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Abstract 

 
With the rapid progress of the image processing software, the image forgery can leave no visual clues on the 

tampered regions and make us unable to authenticate the image. In general, the image forgery technologies 

often utilizes the scaling, rotation or skewing operations to tamper some regions in the image, in which the 

resampling and interpolation processes are often demanded. By observing the detectable periodic distribution 

properties generated from the resampling and interpolation processes, we propose a novel method based on 

the intrinsic properties of resampling scheme to detect the tampered regions. The proposed method applies 

the pre-calculated resampling weighting table to detect the periodic properties of prediction error distribution. 

The experimental results show that the proposed method outperforms the conventional methods in terms of 

efficiency and accuracy. 
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1. Introduction 

 
In recent years, with the rapid progress of image proc-

essing software, it becomes a great challenge to verify 

whether the digital image is tampered or not because the 

image processing software can create a sophisticated 

digital forgery and leave no visual clues on the tampered 

regions. For example, the Liberty Times newspaper in 

January 2008 (newspaper in Taiwan) published a photo-

graph shown in Figure 1(b) in which the picture “Miss 

Wang” had been removed intentionally.  

In general, the digital forgery detection methods can 

be roughly categorized into the active [1-4] and passive 

methods [5-16]. In the active methods [1-4], the digital 

watermarking or signatures are hid in the image for the 

purpose of authentication [1-4]. In addition, the embed-

ded watermarks need to be robust enough to resist the 

various kinds of image attacks. On the contrary, the pas-

sive approaches [5-17] do not need any prior information 

for the forgery detection and can be further categorized 

into the methods of detecting copy-pasted regions, defo-

cus blur edges, resampling, sensor noise pattern, differ-

ent lighting conditions and block artifact inconsistency.  

In [5], the author provided a method to identify the 

digital forgery regions that are copied and pasted from  

the same image by applying the method of block match-

ing. However, the matching process can fail if the tam-

pered region is cropped from different images. Zhou et al. 

[6] proposed a method to identify the digital forgeries by 

using the edge preserving smoothing filter in which the 

manual blur edge is discriminated from the defocus blur 

edge and the erosion operation is applied for detecting 

the manual blur edge. Another typical method developed 

by Popescu [7] detected the digital forgeries by tracing 

the characteristic of the resampled signals. The major 

concept of this method is to apply the EM (expectation/ 

maximization) algorithm to acquire the resampling coef-

ficients and then calculate the resampling probability 

map. Based on the spectral analysis of the probability 

map, the magnitude peak can be used to identify the for-

gery patterns. Moreover, Popescu [8] utilized the specific 

interpolation coefficients of color filter array for each 

brand of digital camera to identify the digital forgery. 

Kirchner [9] proposed a more efficient method by di-

rectly applying the converged resampling coefficients to 

detect the tempered regions. As same as tracing the pe-

riodic characteristic of the resampled signals, Prasad [10] 

and Mahdian [11,12] proposed their method to extract 

the periodical property of the resampled signals based on 

analyzing the periodic characteristic of the covariance of 

the second order derivatives. In [13,14], Lukáš et al.  
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Figure 1. (a) The original image; (b) The tampered image. 

 

proposed a method that utilize the imaging sensor noise 

as a unique stochastic characteristic to detect the forger-

ies. Johnson et al. [15] discovered that the light condition 

of the tampered area will be inconsistent to the original 

image. For the compressed image, Ye et al. [16] pro-

posed a method based on the different block artifacts 

caused by different quantization tables. 

Generally, each kind of digital forgery detection me- 

thod can solve only one kind of forgery pattern. In this 

study, we only address on the detection of resampling 

forgery. Two related researches addressed on the detec-

tion of resampling forgery are the methods proposed by 

Popescu [7] and Mahdian [11]. However, there exist two 

major drawbacks in the above-mentioned algorithms. For 

the Popescu’s method [7], high computation cost in the 

iterative computing procedure is required. It takes almost 

5 minutes to generate the probability map for the image 

with resolution 512 × 512 pixels. For the method pro-

posed by Mahdian [11], we found that the derivative 

kernel used in [11] will destroy the periodicity of the 

correlation function at the high texture regions. Hence, in 

this study, we try to investigate and analyze the intrinsic 

properties of resampling scheme and develop a new 

more efficient algorithm based on the intrinsic properties 

of resampling. 

