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Abstract

We present a method for the sparse greedy
approximation of Bayesian Gaussian process
regression, featuring a novel heuristic for very
fast forward selection. Qur method is es-
sentially as fast as an equivalent one which
selects the “support” patterns at random,
yet it can outperform random selection on
hard curve fitting tasks. More importantly,
it leads to a sufficiently stable approximation
of the log marginal likelihood of the train-
ing data, which can be optimised to adjust
a large number of hyperparameters automat-
ically. We demonstrate the model selection
capabilities of the algorithm in a range of
experiments. In line with the development
of our method, we present a simple view on
sparse approximations for GP models and
their underlying assumptions and show rela-
tions to other methods.

1 Introduction

Gaussian process (GP) models are powerful non-
parametric tools for Bayesian supervised learning. In
comparison with architectures such as multi-layer per-
ceptrons, they are conceptually simpler to understand
and handle in practice. In contrast to other kernel
machines such as support vector machines (e.g., Vap-
nik, 1995), GPs are probabilistic models, which means
that they yield “error bars” on predictions and allow
standard Bayesian approaches to model selection to
be used. A more widespread use has probably been
hindered by their unfavourable scaling: O(n®) time,
O(n?) memory for training, and at least O(n) time for
prediction on a test point, where n is the number of
training points. A range of sparse GP inference ap-
proximations have addressed this problem (see Smola
and Bartlett, 2001, Williams and Seeger, 2001, Csaté
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and Opper, 2002, Tresp, 2000, Tipping, 2001). While
these schemes are quite different, a common theme is
the concentration of efforts on a subset of size d of the
full dataset, referred to as active set I in this paper.
This allows for predictions in time O(d) or O(d?), and
typically leads to a more favourable training scaling as
well, such as O(nd?) time, O(nd) memory. Perhaps
the most crucial step in these sparse methods is the se-
lection of I, for which strategies like exhaustive search
are of course out of the question. One may simply
select I at random, yet several experimental studies
(e.g., Lawrence et al., 2002) show that this can lead
to poor results. Greedy strategies which include new
points one at a time into I, selecting them as maxi-
mizers of some heuristic amongst all points not in I,
are promising tractable alternatives.

The method proposed here is closely related to the
sparse batch ADATAP method of Csaté et al. (2002).
The latter resembles an on-line scheme, in that the
training data is processed in random order, and up-
dates of I and the parameters are done sequentially.
While this method does not rely on selection heuristics,
it typically requires several passes over the data and
exhibits some dynamics w.r.t. I, which may lead to
instabilities. We focus on greedy forward selection in-
stead, advocating the use of cheap selection heuristics
(in contrast to other greedy proposals such as, Smola
and Bartlett, 2001). These allow us to do full greedy
searches for all inclusions into I, yet ending up with a
scheme which is essentially as fast as using random se-
lections. We also show how hyperparameter adaption
can be done by maximizing an approximation to the
marginal likelihood of the data.

The structure of the paper is as follows. In the remain-
der of this section we introduce the Gaussian process
regression (GPR) setting. In Section 2, we describe
our sparse approximation to GPR, show how an ac-
tive set can be selected efficiently and how hyperpa-
rameters can be adjusted by maximizing the marginal
likelihood. Relations to other sparse approximations



are clarified in Section 3. Experimental results are
presented in Section 4.

Vectors g = (9;); and matrices G = (g; ;)i,; are bold-
face!. If I,J are sets of indices, we denote the cor-
responding sub-matrix of G € R»? by G ;. We
abbreviate G11..4 to G1., Gy (; to Grj, G to
G1, Gr1,...q1\7 by G\, etc. The Gaussian density
with mean m and covariance matrix ¥ is denoted by
N(|m,X).

