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ABSTRACT

We have identified a gap in the literature on error propa-

gation in the gravimetric terrain correction. Therefore, we

have derived a mathematical framework to model the propa-

gation of spatially correlated digital elevation model errors

into gravimetric terrain corrections. As an example, we have

determined how such an error model can be formulated for

the planar terrain correction and then be evaluated efficiently

using the 2D Fourier transform. We have computed 18.3

billion linear terrain corrections and corresponding error

estimates for a 1 arc-second (∼30 m) digital elevation model

covering the whole of the Australian continent.

INTRODUCTION

The gravimetric terrain correction is added to the simple Bouguer

gravity anomaly to produce the refined or complete Bouguer gravity

anomaly. This correction accounts for the departures of the Earth’s

topography from a plate, shell, or cap model (e.g., Nowell, 1999).

Most existing literature on the gravimetric terrain correction has

focused on formulas for various models of the topography (e.g.,

mass-prism, mass-line, polyhedron, or smoother models [e.g., Wu,

2016]) with differing levels of complexity. However, no universally

accepted methodology exists to determine the errors propagated

into calculated terrain corrections from digital elevation model

(DEM) height errors.

Dransfield and Zeng (2009) investigate errors in terrain correc-

tions as a result of DEM height errors for airborne gravity gradient

measurements. However, only empirical tests and gross simplifica-

tions have been explored to obtain approximate error estimates for

the gravimetric terrain corrections: Mikuška et al. (2006) show that

long-wavelength biases in DEMs introduce substantial uncertainties

at the continental scale; Steinhauser et al. (1990) demonstrate the

effect of restricting the computational extent; Zahorek et al. (2010)

empirically explore the effects of using different terrain-correction

formulas, inaccuracies in the computation points, and the effect of

using different DEMs, showing the accuracy of the latter to have the

most significant effect.

Malgorzata and Krynski (2009) analytically investigate errors

in terrain corrections introduced by mislocating the computation

points and intrinsic inaccuracies in the DEM. They present a simpli-

fied linear formula based on the DEM height error and the Bouguer

plate formula, which is sufficient in flat terrain. However, their for-

mula neglects to incorporate the dependence of the error on the

coarseness of the topography in rougher terrains, and this overlooks

the law of error propagation in the terrain-correction integral formula.

We therefore derive error propagation formulas for planar, first-

order terrain corrections as being dependent on the coarseness of the

local topography and spatially correlated errors in the DEM heights.

We consider that the coordinates of the computation points are error

free because they are grid-node regist“rations and not the gravity

observation location (unlike Malgorzata and Krynski, 2009). The

principles discussed here can be applied to other terrain-correction

formulas, or to other convolution integrals. We fast Fourier transform

the convolution integrals to the frequency domain for efficient evalu-

ation. As a numerical example, we generate a 1″× 1″ (∼30 m) grid

of planar terrain corrections and the associated error estimates over

the whole of the Australian continent.

PLANAR TERRAIN CORRECTIONS OVER

AUSTRALIA

Previous grids of planar terrain corrections over the whole of

Australia (Kirby and Featherstone, 1999, 2002) used the 9″× 9″

(∼250 m) resolution GEODATADEMs produced by Geoscience Aus-

tralia. The release of 1″× 1″ resolution DEMs from the shuttle radar

topography mission (SRTM) (Farr et al., 2007) warrants for the recom-

putation of terrain corrections at this higher spatial resolution. We only

consider the planar terrain correction here because Kuhn et al. (2009)

show that complete planar Bouguer anomalies (with the Bouguer slab

given by 2πGρH) are approximately equal to the complete spherical
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Bouguer anomaly (with the Bouguer slab given by 4πGρH), at least

in regions without extreme elevation changes.

We use the 1″ × 1″ DEM-H model provided by Geoscience Aus-

tralia (Gallant et al., 2011) (Figure 1). It is derived from SRTM, has

vegetation removed to convert the digital surface model to a DEM,

is adaptively smoothed depending on the roughness of the topog-

raphy and noise in the SRTM, and hydrological connectivity is en-

forced using the ANUDEM software (Hutchinson, 1989). The 1″

DEM-H file size is approximately 100 times larger than the 9″GEO-

DATA DEM used previously, posing some computational chal-

lenges discussed below.