Based on the periodical property that the original val-

ues can be selected from the resampling process, some of 

the reconstructed values would exactly overlap the 

original values in resampled signal and then the error 

between the predicted value and the resampled value 

would be very small. By analyzing the prediction error 

distribution generated by the weighting tables from dif-

ferent resampling rates, we can detect the digital forger-

ies. To enhance the periodical property, the projection 

operation is used for creating one-dimensional prominent 

periodical patterns. In addition, both of the vertical and 

horizontal predicting error variations are considered si-

multaneously. 

The rest of this paper is organized as follows. In Sec-

tion 2, two typical forgery detection methods are de-

scribed. In Section 3, a new forgery detection method 

based on the intrinsic properties of resampling is pro-

posed, which can detect the tampered regions more effi-

ciently. In Section 4, we present the efficiency and accu-

racy analyses among the proposed method and other ap-

proaches. Finally, we summarize the contributions and 

future works in Section 5. 

 

2. Related Works 

 
In this section, two typical forgery detection methods for 

the resampling forgery techniques are introduced. These 

methods detect the forgery by tracing the interpolation 

clues of resampled signal 

 

2.1. The Popescu’s Method 

 
A well known forgery detection method proposed by 

Popescu [7] assume that the interpolated samples are the 

linear combination of their neighboring pixels and try to 

train a set of resampling coefficients to estimate the 

probability map. In this method, a digital sample can be 

categorized into two models: M1 and M2. M1 denotes the 

model that the sample is correlated to their neighbors; 

while M2 denotes that the sample isn’t correlated to its 

neighbors. The resampling coefficients can be acquired 

by the EM algorithm. In the E-step, the probability for 

M1 model for every sample is calculated. In the M-step, 

the specific correlation coefficients are estimated and 

updated continuously. The detailed description of the 

forgery detection algorithm is described in the sequel. 

 

2.1.1. E-Step 

The conditional probability for sample y [i] belonging to 

M1 model is calculated by the following formula. 
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2.1.2. M-Step 

Minimize the quadratic error function defined in Equa-

tion (2) by updating the correlation coefficients   it-

eratively. 
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where       1Pri y i M y   i .  

After applying the Popescu’s method to the image, we 

can obtain a probability map. The peak ratio of fre-

quency response of the probability map can be used to 

identify the digital forgery. Figure 2 illustrates that the 

peaks of frequency response exist in the tampered image. 

On the contrary, no peaks exist in the original image 

shown in Figure 2(a). 

 

2.2. The Mahdian’s Method 

 
Another method proposed by Mahdian and Saic [11] de- 

monstrates that the interpolation operation can exhibit 

periodicity in their derivative distributions. To emphasize 

the periodical property, they employ the radon transfor-

mation to project the derivatives along a certain orienta-

tion. The radon transformation is defined as: 

 

 

Figure 2. The frequency response of the probability maps 

generated from Popescu’s method for the original image, 

resampled images with up-sampling rate 10% and 20% 

respectively. 
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L
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where, b (x, y) denotes the pixel in the block with size of 

R × R and D2{*} denotes the derivative kernel of order 2. 

The radon transform along angle   (0 ~ 179°) is de-

fined in Equation (4). 
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After projecting all the derivatives to one direction and 

forming 1-D projection vectors, the autocovariance func-

tion can be used to emphasize the periodicity and defined 

as: 

      
i

R k i k i
                 (5) 

Then, the Fourier transformation of R


 are also 

computed to identify the periodic peaks which can indi-

cate the existing of digital forgery. The simulation results 

are shown in Figure 3. It shows that the resampled im-

age can have strong peaks in the frequency response of 

the derivative covariance. 

 

3. Forgery Detection Using the Resampling 

Intrinsic Properties 

 
There exist two major drawbacks in the above-mentioned 

algorithms. For the Popescu’s method [7], high computa-

tion cost in the iterative computing procedure is required. 

It takes almost 5 minutes to generate the probability map 

for an image with resolution 512 × 512 pixels. For the 

method proposed by Mahdian [11], we found that the 

derivative kernel used in [11] can reduce the periodicity 

of the correlation function at the high texture region. 