1.1 Gaussian Process Regression

In this paper we focus on regression estimation. Given
a sample S = {(wl)yl)a' . 'J(wn7yn)}7 Yi € R7 drawn
independently and identically distributed (i.i.d.) from
an unknown distribution, our goal is to estimate the
conditional distribution P(y|xz) for typical . To
model this situation, we introduce a latent variable
u € R and make the assumption that P(ylu,z) =
P(y|u). Thus, y is a noisy realisation of u, and we
model the noise as P(y|lu) = N(y|u,0?), where o2 is
a hyperparameter. The relationship * — u is a ran-
dom process u(-), which in a Gaussian process (GP)
model is given a GP prior with mean function 0 and
covariance kernel K (-,-), where the latter is typically
defined in terms of further hyperparameters. This
process prior can be understood (and visualised) by
noting that its joint evaluation at a finite number of
input points is a zero-mean Gaussian variable with
the Gram matrix induced by K as covariance ma-
trix. We denote the sequence of latent outputs at
the training points by u = (u(x1),...,u(x,))? € R*
and the corresponding covariance or kernel matrix by
K = (K(wi,wj)),-,j e R, ie., P(u) = N(u|0,K).

If we condition on the hyperparameters, the posterior
process P(uy|z.,S) can be determined analytically.
First,

P(u|S) o« P(u)N(y|u,oI)
« Nu|K(K + o) 'y, 0’ K(K + o*I) "),

furthermore P(us|@«,S) = [ P(usu)P(u|S)du =
N (us|pts, 02), where

Ps = yT(K + 021)_1k*5 k. = (K(zx, )i,
02 = K(zx,,x,) — kT (K + ¢*I)"k,.

The hyperparameters can be adjusted by maximising
the marginal likelihood P(y) = N(y|0, K + ¢*I), or
if priors are placed on the hyperparameters one can
sample from the hyperposterior using MCMC meth-
ods. However, in general these methods have time and

Whenever we use a bold symbol g or G for a vector
or matrix, we denote its components by the corresponding
normal symbols g; and g; ;.

memory requirements which are clearly superlinear in
n, and predictions are at least O(n) per test point.

2 Sparse Gaussian Process Regression

We first introduce in Section 2.1 the likelihood approx-
imation leading to the sparse Gaussian process regres-
sion (GPR) method we are interested in. In Section
2.2 we discuss our method for selecting the active set
I. In Section 2.3 we motivate model selection by opti-
misation of the approximate log marginal likelihood.

2.1 Sparse Likelihood Approximation

Our sparse GPR approximation can be understood as
likelihood approzimation. Let I C {1,...,n} denote
the active set, and write R = {1,...,n} \ I for the
indexes of the remaining points. QOur approximation
is obtained by replacing the likelihood P(y|u) by

Q(y|lur) = N(y|PTur,0’I), Pr = K;'K,.

Here, Pr}r is a matrix which maps uy to the prior con-
ditional mean E[u|uj]. A strong motivation for this
approximation is given by Csaté (2002), showing that
the minimisation of the relative entropy? DI || P(u|y)]
over all distributions of the form «x P(u)R(ur), R
positive and dependent on wuy only, is attained by
R(ur) = Q(y|ur). Note that the choice corresponds to
the following “non-standard” sampling model. In or-
der to generate y, we first sample u; ~ P(u;). While
the full GPR sampling model would continue sampling
upr ~ P(ugl|ur), we require a likelihood term which
does not depend on ug. The conditional distribution
P(ug|ur) has mean it = (P¥uj)g, thus in order to
approximate the full likelihood P(y|u), it seems sen-
sible to use P(y|@) = N(yl|d,o>I), where & = PTu;
(note that @; = uy). Thus, y ~ N(yl|a,0?I). In
the following, instead of dealing with the true pos-
terior P(-|y), we will use an approximation Q(-|y)
obtained by replacing the true likelihood P(y|u) by
Q(y|lur) = N(y|a,0?I). For fixed I of size k, let
K; = LL" be decomposed in Cholesky factors and
let V=L 'K, M =0>I+VV”". The exact
posterior distribution for wy is given by P(usly) «
P(y|ur)P(ur). Replacing P(y|ur) with Q(y|ur) and
carrying out some manipulations we obtain

Qusly) = N(us|[LM 'Vy, o’ LM 'L7).

