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We study the complexity of performing Fourier analysis for the

group SL2(Fq), where Fq is the finite field of q elements. Di-

rect computation of a complete set of Fourier transforms for

a complex-valued function f on SL2(Fq) requires q6 opera-

tions. A similar bound holds for performing Fourier inversion.

Here we show that for both operations this naive upper bound

may be reduced to O(q4 log q), where the implied constant is

universal, depending only on the complexity of the “classical”

fast Fourier transform. The techniques we use depend strongly

on explicit constructions of matrix representations of the group.

Additionally, the ability to construct the matrix representations

permits certain numerical experiments. By quite general meth-

ods, recent work of others has shown that certain families of

Cayley graphs on SL2(Fq) are expanders. However, little is

known about their exact spectra. Computation of the relevant

Fourier transform permits extensive numerical investigations of

the spectra of these Cayley graphs. We explain the associated

calculation and include illustrative figures.

1. INTRODUCTION

Fast Fourier AnalysisWe begin by recalling some de�nitions. Let G bea �nite group and L2(G) the algebra of complex-valued functions on G with respect to convolution.Fix a complete set R of inequivalent irreduciblerepresentations of G. ThenX�2R d2� = jGj ;
where d� is the degree of the representation �.If f 2 L2(G), the Fourier transform of f at �,denoted f̂(�), is the matrixf̂(�) =Xs2G f(s)�(s):cJones and Bartlett Publishers, Inc.1058-6458/92 $0.50 per page
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The (discrete) Fourier transform, or DFT, of f(with respect to R) is the set of matrices ff̂(�)g�2R.The Fourier transform of f determines f via theFourier inversion formulaf(s) = 1jGjX�2R d� tr(f̂(�)�(s�1)):Let T (G) denote the minimal number of opera-tions needed to compute a Fourier transform of f ,with the complete set of representations R and thefunction f given as initial data. Similarly, let I(G)denote the minimal number of operations neededto recover the function f from a Fourier transformff̂(�)g�2R via Fourier inversion.By direct computation, a naive upper bound ofjGj2 is obtained for both T (G) and I(G). In thispaper we examine this computation for the groupG = SL2(K), with K a �nite �eld, and derive fastalgorithms for Fourier analysis for this situation.These algorithms depend on certain explicit con-structions of the matrix representations for thisgroup. The construction of these representationsalso enables us to obtain a wealth of numerical datafor certain interesting Cayley graphs for SL2(K).A remark concerning complexity results is in or-der. Our complexity estimates are given in thelinear computational model, which quickly seemsto be becoming standard in the analysis of gener-alized DFT algorithms [Baum and Clausen 1991;Baum et al. 1991]. That is, computation of a DFTover a �nite group G may be viewed as the evalu-ation of a certain jGj � jGj complex matrix at anarbitrary vector f . If A is any r�t complex matrixand b � 2, the b-linear complexity Lb(A) of A is de-�ned to be the minimal number of linear operations(complex additions, subtractions and scalar multi-plications) needed to compute the product Ax foran arbitrary vector x, where scalar multiplicationis restricted to scalars of absolute value at most b.In this model the b-linear complexity of a group Gis de�ned to be the minimum b-linear complexityover all possible DFTs for G. For comparison andadaptation of related results, our T (G) is in factthe 2-linear complexity of G. Analogously, I(G) isthe minimal 2-linear complexity of a Fourier inver-sion matrix, under the same formulation.There have been several recent advances in thedevelopment of fast algorithms for performing Fou-rier analysis on �nite groups. Of relevance here

are the techniques developed for treating arbitrary�nite groups [Clausen 1989a; Diaconis and Rock-more 1990]. In brief, these algorithms rely on de-riving a recurrence for the computation with re-spect to a subgroup. It is useful to briey reviewthe main idea for speeding the computation of aFourier transform.Let G be a group and H � G a subgroup. Fixa set of coset representatives fs1; : : : ; skg for G=H.If � is a matrix representation of G, we can expandf̂(�) as
f̂(�) = kXi=1Xt2H f(sit)�(sit)

= kXi=1 �(si)Xt2H fi(t)�(t);
where fi 2 L2(H) is de�ned by fi(t) = f(sit).Thus, if �#H denotes the restriction of � to H,we see that the last sum may be rewritten as

f̂(�) = kXi=1 �(si)f̂i(�#H):
In general, �#H need not remain irreducible. As-sume that � � �1 � � � � � �r;where each �i is an irreducible representation of Hand � denotes equivalence of representations. Inthe language of matrices, this direct sum decom-position means that there exists a basis in whichthe restrictions toH of the representations f�ig areblock diagonal, with the matrices for the f�jg onthe diagonal. Such \H-adapted bases" can alwaysbe found. Consequently, the restricted transformsff̂i(�#H)g can be built from the collection of pre-computed transforms ff̂i(�j)g. This allows us towrite the following recurrence for T (G) [Clausen1989a, Theorem 1.1; Diaconis and Rockmore 1990,Theorem 1]:

T (G) � jGjjHjT (H) + jGjjHjX� d�� (1.1)
where � is the exponent of the complexity boundfor matrix multiplication.
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Fourier Analysis for SL2(q)In attempting to apply (1.1) to G = SL2(K) we�nd an obstruction to heightened e�ciency.Let K = Fq be the �nite �eld of q elements,where q is a power of the prime p. We will writeSL2(q) for SL2(Fq), and denote the associated com-plexities as T (q) and I(q).A natural subgroup for restriction is B = B(q),the subgroup of upper triangular matrices. This isa metabelian group; that is, it contains an abeliannormal subgroup U such that the quotient B=Uis abelian. It is known [Clausen 1989b; Rockmore1990a] that for such a group we have
T (B) � O(jBj log jBj):

As will be explained fully in Section 2, the rep-resentations of SL2(q) occur essentially as q irre-ducible representations of degree q. Thus, (1.1)now specializes to
T (q) � jSL2(q)jjBj T (B) + jSL2(q)jjBj pXi=1 d��� O((q + 1) � q3 log q + q � qq�)� O(q4 log q + q�+2):

In most applications � = 3, so the term O(q5),coming from matrix multiplication, dominates.We are able to get around this by �nding cer-tain bases for the representations that allow us toreduce the number of matrix multiplications. Inparticular, we have:
Theorem 1.1. The number T (q) of operations neces-sary to compute a Fourier transform of a functionf 2 L2(SL2(q)) is O(q4 log q).In the proof of this result we will compute an ex-plicit constant for the bound.By general considerations, Baum and Clausenshow that complexity bounds for computation ofthe DFT of a group G in turn give bounds for thecomplexity of Fourier inversion. More precisely, inthe matrix formulation discussed above, computa-tion of Fourier inverses with respect to a given setof irreducible representations of G is \almost" thesame as evaluation of the transpose of the associ-ated DFT matrix at an arbitrary complex vector

[Baum and Clausen 1991, Theorem 1]. In fact, ifA is a given DFT matrix for G, so that A�1 is theassociated Fourier inversion matrix, it follows from[Baum and Clausen 1991, Theorem 3] that
Lb(A�1) � Lb(A) + jGj :

Hence, Theorem 1.1 implies a like upper bound forI(q):
Theorem 1.2. The number I(q) of operations neededto recover a function f 2 L2(SL2(q)) from its Fou-rier transform is O(q4 log q).It is worth pointing out that the relation betweenthe transform and inversion bounds is obtainedby recognizing that the algorithm for computinga Fourier transform is a linear algorithm. Suchan algorithm is realized as a directed acyclic graphwith additions and subtractions labeling the nodes,and scalars (for multiplication) labeling the edges.In this setting, the computation of the transposedmatrix product is essentially given by a linear al-gorithm in which the arrows are reversed [Bshoutyet al. 1988]. In Section 7 we give a more explicit re-alization of the Fourier inversion algorithm, whichstill yields the asserted bound.
Fourier Analysis, Graphs and EigenvaluesThe ability to compute matrix representations canprove to be a great aid in numerical investigationsof Cayley graphs. Let G be a �nite group andS � G a subset of G such that S = S�1. TheCayley graph X = X(G;S) of G with respect toS is the undirected graph with vertex set G andhaving an edge between a and b if and only if as = bfor some (necessarily unique) s 2 S.The adjacency matrix of a graph with m verticesis the m � m matrix (with rows and columns in-dexed by vertices of the graph) whose entries are1 or 0, depending on whether or not there is anedge joining the vertices corresponding to the en-try's row and column. The spectrum of a graphis the spectrum of its adjacency matrix. Variousconnectivity and \network" properties of a graphcan be judged by studying its spectrum. One suchproperty centers on the notion of expansion, whichmeasures the number of neighbors of a vertex sub-set of a graph.
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Definition 1.3. A k-regular graph G = (V;E), withn = jV j vertices and edge set E, is an (n; k; c)-expander if j@Aj � c�1� jAjn � jAjfor every subset A � V , where @A = fy 2 V n A :(y; x) 2 E for some x 2 Ag.Since every k-regular graph is an (n; k; c)-expan-der for some c > 0, this de�nition is intended to beapplied to families of graphs, typically with n!1and k and c held �xed. We refer to [Bien 1989;Lubotzky; Sarnak 1990] for complete descriptionsand references concerning the mathematics of ex-panders. Here we limit ourselves to a brief sum-mary of the known relations between the spectrumof a graph and the expansion coe�cient c. Themost striking of these connections stems from dis-crete analogues of inequalities relating the spec-trum of the Laplacian on a �nite-volume Rieman-nian manifold to its Cheeger constant.Recall that a combinatorial Laplacian may bede�ned on a graph X = (V;E) as follows. Thechoice of an orientation for each edge of the graphgives rise to a natural complex d : L2(V )! L2(E),which may be thought of as the jEj � jV j matrixgiven by
(d)(e;v) = ( 1 if v = (e; f) for some f 2 V ,�1 if v = (f; e) for some f 2 V ,0 otherwise.The combinatorial Laplacian � : L2(V ) ! L2(V )is then realized as the jV j � jV j matrix d�d, and itis a simple matter to show that�f(v) = deg(v)f(v)�Xw2V A(v;w)f(w);where A is the adjacency matrix. In particular,when X is k-regular, which is the only case weshall consider, we have � = kI �A, where I is theidentity matrix.The Cheeger constant h(X) of the graph X isde�ned in analogy with the Riemannian case bysetting h(X) = infA;B�V jE(A;B)jmin(jAj ; jBj) ;where E(A;B) = fe = (x; y) 2 E : x 2 A; y 2 Bgis the set of edges connecting A and B. It is easy