The gravimetric terrain correction ΔgTC evaluated at a point ðx; yÞ
for roving terrain at points ðx 0; y 0Þ with an assumed-constant topo-

graphic density ρ (topographic bulk density errors are not consid-

ered here) is calculated by evaluating the convolution integral

ΔgTCðx;yÞ¼−Gρ

Z Z

Ω

Z

H 0ðx0;y0Þ

Hðx;yÞ

H−z0

½l2þðH−z0Þ2�1∕2dx
0dy0dz0

¼−Gρ

Z Z

Ω

1

½l2þðH−H 0Þ2�1∕2−
1

l
dx0dy0

¼Gρ

Z Z

Ω

�

1

l

�

1−

�

1þ
�

H−H 0

l

�

2
�

−1∕2
��

dx0dy0; (1)

where G ¼ ð6.67408� 0.00031Þ × 10−11 m3 kg−1 s−2 is the uni-

versal gravitational constant (Mohr et al., 2016), H and H 0 are
heights relative to the geoid at the computation and roving points,

respectively, and the planar distance between the computation ðx; yÞ
and roving ðx 0; y 0Þ points is

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx 0 − xÞ2 þ ðy 0 − yÞ2
q

: (2)

The binomial expansion of the inner term in equation 1 given as
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H−H 0
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::: (3)

leads to a series expansion of the form

ΔgTCðx; yÞ ¼ Gρ

ZZ

Ω

ðH 0 −HÞ2
2l3

−
3ðH 0 −HÞ4

8l5

þ 5ðH 0 −HÞ6
16l7

: : : dx 0dy 0: (4)

Martinec et al. (1996) and Tsoulis (2001) contend that this binomial

expansion converges, provided that the topographic gradient does

not exceed 45 arc-degrees. As such, we calculated (Table 1) and

plotted (Figure 2) the locations where the DEM-H gradients exceed

45°, showing them to be very rare (∼0.0005% of all DEM elements)

and restricted to the mountainous (maximum height 2223.25 m)

Great Dividing Range in eastern Australia, the southern island of

Tasmania, and the coastline where there are cliffs (cf. Figure 1).

In the relatively flat terrain over most of Australia, and to dem-

onstrate the algorithms, we consider it sufficient to compute the

first-order term only, so that the planar terrain correction is truncated

to (e.g., Moritz, 1968; Li and Sideris, 1994)

ΔgTCðx; yÞ ¼
Gρ

2

ZZ

Ω

ðH 0 −HÞ2
l3

dx 0dy 0: (5)

At points at which the DEM-H gradients exceed 45 arc-degrees, we

removed the terrain correction values and error estimates, and we

replaced them with the values interpolated from nearby.

The area that the integral in equation 5 is evaluated over is

denoted by Ω, such that ðx 0; y 0Þ ∈ Ω if 0 < l ≤ R, where R is the

maximum radius of integration beyond which the contribution to

the terrain correction of topographic variations from the Bouguer

plate is negligible. Empirical tests performed by Kirby and Feather-

stone (1999) found R¼50 km for Australia. For

a 1″ grid, the terrain correction omits near-gra-

vimeter terrain effects out to approximately

30 m (cf. Leaman, 1998).

The brute-force numerical integration of the

10,178,544 elements inside Ω for R ¼ 50 km

is impractical, especially when Fourier methods

have already proven themselves for terrain correc-

tion computations (e.g., Forsberg, 1985; Sideris,

1985; Li and Sideris, 1994; Parker, 1995, 1996).

Therefore, we first expand the integral in equa-

tion 5 as
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Figure 1. The DEM-H model (meters) of Australia (Lambert conic
conformal projection). (Max: 2223.25 m, min: −68.05 m, mean:
138.03 m, and STD: �194.38 m).

Table 1. Descriptive statistics of the DEM-H gradients (arc-degrees) and number
of cases >45 arc-degrees. There are 18,330,863,392 elements in DEM-H.