Below we will frequently omit the conditioning on
y and write Q(-) = Q(-ly). Let M = Ly L}, be
the Cholesky decomposition of M, and define 8 =
L,/ Vy. The predictive distribution at a test point

2 Also known as Kullback-Leibler divergence.



T, is given by Q(u«|y) = N (us|p(zs),0?(z4)) with
/J’(w*) = lﬂ,*ﬁ:
o? (@) = K(@x, 24) = [L]* + 0®|[lar I,

where I, = L™ (K (@4, 2:))icr, I = Lyjl. If only
pu(xy) is required, L_TL;,,T[’] should be precomputed,
after which the mean can be computed in O(d) per
test pattern.

The likelihood approximation defined above has been
considered by a number of authors (e.g., Smola and
Bartlett, 2001, Csaté et al., 2002, Luo and Wahba,
1997), although with different motivations. Lawrence
et al. (2002) use a simpler approximation, leading to
a very efficient method for GP classification.

2.2 Algorithm for Subset Selection

We have to approach three questions:

e How to include a new point into the active set?

e How to construct a selection score for the greedy
selection of inclusion candidates, which can be
evaluated in O(1) per point?

e How to compute a sparse approximation to the
log marginal likelihood and its gradient to do
Bayesian model selection?

We discuss the first two issues here and the third
one in Subsection 2.3. With some hindsight, we de-
fine p = diagV?V, q = diagVIM V. We also
maintain the mean p of the posterior approximation
Q(u). In order to include i ¢ I into I, we have to
update L — L' ¢ RHLAH v 5 V' ¢ RIHL7 p
p', Ly — L), € RiItLd+tL g » B ¢ R+ and
un — p', as shown in Appendix A.1. The time for an
inclusion is dominated by three n-d operations and the
computation of K.;, and we require one n - d buffer
for V.

In Lawrence et al. (2002), the use of greedy selection
heuristics is motivated, of a kind originally proposed
for active learning®, a related yet somewhat harder
problem in which one has to select (amongst a pool of
unlabeled data) points whose labels may prove most
valueable w.r.t. learning progress (e.g., Seung et al.,
1998). The “informativeness” of an input point x;
may be scored by the information gain

D[Q™ (u) [| Q(w)], 1)

3 Active learning is applied to support vector machines
in Tong and Koller (2001), however in a quite restricted
classification context and without underlying probabilistic
model.

where Q"¢ is the posterior approximation after in-
clusion of ¢ into I. To understand this score, imag-
ine encoding samples from Q™% (u). If we switched
our coding scheme from being based on @ to using
the true distribution, the score value would be the
amount of nats per sample point we could save. How-
ever, in order to compute this score we require time
O(dn) and the evaluation of the kernel matrix col-
umn ¢, a scaling which we consider prohibitive in the
context of sparse approximation methods. Note that
other scores could be considered as well, such as the
entropy difference H[Q] — H[Q™*], the expected log
likelihood Eg[log P(yi|u;)] or the value of log Q™" (u)
at its mode, yet all of them suffer from the same un-
favourable scaling. If I' = TU{i} and R' = R\ {i}, we
can obtain an approzimation to the information gain
by simply replacing Q(y|u ) in the definition of Q™*®
by

Nyl (V) "L ur, 0 DN (yilui, 0%) - (2)

(recall that V.,\i is obtained from V' by removing the
i-th column). One can view the @; = (PTur); as
“pseudo-variables”, in which case we simply replace
the “pseudo-site” N (y;|i;,0?) in the likelihood by the
true site N (y;|u;, 0?) (see also Csaté et al., 2002). By
doing so, we ignore that upon proper inclusion, u;
would be coupled with the targets of all remaining
points in the likelihood, not just with y;, yet it is ex-
actly this coupling which causes the high evaluation
costs. It is clear how this method can be generalised
to allow couplings between u; and some of the targets,
although we do not pursue this here for simplicity*.
Now, the information gain (1) can be approximated as

c 1

Ai=—log7— 2 (10g &+ & = K)o~ (ys — i)’

