarks with hard blocks only, PATOMA is competitive
with more traditional SA-based floorplanners.

Fig. 11 shows a floorplan for the benchmark extracted from
ibm01. All the benchmarks have an available deadspace of
20%. This is a reasonable value for modern fixed-size de-
signs. The results show that the recursive-bisection flow of the
PATOMA algorithm is very effective and efficient compared to
other floorplanning algorithms.

VII. CONCLUSION

A new paradigm has been presented for floorplanning a
combination of fixed-and variable-dimension blocks under a
wirelength objective and a fixed-outline constraint. By con-
structively ensuring satisfiability of all constraints at each
level by fast area-driven heuristics, recursive cutsize-driven

CONG et al.: FAST FLOORPLANNING BY LOOK-AHEAD ENABLED RECURSIVE BIPARTITIONING 1731

Fig. 11. Sample output of PATOMA algorithm for benchmark generated from
ibm01. Hard blocks are shown with “H” mark.

bipartitioning is allowed to proceed longer, and post hoc legal-
ization is eliminated. The resulting flow is scalable and pro-
duces superior wirelengths in orders of magnitude less run time
than a leading SA-based tool. In the current implementation,
feedback to the bipartitioning is used only to adjust cutline
positions, and only until satisfiability is ensured. More elaborate
feedback can be expected to improve results significantly on
benchmarks with more than 500 blocks.

REFERENCES

[1] S. Adya and I. Markov, “Fixed-outline floorplanning through better
local search,” in Proc. Int. Conf. Computer Design, Austin, TX, 2001,
pp. 328–334.

[2] ——, “Fixed-outline floorplanning: Enabling hierarchical design,” IEEE
Trans. Very Large Scale Integr. Syst., vol. 11, no. 6, pp. 1120–1135, Dec.
2003.

[3] S. N. Adya and I. L. Markov, “Consistent placement of macro-blocks
using floorplanning and standard-cell placement,” in Proc. Int. Symp.
Physical Design, San Diego, CA, Apr. 2002, pp. 12–17.

[4] S. N. Adya, S. Chaturvedi, J. A. Roy, D. A. Papa, and I. L. Markov,
“Unification of partitioning, placement and floorplanning,” in Proc. Int.
Conf. Computer-Aided Design, San Jose, CA, 2004, pp. 12–17.

[5] A. R. Agnihotri, M. C. Yildiz, A. Khatkhate, A. Mathur, S. Ono,
and P. H. Madden, “Fractional cut: Improved recursive bisection place-
ment,” in Proc. Int. Conf. Computer-Aided Design, San Jose, CA, 2003,
pp. 307–310.

[6] C. J. Alpert, “The ISPD98 circuit benchmark suite,” in Proc. Int. Symp.
Physical Design, Monterey, CA, 1998, pp. 80–85.

[7] M. A. Breuer, “Min-cut placement,” J. Des. Autom. Fault-Toler. Comput.,
vol. 1, no. 4, pp. 343–362, Oct. 1977.

[8] A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Improved algorithms for
hypergraph partitioning,” in Proc. Asia South Pacific Design Automation
Conf., Yokohama, Japan, 2000, pp. 661–666.

[9] ——, “Can recursive bisection produce routable placements?” in Proc.
37th IEEE/ACM Design Automation Conf., Los Angeles, CA, 2000,
pp. 477–482.

[10] T. F. Chan, J. Cong, T. Kong, and J. R. Shinnerl, “Multilevel cir-
cuit placement,” in Multilevel Optimization in VLSICAD, J. Cong and
J. R. Shinnerl, Eds. Boston, MA: Kluwer, 2003.

[11] T. F. Chan, J. Cong, and K. Sze, “Multilevel generalized force-directed
method for circuit placement,” in Proc. Int. Symp. Physical Design,
San Francisco, CA, 2005, pp. 185–192.

[12] Y. C. Chang, Y. W. Chang, G. Wu, and S. Wu, “B∗-trees: A new repre-
sentation for non-slicing floorplans,” in Proc. Design Automation Conf.,
Los Angeles, CA, 2000, pp. 458–463.

[13] J. Cong, G. Nataneli, M. Romesis, and J. Shinnerl, “An area-optimality
study of floorplanning,” in Proc. Int. Symp. Physical Design, Phoenix,
AZ, 2004, pp. 78–83.

[14] A. E. Dunlop and B. W. Kernighan, “A procedure for placement of

standard-cell VLSI circuits,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. CAD-4, no. 1, pp. 92–98, Jan. 1985.

[15] P. Guo, C. Cheng, and T. Yoshimura, “An O-tree representation of non-
slicing floorplan and its applications,” in Proc. Design Automation Conf.,
New Orleans, LA, 1999, pp. 268–273.

