
Clemson University

TigerPrints

All Dissertations Dissertations

8-2008

Fast Fourier Transform Algorithms with
Applications
Todd Mateer
Clemson University, tmateer@howardcc.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Applied Mathematics Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by

an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Mateer, Todd, "Fast Fourier Transform Algorithms with Applications" (2008). All Dissertations. 231.
https://tigerprints.clemson.edu/all_dissertations/231

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F231&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/231?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F231&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

FAST FOURIER TRANSFORM ALGORITHMS WITH APPLICATIONS

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Mathematical Sciences

by

Todd Mateer

August 2008

Accepted by:

Dr. Shuhong Gao, Committee Chair

Dr. Joel Brawley

Dr. Neil Calkin

Dr. Kevin James

ABSTRACT

This manuscript describes a number of algorithms that can be used to quickly

evaluate a polynomial over a collection of points and interpolate these evaluations

back into a polynomial. Engineers define the “Fast Fourier Transform” as a method

of solving the interpolation problem where the coefficient ring used to construct the

polynomials has a special multiplicative structure. Mathematicians define the “Fast

Fourier Transform” as a method of solving the multipoint evaluation problem. One

purpose of the document is to provide a mathematical treatment of the topic of

the “Fast Fourier Transform” that can also be understood by someone who has an

understanding of the topic from the engineering perspective.

The manuscript will also introduce several new algorithms that efficiently solve

the multipoint evaluation problem over certain finite fields and require fewer finite

field operations than existing techniques. The document will also demonstrate that

these new algorithms can be used to multiply polynomials with finite field coefficients

with fewer operations than Schönhage’s algorithm in most circumstances.

A third objective of this document is to provide a mathematical perspective

of several algorithms which can be used to multiply polynomials whose size is not a

power of two. Several improvements to these algorithms will also be discussed.

Finally, the document will describe several applications of the “Fast Fourier

Transform” algorithms presented and will introduce improvements in several of these

applications. In addition to polynomial multiplication, the applications of polynomial

division with remainder, the greatest common divisor, decoding of Reed-Solomon

error-correcting codes, and the computation of the coefficients of a discrete Fourier

series will be addressed.

ii

DEDICATION

I dedicate this work to my wife Jennifer and my children Nathan, Laura,

Jonathan, and Daniel. In terms of our family, the progress of my graduate research

program has been measured through a collection of fifty quarters produced by the

United States mint over roughly the same ten year period while I completed my

graduate studies. I look forward to placing the final quarter on our “doctor school”

map at the end of this year (2008) when I anticipate being finished with several

publications related to the research presented in this manuscript.

I have really treasured this time to be at home with my family while my

children were young and for their “company” and “support” while completing this

project. Much of this dissertation was written with little children in my lap or by

my side as my wife and I worked together to get through these first few years of

parenthood. I consider this time to be more valuable than the degree for which this

dissertation was written.

iii

ACKNOWLEDGMENTS

There are many people who deserve recognition for their role in my education

which has led me to this point in my academic career. I will attempt to be as complete

as possible here, knowing that are likely several people that I have left out.

Obviously, my advisor Shuhong Gao and committee members deserve mention

for being willing to mentor me through this process. This was an especially more

challenging task given the fact that we were separated geographically during the

entire writing of this dissertation. In fact, my advisor and I only saw each other two

times in the three years it took to complete the research program. I would also like

to thank Shuhong Gao for teaching a computer algebra class in 2001 which got me

interested in this topic for my doctoral studies.

I would also like to thank several anonymous reviewers who read over this

entire manuscript several times. There are likely more places where the document

can be improved and if there is an interest, I will make revisions to the manuscript

as these places are pointed out to me.

I would also like this opportunity to thank the teachers which taught me

the subjects related to this research program. In particular, I would like to thank

Rebecca Nowakowski, James Payne, Dale McIntyre, Yao-Huan Xu, Jenny Key, and

Joel Brawley for equipping me with the algebra and complex variables background to

take on this assignment. Also, Timothy Mohr, Frank Duda and Robert Mueller taught

me the signals analysis which introduced me to the “engineering perspective” of the

FFT. In classes taught by Joe Churm and Robert Jamison, I learned how the material

of this dissertation is closely related to basic music theory. Through the instruction of

Curt Frank, Jim Kendall, Fred Jenny, Michelle Claus, and James Peterson I learned

iv

the computer science and programming skills needed for this research project. Finally,

I would like to thank my father Robert Mateer who taught me the trigonometry that

is so fundamental to the topic of this dissertation. While I turned out to be an

algebraist instead of following in his footsteps and making analysis (i.e. Calculus) my

specialty, I still hope to become as good of a teacher as my father someday.

...but there is a God in heaven who reveals mysteries.

Daniel 2:28a

v

TABLE OF CONTENTS

Page

TITLE PAGE . i

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1. INTRODUCTION . 1

1.1 The mathematician’s perspective 3
1.2 Prerequisite mathematics . 4
1.3 Operation counts of the algorithms 5
1.4 Multipoint polynomial evaluation 7
1.5 Fast multipoint evaluation . 9
1.6 Lagrangian interpolation . 15
1.7 Fast interpolation . 17
1.8 Concluding remarks . 23

2. MULTIPLICATIVE FAST FOURIER TRANSFORM ALGORITHMS 24

2.1 The bit reversal function . 25
2.2 Classical radix-2 FFT . 26
2.3 Twisted radix-2 FFT . 30
2.4 Hybrid radix-2 FFTs . 35
2.5 Classical radix-4 FFT . 36
2.6 Twisted radix-4 FFT . 41
2.7 Radix-8 FFT . 43
2.8 Split-radix FFT . 47
2.9 Modified split-radix FFT . 54
2.10 The ternary reversal function . 59
2.11 Classical radix-3 FFT . 60
2.12 Twisted radix-3 FFT . 66
2.13 Hybrid radix-3 FFTs . 73

vi

Table of Contents (Continued)

Page

2.14 Radix-3 FFT for symbolic roots of unity 75
2.15 Concluding remarks . 77

3. ADDITIVE FAST FOURIER TRANSFORM ALGORITHMS 78

3.1 Von zur Gathen-Gerhard additive FFT 78
3.2 Wang-Zhu-Cantor additive FFT 87
3.3 Shifted additive FFT . 94
3.4 Gao’s additive FFT . 99
3.5 A new additive FFT . 108
3.6 Concluding remarks . 115

4. INVERSE FAST FOURIER TRANSFORM ALGORITHMS 116

4.1 Classical radix-2 IFFT . 116
4.2 Twisted radix-2 IFFT . 120
4.3 Other multiplicative IFFTs . 122
4.4 Wang-Zhu-Cantor additive IFFT 129
4.5 A new additive IFFT . 132
4.6 Concluding remarks . 139

5. POLYNOMIAL MULTIPLICATION ALGORITHMS 141

5.1 Karatsuba multiplication . 141
5.2 Karatsuba’s algorithm for other sizes 145
5.3 FFT-based multiplication . 146
5.4 Schönhage’s algorithm . 148
5.5 FFT-based multiplication using the new additive FFT algorithm 156
5.6 Comparison of the multiplication algorithms 158
5.7 Concluding remarks . 160

6. TRUNCATED FAST FOURIER TRANSFORM ALGORITHMS . . . 162

6.1 A truncated FFT algorithm . 164
6.2 An inverse truncated FFT algorithm 167
6.3 Illustration of truncated FFT algorithms 175
6.4 Truncated algorithms based on roots of xN − 1 177
6.5 Truncated algorithms based on roots of xN − x 179
6.6 Concluding remarks . 180

7. POLYNOMIAL DIVISION WITH REMAINDER 181

7.1 Classical division . 182

vii

Table of Contents (Continued)

Page

7.2 Newton division . 183
7.3 Newton divison using the multiplicative FFT 188
7.4 Newton divison for finite fields of characteristic 2 192
7.5 Concluding remarks . 194

8. THE EUCLIDEAN ALGORITHM . 195

8.1 The Euclidean Algorithm . 195
8.2 The Extended Euclidean Algorithm 199
8.3 Normalized Extended Euclidean Algorithm 209
8.4 The Fast Euclidean Algorithm 210
8.5 Algorithm improvements due to the Fast Fourier Transform . . . 226
8.6 Concluding remarks . 231

9. REED-SOLOMON ERROR-CORRECTING CODES 234

9.1 Systematic encoding of Reed-Solomon codewords 235
9.2 A transform of the Reed-Solomon codeword 237
9.3 Decoding of systematic Reed-Solomon codewords 240
9.4 Pseudocode and operation count of the simple decoding algorithm 246
9.5 Concluding remarks . 249

10. FURTHER APPLICATIONS AND CONCLUDING REMARKS . . . 251

10.1 Computing the coefficients of a discrete Fourier series 251
10.2 Fast multipoint evaluation: revisited 255
10.3 Fast interpolation: revisited . 257
10.4 Other research areas involving FFT algorithms 258
10.5 Concluding remarks . 260

APPENDICES

A. Master equations for algorithm operation counts 263
B. Operation count: split-radix FFT . 274
C. Additional details of the modified split-radix FFT 278
D. Complex conjugate properties . 285
E. Proof of the existence of the Cantor basis 287
F. Taylor shift of a polynomial with finite field coefficients 294
G. Taylor expansion of a polynomial with finite field coefficients at xτ . . 298
H. Additional recurrence relation solutions for additive FFT algorithms . 302
I. Operation count: Karatsuba’s multiplication algorithm 305
J. Operation count: Schönhage’s algorithm 307

viii

Table of Contents (Continued)

Page

K. Karatsuba’s algorithm in FFT-based multiplication using the new ad-
ditive FFT . 309

L. Reischert’s multiplication method . 311
M. Two positions on future polynomial multiplication algorithm perfor-

mance . 315
N. Complexity of truncated algorithms 317
O. Alternative derivation of Newton’s Method 319

BIBLIOGRAPHY . 323

ix

LIST OF TABLES

Table Page

5.1 Addition cost comparison between Schönhage’s algorithm and FFT-based
multiplication using the new additive FFT algorithm 160

L.1 Operation counts of “pointwise products” involved in Reischert’s multi-
plication method . 314

x

LIST OF FIGURES

Figure Page

1.1 Pseudocode for fast multipoint evaluation (iterative implementation) . 11

1.2 Pseudocode for fast multipoint evaluation (recursive implementation) . 12

1.3 Pseudocode for fast multipoint evaluation (8 points) 13

1.4 Pseudocode for fast interpolation (recursive implementation) 20

2.1 Pseudocode for classical radix-2 FFT 28

2.2 Pseudocode for twisted radix-2 FFT . 33

2.3 Pseudocode for classical radix-4 FFT 40

2.4 Pseudocode for split-radix FFT (conjugate-pair version) 51

2.5 Pseudocode for new classical radix-3 FFT 63

2.6 Pseudocode for improved twisted radix-3 FFT 71

3.1 Pseudocode for von zur Gathen-Gerhard additive FFT 86

3.2 Pseudocode for Wang-Zhu-Cantor additive FFT 93

3.3 Pseudocode for shifted additive FFT 97

3.4 Pseudocode for Gao’s additive FFT . 105

3.5 Pseudocode for new additive FFT . 111

4.1 Pseudocode for classical radix-2 IFFT 118

4.2 Pseudocode for twisted radix-2 IFFT 121

4.3 Pseudocode for split-radix IFFT (conjugate-pair version) 124

4.4 Pseudocode for new twisted radix-3 IFFT 127

4.5 Pseudocode for Wang-Zhu-Cantor additive IFFT 131

4.6 Pseudocode for the new additive IFFT 137

5.1 Pseudocode for Karatsuba multiplication 144

xi

List of Figures (Continued)

Figure Page

5.2 Pseudocode for FFT-based multiplication 147

5.3 Pseudocode for Schönhage’s multiplication 153

6.1 Pseudocode for truncated FFT . 165

6.2 Pseudocode for inverse truncated FFT 174

6.3 Illustration of truncated FFT algorithms 176

7.1 Pseudocode for classical division . 183

7.2 Pseudocode for Newton division algorithm 187

7.3 Pseudocode for improved Newton division 191

8.1 Pseudocode for Euclidean Algorithm 198

8.2 Pseudocode for Extended Euclidean Algorithm 207

8.3 Pseudocode for Fast Euclidean Algorithm 222

9.1 Pseudocode for simple Reed-Solomon decoding algorithm 247

C.1 Pseudocode for modified split-radix FFT (version A reduction step) . . 279

C.2 Pseudocode for modified split-radix FFT (version B reduction step) . . 280

C.3 Pseudocode for modified split-radix FFT (version C reduction step) . . 281

C.4 Pseudocode for modified split-radix FFT (version D reduction step) . . 282

F.1 Pseudocode for Taylor expansion of a polynomial at ξ 296

G.1 Pseudocode for Taylor expansion at xτ 300

L.1 Pseudocode for Reischert multiplication 313

xii

CHAPTER 1

INTRODUCTION

Around 1805, Carl Friedrich Gauss invented a revolutionary technique for

efficiently computing the coefficients of what is now called 1 a discrete Fourier series.

Unfortunately, Gauss never published his work and it was lost for over one hundred

years. During the rest of the nineteenth century, variations of the technique were

independently discovered several more times, but never appreciated. In the early

twentieth century, Carl Runge derived an algorithm similar to that of Gauss that could

compute the coefficients on an input with size equal to a power of two and was later

generalized to powers of three. According to Pierre Duhamel and M. Hollmann [22],

this technique was widely known and used in the 1940’s. However, after World War II,

Runge’s work appeared to have been forgotten for an unknown reason. Then in 1965,

J. W. Cooley and J. W. Tukey published a short five page paper [16] based on some

other works of the early twentieth century which again introduced the technique which

is now known as the “Fast Fourier Transform.” This time, however, the technique

could be implemented on a new invention called a computer and could compute the

coefficients of a discrete Fourier series faster than many ever thought possible. Since

the publication of the Cooley-Tukey paper, engineers have found many applications

for the algorithm. Over 2,000 additional papers have been published on the topic

1 If the year of this discovery is accurate as claimed in [40], then Gauss discovered
the Fourier series even before Fourier introduced the concept in his rejected 1807 work
which was later published in 1822 as a book [27]. Nevertheless, Fourier’s work was
better publicized than that of Gauss among the scientific community and the term
“Fourier series” has been widely adopted to describe this mathematical construction.

1

[39], and the Fast Fourier Transform (FFT) has become one of the most important

techniques in the field of Electrical Engineering. The revolution had finally started.

In [25], Charles Fiduccia showed for the first time that the FFT can be com-

puted in terms of algebraic modular reductions. As with the early FFT publications,

this idea has been generally ignored. However, Daniel Bernstein recently wrote sev-

eral unpublished works ([2], [3], [4]) which expand upon the observations of Fiduccia

and show the algebraic transformations involved in this approach to computing the

FFT.

The main purpose of this document is to provide a mathematical treatment

of FFT algorithms, extending the work of Fiduccia and Bernstein. Many of the

algorithms contained in this manuscript have appeared in the literature before, but

not from this algebraic perspective. While it is unlikely that the completion of this

thesis will trigger a revolution similar to that which followed the publication of the

Cooley and Tukey paper, it is hoped that this document will help to popularize this

mathematical perspective of FFT algorithms.

Another purpose of the document is to introduce a new algorithm originally

invented by Shuhong Gao [30] that quickly evaluates a polynomial over special collec-

tions of finite field elements. Although it turned out that this algorithm is less efficient

than existing techniques for all practical sizes, the careful study of the Cooley-Tukey

algorithms through this research effort resulted in a new version of the algorithm

that is superior to existing techniques for all practical sizes. The new version of this

algorithm will also be introduced as part of this manuscript. We will then show how

the new algorithm can be used to multiply polynomials with coefficients over a fi-

nite field more efficiently than Schönhage’s algorithm, the most efficient polynomial

multiplication algorithm for finite fields currently known.

2

Most FFT algorithms only work when the input size is the power of a small

prime. This document will also introduce new algorithms that work for an arbitrary

input size. We will then explore several applications of the FFT that can be im-

proved using the new algorithms including polynomial division, the computation of

the greatest common divisor, and decoding Reed-Solomon codes.

Another motivation for writing this document is to provide a treatment of the

FFT that takes the perspective of both mathematicians and engineers into account

so that these two communities may better communicate with each other. The engi-

neering perspective of the FFT has been briefly introduced in these opening remarks.

We will now consider the mathematician’s perspective of the FFT.

1.1 The mathematician’s perspective

It has already been mentioned that engineers originally defined the Fast Fourier

Transform as a technique which efficiently computes the coefficients of a discrete

Fourier series. As introduced by Fiduccia [25], mathematicians developed an al-

ternative definition of the Fast Fourier Transform (FFT) as a method of efficiently

evaluating a polynomial at the powers of a primitive root of unity. Unfortunately, this

interpretation is completely the opposite of that of the engineer, who view the inverse

of the Fast Fourier Transform as a solution to this multipoint evaluation problem

using the discrete Fourier series. Similarly, the mathematician defines the “inverse

FFT” as a method of interpolating a set of these evaluations back into a polynomial.

We will see in Chapter 10 that this interpolation is the goal of what the engineers

call the FFT. One of the challenges of studying the FFT literature is reading papers

written by authors who view the FFT problem from a different perspective. Further

distorting the engineer’s original meaning of the phrase “Fast Fourier Transform”,

3

the “additive FFT” has been defined [29] as an algorithm which exploits the addi-

tive vector space construction of finite fields to efficiently evaluate a polynomial at a

special collection of these finite field elements. This technique has no relation to the

discrete Fourier series at all.

In this manuscript, the FFT will be presented from the mathematician’s point

of view. In other words, we will define the FFT as “a technique which efficiently

evaluates a polynomial over a special collection of points” and the inverse FFT will

be defined as “a technique which efficiently interpolates a collection of evaluations of

some polynomial at a special set of points back into this polynomial.” Two types of

FFT algorithms will be considered: (1) the “multiplicative FFT” which works with

the powers of a primitive root of unity; and (2) the “additive FFT” which works

over a special collection of finite field elements. Again, in Chapter 10, we will show

how some of the algorithms developed in this document can be used to solve the

engineering applications for which they were originally designed and put some of the

“Fourier” back into the Fast Fourier Transform.

At this point, it might be appropriate to point out an additional difference

of opinion between mathematicians and engineers relevant to the algorithms in this

document. The complex numbers is a collection of elements of the form A+
√
−1 ·B

where A and B are real numbers. Mathematicians typically use i to represent
√
−1

while the engineers typically use the symbol j. In this document, the symbol I will

be used to represent
√
−1, following the convention used in several popular computer

algebra packages.

1.2 Prerequisite mathematics

Much of the material in this document can be understood by a reader who

has completed a curriculum in undergraduate mathematics. Specifically, one should

4

have completed a course in Discrete Mathematics based on material similar to [66], a

course in Linear Algebra based on material similar to [51], and a introductory course

in Modern Algebra based on material similar to [60]. In particular, one should have a

basic understanding of binary numbers, trees, recursion, recurrence relations, solving

linear systems of equations, inverses, roots of unity, groups, rings, fields, and vector

spaces.

Additionally, some background in the algebraic structures used throughout

this document is highly recommended. To understand the multiplicative FFTs, one

needs to know the basic properties of complex numbers (see chapter 1 in [67]). To

understand the more advanced material in the document, one should have an under-

standing of polynomial rings and finite fields, also known as Galois fields. One can

study Chapter 2 of [52] or Chapters 1-6 of [80]) to learn this material.

1.3 Operation counts of the algorithms

Mathematically modeling the effort needed to implement any type of algorithm

is a difficult topic that has changed several times over the years. Originally, one would

only count the number of multiplication operations required by the computer and

express the result as a function of the problem size represented by n. The “big-O”

notation was later invented to simplify these expressions when comparing different

algorithms. A function f(x) is said to be O(g(x)) if there exists constants C and k

such that

|f(x)| ≤ C · |g(x)| (1.1)

whenever x > k. Unfortunately, this notation was misused over the years and was

5

later replaced with the “big-Θ” notation by Don Knuth [48]. 2 A function f(x) is

said to be Θ(g(x)) if there exists constants C1, C2, and k such that

C1 · |g(x)| ≤ |f(x)| ≤ C2 · |g(x)| (1.2)

whenever x > k. The “big-Θ” notation provides a better measure of the effort

needed to complete a particular algorithm. In this manuscript, we will give a precise

operation count for every FFT algorithm discussed in Chapters 2-4 and will also

express an operation count using the “big-Θ” notation when appropriate. For the

applications discussed in Chapters 5-10, it will often be difficult to obtain a precise

operation count or even a lower bound of the number of operations required. In

these cases, the “big-O” notation will be used instead and the author will attempt to

present as tight of an upper bound as possible.

In the early days of FFT analysis, only the number of multiplications required

was considered significant and the number of additions needed was ignored. This

led to an algorithm by Winograd [83] which provided a constructive lower bound

on the number of multiplications needed to compute the FFT of size 2k. Problems

arose, however, when people attempted to implement the algorithm and only found

it practical for computing FFTs of size up to 28 = 64, much smaller than practical

FFT sizes. It turned out that in order to achieve a modest reduction in the number

of multiplications, a tradeoff of many more additions was required. As a result,

Winograd’s algorithm is only of theoretical interest and the number of additions is

2 To demonstrate the misuse of the “big-O” notation, one can show that any al-
gorithm in this paper is O(x7399). This gives us no information whatsoever that may
help us estimate how much effort a particular algorithm costs or that may help us
compare two algorithms.

6

now computed as well as the number of multiplications. Even more advanced models

of FFT algorithms also include the contribution from memory accesses and copies.

However, these models are often dependent on the architecture of a computer and

will not be used for the cost analyses presented in this document.

Instead, we will typically count the number of multiplications and the number

of additions needed to implement a particular algorithm. Sometimes, the counts will

be given in terms of the algebraic structure used in the algorithm and sometimes the

counts will be given in terms of a component of the structure. 3 These results will

usually not be combined, but occasionally an analysis will be presented that relates

the two operations. In cases where a conservative operation count of the algorithm

is desired, the number of copies will also be counted when data needs to be shuffled

around. When this applies, a copy will be modeled as equivalent to the cost of an

addition.

1.4 Multipoint polynomial evaluation

From the mathematician’s perspective, the FFT is a special case of the mul-

tipoint evaluation problem. In the next few sections, we will explore algorithms for

solving this more general problem.

Let f(x) be a polynomial of degree less than n with coefficients in some ring

R. We can express f(x) as

f(x) = fn−1 · xn−1 + fn−2 · xn−2 + · · · + f1 · x+ f0, (1.3)

3 For example, in the case of complex numbers (C), we can either count the number
of additions and multiplications in C, or we can count the number of additions and
multiplications in R, the real numbers. We will see that there are several different
strategies for computing complex number arithmetic in terms of the real numbers.

7

where {f0, f1, . . . , fn−2, fn−1} ∈ R. We wish to evaluate f at some set of points

S = {ε0, ε1, . . . , εn−1} ∈ R.

Let εj be one of the points in S. Then

f(εj) = fn−1 · εj
n−1 + fn−2 · εj

n−2 + · · · + f1 · εj + f0. (1.4)

If (1.4) is used to determine f(εj) without seeking to minimize the computations, it

would require 1
2
· n2 − 1

2
· n multiplications and n− 1 additions. The evaluation of εj

for each point in S would require Θ(n3) multiplications and Θ(n2) additions.

In a typical high school algebra course (e.g. [5]), the technique of synthetic

division is introduced. This method is based on the so-called “Remainder Theorem”

which states that f(ε) is equal to the remainder when f(x) is divided by the polyno-

mial x− ε. Synthetic division is equivalent to a technique called “Horner’s method”

which involves rewriting (1.4) as

f(εj) = ((· · · ((fn−1 · εj) + fn−2 · εj) + . . .) + f1 · εj) + f0. (1.5)

Synthetic division and Horner’s method require n − 1 multiplications and n − 1 ad-

ditions to evaluate f(εj). The evaluation of εj for each point in S now only requires

n2 − n multiplications and n2 − n additions. These techniques are said to be Θ(n2).

8

1.5 Fast multipoint evaluation

To introduce a number of concepts relevant to the study of FFT algorithms,

we will now consider an algorithm based on material found in [25] and [57] which

efficiently solves the multipoint evaluation problem. The presentation of the algorithm

in this section is based on [34] and assumes that n is of the form 2k. However, the

algorithm can easily be adapted to let n be of the form pk if desired.

The algorithm works by performing a series of “reduction steps” which are

designed to efficiently compute the polynomial evaluations. Mathematicians view

the reduction steps as transformations between various quotient rings, but use rep-

resentative elements to compute in these algebraic structures. In this document,

“f(x) mod M(x)” will be interpreted as the remainder which results when f(x) is

divided by some other polynomial M(x) called the “modulus polynomial.” Each

reduction step receives some “residue polynomial” f ◦ = f mod MA as input and pro-

duces as output the residue polynomials f ◦ mod MB = f mod MB and f ◦ mod MC =

f mod MC where MA = MB · MC .