— Ki +2), ki =& (1+2(0/l;)?),
©)

where l; = (K (zi,2:)—pi)'/?, & = ((0/L)* +1—q) "
The rather lengthy derivation can be found in (Seeger,
2002). Note that A; can be evaluated in O(1), given
Di, i, Mi, and requires the evaluation of K(x;,z;)
only. Also note that the replacement of Q(y|ur)
against (2) is used only to compute the A;, i € R.
Once an inclusion candidate has been chosen, it is in-
cluded into I by properly updating the likelihood ap-
proximation to Q(y|ur) (see Appendix A.1).

Our scheme for first-level inference conditioned on the
hyperparameters includes points one at a time into

4For example, it may be acceptable to evaluate row
K ., or a part of it, after which we could retain couplings
corresponding to the u; with the highest prior correlation
with wu;.



I, selecting the next inclusion candidate among all
remaining points in R as the maximizer of the ap-
proximate information gain (3). The final size of the
active set can either be fixed in advance, or we can
use a stopping criterion based on monitoring the aver-
age squared error curve of the successive predictors
on the remaining points in R or on a holdout set.
The former requires the knowledge of the marginals
Q(u;) = N(ujlu;,03), j € R, where 05 = 1—p;+0°g;.

2.3 Adjusting the Hyperparameters

Our likelihood approximation implies the following ap-
proximation to the marginal likelihood:

Q(y) = N(y|0,0°T+V'V). (4)

This can be compared directly to the marginal like-
lihood for the full GP model which is P(y) =
N(yl|0,0%T + K) (see Section 1.1), by noting that
V'V = K [K{'KT,. If ¢ = —logQ(y), then the
(approximate) negative log marginal posterior for hy-
perparameters 6 is ¢(8) —log P(0), and we can try to
choose 8 as (local) minimiser of this criterion (in our
case, @ includes 02 and the kernel parameters). Here,
P(0) is a hyperprior which can be used to confine 8
to a certain range, to enforce sparsity amongst com-
ponents of @, etc. To this end, we have to compute
¢ and its gradient w.r.t. hyperparameters, as stated
in Appendix A.2. We then feed these into a custom
gradient-based optimizer such as Quasi-Newton. A
persistent difficulty in practice is that the criterion ¢
and its gradient will fluctuate with changing I. Tt is
sensible to keep I fixed during line searches and only
reselect it when computing gradients for new search
directions. Because of these fluctuations, we cannot
expect a smooth convergence in general, and assessing
when to stop is a tricky issue not yet resolved com-
pletely.

3 Related Work

The likelihood approximation we employ here has been
used by several authors (e.g., Csat6 et al., 2002, Smola
and Bartlett, 2001). In fact, Csaté et al. (2002) con-
sider GP models with arbitrary non-Gaussian noise
distributions, employing sparse Gaussian approxima-
tions to the intractable posterior P(u|y). The ap-
proximate information gain (and other approximate
criteria) can be derived for this framework in much
the same way as shown here, and experiments with
the resulting general greedy scheme are subject to fu-
ture work, although it is substantially more expen-
sive® than the special case we deal with here. Smola

5This is due to the nature of the Gaussian approxima-
tions, which require the introduction of site parameters for

and Bartlett (2001) and Luo and Wahba (1997) use
greedy forward selection schemes just as we do, al-
though our framework is somewhat different. The ma-
jor difference to our scheme is, however, that they em-
ploy very expensive criteria, having evaluation costs
of O(nd), while we use an O(1) criterion. In fact, in
these schemes, the scoring of a point is about as ex-
pensive as its inclusion into I. While we can score all
remaining points for every inclusion in O(n), Smola
and Bartlett (2001) have to resort to randomizations.
After transforming to & = K~ 'u, they minimise