Hence, in this study we try to investigate and analyze the 

intrinsic properties of resampling process and develop a 

new more efficient algorithm. The system flowchart is 

shown in Figure 4 and the detailed function for each 

block will be described in the following subsections. 

 

3.1. Intrinsic Properties of Resampled Signal 

 
In this section, we firstly introduce the procedures of 

general resampling process. The up-sampling process is 

illustrated in Figure 5(a) and the original values are de-

noted as red bars. Figure 5(b) shows that interpolation 

operation fills the empty points with the linear combina-

tion of the adjacent signals’ values which are denoted as 

yellow bars. Finally, the samples selected for decimation 

process which are denoted as blue bars are shown in 

Figure 5(c). Through the observation of the resampling 

process, it gives us an important clue to design a new  
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(a)                           (b) 
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(d) 

 

 
(e) 

 
(f) 

 

 
(g) 

 

 
(h) 

Figure 3. (a) The original image; (b) Resampled image with 

up-sample rate 20%; (c) The magnitudes of row-based de-

rivative projection for   = 90o of (a); (d) The magnitudes 

of row-based derivative projection for  = 90o of (b); (e) 

The auto-covariance of (c); (f) The auto-covariance of (d); 

(g) The frequency response of (e); (h) The frequency re-

sponse of (f). 



 

forgery detection algorithm, i.e., the original value will 

appear periodically in the resampling process. According 

to this property, the new detection scheme can be devel-

oped that will be illustrated in the Subsection 3.2. 
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3.2. Periodicity of the Prediction Error 

 
Every resampled value denoted as blue bar in Figure 5 

can be approximated by the linear combinations of the 

adjacent original values denoted as red bar with different 

weights according to their positions, i.e., the weighting in 

the linear interpolation algorithm is propositional to the 

distance to their neighbors. Here, we pre-calculate the 

weighing table (shown in Table 1) for each resampling 

rates. If the resampling rate is known, then the original 

values can be approximated by the linear combination of 

the interpolated values. Based on the periodical property 

of the original values selected from resampling, some of 

the approximated values would exactly overlap the ori- 

ginal values in resampled signal (see the green bar in 

Figure 6). Ideally, the error between the predicted value 

and the resampled value would be very small at the posi-

tion where the original value is resampled (the green bar 

in Figure 6). Moreover, the variation of the prediction 

error will distribute periodically. The weighting table WT 

[i], i = 1, 2,…, N, should be calculated in advance for  

 

Input image

Vertical resampling 

rate predictiont

Horizontal 

resampling rate 

prediction

Prediction error 

variation analysis

Prediction error 

variation analysis

DCT DCT

Peak searching <  threshold

>  threshold

Tampered Image 

Original image

 

Figure 4. Flowchart of the proposed forgery detection sys-

tem. 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 5. An example for illustrating the intrinsic property 

of resampled signal. The scaling factor used here is 6/5. (a) 

The up-sampling for the original values (red bars); (b) Lin-

ear interpolation denoted as yellow bars; (c) Down sam-

pling of signal in (b). The resampled signal is denoted as 

blue bars. The blue bars labeled the white node denote that 

the original values are chosen. 

 

 

Figure 6. The values (red bar) could be predicted by the 

resampled values (blue bar). After a certain periodical time 

interval, the predicted value will overlap the original value 

denoted as green bar. 

 
Table 1. Weighting table for resampling rate 6/5. 

 WTL [i] WTR [i] 

1 1/6 5/6 

2 2/6 4/6 

3 3/6 3/6 

4 4/6 2/6 

5 5/6 1/6 

 

each resampling rate. The prediction process is described 

in Figure 6. 

In Figure 6, the interpolated values can be computed 

as: 

   i 1 1     1i L i RB R WT i R WT i            (6) 
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Then, the predicted resampling values can be comput- 

ed as: 
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Finally, the prediction error within the certain sliding 

window can be computed as: 

1Prediction error N mB pre            (8) 

For the case of resampling rate 120%, the difference 

between pre5 and B7 will be very small. When the sliding 

window for calculating the sample prediction is moving 

(shown in Figure 7), the prediction error will increase 

and then decrease to the minimum value until the sliding 

window moves to the next periodical position (B14, 

B21…). Such a periodical property makes the sequence of 

prediction error distribute periodically shown in Figure 8. 