The reduction steps can be organized into a binary tree with k + 1 levels. On

level i, there will be 2k−i nodes for each i in 0 ≤ i ≤ k. These nodes will be labeled

using the notation (i, j) where i denotes the level of the node on the binary tree and

j is used to label the nodes on each level from left to right. Here, 0 ≤ j < 2k−i.

In some of the algorithms discussed in later chapters, the nodes will be denoted by

(2i, j).

Let us now express the reduction step of this algorithm in terms of the nodes

of the binary tree. If the input to the reduction step is located at node (i + 1, j),

then the two outputs can be stored in nodes (i, 2j) and (i, 2j + 1) if the modulus

polynomials are defined appropriately. Let M0,j(x) be defined as x− εj for each j in

0 ≤ j < n. Then use the recursive definition

9

Mi+1,j = Mi,2j · Mi,2j+1 (1.6)

to define Mi,j for all i > 0 and j in the range 0 ≤ j < 2k−i. If Mi,j is used as the

modulus polynomial, then node (i, j) of the binary tree will contain the intermediate

result f mod Mi,j. The reduction step with input at node (i+ 1, j) transforms f ◦ =

f mod Mi+1,j into f ◦ mod Mi,2j = f mod Mi,2j and f ◦ mod Mi,2j+1 = f mod Mi,2j+1,

which are stored in nodes (i, 2j) and (i, 2j + 1) respectively.

To construct an algorithm based on this reduction step, initialize node (k, 0)

with f(x), a polynomial of degree less than n. Since Mk,0 has degree n, then f =

f mod Mk,0. Next, use the reduction step to compute the values in all of the nodes of

the binary tree. At the end of this process, we will have f mod M0,j = f mod (x−εj)

for all j in 0 ≤ j < n. By the Remainder Theorem, f(x) mod (x − εj) = f(εj) and

we have obtained the desired multipoint evaluation of f .

There are two methods typically used to perform the reduction steps. The first

method is called “breadth-first order” and proceeds by computing all of the reduction

steps on a particular level at the same time. An algorithm which traverses the nodes

of the tree in this manner is said to be “iterative”. Pseudocode for an iterative

implementation of the fast multipoint evaluation algorithm is given in Figure 1.1.

It is possible to construct a more general version of this algorithm that re-

ceives the contents of any node of the binary tree as input. Figure 1.2 presents the

pseudocode for the second method of traversing the binary tree, called “depth-first

order”, in this more general form. The depth-first version of the fast multipoint eval-

uation algorithm proceeds by subdividing the original problem of size 2m into two

problems of size m and then solving each subproblem individually. For this reason,

10

Algorithm : Fast multipoint evaluation (iterative implementation)

Input: f = f mod Mk,0, a polynomial of degree less than n = 2k

in a ring R.
Output: f(ε0), f(ε1), · · · , f(εn−1).

0. If n = 1, then return f(ε0) = f (f is a constant).
1. for i = k − 1 downto 0 do

2. for j = 0 to 2k−i−1 do

3. Retrieve f ◦ = f mod Mi+1,j from previous computation
or initial condition.

4. Compute f mod Mi,2j = f ◦ mod Mi,2j.
5. Compute f mod Mi,2j+1 = f ◦ mod Mi,2j+1.
6. end for (Loop j)
7. end for (Loop i)
8. Return f(εj) = f mod (x− εj) = f mod M0,j for all j in 0 ≤ j < n.

Figure 1.1 Pseudocode for fast multipoint evaluation (iterative implementation)

an algorithm which traverses the nodes of the binary tree using a depth-first approach

is said to be “recursive”. In this type of algorithm, the order that the reduction steps

are completed is governed by common values of i · j in the binary tree.

There are advantages and disadvantages with both orderings of the reduction

steps. The major advantage of the iterative approach is that it avoids recursion. When

an extensive amount of recursion of small input sizes is involved in an algorithm, the

overhead of implementing the recursive calls can dominate the total time needed to

implement the algorithm. One major advantage of the recursive approach is that it

better utilizes the computer’s cache, a relatively small bank of memory in a computer

that can be accessed more rapidly than storage outside the cache. The problem with

the iterative approach is that for large problems, there will be significant movement

of data into and out of the computer’s cache. This swapping can have a devastating

effect on the amount of time needed to implement an algorithm. In contrast, there

will come a point in the recursive approach where a subproblem will fit entirely within

11

Algorithm : Fast multipoint evaluation (recursive implementation)

Input: f ◦ = f mod Mi+1,j, a polynomial of degree less than 2m where m = 2i

in a ring R.
Output: f(εj·2m+0), f(εj·2m+1), · · · , f(εj·2m+2m−1).

0. If (2m) = 1 then return f mod (x− εj) = f(εj).
1. Compute f mod Mi,2j = f ◦ mod Mi,2j.
2. Compute f mod Mi,2j+1 = f ◦ mod Mi,2j+1.
3. Recursively call algorithm with input f mod Mi,2j to obtain

f(εj·2m+0), f(εj·2m+1), · · · , f(εj·2m+m−1).
4. Recursively call algorithm with input f mod Mi,2j+1 to obtain

f(εj·2m+m), f(εj·2m+m+1), · · · , f(εj·2m+2m−1).
5. Return f(εj·2m+0), f(εj·2m+1), · · · , f(εj·2m+2m−1).

Figure 1.2 Pseudocode for fast multipoint evaluation (recursive implementation)

the computer’s cache. This subproblem can be solved without any swapping involving

the cache memory. A second advantage of the recursive approach is that some people

feel it better describes the reduction step involved in the algorithm. However, the

tradeoff of this advantage is slightly more complicated expressions that have the same

purpose as the loop variables in the iterative implementation.

In this document, we will present most of the algorithms in recursive form

for readability purposes and will model the recursion involved in these algorithms

as having no cost. In practice, what is typically done is to mix the two orderings.

Specialized routines are written to implement an algorithm on an input size that will

fit entirely in a computer’s cache memory. These routines are sometimes written by

special code-generators which remove all recursive calls from the routine. The FFTW

package [28] uses this technique for computing the Fast Fourier Transforms that will

be discussed in Chapter 2. As an example of this technique, pseudocode is provided

in Figure 1.3 that computes the fast multipoint evaluation of a polynomial at eight

points in depth-first order without using recursion.

12

Algorithm : Fast multipoint evaluation (8 points)

Input: f = f mod M3,0, a polynomial of degree less than 8 in a ring R.
Output: f(ε0), f(ε1), · · · , f(ε7).

1. Compute f ◦
2,0 = f mod M2,0.

2. Compute f ◦
2,1 = f mod M2,1.

3. Compute f ◦
1,0 = f ◦

2,0 mod M1,0.
4. Compute f ◦

1,1 = f ◦
2,0 mod M1,1.

5. Compute f(ε0) = f ◦
0,0 = f ◦

1,0 mod M0,0.
6. Compute f(ε1) = f ◦

0,1 = f ◦
1,0 mod M0,1.

7. Compute f(ε2) = f ◦
0,2 = f ◦

1,1 mod M0,2.
8. Compute f(ε3) = f ◦

0,3 = f ◦
1,1 mod M0,3.

9. Compute f ◦
1,2 = f ◦

2,1 mod M1,2.
10. Compute f ◦

1,3 = f ◦
2,1 mod M1,3.

11. Compute f(ε4) = f ◦
0,4 = f ◦

1,2 mod M0,4.
12. Compute f(ε5) = f ◦

0,5 = f ◦
1,2 mod M0,5.

13. Compute f(ε6) = f ◦
0,6 = f ◦

1,3 mod M0,6.
14. Compute f(ε7) = f ◦

0,7 = f ◦
1,3 mod M0,7.

15. Return f(ε0), f(ε1), · · · , f(ε7).

Figure 1.3 Pseudocode for fast multipoint evaluation (8 points)

For inputs of larger size, an iterative algorithm can be written to reduce the

original problem into subproblems that can be solved by the specialized routines.

These “depth-first” routines with the recursion removed then take over to implement

the rest of the computation by efficiently using the computer’s cache memory. All

of these details will be hidden from the reader in the presentation of the algorithms

discussed in this document, but these issues should be carefully considered by any

reader who wishes to implement any of these algorithms on a computer.

We will now give a cost analysis of the recursive version of the algorithm. We

will let A(n) denote the number of additions or subtractions in the ring R needed to

implement an algorithm with input size n under the assumption that an addition in

R requires the same amount of effort to implement as a subtraction in R. Similarly,

13

we will let M(n) denote the number of multiplications required in R to implement

an algorithm of size n. 4

Let us compute the cost of the recursive version of the algorithm which has

input size 2m. Line 0 simply ends the recursion and costs no operations. Lines 1

and 2 are each a division of a polynomial of degree less than 2m by a polynomial of

degree m. Using the method of polynomial division typically learned in high school

(e.g. [5]), this costs m2 multiplications in R and m2 subtractions in R. 5 Lines 3

and 4 each involve a recursive call to the algorithm with input size of m. It requires

M(m) multiplications and A(m) additions / subtractions to implement each of these

recursive calls. Line 5 requires no operations.

By combining these results, a total of

M(n) = 2 ·M
(n

2

)
+
n2

2
, (1.7)

A(n) = 2 · A
(n

2

)
+
n2

2
(1.8)

operations are needed to complete the algorithm with input size n. If n = 1, then

the operation counts are given by M(1) = 0 and A(1) = 0.

In the appendix, closed-form solutions to provided for a number of general re-

currence relations. By properly setting the parameters of these relations, closed-form

4 Since R is only specified to be a ring, there is no guarantee that division is possible
in this structure. In those cases where a division is required, we will specify what
elements must be invertible in R.

5 It will always be the case that the leading coefficient of any Mi,j is a 1. Thus,
it is not necessary to invert the leading coefficient of this polynomial in the division
algorithm and saves m multiplications in the polynomial division that would have
otherwise been required.

14

formulas can be obtained for many of the algorithms presented in this manuscript.

By setting A = 1/2 and the rest of the parameters equal to 0 in Master Equation I,

operation counts of the fast multipoint evaluation algorithm can be expressed by

M(n) = n2 − n, (1.9)

A(n) = n2 − n. (1.10)

This algorithm is also said to be Θ(n2). It appears that we have not improved the

number of operations needed to compute the multipoint evaluations compared to

synthetic division. It turns out that we can improve the fast multipoint evaluation

algorithm to O(n1.585 · log2(n)) using a more advanced method of computing the

modular reductions. Even more efficient algorithms can be achieved if we can reduce

the number of nonzero coefficients in the modulus polynomials. These ideas will be

explored further in some of the later chapters.

1.6 Lagrangian interpolation

As mentioned earlier, the inverse of the task of evaluating a polynomial at a

collection of points is to interpolate these evaluations back into the original polyno-

mial. In a typical numerical analysis course (e.g. [11]), the technique of Lagrangian

interpolation is introduced to accomplish this goal. In this section, we will briefly

review this technique.

Let f be a polynomial of degree less than n and suppose that we are given the

evaluation of some unknown polynomial f at n arbitrary points {ε0, ε1, . . . , εn−1} in

some ring R. Thus, we are given {a0, a1, . . . , an−1} where f(εj) = aj for 0 ≤ j < n.

Our task is to recover the unknown polynomial f .

15

Observe that

Li(x) =
n−1∏

j=0,j 6=i

x− εj

εi − εj

(1.11)

=
(x− ε1) · (x− ε2) · · · (x− εi−1) · (x− εi+1) · (x− εi+2) · · · (x− εn−1)

(εi − ε1) · (εi − ε2) · · · (εi − εi−1) · (εi − εi+1) · (εi − εi+2) · · · (εi − εn−1)

is a function such that

Li(εj) =

0 if j 6= i

1 if j = i
. (1.12)

Each Li(x) is called a Lagrange interpolating polynomial and has degree n− 1. The

collection of interpolating polynomials can be computed in Θ(n2 · log2(n)) operations

using an algorithm that is provided in [34]. However, the interpolating polynomials

can be precomputed and stored for a fixed collection of interpolation points. We will

assume that this is the case here.

Given the Lagrange interpolating polynomials, then f can be easily recovered

through the computation

f(x) = a0 · L0(x) + a1 · L1(x) + · · · + an−1 · Ln−1(x). (1.13)

Using (1.12), it is easy to verify that f(εi) = ai for 0 ≤ i < n.

Since (1.13) has n terms, each of which consists of multiplying a constant by

a polynomial of degree n− 1, then a total of n2 multiplications and n2 − n additions

16

are required to recover f . Thus, Lagrangian interpolation is said to require Θ(n2)

operations, provided that the interpolating polynomials are precomputed.

1.7 Fast interpolation

Earlier in this chapter, we considered a fast multipoint evaluation algorithm

which is based on a reduction step that receives as input some polynomial f ◦ =

f mod MA and produces as output f mod MB and f mod MC where MA = MB ·MC .

The fast interpolation algorithm discussed in this section is based on an interpolation

step that essentially reverses this process.

The Chinese Remainder Theorem is a technique that originally appeared in

an ancient book by Sun Zi [75] and was used to find integers that satisfied certain

constraints based on the Chinese calendar. The technique was later generalized to

other algebraic structures. The interpolation step of the algorithm considered in

this section is based on the polynomial version of the Chinese Remainder Theorem.

Although the technique can be made to work with an arbitrary number of inputs, we

will only consider the two-input version of the Chinese Remainder Theorem in this

section.

Let MB and MC be polynomials of degree m which do not have a common

divisor. Using the Extended Euclidean Algorithm discussed in Chapter 8, 6 it is

possible to find polynomials u(x) and v(x) such that

u · MB + v · MC = 1. (1.14)

6 The first part of Chapter 8 does not depend on the earlier chapters, so the inter-
ested reader can review this material at this point if desired.

17

Note that

u · MB mod MC = 1, (1.15)

v · MC mod MB = 1. (1.16)

Suppose that b(x) = f mod MB and c(x) = f mod MC . The Chinese Remainder

Theorem states that the polynomial a(x) of smallest degree such that

a mod MB = b, (1.17)

a mod MC = c (1.18)

is given by

a = (b · v · MC + c · u · MB) mod MB ·MC . (1.19)

The reader can easily verify that (1.19) satisfies (1.17) and (1.18).

If u and v are constant polynomials, then (1.19) simplifies to

a = b · v · MC + c · u · MB. (1.20)

18

Otherwise, [19] provides the following alternative method of computing a with less

effort than (1.19):

a = b+ ((c− b) · u mod MC) · MB. (1.21)

The reader can easily verify that (1.19) and (1.21) are equivalent and can also verify

that a = f mod MA where MA = MB · MC . The interpolation step of the fast

algorithm combines inputs b = f mod MB and c = f mod MC into a = f mod MA

for appropriately defined polynomials MA, MB, and MC .

Suppose that {ε0, ε1, · · · , εn−1} is a collection of n distinct points in a ring

R. Let us define M0,j = x − εj for 0 ≤ j < n and let Mi+1,j = Mi,2j · Mi,2j+1

for each 0 ≤ i ≤ k − 1 where k = log2(n) and where 0 ≤ j ≤ 2k−i−1. The fast

interpolation algorithm is initialized with f(εj) = f mod M0,j for 0 ≤ j < n. For

given values of i and j, it can be easily shown that Mi,2j and Mi,2j+1 do not have

any common factors. Thus, b = f mod Mi,2j and c = f mod Mi,2j+1 can be combined

into a = f mod Mi+1,j using the Chinese Remainder Theorem given by either (1.20)

or (1.21). We will assume that the polynomials u, v, Mi,2j, and Mi,2j+1 have been

precomputed and stored in these formulas. The fast algorithm first performs the

interpolation steps for i = 0 and 0 ≤ j < 2k−1. The algorithm then proceeds with the

interpolation steps for i = 1, 2, . . . , k− 1. Since Mk,0 is a polynomial of degree n and

f is assumed to be a polynomial of degree less than n, then f is equal to the output

of this final interpolation step.

19

The above description of the fast interpolation algorithm was given in iterative

form. Pseudocode for an equivalent recursive implementation of the fast interpolation

algorithm is given in Figure 1.4.

Algorithm : Fast interpolation (recursive implementation)

Input: The evaluations f(εj·2m+0), f(εj·2m+1), . . . , f(εj·2m+2m−1)
of some polynomial f with coefficients in a ring R where m = 2i.

Output: f mod Mi+1,j.

0. If (2m) = 1 then return f mod M0,j = f mod (x− εj) = f(εj).
1. Recursively call algorithm with input f(εj·2m+0), f(εj·2m+1), . . . , f(εj·2m+m−1)

to obtain b = f mod Mi,2j.
2. Recursively call algorithm with input f(εj·2m+m), f(εj·2m+m+1), . . . , f(εj·2m+2m−1)

to obtain c = f mod Mi,2j+1.
3. Retrieve polynomial ui+1,j such that

ui+1,j · Mi,2j + vi+1,j · Mi,2j+1 = 1 for some vi+1,j.
4. Return f mod Mi+1,j = b+ ((c− b) · ui+1,j mod Mi,2j+1) · Mi,2j.

Figure 1.4 Pseudocode for fast interpolation (recursive implementation)

Let us now compute the operation count of this algorithm. Line 0 simply ends

the recursion and costs no operations. The cost of lines 1 and 2 is equal to the number

of operations needed to call the algorithm with input size m. We will assume that

the cost of line 3 is no operations since the required polynomial was precomputed

and stored. To compute line 4, we must first subtract two polynomials of size m

and then multiply the result by a polynomial of size m. This polynomial of degree

at most 2m − 1 must be divided by a polynomial of degree m and the remainder of

this computation must be multiplied by a polynomial of size m + 1 and then added

to a polynomial of size m. These computations require 3m2 multiplications and

3m2 + 2m additions / subtractions, assuming that the multiplications and divisions

20

are computed using the techniques typically learned in a high school algebra course

(e.g. [5]).

By combining these results, a total of

M(n) = 2 ·M
(n

2

)
+

3

4
· n2 +

1

2
· n, (1.22)

A(n) = 2 · A
(n

2

)
+

3

4
· n2 +

3

2
· n (1.23)

operations are needed to complete the algorithm with input size n. If n = 1, then

the operation counts are given by M(1) = 0 and A(1) = 0.

Master Equation I can be used to express these operation counts using the

expressions

M(n) =
3

2
· n2 − 3

2
· n+

1

2
· n · log2(n), (1.24)

A(n) =
3

2
· n2 − 3

2
· n+

3

2
· n · log2(n). (1.25)

If ui,j is a constant for all i and j, then line 4 only requires 2m2+mmultiplications and

2m2 +m additions. In this case, the total number of operations needed to implement

the algorithm is

M(n) = 2 ·M
(n

2

)
+

1

2
· n2 +

1

2
· n, (1.26)

A(n) = 2 · A
(n

2

)
+

1

2
· n2 +

3

2
· n, (1.27)

or

21

M(n) = n2 − n+
1

2
· n · log2(n), (1.28)

A(n) = n2 − n+
3

2
· n · log2(n). (1.29)

In [43], Ellis Horowitz introduced another algorithm which can be used to

perform the interpolation. The algorithm works by pre-scaling f(εj) by

sj =
1

(εj − ε1) · (εj − ε2) · · · (εj − εj−1) · (εj − εj+1) · (εj − εj+2) · · · (εj − εn−1)

(1.30)

for all 0 ≤ j < n. By replacing u and v with 1 in (1.20), the reader can verify that

recursively applying this interpolation step to the scaled inputs produces (1.13) at

the end of the computations. This cost of the Horowitz algorithm is equivalent to the

algorithm presented in Figure 1.4 for the case where ui,j and vi,j are constant polyno-

mials for all i and j. However, the intermediate results of the Horowitz algorithm do

not represent a modular reduction of the polynomial that we are trying to recover.

In any event, the “fast” algorithm in this section is not yet more efficient than

Lagrangian interpolation for any of the cases. However, by using faster methods of

computing the modular reductions discussed in the later chapters, we will see that the

complexity of the fast interpolation algorithm can also be reduced to O(n1.585·log2(n)).

Even more efficient versions of the fast multipoint evaluation and fast interpolation

algorithms can be constructed if the number of nonzero coefficients in Mi,j can be

reduced for all i and j.

22

1.8 Concluding remarks

This chapter contained background material for a study of FFT algorithms.

After presenting some historical information, mathematical prerequisites, and a brief

discussion on algorithm complexity, several methods of solving the problems of multi-

point polynomial evaluation and interpolation were explored. In both cases, a “fast”

algorithm was presented based on a binary tree, but performed no better than other

methods for solving the problems of multipoint evaluation and interpolation using

the material covered thus far.

These algorithms will serve as templates for most FFT algorithms that will

be presented in this manuscript. In Chapter 2, we will consider FFT algorithms that

exploit the multiplicative structure of the powers of a primitive root of unity. In

Chapter 3, we will consider FFT algorithms which exploit the additive structure of

finite fields. The key to the performance of these algorithms is reducing the number

of terms found in the Mi,j’s and maximizing the number of the remaining terms that

have a coefficient of 1 or -1. In Chapter 4, the companion inverse FFT algorithms for

the algorithms presented in Chapters 2 and 3 will be considered.

After exploring how the FFT can be used to efficiently multiply two polyno-

mials in Chapter 5, then Chapter 6 will give FFT algorithms that can be used to

handle the case where n is not a prime power. Finally, in Chapters 7-10, we will

explore additional applications of the FFT and will return to some of the problems

discussed in this chapter.

23

CHAPTER 2

MULTIPLICATIVE FAST FOURIER TRANSFORM ALGORITHMS

Let us consider a ring R with primitive nth root of unity ω where n = pk.

Suppose that we wish to evaluate a polynomial f ∈ R[x] of degree less than n at

n points and the particular set of points used for the multipoint evaluation is not

important. In this case, the number of operations needed to compute the multipoint

evaluation can be significiantly reduced if f is evaluated at each of the powers of

ω, i.e. {f(1), f(ω), f(ω2), f(ω3), . . . , f(ωn−1)}. Each of the n points used for this

computation is a root of xn − 1. Mathematicians typically call an efficient algorithm

for computing this particular multipoint evaluation a Fast Fourier Transform (FFT).

In [29], Gao calls this operation the “multiplicative FFT” to distinguish it from the

operation that will be discussed in Chapter 3. For the remainder of this chapter, it

is to be understood that “FFT” will refer to this multiplicative FFT.

Nearly every presentation of the multiplicative FFT (for example see [22])

views the transformation which implements this multipoint evaluation as the matrix

1 1 1 1 · · · 1

1 ω ω2 ω3 . . . ωn−1

1 ω2 ω4 ω6 . . . ω2n−2

1 ω3 ω6 ω9 . . . ω3n−3

...
...

...
...

. . .
...

1 ωn−1 ω2n−2 ω3n−3 · · · ωn2−n

(2.1)

and shows how these computations can be completed using a “divide-and-conquer”

24

approach involving the factorization of this matrix. In this chapter, we will instead

view the FFT as a special case of the multipoint evaluation algorithm discussed in

Chapter 1. This view interprets the FFT as a series of modular reductions as intro-

duced in the work of Fiduccia [25] and Bernstein [2]. As a result, it is possible to assign

a mathematical interpretation to every intermediate result of the FFT computation.

In this chapter, we will first present two types of algorithms that can compute

an FFT when p = 2 using algebraic descriptions of these algorithms found in [2]. Next,

we will give algorithms with lower operation counts in the case where multiplication

by certain roots of unity can be computed more efficiently than others. Finally, we

will present multiplicative FFT algorithms that can be used when p = 3. With this

background, the reader can develop FFT algorithms for other values of p if desired.

2.1 The bit reversal function

Before presenting the FFT algorithms, we should first mention that most of

these algorithms typically produce the output in an order different from the “natu-

ral” order {f(1), f(ω), f(ω2), f(ω3), . . . , f(ωn−1)}. If n = 2k, the output is instead

presented in the order {f(1), f(ωσ(1)), f(ωσ(2)), f(ωσ(3)), . . . , f(ωσ(n−1))} where σ(j) is

the “binary reversal” of j (with respect to n). That is to say, if j can be expressed in

binary form as (bk−1bk−2bk−3 . . . b2b1b0)2, then σ(j) = (b0b1b2 . . . bk−3bk−2bk−1)2. For

example, if j = 5 and n = 16, then express j = 01012. So σ(j) = 10102 = 10. Note

that leading zeros should be included in the binary representation of j and contribute

to the value of σ(j). The σ function is a permutation of the integers {0, 1, 2, . . . n−1}.

Since σ is a 1-1, onto function, the inverse of the σ function can be computed and

used to rearrange the output of the FFT algorithms back into the “natural” order.

The σ function has several properties which will be important to the develop-

ment of the FFT algorithms for the case where p = 2.

25

Theorem 1 σ(j) = 2 · σ(2j) for j < n/2.