[16] Hybrid-Block Floorplanning Benchmarks [Online]. Available:
http://cadlab.cs.ucla.edu/cpmo/HBsuite.html/

[17] X. Hong, S. Dong, G. Huang, Y. Cai, C.-K. Cheng, and J. Gu, “Corner
block list representation and its application to floorplan optimization,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 51, no. 5, pp. 228–233,
May 2004.

[18] A. B. Kahng, “Classical floorplanning harmful?” in Proc. Int. Symp.
Physical Design, San Diego, CA, Apr. 2000, pp. 207–213

[19] A. B. Kahng and S. Reda, “Placement feedback: A concept and method
for better min-cut placements,” in Proc. Design Automation Conf.,
San Diego, CA, Jun. 2004, pp. 357–362.

[20] A. B. Kahng and Q. Wang, “An analytic placer for mixed-size place-
ment and timing-driven placement,” in Proc. Int. Conf. Computer-Aided
Design, San Jose, CA, Nov. 2004, pp. 565–572.

[21] ——, “Implementation and extensibility of an analytic placer,” in Proc.
Int. Symp. Physical Design, Phoenix, AZ, 2004, pp. 18–25.

[22] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel
hypergraph partitioning: Application in VLSI domain,” in Proc.
34th ACM/IEEE Design Automation Conf., Anaheim, CA, 1997,
pp. 526–529.

[23] A. Khatkhate, C. Li, A. R. Agnihotri, S. Ono, M. C. Yildiz,
C.-K. Koh, and P. H. Madden, “Recursive bisection based mixed block
placement,” in Proc. Int. Symp. Physical Design, Phoenix, AZ, 2004,
pp. 84–89.

[24] M. Lai and D. F. Wong, “Slicing tree is a complete floorplan represen-
tation,” in Proc. Design, Automation, Test Eur., Munich, Germany, 2001,
pp. 228–232.

[25] J. Lin and Y. Chang, “TCG: A transitive closure graph-based representa-
tion for non-slicing floorplans,” in Proc. Design Automation Conf., Las
Vegas, NV, 2001, pp. 764–769.

[26] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Rectangle-
packing-based module placement,” in Proc. Int. Conf. Computer-Aided
Design, San Jose, CA, 1995, pp. 472–479.

[27] S. Nakatake, K. Fujiyoshi, H. Mirata, and Y. Kajitani, “Module packing
based on the BSG-structure and IC layout applications,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 17, no. 6, pp. 519–530,
Jun. 1998.

[28] R. Otten, “Automatic floorplan design,” in Proc. Design Automation
Conf., Las Vegas, NV, 1982, pp. 261–267.

[29] Y. Pang, C.-K. Cheng, and T. Yoshimura, “An enhanced perturbing algo-
rithm for floorplan design using the o-tree representation,” in Proc. ISPD,
San Diego, CA, 2000, pp. 168–173.

[30] H. Peixoto, M. Jacome, A. Royo, and J. Lopez, “A tight upper bound
for slicing floorplans,” in Proc. IEEE VLSI, Calcutta, India, Jan. 2000,
pp. 280–285.

[31] A. Ranjan, K. Bazargan, S. Ogrenci, and M. Sarrafzadeh, “Fast floorplan-
ning for effective prediction and construction,” IEEE Trans. Very Large
Scale Integr. Syst., vol. 9, no. 2, pp. 341–351, Apr. 2001.

[32] M. Sarrafzadeh, M. Wang, and X. Yang, Modern Placement Techniques.
Boston, MA: Kluwer, 2002.

[33] P. Sassone and S. K. Lim, “A novel geometric algorithm for fast wire-
optimized floorplanning,” in Proc. Int. Conf. Computer-Aided Design,
San Jose, CA, 2003, pp. 74–80.

[34] C. Sechen, “Chip planning, placement, and global routing of macro/
custom cell integrated circuits using simulated annealing,” in Proc.
Design Automation Conf., Anaheim, CA, 1988, pp. 73–80.

[35] P. Villarrubia, G. Nusbaum, R. Masleid, and E. T. Patel, “IBM RISC
chip design methodology,” in Proc. ICCD, Cambridge, MA, Oct. 1989,
pp. 143–147.

[36] K. Wang and W.-K. Chen, “A class of zero wasted area floorplan for VLSI
design,” in Proc. ISCAS, Chicago, IL, 1993, pp. 1762–1765.

[37] M. Wang, X. Yang, and M. Sarrafzadeh, “Dragon2000: Standard-
cell placement tool for large circuits,” in Proc. IEEE/ACM Int. Conf.
Computer-Aided Design, San Jose, CA, Apr. 2000, pp. 260–263.