Gradient Max Min Mean STD # >45° %

North/south 81° −81° 0° 2° 61,077 0.000333

West/east 83° −82° 0° 2° 97,032 0.000529

North–west/south–east 84° −84° 0° 2° 75,982 0.000415

North–east/South–west gradient 84° −83° 0° 2° 81,086 0.000442
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ΔgTCðx; yÞ ¼
Gρ

2

�

H2

Z Z

Ω

1

l3
dx 0dy 0

− 2H

Z Z

Ω

H 0

l3
dx 0dy 0 þ

Z Z

Ω

H 02

l3
dx 0dy 0

�

; (6)

and we apply the 2D convolution theorem, which takes the sum of

convolutions into the Fourier domain to become a sum of products,

such that for constant grid spacings Δx 0 and Δy 0, we obtain

ΔgTCðx;yÞ

¼Gρ

2

�

H2

�

1� 1

l3

�

−2H

�

H 0 � 1

l3

�

þ
�

1

l3
�H 02

��

Δx 0Δy 0:

(7)

We implement the convolutions using the fast-Fourier transform,

where for practical implementation in computer code, f � g ¼
F−1½F½f�F½g��.

Computational considerations

The entire 1″ × 1″ DEM-H model occupies 80 Gb in ASCII for-

mat, which is too large to handle in a single computation without a

supercomputer. To permit computations on a PC, we divided the

DEM-H into 90 overlapping square tiles, each containing 18;001 ×

18;001 elements. The overlap was set at R ¼ 50 km to eliminate

edge effects. We computed the planar terrain corrections for each

tile using equation 7, and then we merged these together along the

midpoints of the overlap (Figure 3).

Even for this 90-tile DEM, the FORTRAN77 code used by Kirby

and Featherstone (1999, 2002), which used Netlib’s IMSL fft3d rou-

tine, was limited by the maximum number of integers that the GNU

compiler could handle on the LINUX server as described below.

Therefore, we wrote a MATLAB script so as to make use of the fast-

est Fourier transform in the West (FFTW) algorithm, which adapts

itself to make best use of the PC hardware (Frigo and Johnson, 2005).

We used an 18;001 × 18;001 subset of DEM-H to determine

the efficient gains achieved by using the FFTW over fft3d. Using

the FORTRAN77 fft3d code on a LINUX server [40 Intel Xeon

E5-2690 v2 @ 3.00 GHz CPUs, with 347 Gb of RAM running

Red Hat Enterprise Linux Server release 6.7] took approximately

9 h, whereas using MATLAB FFTW on a PC [Intel Core i7-

4770 CPU @ 3.40 GHz (8 CPUs), approximately 3.4 GHz, with

16 Gb of RAM running Windows 7 Enterprise 64-bit] took approx-

imately15 min, a 36-fold increase in computational (wall clock)

speed. Additionally, equations 7, 12, 13, and 16 contain multiple

instances of the same Fourier transforms, so these need only be com-

puted once.

We used a kernel weighting for the difference between the mean

value over each cell and the value at its center to improve the accuracy

of the numerical integration. For equal grid spacings Δx ¼ Δy, the

kernel weighting in Featherstone and Olliver (1997) simplifies to

w ¼ 2l4

ðlþ Δx∕2Þ2ðl − Δx∕2Þ2 : (8)

ERROR PROPAGATION

Uncorrelated height errors

We first consider the case of uncorrelated DEM height errors εH 0

at every roving cell in DEM-H. The ðx; yÞ and ðx 0; y 0Þ terms are

taken to be error-free because these are grid registrations and not

measurements. The contribution of a single DEM element with vol-

ume ðH 0 −HÞΔx 0Δy 0 (Figure 4) to the planar terrain correction is

ΔgTC1ðx; yÞ ¼
Gρ

2

ðH 0 −HÞ2
l3

Δx 0Δy 0: (9)