to show that every graph X is an (n; k; h(X)=k)-expander. Conversely, for an (n; k; c)-expander,the inequality h(X) � c=2 holds.The connection with the spectrum comes froma discrete version of Cheeger's inequality for Rie-mannian manifolds [Alon 1983]:
�1(X) � h2(X)2k ;where �1(X) is the smallest nonzero eigenvalue ofthe Laplacian. A partial converse to this discreteCheeger inequality has been proved [Alon and Mil-man 1985]: h(X) � 12�1(X):For k-regular graphs, k is the largest eigenvalueof the adjacency matrix. If we order the eigen-values �i as k = �n > �n�1 � � � � � �1, we have�1 = k��n�1 and �1 � �k, with equality preciselywhen the graph X is bipartite.An additional graph-theoretic invariant is relatedto the low end of the spectrum [Biggs 1974]. Thevertex chromatic number �(X) is bounded belowas a result of the inequality�(x) � 1� k�1 :If we set � = maxi6=n j�ij, graphs with small � rel-ative to k are not only good expanders, but alsohave high chromatic number.Finally, it is worth mentioning that the secondeigenvalue of the adjacency matrix also bounds thediameter of the graph, as a result of the inequality[Chung 1989; Sarnak 1990]

diam(X) � � log(n� 1)log(k=�) � :For more references and a proper discussion of allthese results, see [Bien 1989; Lubotzky; Sarnak1990].It is known that certain families of Cayley graphsfor SL2(q) are expanders. In particular, it is shownin [Lubotzky] that the uniform bound �1(�nH) �316 of Selberg's theorem, where � is a discrete con-gruence subgroup of SL2(R) acting on the hyper-bolic plane H, implies that the Cayley graphsXp = X(SL2(p);G1)



Lafferty and Rockmore: Fast Fourier Analysis for SL2 over a Finite Field and Related Numerical Experiments 119

form a family of expanders, where G1 is the gener-ating setG1 = �� 1 10 1�;� 1 �10 1� ;� 0 1�1 0� ;� 0 �11 0�� :The proof e�ectively transfers the spectral boundon the manifold to a lower bound on the expansioncoe�cient of the graphs. In particular, in the ab-sence of further information on this coe�cient, thevalidity of Selberg's conjecture that �1(�nH) � 14would make these graphs more attractive.The signi�cance of Fourier analysis for the nu-merical study of the spectrum of a Cayley graphlies in the following link. If �S is the character-istic function of the subset S de�ned on G, theadjacency matrix for X(G;S) is precisely the Fou-rier transform of �S at the regular representation ofG. Consequently, the spectrum of X(G;S) is thecollection of eigenvalues that occur in the Fouriertransforms of �S at a complete set of irreduciblerepresentations of G. Since the dimension of anygiven irreducible representation of G cannot ex-ceed jGj1=2, the corresponding numerical analysisis much faster.For example, in the case G = SL2(p), direct nu-merical analysis would require that the eigenval-ues of a single matrix of size p3 be found. Thiswould require O(p9) operations. However, by us-ing the Fourier transforms, we instead determinethe eigenvalues of p matrices of size p, which re-quires only O(p � p3) = O(p4) operations. So, whilefor primes greater than 10 the full adjacency ma-trices are already too large to consider, by workingwith individual Fourier transforms we can considerprimes on the order of 500.When S is not simply an arbitrary subset, butinstead a union of conjugacy classes, the analysissimpli�es further. Still assuming S = S�1, onemay show [Diaconis 1988] that the eigenvalues �iof the adjacency matrix are exactly the averagevalues of the irreducible characters:�i = 1dim �i Xs2S tr �i(s):Using this correspondence, [Lubotzky] uses charac-ter tables to tabulate the eigenvalues and expand-ing properties for SL2(q) and various unions of con-jugacy classes. In considering S to be a union ofconjugacy classes, however, one obtains a family of

k(q)-regular graphs Xq, where k(q) increases withthe size of the graph.In this paper we are interested in Cayley graphsfor SL2(q) with respect to sets of generators, suchas G1, which are of �xed size and not a union ofconjugacy classes. In this situation the full set ofirreducible representations, and not just the char-acters, is ostensibly required in order to obtain thespectrum.In Section 2 we review briey the representationtheory of SL2(K). Section 3 details the algorithmfor e�cient computation of the Fourier transformover SL2(K). The explicit constructions of Sec-tion 3 are then followed by their application to theinvestigation of Cayley graphs for SL2(K) in thenext two sections. In Section 4 we discuss imple-mentation aspects of the experiment, while in Sec-tion 5the numerical results are presented and ex-plained. Section 6 contains some closing remarksand open questions. We postpone the discussion ofFourier inversion and convolution to an appendix(Section 7), so as to not interrupt the ow fromtheory to application in Sections 4 and 5.
2. REPRESENTATION THEORY FOR SL2In what follows, K = Fq will denote the �nite �eldof q elements, where q = pn for some prime p 6=2. Several important subgroups of SL2(q) must bedistinguished. Let U � SL2(q) be the subgroup ofunipotent matrices:

U = �� 1 u0 1� : u 2 K�:
Let T � SL2(q) denote the subgroup of diagonalmatrices: T = ��� 00 ��1� : � 2 K��:
Let B � SL2(q) denote the subgroup of upper tri-angular matrices:

B = ��� u0 ��1� : � 2 K�; u 2 K�:
Note that U is isomorphic to K considered as agroup additively (denoted K+), while T is isomor-phic to the cyclic group K�. Also, U is normal inB; in fact, B is the semidirect product of U by T .
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Lastly, set w = � 0�1 10�. Note that w is of order 4and that w2 = ��1 00 �1� :The theory of the representations of SL2(q) iswell known. They fall into two classes, the prin-cipal series and the discrete series. Discrete se-ries representations are also sometimes called cus-pidal. Essentially, the main di�erence between thetwo classes is that for a discrete series represen-tation � : SL2(q) ! GL(V�) there is no U -�xedvector|that is, no nonzero vector v 2 V� such that�(u)v = v for all u 2 U . If � is a principal seriesrepresentation, there is such a vector. Another wayto say this is that an irreducible representation �of SL2(q) is cuspidal if and only if �#U does notcontain the trivial representation. (If � is a repre-sentation of a group G and H � G is a subgroup,we denote by �#H the representation of H givenby restriction of � to H.)The character table of SL2(q) has been knownfor a long time [Schur 1907; Jordan 1907]. How-ever, the discovery of actual realizations of theserepresentations as group actions on vector spacesis more recent and is generally attributed to Kloo-sterman [1946] and Tanaka [1967]. Our synopsisfollows [Naimark and Stern 1980, 150{160].
Construction of the Principal Series RepresentationsThe principal series representations of SL2(q) areconstructed as induced representations. We recallthat if G is a group, H � G is a subgroup, and� is a representation of H in a vector space V�,a representation of G may be obtained as follows:Let Ind(V�) denote the vector space of functionsf : G! V� such thatf(st) = �(s)f(t) (2.1)for all s 2 H. There is a representation of G onInd(V�) by right translation,(�(g)f)(t) = f(tg):This is called the representation of G induced fromH by �, and is denoted as �"G. Note that the di-mension of the induced representation is [G:H]d�,where d� is the dimension of V�.The principal series representations are obtainedby inducing characters from B to SL2(q). Moreprecisely, the irreducible representations of T are