1
(o) = EQT(UZK +K'K)a -y"Ka

I

1
—(Vy)TLfluz + éu}r(LM*lLT)’luI,

where a is sparse in the sense that g = 0. Note
that m(a) is proportional to —log P(ex|y). For fixed
I, n(a) is proportional® to the negative log posterior
—log P(us|y) and is minimized by the posterior mean
LM™'Vy, the minimum value is 7; = ming 7(a) =
—(1/2)ﬂT,B, where the minimum is over a with ag =
0. Their selection heuristic for a point 7 & I is

1 .
AfB =7 —T7p = 5534—1, I'=Tu {i},

i.e. the decrease that can be obtained in 7(a) by al-
lowing component i in & to become non-zero. 3’ =
(BT Ba441)T is obtained as shown in Appendix A.1.
Since this computation is O(nd), they can only af-
ford to score a fixed number k < n of randomly cho-
sen points from R for each inclusion. Even then, the
overall complexity is now dominated by the criterion
evaluations: O(kd?n), which is about k times the re-
quirements of our method (Smola and Bartlett, 2001,
recommend k = 59). Furthermore, since the random
subsets fluctuate freely over {1,...,n}, one typically
ends up evaluating a large fraction of the full kernel
matrix K, which is problematic if kernel evaluations
are very expensive. QOur scheme requires the evalua-
tion of K. 1 only (if I is the final active set).

Our approximation is also somewhat similar to the
Bayesian committee machine (BCM) of Tresp (2000)
where the information from 7 training points is ab-
sorbed onto a smaller number of points, although in
BCM it is the test points and not a subset of the train-
ing points that are used”. Note that the approxima-
tion is not equivalent to a Bayesian subset of regressors
(SR) model where we put u(x.) = > ;c; K (i, T4)
each of the n training points. These parameters have to be
updated regularly between inclusions, causing substantial
extra costs.

5The normalisation constant depends on the active set
I.

"This is problematic for applications where the test data
is not known at training time.



with a prior ay ~ N(0, K;'). The SR model gives the
same predictive mean but produces different predictive
variances (see Williams et al., 2002, for details), in
fact the predictive process Q(u«|z«,y) is not a Gaus-
sian process (as in our scheme) and can be degenerate.
The idea of approximating the likelihood using a linear
projection from d variables is not restricted to using a
d-subset of u (as has been noted in Smola and Bartlett
(2001), Csat6 and Opper (2002)). If we project into
the d-th Krylow subspace as constructed by a linear
conjugate gradients solver on the matrix K + oI, we
obtain an approximation suggested in Gibbs (1997),
although this is not a sparse approximation, requires
the complete K to be stored in memory and is at least
O(n? d).

4 Experiments

For the experiments presented here, we chose the
datasets kin-40k (10000 training, 30000 test cases, 9
attributes) and pumadyn-32nm (7168 training, 1024
test cases, 33 attributes),® both artificially created
using a robot arm simulator, highly non-linear and
low-noise. We used the squared-exponential kernel
K(z,z') = Cexp(—(1/(29))(z — 2')" W(z — ') +
vy, ¢ € R?, W = diag(w;);, with the hyperpriors em-
ployed by Rasmussen (1996). The components w}l/ 2
determine the typical length-scales of functions from
the prior along the Euclidean coordinate axes in in-
put space, thus by driving w; ~ 0, the correspond-
ing dimension is effectively ignored (automatic rele-
vance determination (ARD), e.g., Rasmussen, 1996).
Where not stated otherwise, experiments are repeated
ten times, and we quote medians (as well as quartiles
in the plots). Predictive accuracy is measured in terms
of average squared error, i.e. (1/2)(y. — p(x.))? aver-
aged over the test set.