Proof: Let j < n/2 and write j in binary form, i.e. j = (0bk−2bk−3 . . . b2b1b0)2. Here,

n/2 = 2k−1. Then σ(j) = (b0b1b2 . . . bk−3bk−20)2. Now, 2j = (bk−2bk−3bk−4 . . . b1b00)2

and σ(2j) = (0b0b1b2 . . . bk−3bk−2)2. Multiplying this result by 2 gives σ(j) and thus

σ(j) = 2 · σ(2j). �

Theorem 2 σ(2j + 1) = σ(2j) + n/2 for j < n/2 and where k = log2(n).

Proof: If 2j = (bk−2bk−3bk−4 . . . b1b00)2 and σ(2j) = (0b0b1b2 . . . bk−3bk−2)2, then

2j+1 = (bk−2bk−3bk−4 . . . b1b01)2 and σ(2j+1) = (1b0b1b2 . . . bk−3bk−2)2 = σ(2j)+n/2,

so σ(2j + 1) = σ(2j) + n/2. �

2.2 Classical radix-2 FFT

Cooley and Tukey published a paper [16] which described an algorithm to

efficiently compute the FFT for various radix sizes. In this section, we will describe the

Cooley-Tukey algorithm for radix 2. Because we will encounter a different formulation

of the FFT algorithm in the next section, we will call the Cooley-Tukey version of

the FFT algorithm the “classical” FFT algorithm since it came first.

In [2], Bernstein observes that each reduction step of the classical radix-2 FFT

algorithm can be viewed as a transformation of the form

R[x]/(x2m − b2) → R[x]/(xm − b) (2.2)

× R[x]/(xm + b).

In this transformation, the modulus polynomials will have two nonzero terms in every

case and one of the coefficients of each modulus polynomial is 1. By substituting these

26

polynomials into the multipoint evaluation algorithm discussed in Chapter 1, we will

achieve a more efficient algorithm.

We are now going to present an implementation of the classical radix-2 FFT

algorithm based on the above transformation. The input to the reduction step is given

by f mod (x2m − b2) and computes fY = f mod (xm − b) and fZ = f mod (xm + b).

It turns out that the modular reduction is simple to perform in this case. Split the

input into two blocks of size m by writing f mod (x2m − b2) = fA · xm + fB. Then

fY = b · fA + fB and fZ = −b · fA + fB. The reduction step can also be expressed in

matrix form as

fY

fZ

 =

b 1

−b 1

 ·

fA

fB

 . (2.3)

Engineers often represent this transformation as a picture and call it a “butterfly

operation”.

Suppose that we want to compute the FFT of a polynomial f of degree less

than n = 2k over some ring R. We will recursively apply the reduction step with

appropriate selections of m and b. Since (ωσ(2j))2 = ωσ(j) and −ωσ(2j) = ωσ(2j+1)

for all j < n/2, then b can easily be determined. Each reduction step receives as

input f mod (x2m − ωσ(j)) for some j and produces as output f mod (xm − ωσ(2j))

and f mod (xm−ωσ(2j+1)). After all of the reduction steps have been completed with

input size 2m = 2, then we have f mod (x − ωσ(j)) = f(ωσ(j)) for all j < n, i.e. the

desired FFT of f . Pseudocode for this FFT algorithm is given in Figure 2.1.

It should be pointed out that the FFT algorithm is often applied to the roots of

unity in the field of complex numbers. In this case, ω = eI·2π/n and z is traditionally

used in place of x as the variable. Engineers typically select ω = e−I·2π/n as the

27

Algorithm : Classical radix-2 FFT

Input: f mod (x2m − ωσ(j)), a polynomial of degree less than 2m in a ring R.
Here R has a nth root of unity ω, and m is a power of two where 2m ≤ n.

Output: f(ωσ(j·2m+0)), f(ωσ(j·2m+1)), . . . , f(ωσ(j·2m+2m−1)).

0. If (2m) = 1 then return f mod (x− ωσ(j)) = f(ωσ(j)).
1. Split f mod (x2m − ωσ(j)) into two blocks fA and fB each of size m

such that f mod (x2m − ωσ(j)) = fA · xm + fB.
2. Compute f mod (xm − ωσ(2j)) = fA · ωσ(2j) + fB.
3. Compute f mod (xm − ωσ(2j+1)) = −fA · ωσ(2j) + fB.
4. Compute the FFT of f mod (xm − ωσ(2j)) to obtain

f(ωσ(j·2m+0)), f(ωσ(j·2m+1)), . . . , f(ωσ(j·2m+m−1)).
5. Compute the FFT of f mod (xm − ωσ(2j+1)) to obtain

f(ωσ(j·2m+m)), f(ωσ(j·2m+m+1)), . . . , f(ωσ(j·2m+2m−1)).
6. Return f(ωσ(j·2m+0)), f(ωσ(j·2m+1)), . . . , f(ωσ(j·2m+2m−1)).

Figure 2.1 Pseudocode for classical radix-2 FFT

primitive root of unity and use duality properties of the Fourier Transform to compute

their version of the FFT using the same algorithm given in this section.

Let us now analyze the cost of this algorithm. Line 0 is just used to end

the recursion and costs no operations. Line 1 just involves logicially partitioning the

input into two blocks of size m, requiring no operations. In line 2, we first multiply

the m components of fA by ωσ(2j). This requires m multiplications except when

j = 0 in which case no multiplications are required. To complete line 2, we add the

updated fA to fB at a cost of m additions. In line 3, notice that fA ·ωσ(2j) has already

been computed, so all that is necessary is to subtract this result from fB to obtain

f mod (xm − ωσ(2j+1)) at a cost of m subtractions in R. The cost of lines 4 and 5 is

equal to the number of operations needed to compute two FFTs of size m. Line 6

requires no operations.

The total number of operations to compute the FFT of size n using the classical

radix-2 algorithm is given by

28

M(n) = 2 ·M
(n

2

)
+

1

2
· n, (2.4)

A(n) = 2 · A
(n

2

)
+ n, (2.5)

where M(1) = 0 and A(1) = 0. Master Equation I can be used to solve these

recurrence relations. We must also subtract multiplications to account for the cases

where j = 0. The number of multiplications saved can be modeled by

Ms(n) = Ms

(n
2

)
+

1

2
· n, (2.6)

where Ms(1) = 0. This recurrence relation can be solved using Master Equation II.

Combining the results of these closed-form formulas, the number of operations needed

to compute the FFT using the classical radix-2 algorithm is given by

M(n) =
1

2
· n · log2(n) − n+ 1, (2.7)

A(n) = n · log2(n). (2.8)

This algorithm is said to be Θ(n · log2(n)).

29

2.3 Twisted radix-2 FFT

In [35], Gentleman and Saude presented a different algorithm to compute the

FFT for various radices. 1 To compute the radix-2 FFT using this algorithm, Bern-

stein [2] observes that this approach always uses a reduction step with transformation

R[x]/(x2m − 1) → R[x]/(xm − 1) (2.9)

× R[x]/(xm + 1).

The mapping x = ζ · ẋ is applied to R[x]/(xm + 1) after each reduction step where ζ

is some element of R that transforms R[x]/(xm +1) to R[ẋ]/(ẋm−1) and allows (2.9)

to be applied at the next reduction step. Bernstein calls this FFT the “twisted FFT”

because the effect of the mapping x = ζ · ẋ is to rotate the roots of unity according

to an amount determined by ζ. We will adopt the terminology of the “twisted FFT”

in this manuscript as well.

The mechanism that will be used to accomplish this transformation is called a

“weighted” or “twisted” polynomial. Start with f(x) and replace x with ẋ to obtain

the polynomial f(ẋ). The twisted polynomial f(ζ · ẋ) is computed by multiplying

the coefficient of xd in f by ζd for each d in 0 ≤ d < n. The (ζd)′s used in this

computation are traditionally called “twiddle factors” in engineering literature. Note

that the “twisted polynomial” is a linear transformation of f .

For example, let f(x) = 3 · x3 + 2 · x2 + x+ 1. So f(ẋ) = 3 · ẋ3 + 2 · ẋ2 + ẋ+ 1.

Suppose that ω is a primitive 4th root of unity in the field of complex numbers, i.e. the

1 It can be shown that the Gentleman-Saude algorithm is essentially equivalent
to what engineers typically call the decimation-in-time FFT and that the Cooley-
Tukey algorithm is essentially equivalent to what the engineers call the decimation-
in-frequency FFT.

30

imaginary unit. Then f(ω·ẋ) = (3ω3)·ẋ3+(2ω2)·ẋ2+ω·ẋ+1 = −3·I·ẋ3−2·ẋ2+I·ẋ+1.

Similarly if g(x) = 7 · ẋ3 + 5ẋ+ 4, then g(ω · ẋ) = −7I · ẋ3 + 5I · ẋ+ 4. One can verify

that the linear transformation properties hold using these two results.

The following theorem provides the value of ζ necessary to achieve the desired

transformation.

Theorem 3 Let f ◦(x) be a polynomial of degree less than 2m in R[x]. Then

f ◦(x) mod (xm + 1) = f ◦(ζ · ẋ) mod (ẋm − 1) where ζ = ωσ(1)/m and x = ζ · ẋ.

Proof: Let f ◦(x) be a polynomial of degree less than 2m in R[x] and

let r(x) = f ◦(x) mod (xm + 1). Then f ◦(x) = q(x) · (xm + 1) + r(x) for some q(x).

Now substitute x = ζ · ẋ where ζ = ωσ(1)/m to rotate the roots of unity. Applying the

linear properties of the twisted polynomial transformation gives

f ◦(ζ · ẋ) = q(ζ · ẋ) · ((ζ · ẋ)m + 1) + r(ζ · ẋ) (2.10)

= q(ζ · ẋ) · (ζm · ẋm + 1) + r(ζ · ẋ)

= q(ζ · ẋ) · (ωσ(1) · ẋm + 1) + r(ζ · ẋ)

= q(ζ · ẋ) · (−1 · ẋm + 1) + r(ζ · ẋ)

= −q(ζ · ẋ) · (ẋm − 1) + r(ζ · ẋ).

Thus r(ζ · ẋ) = f ◦(ζ · ẋ) mod (ẋm − 1). �

It is simpler to ignore the distinctions between the various transformations

involving the roots of unity and just use the variable x in all of the polynomials.

However, whenever the notation f(ωθ · x) is used throughout the rest of this chapter,

it is to be understood that x is a dummy variable for some other unknown, say ẋ,

31

where x = ωθ · ẋ and x is a variable that represents untransformed polynomials in

this equation.

We can now present the reduction step of the twisted FFT algorithm which

receives an input of some polynomial f ◦ with degree less than 2m. Split f ◦ into two

blocks of size m by writing f ◦ = fA ·xm +fB. Then compute fY = f ◦ mod (xm−1) =

fA + fB and fZ = f ◦ mod (xm + 1) = −fA + fB. This reduction step can also be

represented by the transformation

fY

fZ

 =

1 1

−1 1

 ·

fA

fB

 . (2.11)

The simplified reduction step can be directly applied to f ◦ mod (xm − 1) while we

need to twist f ◦ mod (xm +1) by ζ prior to using this result as input to the simplified

reduction step.

It is not clear yet that an algorithm based on this reduction step will yield the

FFT of some polynomial f(x) of degree less than n = 2k. The following theorems are

intended to provide this clarification.

Theorem 4 If f ◦(x) = f(ωσ(j)/(2m) · x) mod (x2m − 1), then

f ◦(x) mod (xm − 1) = f(ωσ(j)/(2m) · x) mod (xm − 1) = f(ωσ(2j)/m · x) mod (xm − 1).

Proof: Let θ = σ(j)/(2m) = 2σ(2j)/(2m) = σ(2j)/m and let f ◦(x) = f(ωθ ·

x) mod (x2m−1). Modularly reducing both sides of this equation by xm−1 produces

the desired result. �

Theorem 5 If f ◦(x) = f(ωσ(j)/(2m) · x) mod (x2m − 1), then

f ◦(ζ · x) mod (xm − 1) = f(ωσ(2j+1)/m · x) mod (xm − 1) where ζ = ωσ(1)/m.

32

Algorithm : Twisted radix-2 FFT

Input: f ◦(x) = f(ωσ(j)/(2m) ·x) mod (x2m −1), the modular reduction of some
polynomial f(x) ∈ R[x] that has been twisted by ωσ(j)/(2m). Here R
has a nth root of unity ω, and m is a power of two where 2m ≤ n.

Output: f(ωσ(j·2m+0)), f(ωσ(j·2m+1)), . . . , f(ωσ(j·2m+2m−1)).

0. If (2m) = 1 then return f(ωσ(j) · x) mod (x− 1) = f(ωσ(j)).
1. Split f ◦(x) into two blocks fA and fB each of size m

such that f ◦(x) = fA · xm + fB.
2. Compute f(ωσ(2j)/(m) · x) mod (xm − 1) = f ◦(x) mod (xm − 1) = fA + fB.
3. Compute f ◦(x) mod (xm + 1) = −fA + fB.
4. Twist f ◦(x) mod (xm +1) by ωσ(1)/m to obtain f(ωσ(2j+1)/m) mod (xm − 1).
5. Compute the FFT of f(ωσ(2j) · x) mod (xm − 1) to obtain

f(ωσ(j·2m+0)), f(ωσ(j·2m+1)), . . . , f(ωσ(j·2m+m−1)).
6. Compute the FFT of f(ωσ(2j+1) · x) mod (xm − 1) to obtain

f(ωσ(j·2m+m)), f(ωσ(j·2m+m+1)), . . . , f(ωσ(j·2m+2m−1)).
7. Return f(ωσ(j·2m+0)), f(ωσ(j·2m+1)), . . . , f(ωσ(j·2m+2m−1)).

Figure 2.2 Pseudocode for twisted radix-2 FFT

Proof: Let θ = σ(j)/(2m) = σ(2j)/m and observe that σ(1)/m+ θ = σ(2j+1)/m.

Then ζ · (ωθ) = ωσ(2j+1)/m. So f ◦(ζ · x) = f(ωσ(2j+1)/m · x) mod (x2m − 1). Modularly

reducing both sides of this equation by xm − 1 produces the desired result. �

So the reduction step receives as input f(ωσ(j)/(2m) · x) mod (x2m − 1), the

modular reduction of some polynomial f that has been twisted by ωσ(j)/(2m) =

ωσ(2j)/m. The reduction step produces as output f(ωσ(2j)/m · x) mod (xm − 1) and

f(ωσ(2j+1)/m · x) mod (xm − 1) after the second result has been twisted by ζ.

The algorithm is initialized with f(x) which equals f(ω0 ·x) mod (xn − 1) if f

has degree less than n. By recursively applying the reduction step to f(x), we obtain

f(ωσ(j) · x) mod (x − 1) = f(ωσ(j) · 1) for all j in the range 0 ≤ j < n, i.e. the FFT

of f(x) of size n. Pseudocode for this FFT algorithm is given in Figure 2.2.

33

Let us now analyze the cost of this algorithm. Line 0 is just used to end

the recursion and costs no operations. Line 1 just involves logicially partitioning the

input into two blocks of size m, requiring no operations. In line 2, we add fA to fB at

a cost of m additions. In line 3, we subtract fA from fB at a cost of m subtractions.

The cost of line 4 is m− 1 multiplications in R and the cost of lines 5 and 6 is equal

to the number of operations needed to compute two FFTs of size m. Line 7 requires

no operations.

The total number of operations to compute the FFT of size n using the twisted

radix-2 algorithm is given by

M(n) = 2 ·M
(n

2

)
+

1

2
· n− 1, (2.12)

A(n) = 2 · A
(n

2

)
+ n, (2.13)

where M(1) = 0 and A(1) = 0.

Using Master Equation I, these operation counts can also be expressed using

M(n) =
1

2
· n · log2(n) − n+ 1, (2.14)

A(n) = n · log2(n). (2.15)

This algorithm has the exact same operation count as the classical radix-2 FFT

algorithm.

34

2.4 Hybrid radix-2 FFTs

It is not necessary to apply a twist after every reduction step. Suppose that

we wish to evaluate f ◦ at each of the roots of x2cm − 1. After c stages of reduction

steps, we will have f ◦ mod (xm − ωσ(j)) for each j in 0 ≤ j < 2c. Each ωσ(j) is a 2cth

root of unity.

The following generalization of Theorem 3 shows the transformation necessary

to apply the simplified reduction step to each of these results.

Theorem 6 Let f ◦(x) be a polynomial in R[x] with degree d less than 2c ·m. Then

f ◦(x) mod (xm − ωσ(j)) = f ◦(ζ · x) mod (xm − 1) where j < 2c and ζ = ωσ(j)/m.

Proof: Similar to Theorem 3 �

Let us now more carefully examine the effect of twisting a polynomial at an

arbitrary intermediate result in the computation of the FFT to see if it is possible to

obtain an improved algorithm by combining the classical and twisted FFT algorithms.

Suppose that we use the classical FFT algorithm to compute f ◦(x) mod (xm −ωσ(j))

and then at this point twist this polynomial to obtain f ◦(ζ ·x) mod (xm−1) where ζ =

ωσ(j)/m. The benefit of this transformation is that no multiplications are needed for

the reduction steps with inputs f ◦(ζ ·x) mod (x2i−1 −1), f ◦(ζ ·x) mod (x2i−2 −1), · · · ,

f ◦(ζ · x) mod (x− 1) where 2i = m. This results in a savings of

i−1∑

d=0

2d = 2i − 1 (2.16)

multiplications. However, the cost of the twisting operation is also 2i − 1 multiplica-

tions.

35

Since this analysis was done for an arbitrary point in the computation of the

FFT, there is never any overall improvement that results from twisting a polynomial.

Thus, any hybrid algorithm involving the two FFT algorithms examined so far will

neither improve nor increase the operation count. This observation may also help

to explain why the two FFT algorithms discussed so far yielded the same number of

multiplications.

2.5 Classical radix-4 FFT

Suppose that every element of R is expressed in the form A + I · B where A

and B are in a ring that does not contain I where I2 = −1. For example, R can be

the ring of complex numbers and A and B are elements of the ring of real numbers.

Then multiplication by I = ωn/4 = ωσ(2) results in −B + I · A. Observe that no

multiplications in R are needed to complete this operation. Similarly, multiplication

by −I = ωσ(3) also involves no multiplications in R. We will now develop a radix-4

algorithm based on the Cooley-Tukey reduction step 2 which exploits this property

to reduce the number of operations in the FFT. The algorithm that will be discussed

in this section is based on the following transformation:

2 Although the algorithm presented in this section is based on the Cooley-Tukey
algorithm, it is not the algorithm presented in [16]. It turns out that Cooley and
Tukey did not observe that multiplication by I could be implemented faster than
other primitive roots of unity. Consequently, they erroneously concluded that radix-3
FFT algorithms were the most efficient in their paper. Although we will see that
radix-3 algorithms are more efficient than radix-2 algorithms, this section will show
that radix-4 algorithms are more efficient than either of these other cases. The paper
by [35] first exploited the multiplications by −I to produce the improved radix-4
FFT algorithm. In this section, the observations given in [35] were applied to the
Cooley-Tukey algorithm to obtain the “classical” radix-4 FFT algorithm.

36

R[x]/(x4m − b4) → R[x]/(xm − b) (2.17)

× R[x]/(xm + b)

× R[x]/(xm − I · b)

× R[x]/(xm + I · b).

We are now going to present a radix-4 FFT algorithm based on this transformation.

The reduction step of the algorithm receives as input f ◦ = f mod (x4m − b4) and

computes fW = f mod (xm − b), fX = f mod (xm + b), fY = f mod (xm − I · b),

and fZ = f mod (xm + I · b). It turns out that the modular reduction is simple to

perform in this case as well. Split f ◦ into four blocks of size m by writing f ◦ =

fA · x3m + fB · x2m + fC · xm + fD.

Then

fW = fA · b3 + fB · b2 + fC · b+ fD, (2.18)

fX = −fA · b3 + fB · b2 − fC · b+ fD, (2.19)

fY = −I · fA · b3 − fB · b2 + I · fC · b+ fD, (2.20)

fZ = I · fA · b3 − fB · b2 − I · fC · b+ fD. (2.21)

Implementation of the radix-4 algorithm on a computer makes use of the following

additional properties of the σ function which the reader can verify holds for j < n/4

where n = 2k using proofs similar to Theorems 1 and 2:

37

σ(j) = 4 · σ(4j), (2.22)

σ(4j + 1) = σ(4j) + n/2, (2.23)

σ(4j + 2) = σ(4j) + n/4, (2.24)

σ(4j + 3) = σ(4j) + 3 · n/4. (2.25)

It follows from these properties that for any j < n/4:

ωσ(4j+1) = −ωσ(4j), (2.26)

ωσ(4j+2) = I · ωσ(4j), (2.27)

ωσ(4j+3) = −I · ωσ(4j). (2.28)

Suppose that we want to compute the FFT of a polynomial f of degree less than

n = 2k over R as described at the beginning of this section. We will recursively apply

the reduction step with appropriate selections of m and b. Since (ωσ(4j))4 = ωσ(j)

and because of properties (2.26)-(2.28) above, then b can be easily determined. Each

reduction step receives as input f mod (x4m−ωσ(j)) for some j and produces as output

fW = f mod (xm −ωσ(4j)), fX = f mod (xm −ωσ(4j+1)), fY = f mod (xm −ωσ(4j+2)),

and fZ = f mod (xm − ωσ(4j+3)). The reduction step can be implemented using the

transformation

38

fW

fX

fY

fZ

=

1 1 1 1

−1 1 −1 1

−I −1 I 1

I −1 −I 1

·

ω3σ(4j) · fA

ω2σ(4j) · fB

ωσ(4j) · fC

fD

. (2.29)

If k is even and all of the reduction steps have been completed with input size 4m = 4,

then we will have f mod (x− ωσ(j)) = f(ωσ(j)) for all j < n, i.e. the desired FFT of

f . However, if k is odd, then one stage of reduction steps from either of the radix-2

algorithms discussed in the previous sections will be needed to complete the FFT

computation. Pseudocode for this FFT algorithm is given in Figure 2.3.

Let us now compute the cost of this algorithm. Lines 0A and 0B are used to

end the recursion. Line 0A costs no operations while line 0B costs one multiplication

and two additions. Line 1 just involves logicially partitioning the input into two blocks

of size m, requiring no operations. In line 2, we multiply each of the m components

of fA, fB, and fC by a power of ω unless j = 0 in which case no multiplications

are required. Lines 3-10 describe a sequence of operations that efficiently computes

the rest of the reduction step. Each of these instructions requires m additions or

subtractions. Finally, lines 11-14 recursively calls the algorithm on the four indicated

results to complete the FFT computation. Line 15 requires no operations.

The total number of operations to compute the FFT of size n using the classical

radix-4 algorithm for j 6= 0 is given by

M(n) = 4 ·M
(n

4

)
+

3

4
· n, (2.30)

A(n) = 4 · A
(n

4

)
+ 2 · n, (2.31)

39

Algorithm : Classical radix-4 FFT

Input: f mod (x4m − ωσ(j)), a polynomial of degree less than 4m in a ring R.
Here R has a nth root of unity ω, and m is a power of two where 4m ≤ n.

Output: f(ωσ(j·4m+0)), f(ωσ(j·4m+1)), . . . , f(ωσ(j·4m+4m−1)).

0A.If (4m) = 1 then return f mod (x− ωσ(j)) = f(ωσ(j)).
0B. If (4m) = 2 then use a radix-2 algorithm to compute the desired FFT.
1. Split f mod (x4m − ωσ(j)) into four blocks

fA, fB, fC , and fD each of size m such that
f mod (x4m − ωσ(j)) = fA · x3m + fB · x2m + fC · xm + fD.

2. Compute fA · ω3σ(4j), fB · ω2σ(4j), and fC · ωσ(4j).
3. Compute fα = fA · ω3σ(4j) + fC · ωσ(4j).
4. Compute fβ = fB · ω2σ(4j) + fD.
5. Compute fγ = I · (−fA · ω3σ(4j) + fC · ωσ(4j)).
6. Compute fδ = −fB · ω2σ(4j) + fD.
7. Compute f mod (xm − ωσ(4j)) = fα + fβ.
8. Compute f mod (xm − ωσ(4j+1)) = −fα + fβ.
9. Compute f mod (xm − ωσ(4j+2)) = fγ + fδ.
10. Compute f mod (xm − ωσ(4j+3)) = −fγ + fδ.
11. Compute the FFT of f mod (xm − ωσ(4j)) to obtain

f(ωσ(j·4m+0)), f(ωσ(j·4m+1)), . . . , f(ωσ(j·4m+m−1)).
12. Compute the FFT of f mod (xm − ωσ(4j+1)) to obtain

f(ωσ(j·4m+m)), f(ωσ(j·4m+m+1)), . . . , f(ωσ(j·4m+2m−1)).
13. Compute the FFT of f mod (xm − ωσ(4j+2)) to obtain

f(ωσ(j·4m+2m)), f(ωσ(j·4m+2m+1)), . . . , f(ωσ(j·4m+3m−1)).
14. Compute the FFT of f mod (xm − ωσ(4j+3)) to obtain

f(ωσ(j·4m+3m)), f(ωσ(j·4m+3m+1)), . . . , f(ωσ(j·4m+4m−1)).
15. Return f(ωσ(j·4m+0)), f(ωσ(j·4m+1)), . . . , f(ωσ(j·4m+4m−1)).