all one-dimensional, given by characters. If � is agenerator for K�, the characters are de�ned by j(�k) = exp�2�ijkq � 1 �;where j takes all values between 0 and q � 2. Itis easy to check that any  j extends to a one-dimensional representation (or character) of B, de-noted ~ j, by~ j�� k u0 k�1�� =  j(k):Recall that, if A is any abelian group, the set ofcharacters of A is a group isomorphic to A, calledthe dual group to A and denoted by Â. In the caseof K�, two characters are to be singled out: thetrivial character that maps every element to 1 ( 0in the notation above), and the sgn character, theunique nontrivial square root of the trivial charac-ter (sgn =  (q�1)=2). The trivial character is oftendenoted simply as 1.Let � denote ~ "SL2(q), where  is any charac-ter of K�.
Theorem 2.1. Let  1;  2 be characters of K�.(i) Suppose that  2i 6= 1, for i = 1; 2. Then � i isirreducible (of dimension q + 1). Furthermore,� 1 and � 2 are equivalent if and only if  1 =  2or  �11 =  2.(ii) Let  1 = sgn. Then � 1 is equivalent to thedirect sum of two inequivalent irreducible repre-sentations, each of degree 12(q + 1).(iii) �1 is equivalent to the direct sum of the trivialrepresentation of SL2(q) and an irreducible q-dimensional representation of SL2(q).These are all the principal series representations.The explicit construction of the matrix repre-sentations is treated more carefully in Section 3, inconsidering the computation of Fourier transformsat these representations.
Construction of the Discrete Series RepresentationsThe discrete series representations may be realizedin several ways. The method given here is a com-bination of ideas due to Silberger and Piatetski-Shapiro.One way of constructing the discrete series rep-resentations for SL2(q) is to �rst construct the dis-crete-series representations for GL2(q), and then
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take advantage of the fact that the restrictionsof these representations to SL2(q) are mostly ir-reducible. It is then only necessary to pick out asubset of these whose restrictions are inequivalent[Silberger 1969].The following construction of the discrete seriesfor GL2(q) follows [Piatetski-Shapiro 1983].Let L denote the unique quadratic extension ofK. (Being a �nite �eld, K has a unique quadraticextension, given by adjoining the square root of anynonsquare in K. For example, one can adjoin thesquare root of any generator of the cyclic groupK�.) The Galois group of L=K consists of twoelements, the identity map and the Frobenius map,in this case given by raising any given element tothe q-th power. Recall that the norm map N : L!K, given by N(�) = �q+1;is surjective onto K�. The subset C � L� consist-ing of elements of norm 1 is a cyclic subgroup of L�of order q+1. Call a character of L� decomposableif its restriction to C is trivial, that is, if  (c) = 1for all c 2 C. Otherwise, call it nondecomposable.To say it another way, consider the group homo-morphism R : cL� ! Ĉ given by restriction,R( )(c) =  (c)for all c 2 C. Then R is surjective and its kernelequals the set of decomposable characters. Thus,the �ber over each character of C has order q � 1;in particular, there are q � 1 decomposable char-acters, and hence q2 � q nondecomposable charac-ters. In fact, the decomposable characters may beconstructed directly by composing any character ofK� with the norm map.There is a natural correspondence between non-decomposable characters of L� and discrete seriesrepresentations of GL2(q). If � is a nondecompos-able character of L�, let �� denote the correspond-ing discrete series representation of GL2(q), whichwe now construct.Using the Bruhat decomposition of GL2(q),GL2(q) = DUwU `DU;where U is as above andD = �� a 00 b� : ab 6= 0�;

it is enough to de�ne the representation on U , Dand the matrix w, and then to check certain com-patibility conditions.To de�ne the representation, �x some nontrivialcharacter � of K+, as follows: if q = p, set �(j) =e2�ij=p; otherwise, set �(j) = e2�i(tr j)=p, where trdenotes the trace map from K to Fp, the �nite�eld of p elements.Any discrete series representation of GL2(q) canbe realized as a group action of GL2(q) on the vec-tor space V�� of complex-valued functions on K�.Let f : K� ! C be any function in V�� . Set-ting tu = � 10 u1 � and da;b = �a0 0b�, and recalling thatw = � 0�1 10�, de�ne(��(tu)f)(x) = �(xu)f(x); (2.2)(��(da;b)f)(x) = �(b)f(a2x); (2.3)(��(w)f)(x) =Xy �(y�1)j�(xy)f(y); (2.4)
where j�(z) = 1q XN(t)=z�(t+ tq)�(t)
and the sum here is over t 2 L�. Note that t+ tq isjust the trace of t from L to K, and therefore liesin K.Now extend the map to all of GL2(q) by mul-tiplication; that is, de�ne ��(g), for g 2 GL2(q),by expressing g as a product of matrices tu, da;band w, which is always possible. It can be shown[Piatetski-Shapiro 1983, 38{40] that ��(g) does notdepend on the choice of decomposition for g, so thede�nition makes sense.
Theorem 2.2. The representation �� of GL2(q) is ir-reducible. For nondecomposable characters � and� 0, the representations �� and ��0 are equivalentif and only if either � = � 0 or � is equal to thecomposition of � 0 with the nontrivial element ofGal(L=K) (that is, if �(�) = � 0(�q) for all � 2 L).These are all of the discrete series representationsof GL2(q).The relation to the discrete series representa-tions of SL2(q) is as follows.
Theorem 2.3. Let �� be the discrete series repre-sentation of GL2(q) de�ned above and let the samenotation denote its restriction to SL2(q).
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(i) � and � 0 have the same restriction to C if andonly if �� and ��0 are equivalent .(ii) If �2 is not the identity on C, then �� is anirreducible representation of SL2(K).(iii) Suppose � is nondecomposable and �2 is triv-ial on C. Then �� is equivalent to the directsum of two inequivalent irreducible representa-tions of degree 12(q � 1).This constructs all the discrete series representa-tions of SL2(q).Thus, a complete set of discrete series represen-tations for SL2(q) may be given by choosing a set ofcoset representatives forcL�=Ĉ, constructing the as-sociated discrete series representations for GL2(K)(except at the identity coset), and then decompos-ing the discrete series representation correspondingto the nondecomposable character whose square istrivial on C.
3. COMPUTATION OF FOURIER ANALYSISIn this section we give algorithms for performingFourier analysis on SL2(q). The naive upper boundq6 for both T (q) and I(q) is reduced to O(q4 log q),where the implied constant is universal and de-pends only on the complexity of the classical FFT(fast Fourier transform) for abelian groups.
Theorem 3.1. [Baum et al. 1991, Theorem 3] Let Abe any �nite abelian group. ThenT (A) = I(A) � 8 jAj log jAj :In both cases|Fourier transforms and Fourierinversion|the computation may be split into twoparts, one taking place at the principal series andone taking place at the discrete series (compare thetwo subsections of Section 3).The algorithms involve �nding computationallytractable bases for the representations. Along theway, explicit formulas for matrices representing theelements � 10 11� and � 0�1 10� are given. This will per-mit some explicit calculations to be done for inves-tigation of the spectrum of certain Cayley graphson SL2(q) (see Section 4).
Fourier Analysis at the Principal SeriesAs explained in Section 2, the principal series rep-resentations are essentially constructed as inducedrepresentations from the subgroup B. They oc-cur as (i) 12(q � 1) representations of degree q + 1;

(ii) two representations of degree 12(q+1) and (iii)one representation of degree q. Thus, direct com-putation of the Fourier transforms at all of theserepresentations takes(q3�q)( 12(q�1)(q+1)2+2( 12(q+1))2+q2) = O(q6)operations. In this section we show that in factthis may be reduced to O(q4 log q).The key to the savings is the recognition thatthe \standard" basis for an induced representationproves to be computationally useful in this case.Essentially, the computation may be reduced toa computation of Fourier transforms on the sub-group T (of diagonal matrices) where abelian FFTmethods may be used.In actuality, what we consider is the computa-tion of all Fourier transforms f̂(� ), for  2 K̂�.These are reducible only when  = 1 or  = sgn.In both of these cases, � is in fact multiplicity-free, and the change of basis to bring f̂(�) into theappropriate block diagonal form requires at most2(q + 1)3 operations (two matrix multiplications).This does not change the order of the result.Using the notation of Section 2, recall that theprincipal series representations are the induced rep-resentations� : SL2(q)! GL(Ind(V ));where Ind(V ) is the vector space of functions f :SL2(q) ! C satisfying f(bs) =  (b)f(s) for allb 2 B and s 2 SL2(q). Furthermore, SL2(q) actson this space by right translation,(� (s)f)(s0) = f(s0s):
To obtain a matrix realization of this represen-tation, a choice of basis must be made for Ind(V ).By (2.1), any function in Ind(V ) is determinedby its values on a set of coset representatives forBnSL2(q). Fix the coset representatives
: : : ; su = � 0 1�1 �u� ; : : : ; s1 = � 1 00 1� ;where u varies over Fq. The notation comes fromthe natural correspondence between BnSL2(q) andthe projective line over Fq. Thus, let eu, for u 2
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Fq [ f1g, denote the corresponding element ofInd(V ) de�ned by eu(sv) = �u(v), where�u(v) = n 1 if u = v,0 otherwise.We give the basis the ordere�2 ; e�4 ; : : : e�q�3; e�; e�3; : : : ; e0; e1;where � is a �xed generator of K� (in particular,� is not a square in K�).Consider �rst the action of U on the feug. Ingeneral, to simplify the notation, we will sometimeswrite seu instead of � (s)eu, where s 2 SL2(q).A straightforward matrix computation using (2.1)shows that � 1 a0 1� e1 = e1and � 1 a0 1� eu = eu�afor u 6=1.At this point it is important to note the followingfact:
Lemma 3.2. With respect to the ordered basis feugfor Ind(V ), the matrices � (a) for a 2 U are ofthe form 0BB@ 0A(u) ...00 � � � 0 1

1CCA ;
where A(u) is a q� q permutation matrix , that is,a matrix having one 1 in each row and column,and 0's everywhere else. Furthermore, as u variesover K, the entries in A(u) occur in distinct posi-tions, that is, Pu2K A(u) is the q � q matrix with1's everywhere. Lastly , the matrices � (u) are in-dependent of  .Now consider the action of T on this basis. Oncemore, a straightforward matrix computation showsthat �� 00 ��1� e1 =  (�)e1and �� 00 ��1� eu =  (��1)e�2ufor u 6=1.