In order to enhance this property, the projection opera-

tion is also performed for every row and column (two 

directions are considered separately) before we utilize 

the frequency analysis to detect the forgery patterns 

(peaks in frequency response). If the test samples are not 

resampled or the wrong weighting table is selected, the 

distribution of prediction error would be irregular. 

 

 
 

 
 

 

Figure 7. The sliding window for calculating the sample 

prediction using the pre-calculated weighting table. 

   
(a)                           (b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 
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(f) 

Figure 8. (a) The original image; (b) Resampled image with 

up-sampled rate 10%; (c) The magnitudes of row-based 

prediction error variation projection of (a); (d) The magni-

tudes of row-based prediction error variation projection of 

(b); (e) The frequency response of (c); (f) The frequency 

response (d). 

 

To develop an automatic forgery detection method, 

there are two main criteria should be considered. The 

first one is the position where the peak occurs and the 

second one is the peak ratio. According to the different 

weighting tables (different resampling rate) for the for-

gery detection and the specific periodical property for 

each resampling rate, the expected position where the 

peak occurs could be forecasted. Then, we can match the 

peak position to the forecasted position where the spe-

cific resampling rate generates for identifying the exis-

tence of digital forgery. If the ratio is larger than a speci-

fied threshold, we can identify that existence of digital 

forgery. Finally, the flowchart of the proposed system is 

shown in Figure 9. To detect the tampered region, the 

image is scanned from left-top to right-bottom with dif-

ferent block sizes. In each block, the proposed method is 

applied to detect the tampered regions. 

 

4. Experimental Results 

 
In this section, the efficiency and accuracy for Popescu’d 

method [7], Mahdian’s method [11], and the proposed 

method are analyzed. The experimental database is con-

structed with 160 gray level images with resolution 512 

× 512 and each image is partial tampered in BMP format. 

The image tampering is based on the resampling process 

with the different bi-linear sampling rates: 105%, 110%, 

120% and 125%. The forgery detections are performed 

by scanning the image with the block size of 128 × 128 

pixels. 

Before analyzing the accuracy of forgery detection, we 

firstly describe the detection rules for the Popescu’s [7], 

Mahdian’s [11], and our methods. Here, the forgery de-

tection of Popescu’s and Mahdian’s methods is deter-  

 

Figure 9. The flowchart of the proposed method. 

 

mined by evaluating whether the ratio of peak-to-average 

frequency response is larger than a predefined threshold 

value or not. The ratio of peak-to-average frequency re-

sponse is defined as: 

maximum
sec

average

Pop u Mahdian

magnitude
R R

magnitude
   

For our method, the forgery detection is determined by 

evaluating whether the ratio of forecasted peak-to-average 

frequency response is larger than a predefined threshold 

value or not. The ratio of forecasted peak-to-average 

frequency response is defined as: 

forecasted position

average

our

magnitude
R

magnitude
  

The resampled image with rate 120% shown in Figure 

10(a) is used as the tampered image for analyzing the 

detection accuracy for the three methods. Figure 10(b) 

shows the probability map produced by the Popescu’s 

method and Figure 10(c) shows the frequency response 

of the probability map. Figure 11(a) shows the radon 

transformation of the derivative along horizontal direc-

Copyright © 2010 SciRes.                                                                                   JIS 



 
18 C.-C. LIEN  ET  AL. 

tion generated by Mahdian’s method and Figure 11(b) 

shows its auto-covariance. Figure 11(c) shows the fre-

quency response of the auto-covariance values. Based on 

the proposed method, the prediction error generated by 

the novel algorithm is shown in Figure 12(a). Figure 

12(b) presents the frequency response of the prediction 

error. An obvious drawback of the Mahdian’s method is 

that the weak periodical patterns occur at the high texture 

regions shown in Figure 11(c). The accuracy analyses of 

forgery detections for different resampling rates are ana-

lyzed in Table 2. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 10. (a) The tampered image; (b) The probability 

map generated by the Popescu’s method; (c) The frequency 

response of (b). 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 11. (a) The radon transformation output of Figure 

13 by the Mahdian’s method; (b) The autocovariance of (a); 

(c) The frequency response of (b). 