Figure 2.3 Pseudocode for classical radix-4 FFT

40

where M(1) = 0, A(1) = 0, M(2) = 1, and A(2) = 2. Master Equation I can be used

to solve this recurrence relation. We must also subtract multiplications to account

for the cases where j = 0. A recurrence relation which gives the multiplications saved

is

Ms(n) = Ms

(n
4

)
+

3

4
· n, (2.32)

where Ms(1) = 0 and Ms(2) = 1. Master Equation II can be used to solve this

recurrence relation and obtain a savings of n− 1 operations.

The number of operations required to compute an FFT using the classical

radix-4 algorithm is given by

M(n) =

3
8
· n · log2(n) − n+ 1 if log2(n) is even

3
8
· n · log2(n) − 7

8
· n+ 1 if log2(n) is odd

, (2.33)

A(n) = n · log2(n). (2.34)

This algorithm has the same addition count as the classical radix-2 FFT algorithm,

but the multiplication count has been significantly reduced.

2.6 Twisted radix-4 FFT

Now, we will describe the twisted version of the radix-4 algorithm. This is

the algorithm that is described in [35] and is the first efficient radix-4 algorithm that

appeared in the literature.

Observe that when j = 0, then (2.29) simplifies to

41

fW

fX

fY

fZ

=

+1 +1 +1 +1

−1 +1 −1 +1

−I −1 +I +1

+I −1 −I +1

·

fA

fB

fC

fD

. (2.35)

The significance of this case is that no multiplications in R need to be computed

in this transformation since multiplication by I or −I is implemented by simply

swapping the components of an element of R. By applying Theorem 6 with c = 2, we

can determine the necessary values of ζ to twist the results of this simplified radix-4

reduction step so they can be used as inputs to other simplified reduction steps:

f ◦ mod (xm + 1) : ζ = ωσ(1)/m, (2.36)

f ◦ mod (xm − I) : ζ = ωσ(2)/m, (2.37)

f ◦ mod (xm + I) : ζ = ωσ(3)/m. (2.38)

At this point, we could mimic the steps used to convert the classical radix-2 algorithm

to the twisted radix-2 algorithm and obtain a twisted radix-4 algorithm. We will not

give the resulting pseudocode here.

The total number of operations to compute the twisted radix-4 FFT of size n

is given by

M(n) = 4 ·M
(n

4

)
+

3

4
· n− 3

4
, (2.39)

A(n) = 4 · A
(n

4

)
+ 2 · n, (2.40)

42

where M(1) = 0, A(1) = 0, M(2) = 0, and A(2) = 2.

Master Equation I can be used to show that the operation counts of the twisted

radix-4 algorithm are exactly the same as the classical radix-4 algorithm. Thus, from

a theoretical point of view, there is no difference between the classical and twisted

radix-4 algorithms.

2.7 Radix-8 FFT

Let φ be a primitive 8th root of unity in R. If R contains the element
√

2/2,

then φ can be expressed by

φ =

√
2

2
+ I ·

√
2

2
(2.41)

and multiplication of an element A+ I ·B in R by φ is given by

φ · (A+ I ·B) =

√
2

2
· (A−B) + I ·

√
2

2
· (A+B). (2.42)

Let R be the field of complex numbers for the remainder of this section. We will

assume that a multiplication in C requires 4 multiplications and 2 additions 3 in

R, the real numbers, while a multiplication by φ requires 2 multiplications and 2

3 In [10], Oscar Buneman introduced an alternative method of multiplication in C

that requires 3 multiplications and 3 additions in R if the powers of ω are precom-
puted. However, because the time needed to implement floating point multiplication
is about the same as the time needed to implement floating point addition on modern
computers, it is generally felt that Buneman’s somewhat more complicated method
of multiplication in C no longer has the advantage that it once had.

43

additions in R. Similar results hold for multiplication by φ3, φ5 = −φ and φ7 = −φ3

in C as well as other rings which contain the element
√

2/2.

As introduced in [1], a radix-8 algorithm can be constructed using the trans-

formation

R[x]/(x8m − b8) → R[x]/(xm − b) (2.43)

× R[x]/(xm + b)

× R[x]/(xm − I · b)

× R[x]/(xm + I · b)

× R[x]/(xm − φ · b)

× R[x]/(xm + φ · b)

× R[x]/(xm − φ3 · b)

× R[x]/(xm + φ3 · b).

The radix-8 algorithm can be developed by duplicating the steps used to create the

radix-2 or radix-4 algorithm at this point. This analysis will produce a transformation

matrix given by

44

+1 +1 +1 +1 +1 +1 +1 +1

−1 +1 −1 +1 −1 +1 −1 +1

−I −1 +I +1 −I −1 +I +1

+I −1 −I +1 +I −1 −I +1

−φ3 −I −φ −1 +φ3 +I +φ +1

+φ3 −I +φ −1 −φ3 +I −φ +1

−φ +I −φ3 −1 +φ −I +φ3 +1

+φ +I +φ3 −1 −φ −I −φ3 +1

(2.44)

which will be used to implement the reduction step. Pseudocode for the resulting

algorithm similar to that introduced in [1] will not be given here. It can be shown

that the number of operations needed to implement the classical version of the radix

algorithm is governed by the recurrence relations

M(n) = 8 ·M
(n

8

)
+

9

8
· n, (2.45)

A(n) = 8 · A
(n

8

)
+ 3 · n, (2.46)

where M(1) = 0 and A(1) = 0, M(2) = 1, A(2) = 2, M(4) = 3, and A(4) =

8. These equations can be solved using Master Equation I. We must also subtract

multiplications to account for the cases where j = 0. A recurrence relation which

governs the multiplication savings in this case is given by

Ms(n) = Ms

(n
8

)
+

7

8
· n, (2.47)

45

where Ms(1) = 0, Ms(2) = 1, and Ms(4) = 3. Master Equation II can be used to

solve this recurrence relation.

The total number of operations needed to implement the algorithm is given

by

M(n) =

3
8
· n · log2(n) − n+ 1 if log2(n) mod 3 = 0

3
8
· n · log2(n) − 7

8
· n+ 1 if log2(n) mod 3 = 1

3
8
· n · log2(n) − n+ 1 if log2(n) mod 3 = 2

, (2.48)

A(n) = n · log2(n). (2.49)

This does not appear to be an improvement compared to the radix-4 algorithms, but

we have not yet accounted for the special multiplications by the primitive 8th roots

of unity. The recurrence relation

M8(n) = 8 ·M8

(n
8

)
+

1

4
· n (2.50)

counts the number of multiplications in (2.48) which are special multiplications and

should be subtracted from this count. Here, M8(1) = 0 and M8(2) = 0. Solving this

recurrence relation using Master Equation I results in

M8(n) =

1
12

· n · log2(n) if log2(n) mod 3 = 0

1
12

· n · log2(n) − 1
12

· n if log2(n) mod 3 = 1

1
12

· n · log2(n) − 1
6
· n if log2(n) mod 3 = 2

(2.51)

46

special multiplications.

Modeling an addition in C by 2 additions in R, a multiplication in C by 4

multiplications and 2 additions in R, and a multiplication in C by a primitive 8th root

of unity with 2 multiplications and 2 additions in R, the total number of operations

in R needed to implement the radix-8 algorithm for an input size which is a power of

eight is given by

MR(n) =
4

3
· n · log2(n) − 4 · n+ 4, (2.52)

AR(n) =
11

4
· n · log2(n) − 2 · n+ 2. (2.53)

This represents a savings of 1/6 · n · log2(n) additions in R compared to the radix-4

algorithms. The savings for other input sizes are close to the above results, but not

quite as attractive. The operation counts for the twisted radix-8 FFT algorithm are

the same as the classical radix-8 algorithm.

Radix-16 algorithms have been proposed (e.g. [6]), but they do not improve

upon the operation counts given in this section. This is because there does not appear

to be anything special involved in multiplying by a primitive 16th root of unity that

can be exploited to reduce the overall effort.

2.8 Split-radix FFT

It is possible to improve upon the counts of the radix-8 algorithm by construct-

ing an algorithm which combines the radix-2 and radix-4 FFT reduction steps. This

can be done for both the classical and twisted formulations of the algorithm. Here,

we will show how to develop such an algorithm for the twisted case. This algorithm

47

was introduced in [84], but first clearly described and named over 15 years later in

[21].

Suppose that we wish to compute the FFT of some polynomial f of degree

less than n. It can be shown that this FFT can be computed by recursively applying

the twisted radix-4 algorithm where the input to each reduction step is

f ◦(x) = f(ωσ(j)/(4m) ·x) mod (x4m−1) for some j < m. The twisted radix-4 algorithm

took advantage of the fact that it was possible to reduce f ◦ into f ◦ mod (xm − 1),

f ◦ mod (xm+1), f ◦ mod (xm−I) and f ◦ mod (xm+I). All but the first of these results

are then twisted in order to continue using the simplied reduction step. However, it is

not necessary to twist f ◦ mod (xm + 1) at this point. If m∗ = 2m, then it is possible

to reduce f ◦ mod (x2m∗

+1) into f ◦ mod (xm∗ −I) and f ◦ mod (xm∗

+I) without any

multiplications in R. The radix-4 algorithm does not exploit this situation and thus

there is room for improvement. Even greater savings can be achieved if we reduce f ◦

into f ◦ mod (x4m∗−1) instead and then reduce this polynomial into f ◦ mod (xm∗−I)

and f ◦ mod (xm∗

+ I).

The split-radix algorithm is based on a reduction step that transforms

f ◦(x) = f(ωσ(j)/(4m) · x) mod (x4m − 1) into f ◦ mod (x2m − 1), f ◦ mod (xm − I), and

f ◦ mod (xm+I). The algorithm is called “split-radix” because this reduction step can

be viewed as a mixture of the radix-2 and radix-4 reduction steps. The two results

of size m need to be twisted after the reduction step while the split-radix reduction

step can be directly applied to f ◦ mod (x2m − 1).

The transformation used in the split-radix algorithm is given by

48

R[x]/(x4m − 1) → R[x]/(x2m − 1) (2.54)

× R[x]/(xm − I)

× R[x]/(xm + I).

Let f ◦ = f(ωσ(j)/(4m) ·x) mod (x4m − 1), the input to the split-radix algorithm reduc-

tion step, be expressed as fA · x3m + fB · x2m + fC · xm + fD. We will use part of the

radix-2 reduction step to obtain fW · xm + fX = f ◦ mod (x2m − 1) and part of the

radix-4 reduction step to obtain fY = f ◦ mod (xm − I) and fZ = f ◦ mod (xm + I).

These results are computed using

fW = fA + fC , (2.55)

fX = fB + fD, (2.56)

fY = −I · fA − fB + I · fC + fD, (2.57)

fZ = I · fA − fB − I · fC + fD. (2.58)

After the reduction step, fY should be twisted by ωσ(2)/m and fZ can be twisted by

ωσ(3)/m so that the split-radix algorithm reduction step can be applied to these results

as well as fW · xm + fX .

In 1989, an algorithm called the conjugate-pair split-radix algorithm was pro-

posed [45]. The main difference in the reduction step of this algorithm compared

to the split-radix FFT described above is that fZ is twisted by ω−σ(2)/m instead of

ωσ(3)/m. Originally, it was claimed that this reduces the number of operations of the

49

split-radix algorithm, but it was later demonstrated ([37], [50]) that the two algo-

rithms require the same number of operations. However, the conjugate-pair version

requires less storage by exploiting the fact that ωσ(2)/m and ω−σ(2)/m are conjugate

pairs. The conjugate-pair version of the algorithm requires a different “scrambling”

function σ′(j) which is defined according to the following formulas

σ′(0) = 0, (2.59)

σ′(j) = 2 · σ′(2j) for j < n/2, (2.60)

σ′(4j + 1) = σ′(4j) + n/2 for j < n/2, (2.61)

σ′(4j + 3) = σ′(4j) + ρ(4j + 3) · n/4 for j < n/4, (2.62)

and ρ(j) is defined as follows

ρ(j) =

−1 if j is even

1 if j is an integer of the form 4ℓ+ 1

ρ(ℓ) if j is an integer of the form 4ℓ+ 3

. (2.63)

Note that σ′(j) is no longer the binary reversal function. If one wishes to view σ′(j)

as a permutation of the integers {0, 1, 2, · · ·n − 1}, then one should add n to each

negative value of σ′(j) at the end of the construction. Pseudocode for the conjugate

pair version of the split-radix algorithm based on a observations given in [4] is provided

in Figure 2.4. The function σ′(j) can simply be changed to σ(j) to obtain the more

common version of the split-radix algorithm.

50

Algorithm : Split-radix FFT (conjugate-pair version)

Input: f(ωσ′(j)/(4m) · x) mod (x4m − 1) where m is a power of two
such that 4m < n.

Output: f(ωσ′(j·4m)), f(ωσ′(j·4m+1)), . . . , f(ωσ′(j·4m+4m−1)).

0A.If (4m) = 1, then return f(ωσ′(j)) = f(ωσ′(j) · x) mod (x− 1).
0B. If (4m) = 2, then call a radix-2 algorithm to compute the FFT.
1. Split f(ωσ′(j)/(4m) · x) mod (x4m − 1) into four blocks fA, fB, fC , and fD

each of size m such that
f(ωσ′(j)/(4m) · x) mod (x4m − 1) = fA · x3m + fB · x2m + fC · xm + fD.

2. Compute fW · xm + fX

= f(ωσ′(2j)/(2m) · x) mod (x2m − 1) = (fA + fC) · xm + (fB + fD).
3. Compute fα = −fB + fD.
4. Compute fβ = I · (−fA + fC).
5. Compute fY = fα + fβ.
6. Compute fZ = −fα + fβ.
7. Compute f(ωσ′(4j+2)/m · x) mod (xm − 1) by twisting fY by ωσ′(2)/m.
8. Compute f(ωσ′(4j+3)/m · x) mod (xm − 1) by twisting fZ by ω−σ′(2)/m.
9. Compute the FFT of f(ωσ′(2j)/(2m) · x) mod (x2m − 1) to obtain

f(ωσ′(j·4m)), f(ωσ′(j·4m+1)), . . . , f(ωσ′(j·4m+2m−1)).
10. Compute the FFT of f(ωσ′(4j+2)/m · x) mod (xm − 1) to obtain

f(ωσ′(j·4m+2m)), f(ωσ′(j·4m+2m+1)), . . . , f(ωσ′(j·4m+3m−1)).
11. Compute the FFT of f(ωσ′(4j+3)/m · x) mod (xm − 1) to obtain

f(ωσ′(j·4m+3m)), f(ωσ′(j·4m+3m+1)), . . . , f(ωσ′(j·4m+4m−1)).
12. Return f(ωσ′(j·4m)), f(ωσ′(j·4m+1)), . . . , f(ωσ′(j·4m+4m−1)).

Figure 2.4 Pseudocode for split-radix FFT (conjugate-pair version)

51

Let us now analyze the cost of this algorithm. Lines 0A and 0B are used to

end the recursion. Line 0A costs no operations while line 0B costs no multiplications

and 2 additions. Line 1 just involves logicially partitioning the input into four blocks

of size m, requiring no operations. In line 2, we add the fA to fC at a cost of m

additions and fB to fD at a cost of m additions. Lines 3 through 6 show an efficient

method of computing the rest of the reduction step. Each line costs m additions or

subtractions. Then, lines 7 and 8 each involve a twisting of a polynomial of size m at

a cost of m − 1 multiplications. Finally, lines 9-11 recursively call the algorithm to

complete the computation. Line 12 requires no operations.

The total number of operations to compute the FFT of size n using the split-

radix algorithm is

M(n) = M
(n

2

)
+ 2 ·M

(n
4

)
+

1

2
· n− 2, (2.64)

A(n) = A
(n

2

)
+ 2 · A

(n
4

)
+

3

2
· n, (2.65)

where M(1) = 0, A(1) = 0, M(2) = 0, and A(2) = 2. A solution to these recurrence

relations is given in the appendix and is shown to be

M(n) =

1
3
· n · log2(n) − 8

9
· n+ 8

9
if log2(n) is even

1
3
· n · log2(n) − 8

9
· n+ 10

9
if log2(n) is odd

, (2.66)

A(n) = n · log2(n). (2.67)

If R contains the element
√

2/2, then the number of special multiplications by prim-

itive 8th roots of unity is given by

52

M8(n) = M8

(n
2

)
+ 2 ·M8

(n
4

)
+ 2, (2.68)

where M8(1) = 0, M8(2) = 0 and M8(4) = 0. The solution to this recursion is also

given in the appendix and shown to be

M8(n) =

1
3
· n− 4

3
if log2(n) is even

1
3
· n− 2

3
if log2(n) is odd

. (2.69)

If the coefficient ring of the input polynomial is the field of complex numbers, we

can show that the number of operations in R needed to implement the split-radix

algorithm is given by

MR(n) =
4

3
· n · log2(n) − 38

9
· n+

2

9
· (−1)log2(n) + 6, (2.70)

AR(n) =
8

3
· n · log2(n) − 16

9
· n− 2

9
· (−1)log2(n) + 2. (2.71)

The results for input sizes which are a power of 4 are slightly more attractive than

other input sizes. In any event, the split-radix algorithm requires less operations than

the radix-8 algorithm.

An “extended” split-radix [77] algorithm which mixes the radix-2 and radix-8

reduction steps has been proposed, but has been shown [7] to require the same total

number of operations as the algorithm presented in this section. This paper [7] also

claims that split-radix algorithms which mix the radix-2 and radix-16 reduction steps

and radix-4 and radix-16 reduction steps also require the same number of operations.

53

Another claim given in [7] is that a split-radix algorithm combining any two different

radix reduction steps from the 2-adic FFT algorithms requires the same total number

of operations. 4

2.9 Modified split-radix FFT

For many years, it was believed that the split-radix algorithm presented in

the previous section required the fewest operations to compute an FFT of size 2k.

Yet around 2004, Van Buskirk was able to improve upon the split-radix algorithm in

certain cases and posted his findings on the internet according to [44]. During the

next several years, Johnson and Frigo [44] developed an algorithm which requires fewer

operations than the split-radix algorithm for all input sizes when the coefficient ring

for these polynomials is the field of complex numbers. A preprint of this article was

available on the internet and used by the present author to develop a presentation of

this algorithm using the mathematical perspective of the FFT. Meanwhile, Bernstein

independently used the preprint to develop his own version of the algorithm from the

mathematical perspective and called his algorithm the “Tangent FFT”. Bernstein

posted a description of the Tangent FFT on his web page [4] after the present author

completed the work summarized in this section. The algorithm which follows can

be viewed as a mixture of Johnson and Frigo’s algorithm and Bernstein’s algorithm.

The same steps of Johnson and Frigo’s algorithm will be used, but will be presented

in terms of the mathematical perspective of the FFT.

4 If a complex multiplication is assumed to require 3 multiplications and 3 additions
in R, then the multiplication operation counts and addition operation counts of the
split-radix algorithms are all exactly the same. If a complex multiplication requires 4
multiplications and 2 additions, then some of the other split-radix algorithms require
slightly fewer multiplications at the expense of the same number of extra addition
operations in R. Modern computers implement a multiplication in R in approximately
the same amount of time as an addition in R so there does not appear to be any
significant advantage to the other algorithms.

54

For the remainder of this section, we will again assume that R is the field

of complex numbers. The new algorithms are based on the fact that any power of

ω can be scaled into a special multiplication that requires 2 multiplications and 2

additions. The conjugate pair version of split-radix FFT algorithm is the foundation

of the new algorithms, so all powers of ω involved (other than ω0) will lie in the

first and fourth quadrants of C. If W = ω±σ′(2)/m is a primitive (4m)th root of

unity, then multiplication by either Wd/ cos(π/2 · d/m) or Wd/ sin(π/2 · d/m) can

be implemented using 2 multiplications and 2 additions (provided that the needed

trigonometic function evaluations are precomputed and stored in memory).

The only place that we encounter multiplications by ω in the pseudocode for

the split-radix FFT algorithm (Figure 2.4) is in the twisting of the polynomials found

in lines 7 and 8 of the algorithm. The new split-radix algorithm will scale each of the

powers of ω involved in these two lines to be one of the special multiplications that

requires fewer multiplications in R. For the moment, let us assume that all of these

multiplications will be of the form Wd/ cos(π/2 · d/m).

Instead of twisting fY and fZ at the end of each reduction step as described

in the previous sections, we will instead compute scaled versions of these twisted

polynomials. For example, fY will be twisted according to

f̃Y =
m−1∑

d=0

W
d/ cos(π/2 · d/m) · (fY)d (2.72)

=
m−1∑

d=0

(1 + I · tan(π/2 · d/m)) · (fY)d (2.73)

at a savings of 2 multiplications in R per coefficient in f̃Y . Observe that a different

55

evaluation of the tangent function is used for each coefficient in the scaled twisting

of f̃Y . Similar results hold for the computation of f̃Z .

Of course, scaling the twisted polynomials in this manner will distort the

results that are used to compute the FFT and will ultimately produce an incorrect

answer. To compensate for this, each coefficient of the input polynomial used in the

reduction step must be viewed as a scaled version of the coefficient of the actual input

polynomial and must be “unscaled” at a later reduction step. For a given reduction

step, we will view the coefficient of degree d of the input polynomial as being scaled

by cd where

cd = cos(π/2 · d4/m) (2.74)

and d4 is the reminder when d is divided by 4, i.e. d mod 4.

In this next reduction step, fW · x+ fX is now incorrectly scaled by cos(π/2 ·

d4/m). We could scale each coefficient of fW ·x+fX by 1/ cos(π/2 ·d4/m) to undo the

scaling at this point, but each scaling would cost 2 multiplications in R per coefficient

in this output polynomial and we will have lost all of the savings gained by working

with the scaled twisted polynomials.

The key to the savings claimed by the new approach is to make adjustments to

fW ·x+fX only when absolutely necessary and push any other adjustments that need

to be made to this result until later reduction steps of the algorithm. However, this

will result in four different variations of the reduction step used in the new algorithm.

Another concern that needs to be addressed is the numerical stability of the

scaling factors. Mathematicians who specialize in numerical analysis are concerned

about situations where one divides by a number close to zero as this is the source of

56

roundoff errors in numerical calculations. To reduce the numerical concerns in the

new algorithm, we will use cos(π/2 ·d4/m) as the scaling factor when 0 ≤ d4/m ≤ 1/2

and sin(π/2 · d4/m) as the scaling factor when 1/2 ≤ d4/m < 1. 5 Thus, the scaled

twisted polynomials will be computed using

T4m,d =

1 ± I · tan(π/2 · d4/m) if 0 ≤ d4/m ≤ 1/2

cot(π/2 · d4/m) ∓ I if 1/2 < d4/m < 1
. (2.75)

Since we will apply scaled twisted polynomials to every reduction step of the

algorithm, we desire to select the scalings of the input to each reduction step in such a

way as to compensate for the cumulative effect of all of the scaled twisted polynomials

that will be encountered after that point in the algorithm.

Let S4m,d be the scaling factor that is applied to the degree d term of the

input to a reduction step. Each value for S4m,d will be assigned recursively so that

the desired cumulative effect is achieved.

If (4m) ≤ 4, then S4m,d = 1 for all d < 4. This is because we do not wish to

perform any adjustments to fW · x+ fX or the radix-2 reduction steps to achieve the

desired FFT.

For all (4m) > 4, then S4m,d = cos(π/2 · d4/m) · Sm,d4
for all d4/m ≤ 1/2 and

S4m,d = sin(π/2 · d4/m) · Sm,d4
for all d4/m > 1/2. Again, the notation d4 means to

compute d mod 4 and is motivated by the need to match the cumulative scaling factors

of the corresponding degree terms of fA, fB, fC , and fD with respect to the reduction

5 Since all nonunity powers of ω used in the algorithm lie in the first quadrant,
then the interval 0 ≤ d4/m < 1 covers all cases.

57

steps of size m and lower. Observe that S4m,d = S4m,d+m = S4m,d+2m = S4m,d+3m for

all d < m, an important property that will be used in the reduction steps.

So S4m,d can be defined recursively using

S4m,d =

1 if (4m) ≤ 4

cos(π/2 · d4/m) · Sm,d4
if (4m) > 4 and d4/m ≤ 1/2

sin(π/2 · d4/m) · Sm,d4
if (4m) > 4 and d4/m > 1/2

. (2.76)

With the S4m,d’s defined in this manner, the scaled twisted polynomials of the re-

duction step of size 4m will undo the T4m,d of S4m,d and will produce polynomials of

degree less than m. Each of these polynomials becomes the input to a reduction step

that has been scaled by Sm,d′ where d′ < m.

Pseudocode for the four different reduction steps of the new split-radix al-

gorithm are presented in the appendix along with an explanation of each version.

Furthermore, analysis is provided which shows that the new algorithm requires

MR(n) =
6

9
· n · log2(n) − 10

27
· n+ 2 · log2(n) (2.77)

−2

9
· (−1)log2(n) · log2(n) +

22

27
· (−1)log2(n) + 2

multiplications in R, roughly six percent lower than the number of multiplications

required for the split-radix algorithm.