Lemma 3.3. With respect to the ordered basis feugfor Ind(V ), the matrices � (�j) are of the form
 (��j)

0BBBBB@
C�q � 12 �j 0 0 00 C�q � 12 �j 0 00 0 1 00 0 0  (�2j)

1CCCCCA ;
where, for n a positive integer, C(n) is the n � ncyclic matrix

C(n) =
0BBBB@
0 0 0 � � � 0 11 0 0 � � � 0 00 1 0 � � � 0 0... ... ... . . . ... ...0 0 0 � � � 1 0

1CCCCA :
Lastly, one can show that we1 =  (�1)e0, we0 =e1 and weu =  (u)e�u�1 for u 6= 0;1.To summarize, we have obtained explicit realiza-tions of the principal series representations for thegroup elements � 10 11�, � 10 �10 �, w and w�1.
Theorem 3.4. For f 2 L2(SL2(q)), all Fourier trans-forms f̂(�) at a complete set of principal series rep-resentations � of SL2(q) can be computed in at most8q4 log q + 2q4 + q3 � q2 = O(q4 log q)operations.
Proof. The Bruhat decomposition for SL2(q) givesa decomposition of the computation of f̂(� ) asf̂(� ) = Xs2SL2(q) f(s)� (s)= Xu2K X�2K� Xu02K f(u0�wu)� (u0)� (�wu)= Xu2K X�2K� Xu02K�f�;u(u0)� (u0)�� (�wu);where f�;u 2 L(K) is de�ned byf�;u(u0) = f(u0�wu):Here we make the identi�cationsu 2 K $ � 1 u0 1�� 2 K� $ �� 00 ��1� :
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By Lemma 3.2 the � (u) are permutation ma-trices whose form is independent of  . We obtainthe following consequence:
Lemma 3.5. Let all notation be as above. To com-pute the matrices ff̂�;u0(� #U)g for all � 2 K�,u0 2 K and all  2 K̂�, at most q3 � q2 additionsand no multiplications are needed .
Proof. Using the notation of Lemma 3.2 we write
f̂�;u(� #U) = Xu02K f�;u(u0)

0BB@ 0A(u0) ...00 � � � 0 1
1CCA

= 0BB@ 0f̂�;u(A) ...00 � � � 0 S�;u
1CCA ;

where S�;u = Pu02K f�;u(u0). By Lemma 3.2, theentries of the upper block f̂�;u(A) are just the val-ues f�;u(u0), each value appearing exactly once ineach row and column. Hence the only computa-tions done are the q additions to form S�;u. Re-peated for each � 2 K� and u 2 K, this gives atmost q � q � (q � 1) additions. �We return to the computation of f̂(� ). Since,by Lemma 3.2, the restricted transformsf̂�;u(� #U)(in the basis of choice) are independent of  , wedenote this matrix as �j;u. Then we write
f̂(� ) =Xu2K q�1Xj=0 �j;u� (��j)� (w)� (u):

Thus, we now consider the computation of the in-ner sum q�1Xj=0 �j;u� (��j)
for all  2 K̂�. By Lemma 3.3 we rewrite this as
q�1Xj=0  (��j)�j;u

0BBBBB@
C�q � 12 �j 0 0 00 C�q � 12 �j 0 00 0 1 00 0 0  (�2j)

1CCCCCA :
(3.1)

No multiplications are needed to compute thematrix product M � C(n) for any r � n matrixM . Thus, at most q2 multiplications are neededto rewrite (3.1) as
q�1Xj=0  (�j)

0BBBBB@
Aj;uC�q � 12 �j Bj;uC�q � 12 �j � �Cj;uC�q � 12 �j Dj;uC�q � 12 �j � �� � � �� � � �

1CCCCCA
where the asterisks denote arbitrary complex ma-trices of the appropriate dimension. Note that thesubmatrix

�j;u = 0B@Aj;uC�q � 12 �j Bj;uC�q � 12 �j
Cj;uC�q � 12 �j Dj;uC�q � 12 �j1CA

is again independent of  .If we form the matrix �̂u( ) with entries �̂i;ku ( ),where �i;ku (�j) is the (i; k)-entry of �j;u, we can nowwrite f̂(� ) =Xu2K� �̂u( ) �� �� � (w)� (u):For each i, k and u, it takes at most 8q log q op-erations to compute �̂i;ku ( ) for all  2 K̂�, usingthe abelian FFT. Thus, a total of at most 8q4 log qoperations are needed.Finally, since � has only one nonzero entry ineach row and column, the matrix product �̂u( )takes at most q2 operations to compute. Thus, todo this for all  and u, at most another q4 � q3operations are needed. Finally, since the matrices� (u) are permutation matrices, no multiplicationsare needed in the end. Collecting all terms, we �ndthat at most8q4 log q + q4 + q4 � q3 + q3 + q3 � q2= 8q4 log q + 2q4 + q3 � q2= O(q4 log q)operations are needed to compute all Fourier trans-forms at the principal series representations. Thisconcludes the proof of Theorem 3.4. �
Fourier Analysis at the Discrete SeriesWe now turn to the computation at the discrete se-ries representations. As discussed in Section 2, we
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follow [Silberger 1969] in constructing these rep-resentations as restrictions of discrete series rep-resentations of GL2(K), which can be constructedexplicitly [Piatetski-Shapiro 1983].More precisely (see Section 2), there is a corre-spondence between discrete series representationsfor GL2(K) and nondecomposable characters ofthe unique quadratic extension L of K. We recallthat C � L� denotes the set of elements of norm1 in this extension. If � is any nondecomposablecharacter of L�, we denote by �� the correspond-ing discrete series representation on V�, the vectorspace of complex-valued functions on K�. The ac-tion of SL2(q) by �� is as indicated in (2.2){(2.4).There are many \natural" choices of basis forV�. From a computational point of view, and par-ticularly from the point of view of investigatingexpander properties, an especially simple choice ofbasis is that of the delta functions ex for V�, de�nedby ex(y) = �x;y. We assume some �xed orderingof the ex, say : : : ; e�j ; : : : ; where � generates K�.Then, using (2.2), we obtain���� 10 b1��(ex) = �(bx)ex:This gives a matrix realization as
���� 10 b1�� = 0B@ . . . 0�x(b)0 . . .

1CA ;
where �x(b) = �(xb) for all x 2 K� and � 10 b1� 2 U .In the same way, (2.3) yields�����0 0��1 ��ex = �(��1)e��2x;and (2.4) gives���� 0�1 10��ex(y) =Xz �(z)�1j�(zy)ex(z)= �(x)�1j�(xy)ey:Thus, ��(w) is a circulant matrix, with (x; y)-entry equal to j�(xy) times a diagonal matrix:
���� 0�1 10�� = (j�(xy))x;y0B@ . . . 0�(y)�10 . . .

1CA :

Theorem 3.6. For any f 2 L2(SL2(K)), the Fouriertransforms f̂(�) at all discrete series representa-tions � of SL2(K) can be computed in8 log q(q4+q3+2q2)+3q4+q2(q�1)2 = O(q4 log q)operations.
Proof. As before, we identify u 2 K with � 10 u1 � and� 2 K� with ��0 0��1 �. As in the previous subsec-tion, we �x a generator � of K� and a nontrivialadditive character � of K+, and use the Bruhatdecomposition to writef̂(�) = Xg2SL2(q) f(g)�(g)= Xu2UXt2T Xu02U f(u0twu)�(u0twu) +Xb2B f(b)�(b):(3.2)Thus the sum naturally breaks into two parts, oneover B and one over BwU . Consider �rst the sumover BwU .For any u 2 U and t 2 T , let fu;t be the functionin L2(U) de�ned by fu;t(u0) = f(u0twu). Then thesum over BwU equals Pu2UPt2T Q(u; t), whereQ(u; t) = �Xu02U fu;t(u0)�(u0)��(t)�(w)�(u)

= Xu02U
0BB@ . . . 0fu;t(u0)�x(u0)0 . . .

1CCA �(t)�(w)�(u)
= 0BB@ . . . 0f̂u;t(�x)0 . . .

1CCA �(t)�(w)�(u):
For any �xed u 2 U and t 2 T , the Fourier trans-forms f̂u;t(�x) for all x 2 K� can be computed inat most 8q log q operations using the abelian FFT.Thus, at most 8q3 log q operations are needed tocompute all the inner diagonal matrices, which areindependent of the discrete series representation �.Let F (u; t) denote the diagonal matrix0B@ . . . 0f̂u;t(�x)0 . . .

1CA :
Proceeding directly, note that the matrices �(t)are generalized permutation matrices, that is, each
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row and column contains exactly one nonzero en-try, so that for any �xed �, the matrix productsF (u; t)�(t) can be computed in q�1 operations forany t 2 T , adding up to q(q�1)2 operations for allt 2 T and u 2 U . Thus, the inner sumsMu(�) =Xt2T F (u; t)�(t)for all discrete series representations � can be com-puted in at most q2(q � 1)2 + 8q3 log q operations.Next we must compute M 0u(�) = Mu(�)�(w).Because �(w) is a circulant matrix, any (q � 1) �(q�1) matrix can be multiplied by �(w) in at most8q2 log q operations (again by abelian FFT meth-ods). Letting � vary over all discrete series repre-sentations and u vary over U , we conclude that allthe products M 0u(�) can be computed in at most8q4 log q operations.Finally, we must sum Pu2U M 0u(�)�(u). Again,the matrices �(u) are diagonal. Thus, for any �xed�, the sum requires at most q3 operations. For all�, we need at most q4 operations.We now turn to the second term in (3.2),Xb2B f(b)�(b):Since B is a metabelian group, all Fourier trans-forms of any function in L2(B) may be computedin at most 16q2 log q operations [Baum et al. 1991,Theorem 4]. Any necessary change of basis re-quires at most 2q3 operations. Thus, over all �, atmost 2q4 additional operations need be performed.Collecting terms yields at most8q3 log q+8q4 log q+q2(q�1)2+q4+16q2 log q+2q4operations, and we obtain the upper bound in thestatement of the theorem. �Adding together the bounds in Theorems 3.4and 3.6 and using simple inequalities to eliminateterms of lower order in q, we get the following re-sult:
Theorem 3.7. If q is a power of an odd prime, thenumber T (q) of operations needed to compute aFourier transform of a function f 2 L2(SL(q)) isat most 25q4 log q.