4.1 Learning Curves

Here, we compare full GPR against a range of sparse
methods: sparse GPR using our criterion A; (info-
gain; #1); using purely random selection (random;
#2); using the criterion A?Z of Smola and Bartlett
(2001) (smo-bart; #3). Hyperparameters were ad-
justed by maximising their (marginal) log posterior
for full GPR over a random subset of size nrg of the
training set. Figure 1 shows learning curves for kin-
40k, nprs = 2000 (note that each plot contains upper

8kin-40k:  see www.igi.tugraz.at/aschwaig/data.html.
pumadyn-32nm: see www.cs.toronto/~delve. 'We prepro-
cessed both by subtracting off a linear regression fit and
normalizing all attributes to unit variance. Thus, a linear
regression on these tasks would result in averaged squared
errors = 0.5.

and lower quartiles for full GPR as horizontal lines)
and Table 1 gives the corresponding training times.
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Figure 1: Learning curves for sparse GPR on kin-40k.
Left: sparse methods use MS training sets of full GPR,
n = 2000. Right: sparse methods use full training set,
n = 10000. X-axis: Active set size d. Y-axis: Average
squared error. Horizontal lines: quartiles for full GPR,
n = 2000.

Time (secs) for act. set size d
100 200 300 400 500 1000 1250

kin-40k, n = 2000

#1110 2.0 5.0 9.0 13.5 53.5 85.0
#2110 2.0 4.0 7.0 11.0 48.0 76.0
#3170 54.0 110.0 185.0 281.0 1088.0 1714.5

kin-40k, n = 10000

#1150 13.0 255 42.0 625 230.0 352.0
#2130 100 21.0 355 55.0 215.0 338.5
#3/88.0 265.0 530.5 885.0 1327.5 4977.0 7794.5

Table 1: Training time (secs) for methods info-
gain (#1), random (#2), smo-bart (#3).

For small sizes d = |I|, smo-bart outperforms the other
methods, while for larger d, random seems less effec-
tive. We also see (from curves on the right) that sparse
methods on the full training set (n = 10000) can signif-
icantly outperform full GPR on a subset (n = 2000),
even though the former employ sparser expansions
(d = 1000,1250). In this case, the freedom of select-



ing amongst more points outweights the advantage of
using a larger expansion. While random and info-gain
have similar training times, smo-bart is about thirty
times slower (we used selection sets of size k = 30 for
smo-bart), which probably precludes the latter being
used with extensive model selection.

The set pumadyn-32nm has a lot of irrelevant at-
tributes which, in the context of GPR, have to be iden-
tified in order to achieve good performance. Adapting
the hyperparameters for nys = 1024 using full GPR
leads to four attributes being singled out, all other
w; =~ 0. The median of the average squared test errors
is 0.0225.° Note that traditional techniques like cross-
validation are not applicable in this situation, due to
the large number (35) of hyperparameters. Figure 2
shows learning curves for the sparse methods.

i I

I info-gain random

107 I 107
H I H :
ER S —= T
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= 5 == == = =
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Figure 2: Learning curves for sparse GPR on

pumadyn-32nm.

Here, all three methods achieve an accuracy compara-
ble to full GPR after the inclusion of d = 125 of the
n = 7168 training cases, but while the training time
median for full GPR is 1102.5s, info-gain, random and
smo-bart require 3s,2s and 66s respectively. For un-
reasonably small values of d, info-gain exhibits some
fluctuations, leading to a worse performance than ran-
dom.

4.2 Sparse Model Selection

We now try to assess the procedure of maximising the
approximation of the (marginal) hyperposterior to ad-

9To demonstrate the significance of ARD, we ran the
same experiment using the radial basis functions (RBF)
kernel (the squared-exponential kernel with W = wI), re-
sulting in a squared error of 0.4730. However, if only the
four “relevant” attributes are used, full GPR with the RBF
kernel attains a squared error of 0.024.

just 0 and the kernel parameters (see section 2.3). In
a first experiment, we follow the trajectory in hyperpa-
rameter space used by full GPR training (on pumadyn-
32nm, nys = 1024) and compute the corresponding
approximate criterion values for info-gain, random for
different d. Due to the long running times, smo-bart
is not considered here. Figure 3 shows the criterion
curves for info-gain (left) and random (right).

— FulGPR

. - -+ Info-100

2p Info-200 [} 2 Random-200

== Info-300 -'- Random-300
H .