The reduced operation count of the new algorithm may be more of theoretical

interest than a result that can produce an improved algorithm of practical value. In

developing the FFTW package, Johnson and Frigo have observed that FFT algo-

rithms with higher theoretical operation counts can sometimes run faster on modern

58

computers than split-radix algorithms. As mentioned in Chapter 1, this is because

the actual running time of an FFT algorithm depends on many factors besides the

number of multiplications and additions. These other factors have a variable influence

from computer to computer and are difficult to model mathematically.

2.10 The ternary reversal function

We will now turn our attention to algorithms that can compute an FFT of

size n = 3k. Like the multiplicative FFT algorithms where p = 2, the algorithms that

we will encounter in the following sections do not present the output in the natural

order. For multiplicative FFTs with p = 3, the output will be presented in the order

{f(1), f(ω∆(1)), f(ω∆(2)), f(ω∆(3)), . . . , f(ω∆(n−1))} where ∆(j) is the “ternary rever-

sal” of j (with respect to n = 3k). That is to say, if j can be expressed in ternary

form as (tk−1tk−2tk−3 . . . t2t1t0)3, then ∆(j) = (t0t1t2 . . . tk−3tk−2tk−1)3. For example,

if j = 25 and n = 81, then express j = 02213. So ∆(j) = 12203 = 51. Note that lead-

ing zeros should be included in the ternary representation of j and will contribute to

the value of ∆(j). The ∆ function is a permutation of the integers {0, 1, 2, . . . n− 1}

and if the “natural” order of the evaluations is desired, then the inverse of the ∆

function can be used to rearrange the output of the FFT algorithm into this order.

The ∆ function has several properties which will be important to the devel-

opment of the algorithms presented in the following sections. The proof of each of

these theorems is similar to those used to prove Theorems 1 and 2.

Theorem 7 ∆(j) = 3 · ∆(3j) for j < n/3 where n = 3k.

Theorem 8 ∆(3j + 1) = ∆(3j) + n/3 for j < n/3 and where n = 3k.

Theorem 9 ∆(3j + 2) = ∆(3j) + 2n/3 for j < n/3 and where n = 3k.

59

2.11 Classical radix-3 FFT

A radix-3 FFT algorithm evaluates a polynomial of degree less than n at each

of the roots of xn − 1 in some ring R where n = 3k. Then R must have a primitive

nth root of unity ω and a total of n evaluations will be computed. In [20], a radix-3

algorithm was introduced which required the inputs to be transformed into a different

number system which the authors call the “slanted complex numbers”. Here, we will

present a new Cooley-Tukey formulation of the radix-3 algorithm which allows the

inputs to remain in the traditional complex number system and reduces the operation

counts of [20]. The new algorithm is similar to a technique introduced by Winograd

as presented in [61], but is believed to be easier to understand than the Winograd

algorithm.

Using the comments found in [3], a Cooley-Tukey radix-3 FFT is based on the

transformation

R[x]/(x3m − b3) → R[x]/(xm − b) (2.78)

× R[x]/(xm − Ω · b)

× R[x]/(xm − Ω2 · b),

where Ω = ωn/3 and Ω3 = 1. Note that Ω also has the property that Ω2 + Ω + 1 = 0.

Using these properties of Ω, it can be shown that x3m − b3 factors as (xm − b) · (xm −

Ω · b) · (xm − Ω2 · b).

The reduction step of the radix-3 FFT receives as input f ◦ = f mod (x3m−b3)

and computes fX = f mod (xm− b), fY = f mod (xm−Ω · b), and fZ = f mod (xm−

Ω2 · b). The modular reduction is once again simple to perform. Split f ◦ into three

blocks of size m by writing f ◦ = fA · x2m + fB · xm + fC . Then

60

fX = b2 · fA + b · fB + fC , (2.79)

fY = Ω2 · b2 · fA + Ω · b · fB + fC , (2.80)

fZ = Ω · b2 · fA + Ω2 · b · fB + fC . (2.81)

Suppose that we want to compute the FFT of a polynomial f of degree less than n =

3k over some ring R. We will recursively apply the reduction step with appropriate

selections of m and b. Since (ω∆(3j))3 = ω∆(j), Ω · ω∆(3j) = ω∆(3j+1) and Ω2 · ω∆(3j) =

ω∆(3j+2) for all j < n/3, then b can be easily determined. Each reduction step receives

as input f mod (x3m − ω∆(j)) for some j and produces as output

fX = f mod (xm − ω∆(3j)), (2.82)

fY = f mod (xm − ω∆(3j+1)), (2.83)

fZ = f mod (xm − ω∆(3j+2)). (2.84)

The reduction step can now be expressed as the transformation

fX

fY

fZ

=

ω2∆(3j) ω∆(3j) 1

Ω2 · ω2∆(3j) Ω · ω∆(3j) 1

Ω · ω2∆(3j) Ω2 · ω∆(3j) 1

·

fA

fB

fC

(2.85)

or

61

fX

fY

fZ

=

1 1 1

Ω2 Ω 1

Ω Ω2 1

·

ω2∆(3j) · fA

ω∆(3j) · fB

fC

, (2.86)

where fA·x2m+fB ·xm+fC = f mod (x3m−ω∆(j)). After all of the reduction steps have

been completed with input size 3m = 3, then we have f mod (x− ω∆(j)) = f(ω∆(j))

for all j < n, i.e. the desired FFT of f .

Both Winograd’s algorithm and the new algorithm exploit the fact that Ω and

Ω2 are complex conjugates. Express Ω = ΩR +I ·ΩI and observe that Ω2 = ΩR−I ·ΩI

where ΩR = cos(120o) and ΩI = sin(120o) or its equivalent in R. Now let fR and fI

be defined by

fR = ΩR · (ω2∆(3j) · fA + ω∆(3j) · fB), (2.87)

fI = I · ΩI · (ω∆(3j) · fB − ω2∆(3j) · fA). (2.88)

Without much difficulty, it can be shown that fY = fR+fC +fI and fZ = fR+fC−fI .

To efficiently perform the computations, we first compute fR + fC and fI . The two

results are added to obtain fY and are subtracted to obtain fZ . Finally, fX is com-

puted using (ω2∆(3j) · fA +ω∆(3j) · fB) + fC where ω2∆(3j) · fA +ω∆(3j) · fB has already

computed to determine fR. The Winograd algorithm uses a somewhat different se-

quence of operations to produce the three outputs at the same cost. Pseudocode for

the new classical radix-3 algorithm is provided in Figure 2.5.

Let us now analyze the cost of this algorithm. Line 0 is just used to end the

recursion and costs no operations. Line 1 logicially partitions the input into three

62

Algorithm : New classical radix-3 FFT

Input: f mod (x3m − ω∆(j)), a polynomial of degree less than 3m in a ring R.
Here R has a nth root of unity ω, and m is a power of three where 3m ≤ n.

Output: f(ω∆(j·3m+0)), f(ω∆(j·3m+1)), . . . , f(ω∆(j·3m+3m−1)).

0. If (3m) = 1 then return f mod (x− ω∆(j)) = f(ω∆(j)).
1. Split f mod (x3m − ω∆(j)) into three blocks fA, fB, and fC each of size m

such that f mod (x3m − ω∆(j)) = fA · x2m + fB · xm + fC .
2. Compute fα = ω2∆(3j) · fA and fβ = ω∆(3j) · fB.
3. Compute fγ = fα + fβ and fδ = fβ − fα.
4. Compute fR + fC = ΩR · fγ + fC and fI = I · fδ.
5. Compute f mod (xm − ω∆(3j)) = fγ + fC .
6. Compute f mod (xm − ω∆(3j+1)) = (fR + fC) + fI .
7. Compute f mod (xm − ω∆(3j+2)) = (fR + fC) − fI .
8. Compute the FFT of f mod (xm − ω∆(3j)) to obtain

f(ω∆(j·3m+0)), f(ω∆(j·3m+1)), . . . , f(ω∆(j·3m+m−1)).
9. Compute the FFT of f mod (xm − ω∆(3j+1)) to obtain

f(ω∆(j·3m+m)), f(ω∆(j·3m+m+1)), . . . , f(ω∆(j·3m+2m−1)).
10. Compute the FFT of f mod (xm − ω∆(3j+2)) to obtain

f(ω∆(j·3m+2m)), f(ω∆(j·3m+2m+1)), . . . , f(ω∆(j·3m+3m−1)).
11. Return f(ω∆(j·3m+0)), f(ω∆(j·3m+1)), . . . , f(ω∆(j·3m+3m−1)).

Figure 2.5 Pseudocode for new classical radix-3 FFT

63

blocks of size m, requiring no operations. In line 2, we multiply the m components of

fA by ω2∆(3j) and the m components of fB by ω∆(3j). Each of these operations costs m

multiplications in R unless j = 0 in which case no multiplications are required. Line

3 requires 2m additions in R and the cost of line 4 is equivalent to m multiplications

in R. Now, lines 5, 6, and 7 each require m additions in R to add the two terms in

each instruction. The cost of lines 8, 9, and 10 is equal to the number of operations

needed to compute three FFTs of size m. Line 11 costs no operations. The total

number of operations to compute this radix-3 FFT of size n using the new algorithm

is given by

M(n) = 3 ·M
(n

3

)
+ n, (2.89)

A(n) = 3 · A
(n

3

)
+

5

3
· n, (2.90)

where M(1) = 0 and A(1) = 0. These recurrence relations can be solved by using

Master Equation III. We must also subtract multiplications to account for the cases

where j = 0. A recurrence relation giving the number of multiplications saved is

Ms(n) = Ms

(n
3

)
+

2

3
· n, (2.91)

where Ms(1) = 0. By applying the same technique used to produce Master Equation

II, it can be shown that Ms(n) = n− 1.

The number of operations needed to compute the FFT using this radix-3

algorithm is given by

64

M(n) = n · log3(n) − n+ 1 (2.92)

=
1

log2(3)
· n · log2(n) − n+ 1

≈ 0.631 · n · log2(n) − n+ 1,

A(n) =
5

3
· n · log3(n) (2.93)

=
5

3 · log2(3)
· n · log2(n)

≈ 1.051 · n · log2(n).

This is the same number of operations required by the Winograd algorithm. It can

be shown that the algorithm of [20] requires

M(n) =
2

3
· n · log3(n) − n+ 1, (2.94)

A(n) =
10

3
· n · log3(n) (2.95)

operations, provided that the complex numbers contained in each of the inputs and

outputs of the algorithm are expressed as A + Ω · B. Provided that multiplication

of two real numbers is less than twice as expensive as the addition of two real num-

bers, then the new algorithm will outperform the one presented in [20] and does not

require conversions involving the slanted complex number system. However, the new

algorithm is less efficient than the radix-2 algorithms discussed earlier in this chapter,

both in terms of the number of multiplications and the number of additions.

65

2.12 Twisted radix-3 FFT

In [35], Gentleman and Saude gave an alternative algorithm to compute the

radix-2 FFT. It is possible to develop a similar algorithm for the radix-3 FFT. In this

section, we are going to present a new version of this algorithm which contains many

of the features as an algorithm presented in [76]. In particular, the new algorithm

exploits complex conjugate properties of complex numbers as well as the fact that

1 + Ω + Ω2 = 0.

The basic idea of the Gentleman-Saude radix-3 algorithm is to compute the

reduction step using

R[x]/(x3m − 1) → R[x]/(xm − 1) (2.96)

× R[x]/(xm − Ω)

× R[x]/(xm − Ω2).

The mapping x = ζ · ẋ is always applied to R[x]/(xm − Ω) after each reduction step

where ζ is some element of R that transforms R[x]/(xm − Ω) to R[ẋ]/(ẋm − 1) by

rotating the roots of unity and allows (2.96) to be applied at the next reduction

step. A different value of ζ can be used in the transformation x = ζ · ẍ to convert

R[x]/(xm − Ω2) to R[ẍ]/(ẍm − 1). We will again adopt Bernstein’s terminology and

call this the “twisted” radix-3 FFT algorithm.

The “twisted” polynomial will again be used for the reduction step. As an

example of an application of the twisted polynomial in this context, consider f(x) =

3 · x3 + 2 · x2 + x + 1. Suppose that ω is a primitive 3rd root of unity in the field of

complex numbers, i.e. ω = Ω. Then f(ω · ẋ) = (3ω3) · ẋ3 + (2ω2) · ẋ2 + ω · ẋ + 1 =

3·ẋ3+2·Ω2·ẋ2+Ω·ẋ+1. Similarly, if g(x) = 7·x3+5x+4, then g(ω·ẋ) = 7·ẋ3+5·Ω·ẋ+4.

66

One can verify that the linear transformation properties of the twisted polynomial

holds using these two results.

The following theorem provides the values of ζ necessary to achieve the desired

transformations.

Theorem 10 Let f ◦(x) be a polynomial of degree less than 3m in R[x]. Then

f ◦(x) mod (xm − Ω) = f ◦(ζ · ẋ) mod (ẋm − 1) where ζ = ω∆(1)/m and x = ζ · ẋ.

Proof: Let f ◦(x) be a polynomial of degree less than 3m in R[x] and

let r(x) = f ◦(x) mod (xm − Ω). Then f ◦(x) = q(x) · (xm − Ω) + r(x) for some q(x).

Now substitute x = ζ · ẋ where ζ = ω∆(1)/m to rotate the roots of unity. Applying

the linear properties of the twisted polynomial transformation gives

f ◦(ζ · ẋ) = q(ζ · ẋ) · ((ζ · ẋ)m − Ω) + r(ζ · ẋ) (2.97)

= q(ζ · ẋ) · (ζm · ẋm − Ω) + r(ζ · ẋ)

= q(ζ · ẋ) · (ω∆(1) · ẋm − Ω) + r(ζ · ẋ)

= q(ζ · ẋ) · (Ω · ẋm − Ω) + r(ζ · ẋ)

= Ω · q(ζ · ẋ) · (ẋm − 1) + r(ζ · ẋ).

Thus r(ζ · ẋ) = f ◦(ζ · ẋ) mod (ẋm − 1). �

Theorem 11 Let f ◦(x) be a polynomial of degree less than 3m in R[x].

Then f ◦(x) mod (xm −Ω2) = f ◦(ζ · ẍ) mod (ẍm − 1) where ζ = ω∆(2)/m and x = ζ · ẍ.

Proof: Similar to proof of Theorem 10. �

67

As with the twisted radix-2 algorithms, it is simpler to ignore the distinctions

between the various transformations of the roots of unity and just use the variable x

in all of the polynomials. However, whenever the notation f(ωθ ·x) is used throughout

the rest of this section, it is to be understood that x is a dummy variable for some other

unknown, say ẋ, where x = ωθ · ẋ and x is a variable used to represent untransformed

polynomials in this equation.

We will now present the reduction step of the twisted radix-3 FFT algorithm

which receives an input of some polynomial f ◦(x) with degree less than 3m. Split f ◦

into three blocks of size m by writing f ◦ = fA · x2m + fB · xm + fC . Then compute

fX = f mod (xm − 1) = fA + fB + fC , fY = f mod (xm −Ω) = Ω2 · fA + Ω · fB + fC ,

and fZ = f mod (xm − Ω2) = Ω · fA + Ω2 · fB + fC . This reduction step can also be

represented by the transformation

fX

fY

fZ

=

1 1 1

Ω2 Ω 1

Ω Ω2 1

·

fA

fB

fC

. (2.98)

The simplified reduction step can be directly applied to f ◦(x) mod (xm−1). However,

we need to twist f ◦(x) mod (xm −Ω) by ω∆(1)/m and f ◦(x) mod (xm −Ω) by ω∆(2)/m

prior to using these results as inputs to the simplified reduction step.

The following theorem is provided to demonstrate that an algorithm based on

this reduction step yields the FFT of some polynomial f of degree less than n = 3k.

Theorem 12 If f ◦(x) = f(ω∆(j)/(3m) · x) mod (x3m − 1), then

f ◦(ζ · x) mod (xm − 1) = f(ω∆(3j+d)/m · x) mod (xm − 1) where ζ = ω∆(d)/m for

0 ≤ d ≤ 2.

68

Proof: Let 0 ≤ d ≤ 2, θ = ∆(j)/(3m) = ∆(3j)/m and let f ◦(x) = f(ωθ ·

x) mod (x3m − 1). Now, ζ · (ω∆(j)/(3m)) = ω∆(d)/m · ω∆(3j)/m = ω∆(3j+d)/m. So

f ◦(ζ · x) = f(ω∆(3j+d)/m · x) mod (x3m − 1). Modularly reducing both sides of this

equation by xm − 1 produces the desired result. �

So the reduction step receives as input f(ω∆(j)/(3m) ·x) mod (x3m−1), the mod-

ular reduction of some polynomial f that has been twisted by ω∆(j)/(3m) = ω∆(3j)/m.

The reduction step produces as output f(ω∆(3j)/m · x) mod (xm − 1), f(ω∆(3j+1)/m ·

x) mod (xm−1) (after a “twist” by ω∆(1)/m), and f(ω∆(3j+2)/m ·x) mod (xm−1) (after

a “twist” by ω∆(2)/m).

Since (ω−∆(1)/m)m = ω−∆(1) = ω−n/3 = ω2n/3 = ω∆(2) = (ω∆(2)/m)m, then

ω−∆(1)/m is another value of ζ that can be used to twist f ◦(x) mod (xm − Ω2) into

f ◦(ζ · x) mod (xm − 1). However, one would need to modify the ternary reversal

function ∆(j) into a new function ∆′(j) which is compatible with the different twisting

of the third output. This function shares most of the properties of ∆(j) except that

∆′(3j + 2) = ∆′(3j) − n/3. The remaining details of converting ∆(j) to ∆′(j) are

similar to the process of converting σ(j) to σ′(j) for the conjugate-pair split-radix

algorithm and are left to the reader.

The improved algorithm makes use of the fact that ω∆′(1)/m and ω−∆′(1)/m are

conjugate pairs and that Ω and Ω2 are complex conjugate pairs, i.e. Ω2 = Ω. Several

properties involving conjugates are proven in a section of the appendix and will be

used to reduce the operation count of the algorithm.

69

Let ζ = ω∆′(1)/m. The following formulas can be used to compute the coeffi-

cient of degree d in fX = f(ω∆′(3j)/m) mod (xm−1), f̃Y = f(ω∆′(3j+1)/m) mod (xm−1),

and f̃Z = f(ω∆′(3j+2)/m) mod (xm − 1): 6

(fX)d = (fA)d + (fB)d + (fC)d, (2.99)

(f̃Y)d =
(
Ω · (fA)d + Ω · (fB)d + (fC)d

)
· ζd, (2.100)

(f̃Z)d =
(
Ω · (fA)d + Ω · (fB)d + (fC)d

)
· ζd. (2.101)

Since Ω = −Ω − 1, then we can rewrite (2.100) as

(f̃Y)d = (Ω · (fB − fA)d + (fC − fA)d) · ζd (2.102)

= (Ω · ζd) · (fB − fA)d + ζd · (fC − fA)d.

By Theorem 44 found in the appendix, we can similarly rewrite (2.101) as

(f̃Z)d = Ω · ζd · (fB − fA)d + ζd · (fC − fA)d. (2.103)

Once (2.102) has been computed, then Theorem 45 of the appendix can be used to

compute (2.103) at a reduced cost. For both formulas, we will assume that Ω · ζd has

6 The notation f̃Y and f̃Z is used to indicate that these are the outputs after the
twisting has been applied.

70

Algorithm : Improved twisted radix-3 FFT

Input: f ◦(x) = f(ω∆′(j)/(3m) ·x) mod (x3m−1), the modular reduction of some
polynomial f(x) ∈ R[x] that has been twisted by ω∆′(j). Here R
has a nth root of unity ω, and m is a power of three where 3m ≤ n.

Output: f(ω∆′(j·3m+0)), f(ω∆′(j·3m+1)), . . . , f(ω∆′(j·3m+3m−1)).

0. If (3m) = 1 then return f(ω∆′(j) · x) mod (x− 1) = f(ω∆′(j)).
1. Split f ◦(x) into three blocks fA, fB, and fC each of size m

such that f ◦(x) = fA · x2m + fB · xm + fC .
2. Compute f(ω∆′(3j)/m ·x) mod (xm−1) = f ◦(x) mod (xm−1) = fA+fB+fC .
3. Compute fB − fA and fC − fA.
4. Let ζ = ω∆′(1)/m

5. Compute (f̃Y)d = (Ω · ζd) · (fB − fA)d + ζd · (fC − fA)d

for all d in 0 ≤ d < m.

Combine the (f̃Y)d’s to obtain f(ω∆′(3j+1)/m · x) mod (xm − 1).

6. Compute (f̃Z)d = Ω · ζd · (fB − fA)d + ζd · (fC − fA)d

for all d in 0 ≤ d < m.

Combine the (f̃Z)d’s to obtain f(ω∆′(3j+2)/m · x) mod (xm − 1).
7. Compute the FFT of f(ω∆′(3j)/m · x) mod (xm − 1) to obtain

f(ω∆′(j·3m+0)), f(ω∆′(j·3m+1)), . . . , f(ω∆′(j·3m+m−1)).
8. Compute the FFT of f(ω∆′(3j+1)/m · x) mod (xm − 1) to obtain

f(ω∆′(j·3m+m)), f(ω∆′(j·3m+m+1)), . . . , f(ω∆′(j·3m+2m−1)).
9. Compute the FFT of f(ω∆′(3j+2)/m · x) mod (xm − 1) to obtain

f(ω∆′(j·3m+2m)), f(ω∆′(j·3m+2m+1)), . . . , f(ω∆′(j·3m+3m−1)).
10. Return f(ω∆′(j·3m+0)), f(ω∆′(j·3m+1)), . . . , f(ω∆′(j·3m+3m−1)).

Figure 2.6 Pseudocode for improved twisted radix-3 FFT

been precomputed and stored. By applying these concepts for all d in 0 ≤ d < m,

the entire reduction step can be computed with fewer operations.

Regardless of which of the two twisted algorithms is used, the algorithm is

initialized with f(x) which equals f(ω0 · x) mod (xn − 1) if f has degree less than n.

By recursively applying the reduction step to f , we obtain f(ω∆′(j) ·x) mod (x−1) =

f(ω∆′(j) · 1) for all j in the range 0 ≤ j < n, i.e. the FFT of f of size n. Pseudocode

for the improved twisted radix-3 algorithm is provided in Figure 2.6.

71

Let us now analyze the cost of this algorithm. Line 0 is just used to end the

recursion and costs no operations. Line 1 logicially partitions the input into three

blocks of size m, requiring no operations. In line 2, we compute the sum fA +fB +fC

at a cost of 2m additions and no multiplications. Next in line 3, we compute fB − fA

and fC − fA at a cost of 2m subtractions. Line 4 is just a table lookup. We will

assume that the computation of all powers of ζ can also be implemented by table

lookups. Line 5 requires 2m−1 multiplications 7 and m additions in R. By Theorem

45, line 6 only requires m additions in R. Finally, the cost of lines 7, 8, and 9 is equal

to the number of operations needed to compute three FFTs of size m. Line 10 costs

no operations. The total number of operations to compute the radix-3 FFT of size n

using this twisted algorithm is given by

M(n) = 3 ·M
(n

3

)
+

2

3
· n− 1, (2.104)

A(n) = 3 · A
(n

3

)
+ 2 · n, (2.105)

where M(1) = 0 and A(1) = 0. Master Equation III can be used to solve these

recurrence relations for the formulas given by

7 We can subtract one multiplication for the case where d = 0 and so ζd = 1.

72

M(n) =
2

3
· n · log3(n) − 1

2
· n+

1

2
(2.106)

=
2

3 · log2(3)
· n · log2(n) − 1

2
· n+

1

2

≈ 0.421 · n · log2(n) − 0.5 · n+ 0.5,

A(n) = 2 · n · log3(n) (2.107)

=
2

log2(3)
· n · log2(n)

≈ 1.262 · n · log2(n).

Compared to the classical radix-3 algorithm, the number of multiplications has de-

creased while the number of additions has increased by roughly the same amount. As

long as a multiplication is at least as expensive as an addition, then the algorithm

presented in this section is more efficient than the classical radix-3 algorithm. Both

of these algorithms, however, are less efficient than the radix-2 algorithms.

2.13 Hybrid radix-3 FFTs

It is not necessary to apply a twist after every reduction step. Suppose that

we wish to evaluate f ◦ at each of the roots of x3cm − 1. After c stages of reduction

steps, we will have f ◦ mod (xm − ω∆(j)) for each j in 0 ≤ j < 3c. Each ω∆(j) is a

(3c)th root of unity.

The following generalization of Theorem 10 shows the transformation neces-

sary to apply the simplified reduction step to each of these results.

Theorem 13 Let f ◦(x) be a polynomial in R[x] with degree less than 3c ·m. Then

f ◦(x) mod (xm − ω∆(j)) = f ◦(ζ · x) mod (xm − 1) where j < 3c and ζ = ω∆(j)/m.