4. IMPLEMENTING THE COMPUTATIONAs explained in Section 1, explicit matrix repre-sentations can be used to investigate the spectra ofCayley graphs. In this section we detail two typesof experiments that we carried out. We grate-fully acknowledge the help and suggestions of A.Lubotzky and P. Sarnak regarding these investiga-tions.
Asymptotics of spectra of families of Cayley graphs onSL2(p). In these experiments we consider Cayleygraphs on �xed sets of generators (whose elementsmay vary with p, but whose size does not) and thenconsider the spectra as p gets large. We computespectra for the following three sets of generators.G1 = �� 10 11�; � 10 �11�; w;w�1	;G2 = �� 10 (p+1)=21 �; � 10 (p�1)=21 �; w;w�1	;G3 = �w� 11 01�; � 1�1 01�w�1; w;w�1	:Of interest is the behavior of the second-largesteigenvalue, multiplicities of the eigenvalues and therange of eigenvalues.
Expanding properties of randomly chosen pairs of gener-

ators. Here the goal is to gain insight into the \ex-panding behavior" (that is, the second-largest ei-genvalue) of a generic pair of generators of SL2(p).It is known [Kantor and Lubotzky 1990] that al-most every pair of elements generates SL2(p), butlittle is known of the expanding behavior for dif-ferent pairs of generators. The idea, then, is tocompute Fourier transforms for all pairs of gener-ators for some small range of primes, and to com-pare second-largest eigenvalues for the associatedCayley graphs.In practice, computing full spectra for all gener-ating pairs is too large a computational task (seethe discussion following Lemma 4.7). Thus, welimit ourselves to computing spectra for some siz-able set of random generating pairs over a largerrange of primes.Both experiments have associated implementa-tion issues. We treat general issues �rst and thenexplain the two computations separately. Notethat, while we are only interested in the case ofSL2(K) for K a prime �eld, it is straightforward toextend these methods to arbitrary �nite �elds, us-ing algorithms such as those described in [Lenstraand Lenstra 1990].
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In this section, p will denote an odd prime andK = Fp the �eld with p elements.
Working in the Base FieldSection 2 shows that the representations of SL2(p)essentially occur as p representations of size p. Asa matter of practicality, then, we must limit our-selves to primes on the order of 500 if the eigen-values are to be computed at the complete set ofirreducible representations. For such small primese�ciency is not of the essence in working with theunderlying �elds.The two basic operations necessary for our pur-poses are inversion in F�p and modular exponentia-tion in Fp. The former is carried out with the helpof the Euclidean algorithm, and the latter by themethod of repeated squares. For completeness, werecord here the easily derived complexity of thesewell-known algorithms.
Proposition 4.1. Let 1 � a; b � p�1 and n 2 Z. TheEuclidean algorithm computes gcd(a; b) in timeO(log3max(a; b)):The method of repeated squares computes an 2 Fpin time O(logn log2 p).Given these basic operations, one may e�cientlycalculate Legendre symbols and �nd generators ofthe cyclic group F�p . In particular, since we areworking with relatively small primes, we may af-ford ourselves the luxury of �nding the smallestgenerator of the �eld. Alternatively, a randomizedalgorithm may be used.
Working in the Quadratic ExtensionAs described in Section 2, the discrete series rep-resentations require calculations in the quadraticextension L of the base �eld. To prepare for com-putations here, the �rst task is to �nd a generatorof the cyclic group L�. For concreteness, we con-struct L = K(p"), where " is the smallest genera-tor of K� (as a positive integer). With L realizedas a two-dimensional vector space over K in thecanonical way, exponentiation in L is again carriedout by the method of repeated squares, with thesame complexity estimate as for the base �eld.For j 2 K�, let C(j) be the circle of radius jin L, that is, the set of elements of L of normj. The unit circle C(1) is easily constructed, asit is parametrized by K [ f1g. The elements

zt = (xt; yt) 2 C(1) are given by z1 = (�1; 0)and xt = (1 + "t2)(1� "t2)�1;yt = 2t (1� "t2)�1for t 2 K. The circle C(") of radius " is then ob-tained by simply multiplying by the vector (0; 1),and a generator of L� may be obtained by a ran-domized algorithm on this circle. Furthermore,since L� is of order p2 � 1 and each z 2 C(")satis�es N(z) = ", checking whether or not z isa generator requires calculating at most the �rstp� 1 powers of z in L�. We thus have the follow-ing estimate:
Proposition 4.2. A generator for L� can be foundin randomized time O(p). More precisely , a gen-erator can be obtained with probability 1 � �n intime O(np), where � is the distribution of non-generators on the circle C(") � L�.However, note that since C(") is of order p+ 1,the e�ciency of this procedure is not at all crucialfor our purposes, and we may in fact allow our-selves to �nd the generator of smallest \Euclideannorm" jztj2 = j (xt; yt)j2 = x2t + y2t :In any case, it is desirable to be able to compute acanonical choice of generator, since the multiplica-tive characters used in the representations dependon this choice.
Checking the ComputationsIn any implementation, it is desirable to use rep-resentation-theoretic identities to check the cor-rectness of the representations obtained. Simpleidentities that can be used for this purpose are�(w)�(w�1) = I, �p�� 10 11�� = �p�� 10 �11�� = I and��� 10 11����� 10 �11�� = I:The most important check, however, is a directconsequence of Schur's lemma:
Proposition 4.3. The matrix identityXt2TXu2U Xu02U �(t)�(u)�(w)�(u0) +Xt2TXu2U �(t)�(u) = 0
holds, where �(t) may be calculated in terms of G1as�(w)�t�1�� 10 �11���(w)�t�� 10 �11���(w�1)�t�1�� 10 �11��
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and in terms of G2 as�(w)�2t�1�� 10 (p�1)=21 ��� �(w)�2t�� 10 (p�1)=21 ���(w�1)�2t�1�� 10 (p�1)=21 ��:Furthermore, the complexity of this calculation isof order O(p3+�), where � is the exponent of thecomplexity bound for matrix multiplication.
Proof. The identity follows directly from the BruhatdecompositionSL2(p) = TUwU ` TU;together with Schur's lemma, which implies thatXg2SL2(p) �(g) = 0
whenever � is irreducible and unitary. To computethe torus T in terms of Gi, simply observe the ma-trix identity��0 0��1 � = � 10 ���11 �w� 10 ��1 �w�1� 10 ���11 �: �
Computing Random Generating PairsWe now present an e�cient method for decidingwhether two given elements x; y 2 SL2(p) form agenerating pair, that is, whether fx; yg generatesSL2(p). The main idea is to use the classi�cation ofsubgroups of PSL2(p) = SL2(p)=f�Ig, and the factthat (for p > 3)H � SL2(p) is a proper subgroup ifand only if �(H) � PSL2(p) is a proper subgroup,where � : SL2(p)! PSL2(p) is the usual projectionmap.Given x; y 2 SL2(p), then, the strategy is to testwhether their images �(x) and �(y) generate one ofthe possible types of proper subgroups; as we willsee, doing this is relatively straightforward. If �(x)and �(y) do not generate a subgroup, they generateall of PSL2(p), so x and y comprise a generatingpair.The following theorem is found in [Suzuki 1982]and usually attributed to [Dickson 1958].
Theorem 4.4. The following are all possible propersubgroups of PSL2(p):(a) Abelian subgroups.(b) Dihedral groups of order 2n, where n divides12(p+ 1) or 12(p� 1).(c) The alternating group A4.(d) Noncommutative subgroups of the image of theupper triangular subgroup, and its conjugates.