[38] S. Wimer, I. Koren, and I. Cederbaum, “Floorplans, planar graphs,
and layouts,” IEEE Trans. Circuits Syst., vol. 35, no. 3, pp. 267–278,
Mar. 1988.

[39] D. F. Wong and C. L. Liu, “A new algorithm for floorplan design,” in Proc.
Design Automation Conf., Las Vegas, NV, 1986, pp. 101–107.

[40] M. C. Yildiz and P. H. Madden, “Global objectives for standard cell
placement,” in Proc. 11th Great-Lakes Symp. VLSI, West Lafayette, IN,
2001, pp. 68–72.

1732 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2006

[41] M. C. Yildiz and P. H. Madden, “Improved cut sequences for partitioning-
based placement,” in Proc. Design Automation Conf., Las Vegas, NV,
2001, pp. 776–779.

[42] F. Y. Young and D. F. Wong, “How good are slicing floorplans?” in Proc.
Int. Symp. Physical Design, Napa Valley, CA, 1997, pp. 144–149.

Jason Cong (S’88–M’90–SM’96–F’00) received the
B.S. degree in computer science from Peking Univer-
sity, China, in 1985, and the M.S. and Ph.D. degrees
in computer science from the University of Illinois,
Urbana–Champaign, in 1987 and 1990, respectively.

Currently, he is a Professor and Codirector of the
very large scale integration (VLSI) CAD Laboratory
in the Computer Science Department, University of
California, Los Angeles. His research interests in-
clude synthesis and layout of VLSI circuits, highly
scalable VLSI design algorithms and tools, design

and synthesis of programmable circuits and systems, and system-on-a-chip
(SoC) designs. He has published over 220 research papers and led over 30
research projects.

Dr. Cong served on technical program committees and executive commit-
tees of many professional conferences, such as the Digital/Analog Converter
(DAC) International Conference on Computer Aided Design (ICCAD) and the
International Symposium on Circuits and Systems (ISCAS), including serving
as the General Chair of the 1993 ACM/SIGDA Physical Design Workshop,
the Program Chair and General Chair of the 1997 and 1998 International
Symposiums on field programmable gate arrays (FPGAs), respectively, the
Program Cochair of the 1999 International Symposium on Low-Power Elec-
tronics and Designs, and the Program Cochair and General Cochair of the
Asia and South Pacific Design Automation Conference (ASPDAC)’2003 and
2005. He served as an Associate Editor for IEEE TRANSACTIONS ON VERY

LARGE SCALE INTEGRATION SYSTEMS, from 1999 to 2002, and has been
an Associate Editor of ACM Transaction on Design Automation of Electronic
Systems since 1995. He served on the ACM SIGDA Advisory Board from 1993
to 1999. He served on the Board of Governors of the IEEE Circuits and Systems
Society from 2001 to 2004. He received the Best Graduate Award from the
Peking University, in 1985, and the Ross J. Martin Award for Excellence in
Research from the University of Illinois, in 1989. He received the NSF Young
Investigator Award, in 1993, the Northrop Outstanding Junior Faculty Research
Award from the University of California Los Angeles (UCLA), in 1993, and
the ACM/SIGDA Meritorious Service Award, in 1998. He has received three
best paper awards, including the 1995 IEEE TRANSACTIONS ON COMPUTER-
AIDED DESIGN Best Paper Award, the 2005 International Symposium on
Physical Design Best Paper Award, and the 2005 ACM Transaction on Design
Automation of Electronic Systems Best Paper Award. He also received the
Semiconductor Research Corporation (SRC) Inventor Recognition Award and
the SRC Technical Excellence Award, both in 2000.

Michail Romesis (S’01–M’04) received the B.S.
degree in electrical and computer engineering from
the National Technical University of Athens, Athen
Greece, in 1999, and the M.S. and Ph.D. degrees in
computer science from the University of California,
Los Angeles, in 2001 and 2005, respectively.

He is currently working at Magma Design Au-
tomation, Eindhoven, The Netherlands. His re-
search interests include very large-scale integration
computer-aided design algorithms for placement and
floorplanning.

Dr. Romesis received the Dimitris Chorafas Foundation Award, in 2003.

Joseph R. Shinnerl (M’00) is a Lecturer and Assis-
tant Researcher in the Department of Computer Sci-
ence, University of California, Los Angeles (UCLA).
His interests include multiscale optimization and
interior-point methods for linear and nonlinear pro-
gramming. Since 1998, he has worked with Tony
Chan the UCLA Mathematics Department, and Jason
Cong the UCLA Computer Science Department on
multiscale algorithms for large-scale circuit place-
ment, including the mPL placement package. He is
Coeditor of the book “Multiscale Optimization in
VLSICAD.”