73

Proof: Similar to Theorem 10. �

By carefully analyzing the tradeoffs associated with performing a twist at any point

in the algorithm, it can be shown that no overall savings or additional cost results

from this action. The same result holds if ∆(j) is replaced by ∆′(j).

For the computation of an FFT of size 2k, additional improved algorithms

were possible by exploiting the fact that multiplications by 4th and 8th roots of unity

could be implemented more efficiently than a general multiplication. In the case of the

radix-3 FFT, it would be possible to develop a radix-9 algorithm, a twisted radix-9

algorithm, and a split-radix (3/9) algorithm if multiplication by the primitive 9th root

of unity had some special characterisitics that could be exploited. In [61], a radix-9

algorithm is described that exploits the fact that 1 + Ω + Ω2 = 0 and that some of

the roots of unity are complex conjugates of others. Additionally, a split-radix (3/9)

algorithm is described in [79]. However, it can be shown that the new twisted radix-3

algorithm introduced earlier in this chapter is superior to each of these algorithms.

It is possible to combine the radix-3 algorithm with the 2-adic algorithms

discussed at the beginning of this chapter. In [76], a radix-6 FFT algorithm and a

radix-12 FFT algorithm are presented with a lower cost than the radix-3 algorithms

already considered. Since neither of these algorithms has a lower operation count than

the split-radix (2/4) algorithm [21] discussed earlier in this chapter, these algorithms

will not be discussed here. However, the hybrid algorithms may be useful if someone

has a need for efficiently computing an FFT of with size equal to a number of the

form 2a · 3b.

74

2.14 Radix-3 FFT for symbolic roots of unity

The radix-3 FFT is an important module in an algorithm [68] which multiplies

polynomials involving finite fields of characteristic 2. Such a finite field F does not

have 2kth roots of unity for any k > 0, nor can one work in an extension field of F to

acquire the required roots of unity.

One method for multiplying two polynomials of degree less than n = 3k with

coefficients in F is to transform these polynomials into polynomials with coefficients

in D where D = F[x]/(x2m + xm + 1) and m = 3⌈k/2⌉. Here, D is the quotient ring of

polynomials modulo x2m +xm +1. Note that x2m = −xm − 1 = xm +1, and x3m = 1.

Let t = n/m. If t = m, then ω = x is a primitive (3t)th root of unity. Otherwise,

t = 3m and ω = x3 is a primitive (3t)th root of unity.

One version of the multiplication method involves evaluating each of the poly-

nomials in D[y] at 3t powers of ω. Another version involves evaluating each of the

polynomials in D[y] at 2t powers of ω. In either case, the classical or twisted ver-

sion of the radix-3 FFT algorithm can be used to compute these evaluations. The

improved versions of these algorithms discussed in the previous sections do not apply

here because D has a special structure which allows each of the algorithms to be

improved even more.

By observing that x2m = −xm − 1 in D, then multiplication by any power

of ω in D can be implemented using just shifts and additions in F by applying the

multiplication technique we discussed earlier from [20]. Suppose that we wish to

multiply an element ε = a2m−1 · x2m−1 + a2m−2 · x2m−2 + · · ·+ a1 · x+ a0. in D by ωθ

where θ < 3m/2. Multiplication by xθ simply shifts each of the coefficients in ε by θ

positions to the left. For any resulting coefficient of degree d greater than 2m, modular

reduction must be performed. In this case, xd can be replaced by xd−m + xd−2m. The

75

entire multiplication can be implemented by circularly shifting ε by θ positions and

then performing θ additions in F.

For example, suppose that 2m = 6, and θ = 2. Then if ε = a5 · x5 + a4 · x4 +

a3 · x3 + a2 · x2 + a1 · x+ a0, then ω2 · ε = x2 · ε = a3 · x5 + (a5 + a2) · x4 + (a4 + a1) ·

x3 + a0 · x2 + a5 · x+ a4.

If θ > 3m/2, then it is more advantageous to shift to the right. Consider ε

to be a power series instead of a polynomial. Since x3m = 1, then xθ = xθ−3m. So

divide ε by x3m−θ. This will produce a power series with negative exponents. For

each coefficient of degree d < 0, then xd = x2m+d − xm+d can be used to eliminate

the coefficients of negative degree. Note that the resulting power series is also a

polynomial in F[x]. So multiplication by ωθ is implemented by circularly shifting ε

by θ positions to the right and then performing 3m− θ additions in F.

For example, suppose that 2m = 6 and θ = 7. Then if ε = a5 · x5 + a4 · x4 +

a3 · x3 + a2 · x2 + a1 · x+ a0, then ω7 · ε = x7 · ε = x−2 · ε = a1 · x5 + a0 · x4 + a5 · x3 +

(a4 + a1) · x2 + (a3 + a0) · x+ a2.

An FFT of size t in D[y] can be computed in 2 · t · log3(t)− t+1 multiplications

and 2 · t · log3(t) additions in D by using the operation count of the radix-3 algorithms

without the improvements by [20] and [76]. Assuming that every power of ω is used

roughly the same number of times in the FFT algorithm, then it can be shown that

a multiplication in D by one of the powers of ω requires 3/4 ·m additions in F (plus

copies which we will not count). Each addition in D requires 2m additions in F. If

n = t ·m, then an FFT of size t in D[y] requires no multiplications and

11

2
· n · log3(t) −

3

4
· n+

3

4
·m (2.108)

76

additions in F. 8 The multiplication algorithm which uses this FFT will be discussed

in Chapter 5.

2.15 Concluding remarks

This chapter considered several different algorithms which compute the FFT

of size a power of two and additional algorithms which compute the FFT of size

a power of three. These algorithms fall into two major categories. The classical

(Cooley-Tukey) algorithms modularly reduce the input by a different polynomial in

each reduction step. The twisted (Gentleman-Saude) algorithms modularly reduce

the input by the same polynomial in each reduction step and then “twist” one or

more of the resulting outputs.

Ignoring any restrictions on algorithm selection on the basis of input size, the

split-radix algorithms are the most efficient option for computing an FFT. The 2-adic

algorithms (radix-4, radix-8, etc.) are the next most efficient category of algorithms.

Finally, the 3-adic algorithms are the least efficient algorithms considered in this

chapter. Even less efficient algorithms result by constructing radix-pc algorithms for

other values of p > 3.

The chapter also presented a new split radix algorithm recently introduced

by Van Buskirk, Johnson and Frigo, and Bernstein. This algorithm reduces the

theoretical asympotic number of multiplications in R by about six percent compared

to the split-radix algorithm which previously required the fewest number of operations

to compute an FFT of size 2k, but requires R to be a field in order for the algorithm

to work.

8 The same result can be obtained by using the operation count of the algorithm
introduced in [20]. The improved algorithm in [76] does not apply here because
elements of D are not in the required form.

77

CHAPTER 3

ADDITIVE FAST FOURIER TRANSFORM ALGORITHMS

Finite fields possess an additive structure as well as a multiplicative structure.

In [81], Yao Wang and Xuelong Zhu introduced an algorithm which exploits this

additive structure to efficiently evaluate a polynomial at all of the points in a subspace

of a finite field. Similar to the history of the multiplicative Fast Fourier Transform,

this publication received little attention, was reinvented several years later by David

G. Cantor [12], and is now usually referred to as “Cantor’s Algorithm” in subsequent

publications (e.g. [34]). The algorithm requires the finite field to be of the form

GF (pK) where K is itself a power of p. If N = pK and n divides N , then the cost

of the algorithm to compute an “additive FFT” of length n is given by Θ(n logp n)

multiplications and Θ
(
n ·
(
logp n

)1+logp((p+1)/2)
)

additions. The algorithm was later

generalized by von zur Gathen and Gerhard [32] to compute the additive FFT over

any finite field with a greater operation cost. The first part of this chapter will review

these algorithms in the case of finite fields with characteristic 2. The interested reader

can study [12] to see how the techniques work for other finite fields.

3.1 Von zur Gathen-Gerhard additive FFT

A vector space V of dimension K over some field F is an algebraic structure

such that every element of V can be represented as a linear combination of K basis

elements {β1, β2, . . . , βK} ∈ V . That is to say, if ̟ is an element of V , then ̟ can

be represented as

̟ = aK · βK + aK−1 · βK−1 + · · · + a2 · β2 + a1 · β1, (3.1)

78

where each ad is an element of F.

Let F be a finite field of size N = 2K . This finite field can be viewed as a

vector space over GF (2) of dimension K. If {β1, β2, . . . , βK} is a basis for F, then we

may enumerate the N elements {̟0, ̟1, . . . , ̟N−1} of F as follows. For 0 ≤ j < N ,

write j in binary form, i.e. j = (bK−1bK−2 · · · b1b0)2. Then ̟j is given by setting

ad = bd−1 in (3.1) above for each d in 1 ≤ d ≤ K.

Let us define subspace Wi of F to be all linear combinations of {β1, β2, . . . , βi},

i.e. all ̟j for 0 ≤ j < 2i where i ≤ K. Observe that the subspaces W0 =

{0},W1,W2, . . . ,WK form a strictly ascending chain as follows:

{0} = W0 ⊂ W1 ⊂ W2 ⊂ · · · ⊂WK = F. (3.2)

In this section, we will give an algorithm that can compute the FFT over the points

of any Wk ⊆ F where k ≤ K. The elements of Wk are given by

̟j = bk−1 · βk + bk−2 · βk−2 + · · · + b1 · β2 + b0 · β1 (3.3)

for 0 ≤ j < 2k.

For any 0 ≤ i < k, we can decompose the elements of Wi+1 into two pairwise

disjoint cosets. One coset contains the elements of Wi and the other coset contains

the elements βi+1 +Wi. In other words, the elements in this second coset are obtained

by adding βi+1 to each element of Wi. Furthermore, if i < k − 1 and ε is any linear

combination of {βi+2, βi+3, · · · , βk}, then we can decompose the elements of ε+Wi+1

into the two pairwise disjoint cosets ε+Wi and βi+1 + ε+Wi. Thus,

79

ε+Wi+1 = (ε+Wi)
⋃

(βi+1 + ε+Wi). (3.4)

Let us now define

si(x) =
∏

a∈Wi

(x− a) (3.5)

as the minimal polynomial of Wi. Observe that the minimal polynomial of ε+Wi is

given by

∏

a∈ε+Wi

(x− a) =
∏

a∈Wi

((x− ε) − a) = si(x− ε). (3.6)

The minimal polynomial of βi+1 + ε+Wi is similarly given by si(x− ε− βi+1).

Because Wi+1 can be partitioned into Wi and βi + Wi, then (3.5) factors as

follows:

si+1(x) =
∏

a∈Wi+1

(x− a) =
∏

a∈Wi

(x− a) ·
∏

a∈βi+1+Wi

(x− a) (3.7)

= si(x) · si(x− βi+1).

Similarly, because ε + Wi+1 can be partitioned into ε + Wi and βi+1 + ε + Wi, then

(3.6) factors as

80

si+1(x− ε) = si(x− ε) · si(x− ε− βi+1). (3.8)

At this point, we recall the “Freshman’s Dream Theorem” for finite fields. This result

claims that for any a and b which are elements of a finite field of characteristic p and

any q which is a power of p:

(a+ b)q = aq + bq. (3.9)

The Freshman’s Dream Theorem can be used to prove the following results which

will be used in developing the reduction step of the additive FFT algorithms.

Lemma 14 Let L(x) be a linearized polynomial over GF (q), i.e. L(x) has the form

L(x) =
i∑

d=0

ad · xqd

(3.10)

with coefficients in an extension field GF (qm). Then L(x) is a linear map of GF (qm)

over GF (q), i.e.

L(a+ b) = L(a) + L(b), (3.11)

L(c · a) = c · L(a) (3.12)

for all a, b ∈ GF (qm) and c ∈ GF (q).

Proof: A proof of this theorem can be found after Definition 3.49 in [52]. �

81

Theorem 15 Let si(x) be the minimal polynomial of Wi. Then si(x) is a linearized

polynomial over GF (2) for all i. Furthermore, si+1(x) = (si(x))
2 − si(x) · si(βi+1).

Proof: We will prove this theorem by induction. First, observe that s0(x) = x.

Clearly, this is a linearized polynomial. Next, observe that s1(x) = x2 − x · β1

where β1 be the nonzero element contained in W1. Since s1(x) = x2 − x · β1 =

(s0(x))
2 − s0(x) − s0(β1), then the result holds for i = 0.

Assume that the result holds for some i = κ ≥ 0. We need to show that the

result holds for i = κ+1. Consider sκ+1(x) which equals sκ(x) · sκ(x−βκ+1) by (3.7).

By the induction hypothesis, sκ is a linearized polynomial. So by Lemma 14 with

q = 2, sκ(x− βκ+1) = sκ(x)− sκ(βκ+1). Then, sκ+1(x) = sκ(x) · (sκ(x) − sκ(βκ+1)) =

(sκ(x))
2 − sκ(x) · sκ(βκ+1). Also by the induction hypothesis, let us represent

sκ(x) =
κ∑

d=0

Ad · x2d

. (3.13)

By the Freshman’s Dream Theorem, it follows that

sκ+1(x) = A0 · sκ(βκ+1) · x+
κ∑

d=1

(
Ad−1

2 + Ad · sκ(βκ+1)
)
· x2d

(3.14)

+Aκ
2 · x2κ+1

.

By setting a0 = A0 · sκ(βκ+1), ad = Ad−1
2 +Ad · sκ(βκ+1) for all d in 1 ≤ d ≤ κ

and aκ+1 = Aκ
2, then we have demonstrated that sκ+1 has the form given in (3.10).

Thus, sκ+1 is a linearized polynomial.

By the principle of mathematical induction, the theorem has been proven. �

82

Corollary 16 Let si+1(x− ε) be the minimal polynomial of ε+Wi+1, let si(x− ε) be

the minimal polynomial of ε+Wi, and let si(x− ε− βi+1) be the minimal polynomial

of βi+1 + ε+Wi. Then

si+1(x− ε) = si+1(x) − si+1(ε), (3.15)

si(x− ε) = si(x) − si(ε), (3.16)

si(x− βi+1 − ε) = si(x) − si(βi+1) − si(ε). (3.17)

Proof: Each of these results follows from the fact that si+1 and si are linearized

polynomials and Lemma 14. �

In [32], an algorithm is given which computes the additive FFT over Wk using

an arbitrary basis. It is based on a reduction step which uses the transformation

R[x]/si+1(x− ε) → R[x]/si(x− ε) (3.18)

× R[x]/si(x− ε− βi+1).

Suppose that we are given f ◦(x) = f(x) mod si+1(x − ε) where the degree of f ◦ is

less than the degree of si+1(x− ε). Divide f ◦ by si(x− ε) = si(x)− si(ε) to produce

quotient q(x) and remainder r(x), i.e.

83

f ◦ = q · (si − si(ε)) + r (3.19)

= q · (si − si(ε) − si(βi+1)) + r + q · si(βi+1).

So,

f mod si(x− ε) = r, (3.20)

f mod si(x− ε− βi+1) = r + q · si(βi+1). (3.21)

Recall that ε is a linear combination of {βi+2, βi+3, · · · , βk} whenever i < k−1.

Then

ε = bk−1 · βk + bk−2 · βk−1 + · · · + bi+2 · βi+3 + bi+1 · βi+2, (3.22)

and ε = ̟θ where θ = (bi−1bi−2 · · · bi+1000 · · · 0)2. So θ is a multiple of 2i+1 and

ε = ̟j·2m where 0 ≤ j < 2k−i−1 and m = 2i.

The reduction step for ε = ̟θ can be expressed using the transformation

R[x]/si+1(x−̟θ) → R[x]/si(x−̟θ)

× R[x]/si(x−̟θ+m). (3.23)

84

To implement the reduction step, divide the input polynomial f ◦(x) = f(x) mod

si+1(x − ε) by si(x − ̟θ) = si(x) − si(̟θ) to produce quotient q(x) and remainder

r(x). Then

f mod si(x−̟θ) = r, (3.24)

f mod si(x−̟θ+m) = r + q · si(βi+1). (3.25)

Suppose that we wish to evaluate a polynomial f of degree less than n = 2k at

each of the points in Wk. Then f = f mod sk where sk(x) is the minimal polynomial

of Wk. Von zur Gathen and Gerhard’s algorithm recursively applies a reduction step

which receives as input the polynomial f ◦ = f mod (si+1 − si+1(̟j·2m)) for some i

and 0 ≤ j < 2k−i−1. Here, m = 2i. The reduction step divides this polynomial by

si − si(̟j·2m) to obtain output f mod (si − si(̟j·2m)) and f mod (si − si(̟j·2m+m)).

The algorithm is initialized with values i = k − 1 and j = 0. After all of the

reduction steps have been completed, then we will have f mod (s0 − s0(̟j·1)) =

f mod (x−̟j) = f(̟j), i.e. the desired additive FFT of f over Wk.

In Figure 3.1, pseudocode is provided for von zur Gathen and Gerhard’s algo-

rithm. Prior to the start of the algorithm, we must select a basis for Wk ⊆ F, compute

the si’s using Theorem 15, compute the ̟’s using (3.3), and compute si(̟j·2m) for

each 0 ≤ j < 2k−i−1 where 0 ≤ i < k. We will assume that it is possible to store each

of these values.

Let us compute the cost of this algorithm. Line 0 is used to end the recursion

and does not cost any operations. In line 1 we need to divide a polynomial of degree

85

Algorithm : Von zur Gathen-Gerhard additive FFT

Input: f ◦ = f mod (si+1 − si+1(̟j·2m)), a polynomial of degree less than 2m
where m = 2i over F, a field of characteristic 2 of dimension K.

Output: The multipoint evaluation of f over ̟j·2m +Wi+1 ⊆ F,
i.e. f(̟j·2m+0), f(̟j·2m+1), . . . , f(̟j·2m+2m−1).

0. If (2m) = 1, then return f mod (x−̟j) = f(̟j).
1. Divide f ◦ by (si − si(̟j·2m)).

This results in two polynomials, q and r, each of size m
such that f ◦ = q · (si − si(̟j·2m)) + r.

2. Compute f mod (si − si(̟j·2m)) = r and
f mod (si − si(̟j·2m+m)) = r + q · si(βi+1).

3. Compute the additive FFT of f mod (si − si(̟j·2m)) to obtain
f(̟j·2m+0), f(̟j·2m+1), . . . , f(̟j·2m+m−1).

4. Compute the additive FFT of f mod (si − si(̟j·2m+m)) to obtain
f(̟j·2m+m), f(̟j·2m+m+1), . . . , f(̟j·2m+2m−1).

5. Return f(̟j·2m+0), f(̟j·2m+1), . . . , f(̟j·2m+2m−1).

Figure 3.1 Pseudocode for von zur Gathen-Gerhard additive FFT

less than 2m by si−si(̟j·2m), a polynomial of degree m with log2(m)+2 coefficients.

This costs m · (log2(m) + 2) multiplications, m · (log2(m) + 2) additions, plus at

most 1 inversion in F. If j = 0, then ̟0 = 0 and only m · (log2(m) + 1) operations

of each type are required. In line 2, we need to perform m multiplications and m

additions to obtain f mod (si − si(̟j·2m+m)). The cost of lines 3 and 4 is equal to

the number of operations needed to compute two additive FFTs of size m. Line 5

costs no operations.

If j 6= 0, then the total number of operations to compute the additive FFT of

size n using the von zur Gathen-Gerhard algorithm is given by

M(n) = 2 ·M
(n

2

)
+

1

2
· n · log2(n) + n, (3.26)

A(n) = 2 · A
(n

2

)
+

1

2
· n · log2(n) + n, (3.27)

86

where M(1) = 0 and A(1) = 0. Master Equation I can be used to solve these

recurrence relations. We must also subtract the number of operations saved when

j = 0. A recurrence relation for the number of multiplications saved is

Ms(n) = Ms

(n
2

)
+

1

2
· n, (3.28)

where Ms(1) = 0. Master Equation II can be used to solve this recurrence relation

to obtain n− 1, which is also the number of additions saved.

Combining the closed-form formulas, the number of operations required for

this additive FFT algorithm is given by

M(n) =
1

4
· n · (log2(n))2 +

5

4
· n · log2(n) − n+ 1, (3.29)

A(n) =
1

4
· n · (log2(n))2 +

5

4
· n · log2(n) − n+ 1. (3.30)

3.2 Wang-Zhu-Cantor additive FFT

It was mentioned at the beginning of this chapter that von zur Gathen and

Gerhard’s algorithm was a generalization of an algorithm introduced independently

by Wang and Zhu [81] and Cantor [12]. This earlier algorithm only works when the

underlying finite field is of size pK where K is itself a power of p. Here, we will show

how to adapt the algorithm discussed in the previous section into the Wang-Zhu-

Cantor algorithm for the case where p = 2.

In [32], it is claimed that the following set of elements can be constructed and

that they form a basis for GF (2K), where K is a power of two.

87

β1 = 1, (3.31)

βi = βi+1
2 + βi+1 for 1 ≤ i < k.

Although [32] claims that this was the basis used by Cantor in [12], this may not

be obvious from reading Cantor’s paper. In a section of the appendix, facts from

Cantor’s paper and standard results from finite field theory are used to show that the

set of elements given in (3.31) can be constructed in F and that they form a basis for

F. In this proof, the functions

ϕ(x) = x2 + x, (3.32)

ϕk(x) = ϕ(ϕk−1(x)) (3.33)

are introduced for k > 1 where ϕ1(x) = ϕ(x). By the associative property of the

composition of functions, then ϕk(x) = ϕk−1(ϕ(x)). In the appendix, a nonrecursive

formula for ϕk(x) is derived and given by

ϕk(x) =
k∑

d=0

(
k

d

)
x2d

, (3.34)

where
(

k
d

)
is the modulo 2 reduction of the binomial coefficent C(k, d). Here, we will

also define ϕ0(x) = x which is consistent with the above formulas for k > 0.

The following result provides the key for the faster algorithm using this selec-

tion of basis elements.

88

Theorem 17 For the special basis given by (3.31), si(x) = ϕi(x) for all 0 ≤ i ≤ k.

Furthermore, si(βi+1) = 1 for all 0 ≤ i < k.

Proof: We will prove the theorem inductively. Since s0(x) = x = ϕ0(x) and

s0(β1) = β1 = 1, then the case i = 0 has been satisfied.

Suppose that the theorem holds for i = κ where 0 ≤ κ < k − 1. We need to

show that the theorem holds for i = κ + 1. By Theorem 15, sκ+1(x) = (sκ(x))
2 −

sκ(x) · sκ(βκ+1). Now by the inductive hypothesis,

sκ+1(x) = (ϕκ(x))2 − ϕκ(x) · 1 = (ϕκ(x))2 + ϕκ(x) = ϕ(ϕκ(x)) (3.35)

= ϕκ+1(x),

where addition and subtraction are equivalent in a finite field of characteristic 2. This

establishes the first part of the theorem for i = κ+ 1.

If κ+ 1 < k, then by the inductive hypothesis,

sκ+1(βκ+2) = ϕκ+1(βκ+2) = ϕκ(ϕ(βκ+2)) = ϕκ(βκ+2
2 + βκ+2) (3.36)

= sκ(βκ+1) = 1,

proving the second part of the theorem for i = κ+ 1.

By inductively repeating this argument, the theorem is proven. �

If i < k−1, then choose any ε that is a linear combination of {βi+2, βi+3, · · · , βk}

and let ξ = si(ε). If i = k − 1, then let ε = 0 and ξ = 0. Now, si+1(ε) = ϕi+1(ε) =

89

ϕ(ϕi(ε)) = ϕ(si(ε)) = ϕ(ξ) = ξ2 + ξ. Since si(βi+1) = 1, substituting these results

into (3.8) and applying Corollary 16 gives the simplified factorization

si+1(x) − (ξ2 + ξ) = (si(x) − ξ) · (si(x) − ξ − 1) (3.37)

for the special basis.

The Wang-Zhu-Cantor additive FFT algorithm is based on the transformation

R[x]/(si+1 − (ξ2 + ξ)) → R[x]/(si − ξ) (3.38)

× R[x]/(si − (ξ + 1)).

Suppose that we are given f ◦(x) = f(x) mod (si+1 − (ξ2 + ξ)). Divide f ◦ by si − ξ to

produce quotient q(x) and remainder r(x), i.e.

f = q · (si − ξ) + r, (3.39)

= q · (si − (ξ + 1)) + r + q.

So,

f mod (si − ξ) = r, (3.40)

f mod (si − (ξ + 1)) = r + q.

90

Note that with the special basis, we have eliminated a multiplication by si(βi+1) that

was needed in (3.21).

The special basis allows for further improvements of the von zur Gathen-

Gerhard algorithm. By (3.34), all of the nonzero coefficients of si(x) are 1 compared

to any element of F in the more general algorithm. This significantly reduces the

number of multiplications in F for the Wang-Zhu-Cantor algorithm.