(e) The symmetric group S4, if p2 = 1 (mod 16).(f) The alternating group A5, if either p = 5|inwhich case PSL2(5) = A5|or p2 = 1 (mod 5).Our algorithm tests for cases (a){(f) in that or-der. The speci�c tests are given below. In thisanalysis the symbol = means equality in PSL2(p)(that is, equality between images under �).Test for (a). Check if xy = yx.Test for (b). If x and y generate a dihedral groupof order 2n, there are only two possibilities: eitherx2 = yn = 1 and xyx = y�1, or x2 = y2 = 1and (xy)n = 1. (Also, the roles of x and y can bereversed.) Since every element has �nite order, thetest can be reduced to checking if1. x2 = 1 and xyx = y�1, or2. x2 = y2 = 1.Note that inversion in SL2(p) is very quick: the in-verse of �� �� � is simply � �� ����. Therefore, testingfor the conditions above is very e�cient.Test for (c). Testing whether x and y gener-ate A4 is much like the previous case, in the sensethat it is a question of trying out all possible two-generator presentations for the group. Here thepresentation must be either x2 = y3 = (xy)3 = 1or x3 = y3 = (xy)2 = 1. The �rst case correspondsto the generators (12)(34) and (123), and the sec-ond to (123) and (234).Test for (d). A subgroup of the upper triangu-lar group �xes the point at in�nity of the projec-tive line P 1(Fp) = Fp [ f1g, where the action ofPSL2(p) on P 1(Fp) is by fractional linear transfor-mations: �� � � � (!) = �! + �! + � :Any conjugate of the upper triangular group �xessome other point of P 1(Fp). Consequently, thistest can be reduced to checking whether x and yhave any �xed points in common.Clearly,1 is a �xed point of x and y if and onlyif both matrices are upper triangular. Checkingfor other points requires a bit more work. A point! 6=1 is �xed by �� �� � if and only if!2 + !(� � �)� � = 0:
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Therefore the check amounts to determining if twoquadratic polynomials over Fp share any roots overFp.Tests for (e) and (f). These tests have to beperformed only when the corresponding divisibilityconditions (see Theorem 4.4) are satis�ed. Oneway to go about them is to list all possible two-generator presentations of S4 or A5 and to checkfor each one of them explicitly.We chose a di�erent approach, since our goal wasto compute (for each prime) the spectrum for eachof 25 pairs of generators chosen at random (Fig-ure 8). The results of [Kantor and Lubotzky 1990]imply that the occurrence of S4 or A5 as the sub-group generated by two random elements of SL2(p)is rare. For this reason, our implementation alto-gether ignored cases (e) and (f) of Theorem 4.4,and relied instead on the fact that, if x and y gener-ate a proper subgroup, the eigenvalue 1 will appearin the spectrum with multiplicity equal to the in-dex of the subgroup in SL2(p), and this index willbe much greater than one. Therefore, it is moree�cient to �rst compute the spectrum whenever apair fx; yg fails tests (a){(d), and then weed outthose pairs that do not generate the whole group,as detected by the high multiplicity of the eigen-value 1.
Representations at a Random Generating PairUsing the Bruhat decompositionSL2(p) = TUwU ` TU;we may distinguish the upper-triangular compo-nent, parametrized as g�;u 2 TU , for � 2 F�pand u 2 Fp, and its complement, parametrized asg�;u;v 2 TUwU , for � 2 F�p , u 2 Fp and v 2 Fp.Thus, to generate a random element of SL2(p),we may �rst determine which component of thegroup it should belong to, by generating a randominteger 1 � r � p(p2 � 1) and checking whetherr � p(p � 1) (in which case the element will beupper triangular) or not. In either case, we needa random � 2 F�p and a random u 2 Fp. In themore probable event that we are constructing anelement of TUwU , we also need a random v 2 Fp.We then formg�;u = ��0 0��1 �� 10 u1 � 2 TU

or g�;u;v = ��0 0��1 �� 10 u1 �� 0�1 10�� 10 v1� 2 TUwU;as appropriate.Rather than multiply the matrices for the rep-resentations evaluated at each of the factors in theabove expressions, it is more e�cient to calculatethe representations directly.For the principal series representations, we �nd� (g�;u)e1 =  (�)e1;� (g�;u)ex =  (��1)e�2(x�u);� (g�1�;u)e1 =  (��1)e1;� (g�1�;u)ex =  (�)e��2x+u;and� (g�;u;v)e1 =  (���1)e��2u;� (g�;u;v)ex = 8<: (�)e1 if x� v = 0, (��1(x� v))e��2((x�v)�1+u)if x� v 6= 0,� (g�1�;u;v)e1 =  (��1)ev;� (g�1�;u;v)ex = 8<: (��)e1 if ��2x+ u = 0, (��(��2x+ u))ev�(��2x+u)�1if ��2x+ u 6= 0.Similarly, we �nd for the discrete series��(g�;u)ex = �(��1)�(ux)e��2x;��(g�1�;u)ex = �(�)�(�u�2x)e�2x;and��(g�;u;v)ex(y) = �(�x)�1�(vx+ u�2y)j�(�2xy);��(g�1�;u;v)ex(y) = �(��x)�1�(�vy � u�2x)j�(�2xy):
5. DISCUSSION OF NUMERICAL RESULTSIn this section we present the results of severalnumerical investigations of the spectra of Cayleygraphs for SL2(p). In particular, we present dataon the spectra of Cayley graphs associated withgenerator sets G1 and G2, exhibiting the behaviorof the second-largest eigenvalue of the principal se-ries representations, and of the largest eigenvalueof the discrete series representations. As discussedin Section 1, these eigenvalues are related to the ex-pansion coe�cient of the graph. We also present�gures exhibiting the full spectrum of these and
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other Cayley graphs. Finally, we discuss the ex-panding properties of randomly chosen generatingpairs.
Second-Largest EigenvaluesAs mentioned in Section 4, we work with the gen-erating setsG1 = �� 10 11�; � 10 �11�; w;w�1	;G2 = �� 10 (p+1)=21 �; � 10 (p�1)=21 �; w;w�1	;G3 = �w� 11 01�; � 1�1 01�w�1; w;w�1	:To obtain a sense of the structure of the associatedCayley graphs, notice that w has order 4, while� 10 11� has order p and w� 10 11� has order 3. Thus,the Cayley graph of SL2(F5) with respect to G1has cycles of order 4, 5 and 6. A fragment of thisgraph is shown in Figure 1.

FIGURE 1. Fragment of Cayley graph for SL2(F5)with generators G1.If we project the 4-cycles onto lines, we obtainprecisely the Cayley graph for PSL2(F5) with re-spect to the projected set of generators, since w isits own inverse in this quotient group. Unlike itscovering graph, the convex hull of this graph, em-bedded in Euclidean three-space, can be seen as aregular polytope, as shown in Figure 2.A fragment of the universal covering graph ofPSL2(Fp) with generators G3 is shown in Figure 3.Applying the theory presented in Sections 1, 2and 3, we computed the spectra of these Cayleygraphs by constructing the principal and discreteseries representations and by computing the eigen-values of the resulting matrices. More speci�cally,for a generating set G = fg1; g2; g�11 ; g�12 g; we com-puted the eigenvalues of the matrices�̂G(�) = �(g1) + �(g2) + �(g1)�1 + �(g2)�1

FIGURE 2. Cayley graph of PSL2(F5) with re-spect to the generator set G1.

FIGURE 3. Fragment of covering Cayley graph forPSL2 with generators G3.as � varied over the complete set of discrete andprincipal series representations.In Figure 4 we plot, as a function of the prime p,the second-largest eigenvalue among the principalseries representations (recall that the largest eigen-value is 4, coming from the identity character). Wealso plot the largest discrete series eigenvalue. Thecomputations were carried out for all 93 primesbetween 5 and 500. It is notable that for primeslarger than 100 the eigenvalues stabilize quickly toa value around 0.982, where the eigenvalues havebeen normalized by the degree of the graph.Figure 5 shows the corresponding eigenvalues forthe generating set G2. Here the eigenvalues givethe appearance of stabilizing slightly more slowly,around a somewhat smaller value of approximately0.972.Finally, Figure 6 shows the second-largest eigen-value overall for each of the generating sets G1 andG2. It is this eigenvalue that is related to the expan-sion coe�cient through the isoperimetric inequali-ties referred to in the Introduction.
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FIGURE 4. Principal and discrete series eigenval-ues for generators G1.
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FIGURE 5. Principal and discrete series eigenval-ues for generators G2.
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FIGURE 6. Second-highest eigenvalue for genera-tors G1 and G2.

The Full SpectrumThe next series of �gures displays the full spectrumfor the generator sets G1, G2 and G3. The top leftpanel in Figure 7 shows the principal series spec-trum for G1 for each of the 28 primes between 5and 113. In fact, the computations were carriedout for primes up to 251; however, at the resolu-tion of these graphs, the spectrum becomes \con-tinuous" outside of the exceptional neighborhoodof zero that contains the isolated eigenvalues. Inshort, the spectra all resemble that for prime 113,the largest shown on this graph. Again the eigen-values are normalized by the degree of the Cay-ley graph. The \exceptional eigenvalues" that fall,approximately, into the interval (�0:30; 0:30) areassociated with the principal series representationsinduced from characters  satisfying  (�1) = �1.The Fourier transforms of the characteristic func-tion of the generating set evaluated at these repre-sentations do not depend on the group element w,since here we have��� 10 11��+ ��� 10 �11��+ ��� 0�1 10��+ ��� 01 �10��= ��� 10 11��+ ��� 10 �11��:Since �(w) depends on  but �� 10 11� does not, theeigenvalues in this interval appear with multiplic-ity order p. Since the total mass of the spectrumis of order O(p3), taken with respect to the count-ing measure, there is no asymptotic contributionfrom these eigenvalues. In other words, the spec-tral measure of the universal covering graph willcontain a spectral gap in the approximate interval(�0:30; 0:30).The top right panel in Figure 7 shows the spec-tra for the discrete series representations associ-ated with the generating set G1. Here the iso-lated eigenvalues appearing in a neighborhood of 0are associated with discrete series representationsbuilt from nondecomposable characters � such that�(�1) = �1. It is notable that the spectra resem-ble their principal series counterparts very closely,excepting the isolated eigenvalue at 1.The middle row in Figure 7 shows the corre-sponding spectra for the generating set G2. Hereagain the exceptional eigenvalues in the approxi-mate interval (�0:10; 0:10) are due to representa-tions associated with characters that take the value�1 at �1.
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FIGURE 7. Principal series (left) and discrete series (right) spectra for the Cayley graph of SL2(Fp), withrespect to the generator sets G1 (top), G2 (middle) and G3 (bottom).
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The bottom row displays the spectra for the gen-erating set G3. Note that these spectra, unlike theones shown in the top and middle rows, have onlytwo isolated eigenvalues, at 1 and �3 (unnormal-ized), excepting the common eigenvalue of 4, whichresults from the principal series representation in-duced from the identity.
Random GeneratorsFigure 8 is a scatter-plot of the second-highest ei-genvalue of Cayley graphs associated with randomgenerating pairs, as described in the previous sec-tion. The data is shown here for the 36 primesbetween 30 and 200, with 25 random pairs gener-ated for each prime.
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FIGURE 8. Second-highest eigenvalue for randomgenerating pairs.There is a clear accumulation of eigenvalues inthe approximate interval from 0.868 to 0.888. Thisindicates that a random Cayley graph for SL2(p)is a signi�cantly better expander than those Cay-ley graphs associated with the \natural" genera-tors considered before. It also suggests that a ran-dom 4-regular Cayley graph for SL2(p), when p issu�ciently large, is not a Ramanujan graph. Agraph has the Ramanujan property [Bien 1989] ifthe inequality �1 � 2pk � 1is satis�ed, where �1 is the second-largest eigen-value and k is the degree of the graph. Sinceour graphs are 4-regular, the inequality becomes�1 � 3:46410, that is (taking into account our nor-malizations), the second-largest eigenvalue must beno larger than 0:86602. Figure 8 suggests that,