— Full GPR
- -+ Random-100

o 20 40 60 80 100 120 0 20 40 60 80 100 120

Figure 3: Criterion for full GPR and sparse approxi-
mations (evaluated at the same hyperparameters). X-
axis: Iterations.

Along critical parts of the trajectory, the approxima-
tion given by random is fairly poor (for d = 100,200),
while the info-gain approximation seems acceptable.
Note that for both methods, I is re-selected in every
iteration, therefore the poor approximation by random
cannot be attributed to random fluctuations.

In the final experiment, we first trained full GPR on
pumadyn-32nm, using nps = 2048. We then ran
an identical setup,'® however using the sparse ap-
proximate criterion together with info-gain, random
and a variant of the latter, named fized, in which
we select I at random only once and keep it fixed
during the optimisation. We used active set sizes
d = 50,100,200, 500. Only two different profiles were
observed: either, the “relevant” attributes mentioned
above were singled out (ARD) and the squared error
was below 0.03, or the method failed with error close
to 0.5. In fact, random and fized for d = 50,100,200
failed in all runs, and info-gain for d = 50 was suc-
cessful just once. For all other combinations, medians
of average squared error, number of iterations and op-
timisation running time over the successful runs are
given in Table 2 (recall that all experiments are re-
peated ten times).

While model selection based on info-gain was reliable
even for small sizes d = 100,200, the runs for ran-
dom often converged (to high accuracy) to poor spu-

10The initial hyperparameter values were chosen as rec-
ommended in Rasmussen (1996). They are not close to a
useful minimum point for this task (note the sharp initial
drop of the criterion values).
The optimiser was stopped once the relative improvement
and gradient size fell below small thresholds, or after 200
iterations.



Method d # succ. Squared # Iter. MS time
runs error optim. (secs)
full GPR - 10 0.0236 200 22100.5
info-gain 500 | 10 0.0296 200 9079
info-gain 200 | 10 0.0259 177.5  1833.5
info-gain 100 | 9 0.0252 200 836
random 500 | 8 0.0244 95 4412
fixed 500 |9 0.0239 200 9203

Table 2: Comparison of model selection for full and
several sparse GPR methods, dataset pumadyn-32nm,
npms = 2048.

rious minima of the criterion approximation. Even
in the successful runs, flat plateaus are traversed be-
fore a new downwards direction is found (see Figure 4,
left).!! Somewhat surprisingly, info-gain with d = 500
results in larger squared errors than our scheme for
smaller d. In Figure 4, we compare criterion curves
for full GPR and sparse methods using a run in which
all of them were successful. On the right, we plot the
sizes of the largest inverse length scales wjl-/ % in the hy-
perparameter vectors chosen by the different methods
(recall that the positions of these within W were the
same for all methods)

— full GPR
- - - info500

inf0200
- - info100 8
2 — random500

Hl full GPR
Il info500
[ info200
[ info100
Il random500

150 200 1 2 3 4 5

Figure 4: Left: Criterion curves for model selection
optimisations (X-axis: Iterations of optimiser); lower
solid line: full GPR; upper solid line: random (d =
500). Right: Largest values of inverse squared length
scales w; in the selected hyperparameter vector.

Note the dangerously flat plateau in the curve for
random (fized has a very similar curve, not shown
here). As for the suboptimal performance of info-gain
(d = 500), one may suspect overfitting!? behaviour.

1Somewhat surprisingly, random does not behave better
than fized w.r.t. spurious converge (for d = 500, they both
fail in the same run). We would have expected random to
escape spurious minima more readily.

12T general, empirical Bayesian methods such as ours
here can lead to overfitting. If approximations are used,
it is always desirable that by increasing the complexity of
the approximation, we are guaranteed to obtain a closer ap-
proximation of the true criterion. This is the case for cer-
tain variational approximations (if one ignores local min-
ima issues which often plague such methods), but it is not
true for the sparse GP approximations considered here (for

The curve runs below the one for full GPR, and the
concrete wjl-/ > values are significantly larger than the
ones chosen by the latter. Indeed, training full GPR
using the hyperparameters found by random, d = 500,
results in a squared error of 0.0317, suggesting that
the hyperparameters are suboptimal. Such problems
could probably be alleviated by changing the hyper-
priors.