Also, it is proven in the appendix that the number of nonzero coefficients in

si(x) = ϕi(x) is given by 2d where d is the number of ones in the binary expansion

of i if the special basis is used. Clearly, this is less than the i+ 1 nonzero coefficients

used in the polynomials of the von zur Gathen-Gerhard algorithm and will result in

fewer operations required to perform the modular reductions in the algorithm.

Finally, the special basis allows one to constuct the elements of Wk without

the use of the polynomial sk. Recall that

̟j = bk−1 · βk + bk−2 · βk−1 + · · · + b1 · β2 + b0 · β1 (3.41)

for any j in 0 ≤ j < 2k where j = (bk−1bk−2 · · · b2b1b0)2. If the special basis is used,

then the ̟j’s have the following properties which can be proven in a manner similar

to Theorems 1 and 2.

Lemma 18 For any j < n/2, ̟2j+1 = ̟2j + 1.

Lemma 19 For any j < n/2, ̟j = (̟2j)
2 +̟2j.

Substituting ̟2j for ξ in (3.37), then

91

si+1 −̟j = (si −̟2j) · (si −̟2j+1) (3.42)

and the reduction step for the Wang-Zhu-Cantor algorithm can be expressed as

R[x]/(si+1 −̟j) → R[x]/(si −̟2j) (3.43)

× R[x]/(si −̟2j+1).

Observe that ξ = ̟2j ∈Wk−i and ξ2 + ξ = ̟j ∈ Wk−i−1.

Suppose that we wish to evaluate a polynomial f of degree less than n =

2k at each of the points in Wk. Then f = f mod sk where sk(x) is the minimal

polynomial of Wk. The Wang-Zhu-Cantor algorithm recursively applies a reduction

step which receives the polynomial f mod (si+1 − ̟j) as input for some i and j.

The first reduction step uses values i = k − 1 and j = 0. Each reduction step

divides the input polynomial by si − ̟2j to obtain output f mod (si − ̟2j) and

f mod (si − ̟2j+1). After all of the reduction steps have been completed, then we

will have f mod (s0 − ̟j) = f mod (x − ̟j) = f(̟j) for all 0 ≤ j < n, i.e. the

desired additive FFT of f over Wk.

In Figure 3.2, pseudocode is provided for the Wang-Zhu-Cantor algorithm.

Prior to the start of the algorithm, we must compute the βi’s using (3.31), the si’s

using (3.34), and the ̟’s using (3.41). We will assume that this represents one time

work that can be precomputed and stored.

Let us compute the cost of this algorithm. Line 0 is used to end the recursion

and does not cost any operations. In line 1 we need to divide a polynomial of degree

92

Algorithm : Wang-Zhu-Cantor additive FFT

Input: f ◦ = f mod (si+1 −̟j), a polynomial of degree less than 2m where
m = 2i over F, a field of characteristic 2 of dimension K and
K is a power of two.

Output: The multipoint evaluation of f over ̟j·2m +Wi+1 ⊆ F,
i.e. f(̟j·2m+0), f(̟j·2m+1), . . . , f(̟j·2m+2m−1).

0. If (2m) = 1, then return f mod (x−̟j) = f(̟j).
1. Divide f ◦ by (si −̟2j).

This results in two polynomials, q and r, each of size m
such that f ◦ = q · (si −̟2j) + r.

2. Compute f mod (si −̟2j) = r and f mod (si −̟2j+1) = q + r.
3. Compute the additive FFT of f mod (si −̟2j) to obtain

f(̟j·2m+0), f(̟j·2m+1), . . . , f(̟j·2m+m−1).
4. Compute the additive FFT of f mod (si −̟2j+1) to obtain

f(̟j·2m+m), f(̟j·2m+m+1), . . . , f(̟j·2m+2m−1).
5. Return f(̟j·2m+0), f(̟j·2m+1), . . . , f(̟j·2m+2m−1).

Figure 3.2 Pseudocode for Wang-Zhu-Cantor additive FFT

less than 2m by si−̟2j, a polynomial with ci+1 coefficients where ci is the number of

non-zero coefficients in si. The division is done “in-place” using the memory originally

occupied by f mod (si+1 − ̟j). Since every nonzero element of si is 1, then line 1

costs m multiplications and (ci + 1) ·m additions in F. However, if j = 0, then no

multiplications and only (ci) ·m additions are required. In line 2, we need to perform

m additions to obtain f mod (si −̟2j+1). The cost of lines 3 and 4 is equal to the

number of operations needed to compute two additive FFTs of size m. Line 5 costs

no operations.

If j 6= 0, then the total number of operations to compute the additive FFT of

size n using the Wang-Zhu-Cantor algorithm is given by

93

M(n) = 2 ·M
(n

2

)
+

1

2
· n, (3.44)

A(n) = 2 · A
(n

2

)
+

1

2
· n · clog2(n)−1 + n, (3.45)

where M(1) = 0 and A(1) = 0.

We must also subtract n − 1 additions and n − 1 multiplications when j =

0, determined using the same recurrence relation used for the multiplicative FFT

algorithms. Master Equation I can be used to solve the above recurrence relations.

The resulting operation counts are given by

M(n) =
1

2
· n · log2(n) − n+ 1, (3.46)

A(n) =
1

2
· Clog2(n) · n+ n · log2(n) − n+ 1 (3.47)

≤ 1

2
· n · (log2(n))1.585 + n · log2(n) − n+ 1,

where Clog2(n) = c0 + c1 + · · · + clog2(n)−1. The second formula for the addition count

holds with equality when log2(n) is a power of two and is an upper bound otherwise.

So the Wang-Zhu-Cantor algorithm requires Θ(n · (log2(n))1.585) operations.

3.3 Shifted additive FFT

In Chapter 2, we studied various “twisted” FFT algorithms which simplifed the

FFT reduction step at the cost of computing a number of twisted polynomials. One

may be wondering if the same thing is possible with the Wang-Zhu-Cantor algorithm.

Since ̟0 = 0, this is an element that we would like to use as often as we can. A

transformation for this case is given by

94

R[x]/(si+1) → R[x]/(si) (3.48)

× R[x]/(si + 1).

Observe that the first output is already in the form needed to apply this transfor-

mation again as one progresses through the additive FFT computation. However, an

adjustment is needed to put the second output in the proper form.

The mechanism that will be used to achieve the desired transformation is the

Taylor shift of a polynomial at an element. In other words, if f(x) is a polynomial in

R[x], then the Taylor shift of f at an element ξ in R is a polynomial g(y) such that

g(y) = f(x− ξ) where y = x− ξ. An algorithm for computing the Taylor shift of f at

ξ is discussed in a section of the appendix. Because R is a finite field of characteristic

2, then this Taylor shift is also equivalent to f(x+ξ). The following theorem provides

the value of ξ necessary to transform the second output of the simplified reduction

step into the proper form for input to the next reduction step.

Theorem 20 Let f ◦(x) be a polynomial of degree less than 2m in R[x] where m = 2i.

Then f ◦(x) mod (si + 1) = f ◦(x+ βi+1) mod (si).

Proof: Let f ◦(x) be a polynomial of degree less than 2m in R[x] and

let r(x) = f ◦(x) mod (si + 1). Then f ◦(x) = q(x) · (si + 1) + r(x) for some q(x). Let

us shift both sides of this equation by βi+1. Applying the linear properties of si and

Theorem 17 gives:

95

f ◦(x+ βi+1) = q(x+ βi+1) · (si(x+ βi+1) + 1) + r(x+ βi+1) (3.49)

= q(x+ βi+1) · (si(x) + si(βi+1) + 1) + r(x+ βi+1)

= q(x+ βi+1) · (si(x) + 1 + 1) + r(x+ βi+1)

= q(x+ βi+1) · (si(x)) + r(x+ βi+1).

Thus r(x+ βi+1) = f ◦(x+ βi+1) mod (si). �

We can now present the reduction step of the shifted additive FFT algorithm

which receives an input of some polynomial f ◦ of degree less than 2m where m = 2i.

Divide f ◦ by si to obtain outputs fY = f ◦ mod (si) and fZ = f ◦ mod (si + 1). The

simplified reduction step can be directly applied to fY while we need to shift fZ by

βi prior to using this result as input to the simplified reduction step.

It is not clear yet that an algorithm based on this reduction step will yield

the additive FFT of some polynomial f(x) of degree less than n = 2k. The following

theorem is intended to help provide this clarification.

Theorem 21 If f ◦(x) = f(x+̟θ) mod (si+1) where θ is a multiple of 2i+1, then

f ◦(x+ βi+1) mod (si) = f(x+̟θ+2i) mod (si).

Proof: Let θ be a multiple of 2i+1. Since si + 1 divides si+1, then starting with

f ◦(x) = f(x + ̟θ) mod (si+1) and modularly reducing both sides of this equation

by si + 1 produces f ◦(x) mod (si + 1) = f(x + ̟θ) mod (si + 1). Observe that

̟θ + βi+1 = ̟θ + ̟2i = ̟θ+2i . Shifting both sides of the above equation by βi+1

yields f ◦(x+ βi+1) mod (si) = f(x+̟θ+2i) mod (si) by Theorem 20. �

96

Algorithm : Shifted additive FFT

Input: f ◦(x) = f(x+̟j·2m) mod (si+1), a polynomial of degree less than 2m
where m = 2i, over F, a field of characteristic 2 of dimension K
and K is a power of two.

Output: The multipoint evaluation of f over ̟j·2m +Wi+1 ⊆ F,
i.e. f(̟j·2m+0), f(̟j·2m+1), . . . , f(̟j·2m+2m−1).

0. If (2m) = 1, then return f(x+̟j) mod x = f(̟j).
1. Divide f ◦ by (si).

This results in two polynomials, q and r, each of size m
such that f ◦ = q · (si) + r.

2. Compute fY = f ◦(x) mod (si) = f(x+̟j·2m) mod (si) = r and
fZ = f ◦(x) mod (si + 1) = f(x+̟j·2m) mod (si + 1) = q + r.

3. Compute the Taylor shift of fZ at βi+1 to obtain f(x+̟j·2m+m) mod (si).
4. Compute the additive FFT of f(x+̟j·2m) mod (si) to obtain

f(̟j·2m+0), f(̟j·2m+1), . . . , f(̟j·2m+m−1).
5. Compute the additive FFT of f(x+̟j·2m+m) mod (si) to obtain

f(̟j·2m+m), f(̟j·2m+m+1), . . . , f(̟j·2m+2m−1).
6. Return f(̟j·2m+0), f(̟j·2m+1), . . . , f(̟j·2m+2m−1).

Figure 3.3 Pseudocode for shifted additive FFT

So the reduction step receives as input f(x+̟j·2m) mod (si+1), the modular

reduction of some polynomial f by si+1 that has been shifted by ̟j·2m where m = 2i

and 0 ≤ j < 2k−i−1. So clearly θ = j · 2m is a multiple of 2i+1. The reduction step

produces as output f(x+̟j·2m) mod (si) and f(x+̟j·2m+m) mod (si) by Theorem

21. Observe that both j · 2m and j · 2m+m are multiples of 2i.

The algorithm is initialized with f(x) which equals f(x + ̟0) mod (sk) if f

has degree less than 2k. By recursively applying the reduction step to f(x), we obtain

f(x + ̟j) mod (x) = f(0 + ̟j) for all j in the range 0 ≤ j < 2k, i.e. the additive

FFT of f(x) of size 2k. Pseudocode for this shifted additive FFT algorithm is given

in Figure 3.3.

97

Let us compute the cost of this algorithm. Line 0 is used to end the recursion

and does not cost any operations. In line 1 we need to divide a polynomial of degree

less than 2m by si, a polynomial with ci coefficients since ci is the number of non-

zero coefficients in si. Since every nonzero element of si is 1, then line 1 costs no

multiplications and (ci) ·m additions in F. In line 2, we need to perform m additions

to obtain f mod (si−̟2j+1). Using the operation count derived in the appendix, the

cost of line 3 is 1/2 ·m · log2(m) multiplications and 1/2 ·m · log2(m) additions in F.

Note that 1/2 ·m · log2(m) = 1/4 · 2m · (log2(2m) − 1). The cost of lines 4 and 5 is

equal to the number of operations needed to compute two additive FFTs of size m.

Line 6 costs no operations.

The total number of operations to compute the additive FFT of size n using

the shifted additive FFT algorithm is given by

M(n) = 2 ·M
(n

2

)
+

1

4
· n · log2(n) − 1

4
· n, (3.50)

A(n) = 2 · A
(n

2

)
+

1

2
· n · clog2(n)−1 +

1

4
· n · log2(n) +

1

4
· n, (3.51)

where M(1) = 0 and A(1) = 0. Master Equation I can be used to solve these

recurrence relations for the operation counts given by

M(n) =
1

8
· n · (log2(n))2 − 1

8
· n · log2(n), (3.52)

A(n) =
1

8
· n · (log2(n))2 +

1

2
· n · (log2(n))log2(3) +

3

8
· n · log2(n). (3.53)

Observe that this algorithm is Θ(n ·(log2(n))2), both in the number of multiplications

and the number of additions. By comparing the steps of the shifted algorithm to

98

the Wang-Zhu-Cantor algorithm, one can see that more operations are required to

implement the Taylor shift than those saved by using the simplified reduction step.

In fact, it is unclear whether this algorithm is any better than the von zur Gathen-

Gerhard algorithm used for the general case. So, unlike the multiplicative FFTs where

the twisted version required the same number of operations as the classical version,

a shifted version of an additive FFT algorithm requires significantly more operations

than the unshifted version. Unless a faster method can be found to perform the

Taylor shift, then shifted versions of additive FFT algorithms should be avoided.

3.4 Gao’s additive FFT

In his computer algebra course notes [30], Gao introduced a new additive FFT

algorithm which reduced the theoretical complexity needed to compute an additive

FFT of a polynomial over F of degree less than n to Θ(n · log2(n) · log2 log2(n)) for

the first time. Here, n = 2k, k is itself a power of two, and F has n elements. This

algorithm is based on the factorization

xη − x =
∏

a∈Wt

(xτ − x− a), (3.54)

where η = τ 2 and t = log2(τ). Let us prove that this result holds before proceeding.

Theorem 22 Suppose that Wt ⊂ W2t ⊆ F where F is a finite field of characteristic

2, τ = 2t, and η = τ 2. If xτ − x is the minimal polynomial of Wt, and xη − x is the

minimal polynomial of W2t, then xη − x =
∏

a∈Wt
(xτ − x− a).

Proof: Suppose that xτ −x is the minimal polynomial of Wt and W2t is a quadratic

extension of Wt so that xη − x is the minimal polynomial of W2t. Then xτ − x =
∏

a∈Wt
(x−a). Observe that xη−x = xτ2−x = xτ2−xτ +xτ −x = (xτ −x)τ +(xτ −x).

99

Let y = xτ − x. Then (xτ − x)τ + (xτ − x) = yτ + y =
∏

a∈Wt
(y − a)

=
∏

a∈Wt
(xτ − x− a). �

Let a0, a1, a2, . . . , aτ−1 be the elements of Wt. We will assume that t is a power

of two so that xτ + x is the minimal polynomial of Wt and xη + x is the minimal

polynomial of W2t as proven in the appendix. The transformation used in Gao’s

algorithm is given by

R[x]/(xη − x) → R[x]/(xτ − x− a0) (3.55)

× R[x]/(xτ − x− a1)

× R[x]/(xτ − x− a2)

. . .

× R[x]/(xτ − x− aτ−1).

Let the input to the reduction step for Gao’s algorithm be a polynomial f ◦ of degree

less than τ 2. We will first compute the Taylor expansion of f ◦ at xτ . This com-

putation is discussed in a section of the appendix and involves finding “coefficients”

{gτ−1(x), gτ−2(x), . . . , g1(x), g0(x)} such that

f ◦(x) = gτ−1 · (xτ − x)τ−1 + gτ−2 · (xτ − x)τ−2 + · · · + g1 · (xτ − x) + g0. (3.56)

Here, each “coefficient” is itself a polynomial of degree less than τ in x. The coeffi-

cients can be combined to form the polynomial

100

g(y) = gτ−1 · yτ−1 + gτ−2 · yτ−2 + · · · + g1 · y + g0. (3.57)

Here, y = xτ − x and g(y) = f ◦(xτ − x).

The goal of the reduction step is to compute f ◦ mod (xτ − x − a) for every

a ∈ Wt. Since xτ − x mod (xτ − x − a) = a, then this is equivalent to evaluating

g(y) = f(xτ − x) at every a ∈ Wt. For every 0 ≤ λ < τ , let us define hλ(x) as the

polynomial

hλ(x) = (gτ−1)λ · xτ−1 + (gτ−2)λ · xτ−2 + · · · + (gτ−1)λ · x+ (g0)λ (3.58)

where the notation (gi)d indicates the coefficient of degree d in the polynomial gi(x).

So, hλ(x) is formed by extracting the coefficients of degree λ in g0(x), g1(x), . . . , gτ−1(x)

and has degree less than τ . One way to conceptualize the construction of these poly-

nomials is to write the coefficients of g0(x), g1(x), . . . , gτ−1(x) across the rows of a

τ × τ matrix

(g0)0 (g0)0 . . . (g0)τ−1

(g1)0 (g1)1 . . . (g1)τ−1

...
...

. . .
...

(gτ−1)0 (gτ−1)1 . . . (gτ−1)τ−1

. (3.59)

The coefficients of the polynomial hλ(x) are determined by reading down column λ+1

of this matrix.

101

The evaluation of g(y) at every a ∈ Wt is equivalent to evaluating hλ(x) at

every a ∈ Wt for each λ in 0 ≤ λ < τ . This in turn is equivalent to computing τ

additive FFTs of polynomials of degree less than τ over Wτ . So the reduction step

amounts to computing the Taylor expansion of f ◦ at xτ and then computing τ additive

FFTs of size τ . Either Gao’s reduction step or the Wang-Zhu-Cantor algorithm can

be used recursively to compute these FFTs.

Most of the outputs of Gao’s reduction step are not in the proper form for use

as inputs to another application of the reduction step. In his notes, Gao instructs his

students to compute the Taylor shift of each of these outputs following the reduction

step. The following results provide the value of ξ that should be used for the Taylor

shift.

Lemma 23 For any j < τ ≤ √
n, ̟j = (̟τ ·j)

τ +̟τ ·j.

Proof: Let ϕ(x) = ϕ1(x) = x2 + x and let ϕm(x) = ϕm−1(ϕ(x)). In the appendix,

it is proven that ϕt(x) = xτ + x where t is a power of two and τ = 2t. By repeated

application of Lemma 19,

(̟2t·j)
τ +̟2t·j = ϕt(̟2t·j) = ϕt−1(ϕ(̟2t·j)) = ϕt−1(̟2t·j

2 +̟2t·j) (3.60)

= ϕt−1(̟2t−1·j) = ϕt−2(̟2t−2·j) = ϕt−3(̟2t−3·j) = · · ·

= ϕ1(̟2j) = (̟2j)
2 +̟2j = ̟j.

�

Theorem 24 If r(x) = f ◦(x) mod (xτ−x−̟j) for some ̟j ∈Wt, then r(x+̟τ ·j) =

f ◦(x+̟τ ·j) mod (xτ − x).

Proof: Let r(x) = f ◦(x) mod (xτ − x − ̟j) for some ̟j ∈ Wt. In the appendix,

it is proven that st(x) = ϕt(x) = xτ + x. So, r(x) = f ◦(x) mod (st(x) −̟j). Thus,

102

there exists a q(x) such that f ◦(x) = q(x) · (st(x)−̟j) + r(x). Shifting both sides of

this equation by ̟τ ·j gives

f ◦(x+̟τ ·j) = q(x+̟τ ·j) · (st(x+̟τ ·j) −̟j) + r(x+̟τ ·j) (3.61)

= q(x+̟τ ·j) · (st(x) + st(̟τ ·j)) −̟j) + r(x+̟τ ·j)

= q(x+̟τ ·j) · (st(x) + (̟τ ·j)
τ +̟τ ·j) −̟j) + r(x+̟τ ·j)

= q(x+̟τ ·j) · (st(x) +̟j −̟j) + r(x+̟τ ·j)

= q(x+̟τ ·j) · st(x) + r(x+̟τ ·j).

Thus, r(x+̟τ ·j) = f ◦(x+̟τ ·j) mod (xτ + x). �

The following theorem is indended to show that an algorithm based on this

reduction step yields the additive FFT of some polynomial f(x) of degree less than

n = 2k where k is a power of two.

Theorem 25 If f ◦(x) = f(x + ̟θ) mod (xη + x) where θ is a multiple of η = τ 2,

then f ◦(x+̟τ ·j) mod (xτ + x) = f(x+̟θ+τ ·j) mod (xτ + x) where 0 ≤ j < τ .

Proof: Let θ be a multiple of η = τ 2 and let j < τ . Since xτ + x + ̟j divides

xη + x, then starting with f ◦(x) = f(x +̟θ) mod (xη + x) and modularly reducing

both sides of this equation by xτ + x + ̟j, we obtain f ◦(x) mod (xτ + x + ̟j) =

f(x+̟θ) mod (xτ +x+̟j). Since j < τ , then τ ·j < τ 2 ≤ θ and ̟θ +̟τ ·j = ̟θ+τ ·j.

Also recall that xτ + x = st(x). Shifting the above equation by ̟τ ·j, we ob-

tain f ◦(x + ̟τ ·j) mod (xτ + x) = f(x + ̟θ+τ ·j) mod (xτ + x) using the fact that

st(x+̟τ ·j) +̟j = xτ + x. �

103

So the reduction step receives as input f(x+̟j·η) mod (xη + x), the modular

reduction of some polynomial f by s2t that has been shifted by ̟j·η where η = 22t and

t is a power of two. The reduction step produces the outputs f(x+̟j·η) mod (xτ −x),

f(x+̟j·η+τ) mod (xτ −x), f(x+̟j·η+2·τ) mod (xτ −x), . . . , f(x+̟j·η+(τ−1)·τ) mod

(xτ −x) after the shifts have been applied where τ =
√
η = 2t. Observe that j ·η+φ ·τ

is a multiple of 2t for 0 ≤ φ < τ .

The algorithm is initialized with f(x) which equals f(x + ̟0) mod sk if f

has degree less than 2k. This reduction step is recursively applied until it is not

possible to take the square root of the input size. The Wang-Zhu-Cantor algorithm

is used to complete the computations. If k is a power of two, then the Wang-Zhu-

Cantor algorithm is only used to resolve the recursive calls with input size of two.

Pseudocode for Gao’s algorithm is provided in Figure 3.4.

Let us now compute the cost of this algorithm for the case where K is a power

of two and n = 2K . Line 0 is used to end the recursion at a cost of no multiplications

and one addition, i.e. M(2) = 0 and A(2) = 1. In line 1, a Taylor expansion

of a polynomial of size η at xτ is required. This requires no multiplications and

1/4 ·η · log2(η) additions. In theory, line 2 costs no operations. However, in practice it

may be necessary to rearrange the results from line 1 so that the coefficients of each

hλ are adjacent to each other in memory. This costs τ =
√
η copies for each value of

λ. We will assume that a copy operation requires the same amount of computational

effort as an addition operation. Alternatively, the recursive calls in the algorithm

can be expanded which results in a much longer implementation that operates on

adjacent coefficients in the polynomials located τ cells apart. We will assume that

when η ≤ 216, then no rearrangement of the elements is necessary. Lines 3-5 involve

τ recursive calls to the additive FFT algorithm. Each recursive call to the algorithm

requires M(τ) multiplications and A(τ) additions. The input polynomial for each

104

Algorithm : Gao’s additive FFT

Input: A polynomial f ◦ = f(x+̟j·η) mod (xη − x) over F where η = 22t.
Here, F has N = 2K elements where K is also a power of two.

Output: The FFT of f over̟j·η+W2t, i.e. f(̟j·η), f(̟j·η+1), · · · , f(̟j·η+η−1).

0. If η = 2, then return {f ◦
0 , f

◦
0 + f ◦

1} (from Wang-Zhu-Cantor algorithm).
1. Compute g(y), the Taylor expansion of f ◦ at xτ where τ =

√
η.

2. Construct hλ(x) using the coefficients of g(y) for each λ in 0 ≤ λ < τ .
3. for λ = 0 to τ − 1 do

4. Recursively call Gao’s additive FFT algorithm
with input hλ(x) = hλ(x) mod (xτ − x)
to obtain hλ(̟0), hλ(̟1), · · · , hλ(̟τ−1).

5. end for (Loop λ)
6. Construct f ◦ mod (xτ − x−̟φ) from the evaluations of hλ(x)

for each φ in 0 ≤ φ < τ .
7. for φ = 0 to τ − 1 do

8. Compute the Taylor shift of f ◦ mod (xτ − x−̟φ) at ̟φ·τ to obtain
f ◦(x+̟φ·τ) mod (xτ − x) = f(x+̟j·η+φ·τ) mod (xτ − x).

9. Recursively call Gao’s additive FFT algorithm
with input f(x+̟j·η+φ·τ) mod (xτ − x)
to obtain f(̟j·η+φ·τ), f(̟j·η+φ·τ+1), · · · , f(̟j·η+φ·τ+τ−1).