asymptotically as p!1, a random 4-regular Cay-ley graph over SL2(p) fails to meet this criterion.
Comparison with Work of BuckIn [Buck 1986], certain computations are carriedout that are closely related to ours. In particular,Buck considers the generating pair�� 0�1 10�; � 0�1 11�	over PSL2, giving a Cayley graph of degree 3 com-prised of triangles bridged together by a single edgeat each vertex. This is the same graph as we haveconsidered for generators G3, when taken over theprojective group PSL2, as shown in Figure 3. Overthe cover SL2, we obtain a graph where the trian-gles become hexagons, and where the lines bridgingthe triangles become squares. However, by a theo-rem of Kesten [1959], if G is a countably generatedgroup with normal subgroup N , we have�1(X(G;S)) = �1(X(G=N;S))for any generating set S, so long as the di�usion co-e�cient of the symmetric random walk on N withrespect to any set of generators is 1. ([Buck 1986]discusses an extension of this theorem to amenablegroups.) In particular, this situation applies to thequotient of SL2 by its center, and Buck's analysisof the generating function for the symmetric ran-dom walk on the graph of Figure 3 thus determinesthe second-largest eigenvalue for our set of gener-ators G3. Intuitively, what this result implies forthe generating set G3 is that the amount by whichthe expansion coe�cient increases when we passfrom triangles to hexagons is exactly cancelled bythe decrease e�ected by the addition of more cycles(the squares that result from w having order 4 overSL2). For primes larger than 43, our computationsagree closely with the asymptotic limit of1 +p8p2 + 136 � 0:988482established by the random-walk analysis.In contrast, an exact asymptotic analysis of theendpoints of the spectra for the generator sets G1and G2 seems more di�cult to obtain. Over theprojective group PSL2, the covering Cayley graphfor the generator set G1 is made up of adjacenthexagons, as shown in Figure 9.
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FIGURE 9. Covering Cayley graph for PSL2(Z)with generators G1.For this graph, the generating function analy-sis is more complicated, and while we can writedown a set of six equations in six unknowns thatthe generating function must satisfy, we are unableto solve this system or obtain the radius of conver-gence of the return function. Similarly, the graphfor generators G2 is made up of 9-gons, which pro-vides us with the intuition that the spectral gapmust be larger than for generators G1. This intu-ition is borne out in Figure 6. However, here againthe probabilistic analysis appears di�cult, thoughwe can write down a system of equations charac-terizing the generating function.
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FIGURE 10. Action of G3 on P 1(Fp).[Buck 1986] also gives a numerical analysis of theaction of certain generating sets of SL2(Z) on theprojective line P 1(Fp), together with a conjecturethat the action on this �nite set \approximates"the action on the in�nite group SL2(Z). Our com-putations may be seen as providing further evi-dence for this phenomenon. In particular, we have

observed that the spectrum obtained by evaluat-ing the Fourier transform at a single representationclosely approximates the full spectrum as p getslarge. Figure 10 plots the spectrum of the Cayleygraph for generators G3 evaluated at the principalseries representation induced from the identity, andshould be compared to the graphs in the bottomrow of Figure 7. This is precisely the graph corre-sponding to the action of G3 on the projective lineP 1(Fp) that was considered in [Buck 1986].
6. SPECULATIONS AND OPEN PROBLEMSWe conclude this paper by presenting several spec-ulations suggested by the data explained in Sec-tion 5.Figures 4 and 5 suggest that for the generatingsets G1 and G2, the second-largest eigenvalues areapproximately 0.9821 and 0.9716, respectively.The same �gures indicate that from the point ofview of the second-largest eigenvalue, the discreteand principal series are very similar. It would beinteresting to obtain an analytic proof of a closeupper bound or limit. Some recent work of Brooks[1991], building on [Buck 1986], gives techniquesfor obtaining this. The data also suggest that theconvergence of the second-largest eigenvalue mayvery well be uniform in the following sense. Leta; b be generators of SL2(Z), and let ap; bp be theirimages in SL2(p). If fap; bpg generates SL2(p) forall but a �nite number of primes p, let Xp(a; b) bethe associated family of Cayley graphs. The datasuggests that for p su�ciently large there is an "p,independent of fa; bg, such that all uctuations inthe second-largest eigenvalue are within "p of thelimiting value.
Open Question 6.1. For the generating sets G1 andG2, do the second-largest eigenvalue occurring overall principal series representations and the second-largest eigenvalue occurring over all discrete se-ries representations converge to the same limit asp!1?More generally, the pairs of graphs in Figure 7 sug-gest that the spectra of the principal series anddiscrete series are e�ectively \the same". Again, itmight be of some interest to quantify this similar-ity in the form of a theorem. Such similarity couldperhaps be quanti�ed by comparing the associatedspectral measures for operators corresponding to
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the direct sum of the discrete series representationsand the principal-series representations. So, gen-eralizing Open Question 6.1, we ask:
Open Question 6.2. For any generating pair, do thespectral measure associated with the direct sumof principal series representations and the spectralmeasure of the direct sum of the discrete series rep-resentations converge to the same limit as p!1?This would certainly be of interest from a computa-tional point of view. As the discussion of Section 3shows, spectral computations for the discrete seriesare computationally more intensive by a factor ofp. A positive answer to Open Question 6.2 wouldpermit any further numerical investigations to becarried out exclusively in the principal series, andconsequently for a wider range of primes.In this direction we would also like to remark onsome numerical data not included here. Compari-son of Figure 10 with the bottom row of Figure 7seems to indicate that it may be the case that tounderstand the spectrum it is su�cient to studythe Fourier transform evaluated at a single rep-resentation. Preliminary investigation appears toshow that the spectra of f̂(�) for � 6= � , where (�1) = �1, and � 6= ��, where �(�1) = �1,in the notation of Theorems 2.1 and 2.3, are \thesame", so that in fact perhaps only a single, ar-bitrary principal series Fourier transform need becomputed.As remarked in Section 5, Figure 7 reects theconvergence of the spectra to the spectrum of thein�nite cover for these Cayley graphs by the natu-ral Cayley graph on SL2(Z). Again, the methodsof [Brooks 1991] could possibly be used to com-pute precisely the support of the spectral measurefor the in�nite cover, so as to give the limiting dis-tribution. This would also give the endpoints forthe \intervals" seen in these graphs.Figure 8 suggests many possible questions. Themost striking property of this �gure is that themajority of second-largest eigenvalues seems to beclustered in a small interval, roughly between .868and .888. Note that the \Ramanujan number" forthese graphs is p3=2 � :86602, so that none ofthe graphs generated for p > 127 were found tobe Ramanujan. On the other hand, eigenvaluesin the interval (0:868; 0:888) are signi�cantly lowerthan those for either of the generating sets G1 orG2. This suggests that a random Cayley graph of

degree 4 on SL2(p) has better expanding propertiesthan those with \naturally" chosen generators.
Open Question 6.3. Is there a bound for the second-largest eigenvalue that holds for most generatingpairs of SL2(p), where \most" is to be interpretedin a sense similar to that of [Kantor and Lubotsky1990]?
Open Question 6.4. Can one �nd a family of 4-regu-lar Cayley graphs (indexed by p) whose second-largest eigenvalue is within these bounds? Thiswould provide a family of Cayley graphs with bet-ter expanding properties.Lastly, we would like to comment on the complex-ity results of Section 3. Recent work in the areaof DFTs for �nite groups [Baum 1991; Clausen1989a,b; Diaconis and Rockmore 1990; Rockmore1990a,b] has shown that the DFT can be computedin O(jGj log jGj) operations for several classes ofgroups. It would be of great interest if for G =SL2(q) the results of Section 3 could be improved.
Open Question 6.5. Can one prove thatT (q) = O(q3 log q)?
7. APPENDIX: FOURIER INVERSION AND CONVOLU-