The height difference error is given by εðH 0−HÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε2H þ ε2
H 0

q

(Figure 4). Using a first-order Taylor series expansion, the height
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Figure 2. Composite map of locations where the DEM-H gradients
exceed 45 arc-degrees.
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Figure 3. The planar gravimetric terrain corrections (mGal) over Aus-
tralia. (Max: 51.550 mGal, min: 0 mGal, mean: 0.096 mGal, and
STD: ±0.580 mGal).
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difference error contributes to an error in the terrain correction of the

form

εTC1ðx; yÞ ≈
∂ΔgTC1

∂ðH 0 −HÞ εðH 0−HÞ: (10)

If we assume independence of the DEM heights in each cell, the

total error variance in the terrain correction εTCðx; yÞ is given as

εTCðx; yÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

Ω

�

ðε2
H 0 þ ε2HÞ

�

∂ΔgTC1

∂ðH 0 −HÞ

�

2
�

s

: (11)

As we did for the planar terrain correction values, 2D Fourier trans-

forms are used to evaluate the error convolution efficiently, so that

for each grid point

εTCðx;yÞ

¼Gρ

2

4

H2
	

ε2
H0� 1

l6




−2H
	

H0ε2
H 0� 1

l6




þ
	

H02ε2
H 0� 1

l6




þε2HH
2
	

1� 1
l6




−2ε2HH
	

1
l6
�H0




þε2H

	

H02� 1
l6




3

5

1∕2

Δx0Δy0:

(12)

Equation 12 requires a distinct error value per every DEM element,

which is rarely available. In the interim, we adopt a “universal” error

value that is the same for every DEM element. The height difference

error values are then given by εðH 0−HÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε2H þ ε2
H 0

q

¼
ffiffiffi

2
p

× εH 0

and writing equation 11 as a convolution in the Fourier domain gives

εTCðx; yÞ ¼
ffiffiffi

2
p

Gρ

�

H2

�

ε2
H 0 �

1

l6

�

− 2H

�

H 0ε2
H 0 �

1

l6

�

þ
�

H 02ε2
H 0 �

1

l6

��

1∕2

Δx 0Δy 0: (13)

One approach to estimate errors in DEMs is to compare the

gridded data with an independent data set such as leveling (e.g.,

Hirt et al., 2010) to give a universal estimate of the DEM height

accuracy for all grid cells. The elevation error in the DEM-H model

is difficult to characterize, but Gallant et al. (2011) indicate that 90%

of the DEM elements are within 9.8 m of leveled heights. Gallant

et al. (2011) also report that “significant changes to elevation

have occurred due to the smoothing and drainage enforcement

processes, : : : errors as large as 200 m occur in some areas.” This

90% is approximately 1.28 standard deviations, given a Gaussian

distribution, so we took εH 0 ¼ 9.8∕1.28 ≈�7.66 m as the universal

standard deviation of the DEM-H height errors to generate Figure 5

using equation 13. Should a per-element error model become avail-

able, then equation 12 should be used in preference.

Correlated height errors

It is unrealistic to assume that the height errors for each grid cell

in a DEM are independent and uncorrelated. Generally, DEM errors

are highly correlated among neighboring cells in the near field. For

instance, Gallant et al. (2011) and Rodríguez et al. (2006) indicate

that the high-frequency SRTM DEM errors may be spatially corre-

lated over horizontal distances l from 0 to 100–400 m.

This is of importance for terrain correction error estimates be-

cause the near-zone height differences ðH 0 −HÞ contribute more

to the terrain correction than those of the far zone (equation 5).

However, the ðH 0 −HÞ term in the numerator of equation 5 means

that any correlated errors between the computation and roving

points will cancel, which is not taken into account in the uncorre-

lated error case (equations 12 and 13).