5 Discussion

We have proposed a novel scheme for sparse greedy
approximations of GP regression, featuring a very fast
forward selection criterion motivated by active learn-
ing. The scheme is essentially as fast as selecting the
active set I at random. For fixed, well-selected hyper-
parameter values, small improvements over random se-
lection has been demonstrated for sufficiently large ac-
tive sets, while our scheme is not robust for very small
I.'3 In light of our experiments, a major advantage
of our scheme seems that the greedy selection leads
to a stable approximation of the log marginal hyper-
posterior which can be optimised for model selection,
even if the size of I is a small fraction of the total
training set size only, while for random selection the
same setup frequently fails due to strong fluctuations
in the approximation. In contrast to the well-known
support vector machine, our scheme is a fully prob-
abilistic model from which valid Bayesian confidence
intervals can be obtained, and for which a large num-
ber of hyperparameters can be adjusted automatically,
allowing for example for feature selection via ARD (see
section 4).

In future work, we will apply our scheme to harder re-
gression tasks and explore the effectiveness of stopping
criteria motivated in Subsection 2.2 in order to find
good active set sizes. Furthermore, extensions of our
scheme to settings where Bayesian inference for the full
GP model is not analytically tractable (such as classi-
fication or regression with non-Gaussian noise) will be
considered (note that such an extension has been pro-
posed in Csatdé et al., 2002). Sparse approximations to
criteria like the log marginal hyperposterior could also
be used to speed up exact algorithms such as hybrid
MCMC sampling.
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A  Some Details

A.1 Inclusion of a Point into I

Recall the definitions at the beginning of section
2. The update of a Cholesky factor is standard.
First, (LI)E_’_I,, = LilKI’i =wv; =V.; and [; =
(L"ay1,041 = (K (s, 2;) — p;)*/2. Then, (V')1..4, =
V,andif v = (V)] , then v = I7 (K., - V'v,),
and p' = p+ (v]);. Next, (Ly)ay11..a = Iu =
L,/Vv and Iy; = (Ly)ast,a1 = (02 + vTv —
Ugda)'/?. Finally, w = (L)) 7'V)E =1/ (v -
VTLy ly) and ¢' = q + (w?);.

For the update of u, note that u = VTLX,ITﬁ, thus
m' = m+fa1w, where Bay1 = (8)ay1 = Uy (v y—
BL1,r) is the new component of vector 8’ (note that
'y = (V'y)apr).

A.2 The Negative Log Marginal Likelihood
and its Gradient

Recall the marginal likelihood approximation from
(4). Here, we show how ¢ and its gradient can
be computed, the detailed derivations are given in
(Seeger, 2002). We have (02T + VIV)~! = ¢=2(I —
VIM™'V) and log|o®T + VIV| = log |[M| — 2(n —
d)logo—1. Thus

g

¢ = % (10g|M| + (n—d)logo® + 12 (yTy —,BT,B)>

up to an additive constant. The derivative w.r.t.

log(c0?) is given by

5 A
Wiﬂ) - _%<U2 tr M~ +n—d+ || L/ Bl
(ru-575)).

Define A = oK + KIKf and note that A =
ELE", where L = LLy. Let B, = L L7}V =
A7'K; and by = L ' B. Then, if 6 is one of the
kernel parameters, the derivative of ¢ is given by

% = — %tr (K;1 —02A71) K; +trBFfI'(I,.

. 1 .
— 0% K1.(y —m) + EblTKIbl,

o2

(5)

where K; = (0/00)K;, etc. The computation of

B; dominates the costs, requiring n backsubstitutions
=T

with each of Ly and L . Note that B; may over-

write V', and that in order to compute (5), it is not

necessary to store K ; explicitely.