 

The ROC curves with different up-sampling rates for 

Popescu’s, Mahdian’s and our methods are shown in 

Figure 13. In this Figure, the detection accuracy of 

Popescu’s method is the highest one and the detection 

accuracy of our method is close to the Popescu’s curve. 

However, our method is the fastest one that will be men-

tioned later. The detection accuracy of Mahdian’s me- 

thod is the lowest because the detection accuracy is af-

fected by the high texture regions.  
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(a)                                                         (b) 

Figure 12. (a) The prediction error of the tampered image shown in Figure 10, which is generated by the proposed method; (b) 

The frequency response of (a). 

 
Table 2. The accuracy analysis for the methods of our, Popescu’s and Mahdian’s with 40 resampled images for different 

rates. 

 Popescu’s method Our method Mahdian’s method 

Up-sampling 5% 10% 20% 25% 5% 10% 20% 25% 5% 10% 20% 25% 

Positive 40 40 40 40 40 40 40 40 40 40 40 40 

Negative 40 40 40 40 40 40 40 40 40 40 40 40 

True positive 40 39 40 40 38 39 40 40 21 22 37 37 

True negative 40 40 40 40 35 37 38 38 25 33 28 30 

Accuracy 100% 98.7% 100% 100% 91.2% 95% 97.5% 97.5% 57.5% 68.7% 81.2% 83.7%

 

      
(a)                                                         (b) 

 

      
(c)                                                         (d) 

Figure 13. The ROC curves of (a) Up-sampling 5%; (b) Up-sampling 10%; (c) Up-sampling 20%; (d) Up-sampling 25%. 
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In addition, we compare the efficiency among Pope-

scu’s [7], Mahdian’s [11] and our methods with the PC 

of 1.8 GHz. The efficiency analysis is shown in Figure 

14. Here, we perform the efficiency analysis from block 

size 64 × 64 to 512 × 512 and assume there are 21 

weighting tables for 21 resampling rates used in [7]. Be-

cause the iterative EM algorithm is very time-consuming, 

the efficiency of Popescu’s method is the lowest. On the 

contrary, the highest efficiency is presented in Mahdian’s 

method because the operations in his method are very 

simple. It’s worthy to conclude that detection accuracy 

and efficiency of our method can approach both of the 

benefits of Popescu’s and Mahdian’s methods. 

Figures 15-16 show the detection results of the pro-  

 

Figure 14. Efficiency analysis. 

 

        
(a)                                              (b) 

 

        

(c)                                              (d) 
 

 
(e) 

Figure 15. (a) Original image; (b) Image with up-sample rate 5%; (c) Forgery image composed from (a), (b); (d) Detection 

result with 64 × 64 block size; (e) Detection result with 128 × 128 block size. 
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(a)                                                       (b) 

 

       
(c)                                                       (d) 

Figure 16. (a) Original image; (b) Forgery image composed from up-sample (a) 10% and put the bottle near beside; (c) De-

tection result with 64 × 64 block size; (d) Detection result with 128 × 128 block size. 

 

-posed method for different resampling rates with two 

block sizes. In Figure 15, the man’s head in Figure 15(b) 

is cropped and replaced the head region in Figure 15(a) 

to synthesize the forgery image shown in Figure 15(c). 

Figure 15(d) and Figure 15(e) show the detection result 

with 64 × 64 and 128 × 128 block sizes. Figure 16(a) 

shows an original bottle image and Figure 16(b) shows 

that a resized bottle is put on the left side of the tampered 

image. Figures 16(c) and 16(d) show the detection re-

sults with different block sizes. Here, we observe that the 

detection accuracy for the smaller block size is lower 

than the accuracy with larger block size because more 

periodical patterns can be collected in larger blocks. 

 

5. Conclusions 

 
In this paper, we propose a novel method based on the 

intrinsic properties of resampling scheme to detect the 

forgery regions with the pre-calculated resampling wei- 

ghting tables and the detecting of periodic patterns for 

the vertical and horizontal prediction error. In Popescu’s 

method, high accuracy can be obtained with high com-

putation cost. On the contrary, in Mahdian’s method, the 

detecting accuracy can be affected on the high texture 

regions. The detection accuracy and efficiency of our 

method can approach both of the benefits of Popescu’s 

and Mahdian’s methods. The detection accuracy of our 

method is about 95% and the time for detecting a 512 × 

512 image needs only 50 seconds. 
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