To account for the cancelation of correlated DEM errors, we pro-

pose an exponential semivariogram (Figure 6), though any other

functional model could be chosen. We choose this form so that

the decorrelation can be set for any distance from the computation

point. We write the height difference error variance ε2ðH 0−HÞ as a func-
tion of l as a semivariogram with a range a (beyond which the DEM

height difference error variances become uncorrelated) and the

uncorrelated height error variance value of σ2
H 0 ¼ ð7.66 mÞ2 ¼

58.68 m2 such that

Figure 4. Geometry of the terrain correction for a single DEM
element ðH 0 −HÞΔx 0Δy 0 and the height difference error εðH 0−HÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε2H þ ε2
H 0

q

.
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Figure 5. Standard deviation of error in the planar terrain correction
(mGal) over Australia from equation 13 for constant and uncorre-
lated DEM errors of�7.66 m. Max: 2.107 mGal, min: 0.000 mGal,
mean: 0.000(3) mGal, and STD: �0.022 mGal.
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ε2ðH 0−HÞ ¼ 2σ2ðH 0Þð1 − e−3l∕aÞ: (14)

Applying equation 13 to equation 11 gives

εTCðx;yÞ2¼
X

Ω

2σ2ðH 0Þð1−e−3l∕aÞ
�

∂ΔgTC1

∂ðH 0−HÞ

�

2

: (15)

Equation 15 can be written as a sum of convolutions similarly to

equation 13 and computed in the 2D Fourier domain to obtain ter-

rain correction error estimates efficiently, where the height error

contribution of cells in the DEM closer to the computation point

is reduced; i.e.,

εTCðx;yÞ

¼
ffiffiffi

2
p

Gρ

2

6

6

6

6

6

6

6

4

H2

�

	

σ2
H 0 � 1

l6




−
	

σ2
H 0 � e−3l∕a

l6




�

−

2H

�

	

H 0σ2
H 0 � 1

l6




−
	

H 0σ2
H 0 � e−3l∕a

l6




�

þ
	

H 02σ2
H 0 � 1

l6




−
	

H 02σ2
H 0 � e−3l∕a

l6




3

7

7

7

7

7

7

7

5

1∕2

Δx 0Δy 0:

(16)

The error in the terrain correction is reduced when the exponential

semivariogram is included to account for the cancelation of corre-

lated DEM errors close to each computation point (Figures 7 and 8).

CONCLUSIONS

A gap exists in the literature on the propagation of DEM height

errors in the computation of gravimetric terrain corrections. We

have therefore derived error propagation formulas for uncorrelated

and correlated cases, using the planar terrain correction model as an

example. Although the planar terrain correction (equation 5) is suit-

able for Australia, with only 0.0005% of the DEM-H gradients

greater than 45 arc-degrees (Figure 2 and Table 1), it might not be

suitable for densely sampled DEMs in more rugged terrains. All

computations in the 2D Fourier domain via the FFTW algorithm

show significant efficiency gains on a moderately powered PC with

MATLAB installed.

We have presented the highest resolution (1″ or ∼30 m) grid of

planar terrain corrections over the whole of Australia to date. It in-

cludes per-element error estimates from an exponential semivario-

gram to account for the cancelation of correlated errors that occurs

due to the ðH 0 −HÞ term in the numerator of equation 5. Figures 5,

7, and 8 demonstrate that almost half of the power of the error re-

sults from erroneous topographic variations out to 100 m from each

computation point.

Figure 6. Exponential semivariogram. At l ¼ a, ε2ðH 0−HÞðlÞ is 95%
the value of 2σ2

H 0 .
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Figure 7. Standard deviation of error in the planar terrain correction
(mGal) over Australia from equation 16 for correlated height errors
with a ¼ 100 m and σ2

H 0 ¼ 58.68 m2. Max: 1.678 mGal, min:
0.000 mGal, mean: 0.000(2) mGal, and STD: ±0.018 mGal.
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Figure 8. Differences between Figures 5 and 7. Max: 0.448 mGal,
min: 0.000 mGal, mean: 0.000 mGal, and STD: �0.005 mGal.
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Even though our mathematical derivations are given for the pla-

nar terrain correction, they can be applied to other terrain-correction

algorithms and geometries (e.g., spherical and ellipsoidal terrain

corrections, spatial-domain calculations, or terrain elements with a

different geometry). In our numerical examples for Australia, we

have had to make some compromises because of the lack of (1) per-

element height error estimates in the DEM-H and (2) exact knowl-

edge of the correlation length of these DEM errors. Therefore, we

recommend these additional data be sourced to provide more reliable

error estimates in the gravimetric terrain correction.
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