TION FOR SL2We now turn to the problem of e�cient Fourier in-version and convolution for SL2(K). As we notedin the Introduction, the existence of a fast Fou-rier inversion algorithm follows from general re-sults [Baum and Clausen 1991] and from the upperbounds of Theorems 3.4 and 3.6. Here we providea constructive and \implementable" proof of a fastinversion algorithm.
Theorem 7.1. Let all notation be as in Section 1 .Then I(q) � O(q4 log q).E�cient algorithms for Fourier inversion and cal-culation of the Fourier transform for a given grouptogether yield an e�cient algorithm for computinggroup convolutions [Clausen 1989b, Corollary 1.8;Rockmore 1990b, Theorem 2]. In particular, bycombining Theorems 7.1 and 3.7, we obtain
Theorem 7.2. Let f; g 2 L2(SL2(K)). Assumingthe additional initial data of the representations ofSL2(K), the convolution f � g may be computed inat most O(q4 log q) operations.
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Given Theorems 7.1 and 3.7, Theorem 7.2 is easyto prove. To compute f � g, simply compute theFourier transforms ff̂(�); ĝ(�)g, then the productsff̂(�)ĝ(�) = [f � g(�)g and then perform Fourierinversion on this last Fourier transform. As theadditional matrix multiplications will take at most(q + 1)q3 operations when done directly, the as-serted bound is achieved.To prove Theorem 7.1, the main idea is to try toapply the methods of [Rockmore 1990b] directly tothe problem of Fourier inversion on SL2(K). Closeinvestigation of the computation involved will yieldthe asserted bound.We summarize quickly the algorithm in [Rock-more 1990b]. Let G be a group and H � G asubgroup, with s1; : : : ; sk a complete set of cosetrepresentatives forHnG. Let Ĝ and Ĥ be completesets of irreducible representations of G and H, re-spectively. Given the initial data of the Fouriertransform of a function f 2 L2(G) as a collectionof matrices ff̂(�)g�2Ĝ, we wish to recover the val-ues ff(s)gs2G. As in the e�cient computation ofthe Fourier transform, the idea is to reduce this to aproblem on H|in particular, to e�ciently recoverthe restricted transforms ff̂i(�)g�2Ĥ for 1 � i � k(where the notation is as in Section 3), and thento perform Fourier inversion for the k functionsfi 2 L2(H).To do this, let � 2 Ĥ, and suppose that�"G � �1 � � � � � �r;where � denotes equivalence of representations.Then, in one basis,
f̂(�"G) = 0B@ f̂(�1) 0 � � � 0... ... . . . ...0 0 � � � f̂(�r)

1CA ;
which can be built directly. However, by [Rock-more 1990b, Theorem 3], there exists a change ofbasis, and thus an invertible matrix A� (dependingon only the representations �i and �), such that
A�0B@ f̂(�1) 0 � � � 0... ... . . . ...0 0 � � � f̂(�r)

1CAA�1�
= 0B@ f̂1(�) � � � � �... ... . . . ...f̂k(�) � � � � �

1CA ; (7:1)

where the asterisks denote block matrices of theappropriate dimensions.We wish to apply this idea for G = SL2(K) andH = B. If we can recover the restricted transformson B in O(q4 log q) operations, we will have provedTheorem 7.1, since we have [Baum et al. 1991]I(B) � 16(jBj log jBj) � 32(q2 log q):To proceed, we must �rst briey explain the rep-resentation theory of B. This is a straightforwarduse of \Mackey theory", which takes advantage ofthe fact that B = T n U (for details of such con-structions see [Serre 1977, 62{63]). Thus, U is anormal subgroup of B, so the irreducible represen-tations of B are built by �rst considering the ac-tion of T on Û : we �x once and for all a nontrivialcharacter � of U . Every character in Û can thenbe written as ��, for some unique � 2 K given by��(u) = �(�u)for u 2 K (where we identify U with K under thenatural isomorphism). The action of T on Û is byconjugation,���0 0��1 ����� 10 u1 �� = �����10 0��� 10 u1 ���0 0��1 ��= ��� 10 ��2u1 �� = ���2�� 10 u1 ��:Thus, under the action of T , Û splits into threeorbitsÛ = f�0 = 1g ` f�� : � 2 K�sqg ` f�� : � =2 K�sqgwhere K�sq denotes the set of nonzero squares in K.It is clear that the stabilizer of �0 in T is T itself,and that the stabilizers of �1 and �" both equalf�Ig, where I is the identity in SL2(K) and " isany nonsquare in K� (for example, a generator ofK�). Let �1 denote the character of the subgroupf�Ig equal to�1 on�I. Then �1 may be extendedto the subgroup f�Ig � U in two ways, as 1 
 �1and �1
 �1, and similarly for �". Set�++ = (1
 �1)"B;�+� = (�1
 �1)"B;��+ = (1
 �")"B;��� = (�1
 �")"B:Each �ts is then of degree 12(q�1), and the abovefour representations of B are inequivalent. Finally,the remaining irreducible representations of B are
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all one-dimensional, and are obtained by extendingthe trivial character on U by any character of T .The following lemma will eventually give a quickand simple construction of the intertwining matri-ces A�ts .
Lemma 7.3. With notation as above, each represen-tation �ts"G, for s; t 2 f+;�g, is multiplicity-free.
Proof. By the preceding discussion,�ts#U � Ma2K�sq �a:
In particular, the restriction is a representationequivalent to the direct sum of distinct characters.Consequently, suppose that � is an irreducible rep-resentation of SL2(K) such thath�; �ts"SL2(K)i > 1:(As usual, h�1; �2i represents the intertwining num-ber of two representations �1 and �2 of a group G.)By Frobenius reciprocity, h�#B; �tsi > 1. But thisimplies that �#U is equivalent to the direct sum ofa set of characters of U (of size greater than 1) withmultiplicity greater than 1. However, this contra-dicts the constructions of Section 3, where we seethat �#U contains at most one character with mul-tiplicity greater than 1 if dim(�) � q. �To apply the constructions of [Rockmore 1990b],we require a basis for the representations of SL2(K)that is \B-adapted". More precisely, let � be amatrix representation of SL2(K) such that �#B ��1 � � � � � �r. Then we demand that

�(b) = 0@ �1(b) 0 � � � 0... ... . . . ...0 0 � � � �r(b)
1A (7.2)

for all b 2 B. (Note that the irreducible represen-tations �i are �xed independently of the particu-lar representation of SL2(K) that is being decom-posed.) In general, such B-adapted representa-tions can always be constructed, and in fact we nowdiscuss the necessary explicit construction. Thediscrete series representations are already B-adap-ted. For the principal series we require a new basis:in Section 3 we used the basis of �-functions on theset K+ [ f1g, and here instead we take e1 [ K̂+as a basis, which has the required property. The

change-of-basis matrix is circulant, so multiplica-tion by it requires at most 8q2 log q operations toperform, using standard abelian FFT techniques.Thus, we now assume that we have a B-adaptedset of irreducible representations and we now wishto construct A�ts . Let�ts" SL2(K) � �1 � � � � � �r;with dim(�i) = di. Fix coset representatives forSL2(K)=B with s1 = 1 and
sj = � 1 j � 20 1 �� 0 1�1 0�for 2 � j � q+1. Using Lemma 7.3, we see that weare in a situation in which [Rockmore 1990b, The-orem 3] may be applied. We state the constructionin the form of a lemma.

Lemma 7.4. Let all notation be as above, the basisfor the representations of SL2(K) having been cho-sen in such a way that (7.2) holds. Then A�ts isa block matrix with blocks Bi;j, where 1 � i � rand 1 � j � q + 1 and each Bi;j is a di � 12(q � 1)matrix . In particular , if �ts comprises the �rst orsecond 12(q � 1) � 12(q � 1) diagonal block of �i#B(we may assume that one of these two instances oc-curs), Bi;j will comprise exactly the �rst or second12(q � 1) columns of �i(sj), respectively .Thus, consider now the computation of the matrixmultiplication
A�ts0B@ f̂(�1) 0 � � � 0... ... . . . ...0 0 � � � f̂(�r)

1CAA�1�ts :
We are only interested in the �rst 12(q�1) columns.So we �rst compute these columns for the right-most pair of factors,0B@ f̂(�1) 0 � � � 0... ... . . . ...0 0 � � � f̂(�r)

1CAA�1�ts :
Using the block diagonal structure of the right fac-tor, it is easy to see that there are at most q blocksof size q + 1, so that by direct multiplication we
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get at most q(q + 1)3 operations. We are thus leftwith the problem of computing0BB@B1;1 B1;2 � � � B1;q+1B2;1 B2;2 � � � B2;q+1... ... . . . ...Br;1 Br;2 � � � Br;q+1
1CCA0BB@ M1M2...Mq+1

1CCA = 0BBB@ f̂1(�ts)f̂2(�ts)...f̂1(�ts)
1CCCA;(7.3)where each Mj is a 12(q � 1)� 12(q � 1) matrix.We wish to show that in fact computation of(7.3) may be viewed again as the computation ofa Fourier transform of a suitably de�ned functionon SL2(K).Consider the function g 2 L2(G) de�ned byĝi(�ts) =Miand ĝi(�) = 0 for all other irreducible representa-tions � of B (thus, we have de�ned g by describ-ing the Fourier transforms of the derived functionsgi 2 L2(B)). If �ts makes up the �rst block of �i#B,say, we see that

ĝ(�i) = q+1Xk=1 �i(sj)� ĝk(�ts) 00 0�=Xk (Bi;kMk �0 ) ;
where �0 denotes the (di � 12(q � 1))� di matrix ofzeros.The results of Section 3 show that these compu-tations may all be performed in at most 25q4 log qoperations. Doing this for each of the four �ts, wesee that the matrices ff̂k(�ts)gk;s;t can be recoveredin at most4(25q4 log q + q(q + 1)3) + 8q3 log q � 108q4 log qoperations.Finally, we need to obtain the restricted trans-forms at the one-dimensional representations ~ (inthe notation of Section 2). Writing down the ap-propriate matrices for (7.1), we see that in thiscase we need only recover the �rst column of a(q + 1) � (q + 1) matrix. This requires at most(q + 1)2 operations. Repeating for each charactergives at most (q � 1)(q + 1)2 operations. Thus, intotal we require at most108q4 logq+(q�1)(q+1)2+16q3 logq� 110q4 logq=O(q4 logq)

operations for Fourier inversion. This completesthe proof of Theorem 7.1.
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