10. end for (Loop φ)
11. Return f(̟j·η), f(̟j·η+1), · · · , f(̟j·η+η−1).

Figure 3.4 Pseudocode for Gao’s additive FFT

105

of these recursive calls is hλ and has no relation to the original input polynomial

f . In line 6, the results of the additive FFT computations are rearranged to obtain

f ◦ mod (xτ − x−̟φ) for each φ in 0 ≤ φ < τ . In theory, this requires no operations,

but in practice a total of τ · τ = η copy operations may be involved when η > 216.

Lines 7-10 involve recursively calling the additive FFT algorithm after performing

a Taylor shift on the inputs to put them in the proper form. Note that no Taylor

shift is required for the case where φ = 0. Using the operation counts derived in

the appendix, the Taylor shifts require 1
2
· (τ − 1) · τ · log2(τ) multiplications and

1
2
· (τ − 1) · τ · log2(τ) additions. 1 The recursive calls to the algorithm require

τ ·M(τ) multiplications and τ · A(τ) additions.

The total number of operations to compute the additive FFT of size n using

Gao’s algorithm is given by

M(n) = 2 ·
√
n ·M(

√
n) + 1/4 · n · log2(n) − 1/2 ·

√
n · log2(

√
n), (3.62)

A(n) = 2 ·
√
n · A(

√
n) + 1/2 · n · log2(n) − 1/2 ·

√
n · log2(

√
n), (3.63)

where M(2) = 0 and A(2) = 1. Master Equation IV can be used to solve these

recurrence relations for the formulas

M(n) =
1

4
· n · log2(n) · log2 log2(n) − 1

4
· Λ · n · log2(n), (3.64)

A(n) =
1

2
· n · log2(n) · log2 log2(n) +

(
1

2
− 1

4
· Λ
)
· n · log2(n), (3.65)

1 Note that 1
2
· (τ − 1) · τ · log2(τ) = 1

4
· η · log2(η) − 1

2
· τ · log2(τ).

106

where

Λ =

log2 log2(n)∑

i=0

(1/2)2i

(3.66)

and is bounded by 1/2 ≤ Λ < 1.

When n > 216, we can use the recurrence relation

Ac(n) = 2 ·
√
n · Ac(

√
n) + 2 · n (3.67)

to model the number of copies required to compute an additive FFT of size n with

the initial condition Ac(2
16) = 0. This recurrence relation is solved in the appendix,

yielding

Ac(n) =
1

8
· n · log2(n) − 2 · n (3.68)

when 2i > 216. If a copy requires the same cost as an addition, then this increases

the addition count slightly to

A(n) =
1

2
· n · log2(n) · log2 log2(n) +

(
5

8
− 1

4
· Λ
)
· n · log2(n) − 2 · n. (3.69)

Gao claims slightly higher operation counts of

107

M(n) =
1

4
· n · log2(n) · log2 log2(n) + 2 · n · log2(n) − n, (3.70)

A(n) =
1

2
· n · log2(n) · log2 log2(n) + n · log2(n) (3.71)

in the course notes. Most of the discrepancy is accounted for by Gao’s use of a different

basis which requires additional computations throughout the algorithm. Additionally,

Gao does not subtract operations to account for the cases where a Taylor shift is not

required (the φ = 0 cases in the algorithm, accounted for by the Λ terms in the

operation counts).

In any event, the algorithm has a theoretical complexity of

Θ(n · log2(n) · log2 log2(n)). Unfortunately, the number of multiplications is

Θ(n · log2(n) · log2 log2(n)) and as a result the algorithm will be more expensive than

the Wang-Zhu-Cantor algorithm for any practical size. This is a consequence of the

use of the Taylor shifts throughout the algorithm. Gao’s algorithm can be viewed as

a “shifted” version of some other more efficient additive FFT algorithm which will be

discussed in the next section. Although it is believed that Gao’s algorithm will always

be more expensive than the Wang-Zhu-Cantor algorithm, Gao reduced the theoretical

complexity of the computation of the additive FFT and laid the groundwork for the

following algorithm which is more efficient than the Wang-Zhu-Cantor algorithm as

well.

3.5 A new additive FFT

A more efficient additive FFT algorithm that does not involve Taylor shifting

is based on the factorization

108

xη − x− (aτ + a) =
∏

B∈Wt

(xτ − x− a−B), (3.72)

where η = τ 2, t = log2(τ), and a is a linear combination of {βt+1, βt+2, . . . , β2t}. The

proof of this result is similar to the proof of the factorization used in Gao’s algorithm.

For an a which is a linear combination of {βt+1, βt+2, . . . , β2t} and a B ∈ Wt,

there exists a δ ∈ (a+Wt) such that δ = a+B. Thus, we can rewrite (3.72) as

xη − x− (aτ + a) =
∏

δ∈(a+Wt)

(xτ − x− δ). (3.73)

Let δ0, δ1, δ2, . . . , δτ−1 be the elements of a+Wt. The new additive FFT is based on

the transformation

R[x]/ (xη − x− (aτ + a)) → R[x]/(xτ − x− δ0) (3.74)

× R[x]/(xτ − x− δ1)

× R[x]/(xτ − x− δ2)

. . .

× R[x]/(xτ − x− δτ−1).

Note that this reduction step is somewhat more complicated than the reduction step

used in Gao’s algorithm, but the use of this transformation will eliminate the need

to compute the Taylor shifts throughout the algorithm.

109

The input to the reduction step of the new algorithm will be a polynomial f ◦ of

degree less than η = τ 2. As with Gao’s algorithm, we will perform the reductions by

first computing the Taylor expansion g(y) of f ◦ at xτ . However, instead of evaluating

g(y) at each of the elements in Wt, we will evaluate g(y) at each of the elements in

a+Wt. As a result, the transformation (3.74) can be used directly on the outputs of

the reduction step without the need to compute the Taylor shift of these results.

Without some additional structure to the elements of F, it would be difficult

to implement an algorithm based on the transformation just described. Fortunately,

the special basis developed by Cantor can be applied here to simplify the expressions

in this new algorithm. The key result that will be used is ̟j = (̟τ ·j)
τ +̟τ ·j for any

j < τ , proven in Lemma 23.

The algorithm will be initialized with some polynomial f(x) of degree less

than n = 2k and so f mod (xn − x −̟J) = f for some J . Each reduction step will

receive some polynomial f ◦ = f mod (xη − x − ̟j) for some j. A total of τ =
√
η

additive FFTs of size τ will be computed to obtain f mod (xτ −x−̟φ) for each φ in

τ · j ≤ φ < τ · (j+1). The algorithm is recursively called until it is no longer possible

to take the square root of the input size. As with Gao’s algorithm, we apply the

Wang-Zhu-Cantor algorithm at this point to complete the computation. The output

of this process is the evaluation of f at each of the points in ̟n·J +Wk.

If K is chosen to be itself a power of two, then the Wang-Zhu-Cantor algorithm

is only needed to perform the reduction steps with input size of two. IfK is not itself a

power of two, then it will not be possible to constuct the special basis and the von zur

Gathen-Gerhard algorithm must be used instead. Finite fields are typically selected

in practice where K is a power of two to make full use of the number of positions

available in standard data sizes on a computer, so this is usually not a concern. For

the rest of this section, we will assume that K is a power of two.

110

Algorithm : New additive FFT

Input: A polynomial f ◦ = f mod (xη − x−̟j) over F where η = 22t.
Here, F has N = 2K elements where K is a power of two.

Output: The FFT of f over̟j·η+W2t, i.e. f(̟j·η), f(̟j·η+1), · · · , f(̟j·η+η−1).

0. If η = 2, then return {f ◦
0 +̟2j · f ◦

1 , f
◦
0 +̟2j · f ◦

1 + f ◦
1}.

1. Compute g(y), the Taylor expansion of f ◦ at xτ where τ =
√
η.

2. Construct hλ using the coefficients of g(y) for each λ in 0 ≤ λ < τ .
3. for λ = 0 to τ − 1 do

4. Recursively call the new additive FFT algorithm
with input hλ = hλ mod (xτ − x−̟j)
to obtain hλ(̟j·τ), hλ(̟j·τ+1), · · · , hλ(̟j·τ+τ−1).

5. end for (Loop λ)
6. Construct f mod (xτ − x−̟φ) from the evaluations of hλ

for each φ in j · τ ≤ φ < (j + 1) · τ .
7. for φ = j · τ to (j + 1) · τ do

8. Recursively call the new additive FFT algorithm
with input f mod (xτ − x−̟φ)
to obtain f(̟τ ·φ), f(̟τ ·φ+1), · · · , f(̟τ ·φ+τ−1).

9. end for (Loop φ)
10. Return f(̟j·η), f(̟j·η+1), · · · , f(̟j·η+η−1).

Figure 3.5 Pseudocode for new additive FFT

If k is not itself a power of two, then let κ be the largest power of two such

that κ ≤ k. If we wish to evaluate f at each point in Wk, then reduction steps from

the Wang-Zhu-Cantor algorithm can be used to compute f mod (xκ−x−̟j) for all j

in 0 ≤ j < 2k−κ. The new algorithm can be used on each of these results to complete

the additive FFT. For simplicity, the pseudocode given in Figure 3.5 assumes that

k is a power of two. The reader can add the Wang-Zhu-Cantor algorithm reduction

steps if desired for arbitrary k.

Let us now compute the cost of this algorithm for the case where κ is a power of

two and η = 2κ. Line 0 is used to end the recursion at a cost of one multiplication and

two additions, i.e. M(2) = 1 and A(2) = 2. However, if j = 0, then this simplifies to

111

M(2) = 0 and A(2) = 1. In line 1, a Taylor expansion of a polynomial of size η at xτ

is required. This requires no multiplications and 1/4 · η · log2(η) additions. In theory,

line 2 costs no operations. However, in practice it may be necessary to rearrange the

results from line 1 so that the coefficients of each hλ(x) are adjacent to each other in

memory. This costs τ =
√
η copies for each value of λ. We will assume that a copy

operation requires the same amount of effort as an addition operation. Alternatively,

the recursive calls in the algorithm can be expanded which results in a much longer

implementation that operates on adjacent coefficients in the polynomials located
√
η

cells apart. We will assume that when η ≤ 216, then no rearrangement of the elements

is necessary. Lines 3-5 involve τ recursive calls to the additive FFT algorithm, each

at a cost of M(τ) multiplications and A(τ) additions. The input polynomial for each

of these recursive calls is hλ and has no relation to the original input polynomial

f . In line 6, the results of the additive FFT computations are rearranged to obtain

f mod (xτ − x−̟φ) for each φ in j · τ ≤ φ < (j + 1) · τ . In theory, this requires no

operations, but in practice a total of τ · τ = η copy operations may be involved when

η > 216. Lines 7-9 involve recursively calling the additive FFT algorithm to complete

the computation. These recursive calls costs τ ·M(τ) multiplications and τ · A(τ)

additions.

The total number of operations to compute the additive FFT of size n using

the new algorithm is given by

M(n) = 2 ·
√
n ·M(

√
n), (3.75)

A(n) = 2 ·
√
n · A(

√
n) +

1

4
· n · log2(n), (3.76)

112

where M(2) = 1 and A(2) = 2. These recurrence relations can be solved using Master

Equation IV.

We must also subtract operations of both types to account for the cases where

j = 0. A recurrence relation which gives the number of these cases is given by

Ms(n) = (
√
n+ 1) ·Ms(

√
n), (3.77)

where Ms(2) = 1. The number of additions saved is governed by the same recurrence

relation and initial condition. This recurrence relation is solved in the appendix to

yield n− 1 of each type of operation saved.

Combining the results, we obtain

M(n) =
1

2
· n · log2(n) − n+ 1, (3.78)

A(n) =
1

4
· n · log2(n) · log2 log2(n) + n · log2(n) − n+ 1. (3.79)

By the same analysis used for Gao’s algorithm, we will assume that a total of

Ac(n) =
1

8
· n · log2(n) − 2 · n (3.80)

copies are required throughout the new algorithm when n > 216. If a copy requires

the same cost as an addition, then this increases the addition count slightly to

113

A(n) =
1

4
· n · log2(n) · log2 log2(n) +

9

8
· n · log2(n) − 3 · n+ 1. (3.81)

Regardless of whether the algorithm is called with j = 0 or j > 0 and whether or not

copies are required, the number of multiplications of the new algorithm is equivalent

to the Wang-Zhu-Cantor algorithm, and the addition count has been reduced to

Θ(n · log2(n) · log2 log2(n)).

To determine the cost of the new algorithm when k is not a power of two, we

will subtract the operations saved in levels κ and below from the cost of the Wang-

Zhu-Cantor algorithm for size 2k. The savings is 2k−κ times the difference in the

number of additions needed to compute one additive FFT of size 2κ. If no copies are

required, then the total number of additions when k is not a power of two is given by

A(n) =
1

2
· n · log2(n)1.585 + n · log(n) − n+ 1 (3.82)

−2log2(n)−κ ·
(

1

2
· 2κ · κ1.585 + 2κ · κ− 2κ + 1

)

+2log2(n)−κ ·
(

1

4
· 2κ · κ · log2(κ) + 2κ · κ− 2κ + 1

)

=
1

2
· n · log2(n)1.585 + n · log(n) − n+ 1

−1

2
· n · κ1.585 +

1

4
· n · κ · log2(κ).

In the case of multiplications, there is no savings because the multiplication count is

the same for both algorithms.

114

3.6 Concluding remarks

This chapter presented several algorithms that can be used to compute the

additive FFT of a polynomial defined over a finite field with N = 2K elements. In

the general case, the von zur Gathen-Gerhard algorithm requiring Θ(n · log2(n)2)

operations can be used to compute the additive FFT.

If K is a power of two, then several more efficient algorithms can be used

to compute the FFT. The Wang-Zhu-Cantor algorithm is one option and requires

Θ(n ·(log2(n))1.585) operations. A shifted version of this algorithm was also presented,

but required more operations. Two new algorithms were also introduced which could

compute the additive FFT using Θ(n · log2(n) · log2 log2(n)) operations whenever

the additive FFT size is 2k where k is a power of two. Gao’s algorithm is the first

algorithm to achieve a theoretical complexity of Θ(n · log2(n) · log2 log2(n)) and the

new algorithm is the first algorithm to outperform the Wang-Zhu-Cantor algorithm

for all practical sizes. We also discussed how the new algorithm could be combined

with Wang-Zhu-Cantor algorithm to produce a hybrid algorithm that can efficiently

compute the additive FFT for any k.

115

CHAPTER 4

INVERSE FAST FOURIER TRANSFORM ALGORITHMS

Chapter 2 examined several FFT algorithms which evaluate a polynomial

f ∈ R[x] of degree less than n at each of the powers of some primitive nth root

of unity ω where n is a power of two or three. Chapter 3 examined additional algo-

rithms which solve the multipoint evaluation problem when R is a finite field. In this

chapter, several algorithms for computing the inverse Fast Fourier Transform (IFFT)

will be considered. These algorithms interpolate the n evaluations produced by an

FFT algorithm back into the polynomial f . An IFFT algorithm will be given for

several of the FFT algorithms considered in the previous two chapters. The reader

can construct the IFFT algorithms for the other cases using the techniques discussed

in the following sections.

4.1 Classical radix-2 IFFT

The radix-2 inverse FFT algorithm interpolates n = 2k evaluations into a

polynomial f of degree less than n over a ring R with a primitive nth root of unity.

The n points used for the function evaluations are roots of xn − 1, presented in the

order determined by the σ function.

The inverse of Cooley-Tukey’s FFT reduction step can be viewed as

R[x]/(xm − b) → R[x]/(x2m − b2) (4.1)

× R[x]/(xm + b)

116

by using the algebraic transformations given in [2].

Suppose that we wish to interpolate fY ′ = f mod (xm − b) and

fZ′ = f mod (xm + b) into fA′ · xm + fB′ = f mod (x2m − b2) where fA′ and fB′ are

each polynomials of degree less than m. From the classical radix-2 FFT algorithm

reduction step, we know that fY ′ = b ·fA′ +fB′ and fZ′ = −b ·fA′ +fB′ . We can either

solve this system of equations for fA′ and fB′ or we can apply the Chinese Remainder

Theorem to determine that fA′ = 1/2 · b−1 · (fY ′ − fZ′) and fB′ = 1/2 · (fY ′ + fZ′).

Viewing this interpolation step as a special case of the fast interpolation algorithm,

observe that the u and v polynomials are constants in every case.

The classical radix-2 IFFT algorithm uses a similar interpolation step, but

saves the divisions by two in the formulas above until the end of the algorithm. In

other words, the inverse FFT algorithm interpolation step receives as input fY =

m · f mod (xm − b) and fZ = m · f mod (xm + b). The formulas fA = b−1 · (fY − fZ)

and fB = fY + fZ are then used to interpolate these inputs into fA · xm + fB =

(2m) · f mod (x2m − b2). 1

The goal of this IFFT algorithm is to interpolate the set of polynomial evalu-

ations {f(1), f(ωσ(1)), f(ωσ(2)), . . . , f(ωσ(n−1))} back into the polynomial f of degree

less than n = 2k. We will recursively apply the interpolation step with appropri-

ate selections of m and b. Since (ωσ(2j))2 = ωσ(j) and −ωσ(2j) = ωσ(2j+1) for all

j < n/2, then b can be easily determined. Each interpolation step receives as input

m · f mod (xm −ωσ(2j)) and m · f mod (xm −ωσ(2j+1)) for some j < n/2. By applying

the transformation

1 It is also possible to pre-scale each of the evaluations following the Horowitz
approach using (1.30). This is somewhat more complicated than scaling at the end
of the algorithm since different scaling factors are used for each of the inputs.

117

Algorithm : Classical radix-2 IFFT

Input: The evaluations f(ωσ(j·2m+0)), f(ωσ(j·2m+1)), . . . , f(ωσ(j·2m+2m−1))
of some polynomial with coefficients in a ring R with primitive nth root
of unity ω. Here, m is a power of two where 2m ≤ n.

Output: (2m) · f mod (x2m − ωσ(j)).

0. If (2m) = 1 then return f mod (x− ωσ(j)) = f(ωσ(j)).
1. Compute the IFFT of f(ωσ(j·2m+0)), f(ωσ(j·2m+1)), . . . , f(ωσ(j·2m+m−1))

to obtain fY = m · f mod (xm − ωσ(2j)).
2. Compute the IFFT of f(ωσ(j·2m+m)), f(ωσ(j·2m+m+1)), . . . , f(ωσ(j·2m+2m−1))

to obtain fZ = m · f mod (xm − ωσ(2j+1)).
3. Compute fA = (ωσ(2j))−1 · (fY − fZ).
4. Compute fB = fY + fZ .
5. Return (2m) · f mod (x2m − ωσ(j)) = fA · xm + fB.

Figure 4.1 Pseudocode for classical radix-2 IFFT

fA

fB

 =

(ωσ(2j))−1 −(ωσ(2j))−1

1 1

 ·

fY

fZ

 , (4.2)

then the output of the interpolation step is fA + m · fB = (2m) · f mod (x2m −

ωσ(j)). After all of the interpolation steps have been completed, then we will have

n · f mod (xn − 1). If f has degree less than n, then this output is equal to n · f . By

multiplying this result by 1/n, then the desired polynomial f is recovered.

Pseudocode for this IFFT algorithm is given in Figure 4.1. As with the FFT

algorithm, the IFFT algorithm is typically applied to the ring of complex numbers.

In this case ω is often eI·2π/n and z is traditionally used in place of x as the variable.

Let us now analyze the cost of this algorithm. Line 0 is just used to end the

recursion and costs no operations. The cost of lines 1 and 2 is equal to the number

of operations needed to compute two IFFTs of size m. In line 3, we first subtract fZ

118

from fY at a cost of m subtractions in R. To complete the instruction, we multiply

this result by (ωσ(2j))−1 at a cost of m multiplications in R. If j = 0, however, then

no multiplications are required. In line 4, we need to add fZ to fY at a cost of m

additions in R. Line 5 just involves logicially combining fA and fB into the desired

result and costs no operations. The total number of operations to compute the IFFT

of size n is

M(n) = 2 ·M
(n

2

)
+
n

2
, (4.3)

A(n) = 2 · A
(n

2

)
+ n, (4.4)

where M(1) = 0 and A(1) = 0. We must also subtract multiplications to account for

the cases where j = 0. The analysis is identical to that used to derive the classical

radix-2 FFT operation counts and results in the formulas

M(n) =
1

2
· n · log2(n) − n+ 1, (4.5)

A(n) = n · log2(n). (4.6)

To recover the unscaled polynomial, we must multiply the final result of this algorithm

by 1/n at a cost of n additional multiplications in R. With the extra multiplications

included, this IFFT algorithm is said to be Θ(n · log2(n)).

119

4.2 Twisted radix-2 IFFT

We will now consider the companion IFFT for Gentleman and Saude’s “twisted”

radix-2 FFT algorithm introduced in [35]. The inverse of this twisted FFT algorithm

transformation is

R[x]/(xm − 1) → R[x]/(x2m − 1). (4.7)

× R[x]/(xm + 1)

Initially, both inputs are polynomials in R[x]/(xm−1). The transformation x→ ζ−1·x

is applied to one of these inputs prior to the interpolation step to convert it to be a

polynomial contained in R[x]/(xm + 1). Here, ζ is given by Theorem 3 and rotates

the roots of unity by the inverse of the amount used in the twisted radix-2 FFT

algorithm.

The interpolation step of the twisted radix-2 IFFT algorithm receives as input

fY = m · f(ωσ(2j)/m · x) mod (xm − 1) and m · f(ωσ(2j+1)/m · x) mod (xm − 1) for

some j < m. The second input is twisted by ω−σ(1)/m to obtain fZ = m · f(ωσ(2j)/m ·

x) mod (xm+1). By inverting the transformation matrix of the twisted FFT algorithm

or by using the Chinese Remainder Theorem, then 2m·f(ωσ(j)/2m ·x) mod (x2m−1) =

2m · (fA · xm + fB) can be obtained by using the transformation

fA

fB

 =

1 −1

1 1

 ·

fY

fZ

 . (4.8)

As with the classical radix-2 IFFT algorithm, there is a factor of 1/2 omitted from

120

Algorithm : Twisted radix-2 IFFT

Input: The evaluations f(ωσ(j·2m+0)), f(ωσ(j·2m+1)), . . . , f(ωσ(j·2m+2m−1))
of some polynomial with coefficients in a ring R.
Here R has a nth root of unity ω, and m is a power of two where 2m ≤ n.

Output: 2m · f(ωσ(j)/(2m) · x) mod (x2m − 1).

0. If (2m) = 1 then return f(ωσ(j) · x) mod (x− 1) = f(ωσ(j)).
1. Compute the IFFT of f(ωσ(j·2m+0)), f(ωσ(j·2m+1)), . . . , f(ωσ(j·2m+m−1))

to obtain fY = m · f(ωσ(2j)/m · x) mod (xm − 1).
2. Compute the IFFT of f(ωσ(j·2m+m)), f(ωσ(j·2m+m+1)), . . . , f(ωσ(j·2m+2m−1))

to obtain m · f(ωσ(2j+1)/m · x) mod (xm − 1).
3. Twist m · f(ωσ(2j+1)/m · x) mod (xm − 1) by ω−σ(1)/m

to obtain fZ = m · f(ωσ(2j)/m · x) mod (xm + 1).
4. Compute fA = fY − fZ .
5. Compute fB = fY + fZ .
6. Return (2m) · f(ωσ(j)/(2m) · x) mod (x2m − 1) = fA · xm + fB.

Figure 4.2 Pseudocode for twisted radix-2 IFFT

each interpolation step. As a result, the result of each interpolation step has been

multiplied by 2m.

The algorithm is initialized with f(ωσ(j)) = f(ωσ(j) · x) mod (x − 1) for all

j in the range 0 ≤ j < n. By recursively applying the interpolation step to these

results, we obtain n · f(x) mod (xn − 1) = n · f(x) if f has degree less than n. By

multiplying each coefficient of this result by 1/n, the desired polynomial f is recovered.

Pseudocode for this IFFT algorithm is given in Figure 4.2.

Let us now analyze the cost of this algorithm. Line 0 is just used to end the

recursion and costs no operations. The cost of lines 1 and 2 is equal to the number of

operations needed to compute two IFFTs of sizem. The cost of the twisting operation

in line 3 is m − 1 multiplications in R. In line 4, we add fA to fB at a cost of m

additions and in line 5, we subtract fA from fB at a cost of m subtractions. Line 6

just involves logicially joining these two results, requiring no operations.

121

The total number of operations to compute the twisted radix-2 IFFT of size

n is

M(n) = 2 ·M
(n

2

)
+
n

2
− 1, (4.9)

A(n) = 2 · A
(n

2

)
+ n, (4.10)

where M(1) = 0 and A(1) = 0. The solution to the recurrence relations is the same as

the solution to the twisted radix-2 FFT operation counts and results in the formulas

M(n) =
1

2
· n · log2(n) − n+ 1, (4.11)

A(n) = n · log2(n). (4.12)

This algorithm has the exact same operation count as the classical radix-2 IFFT

algorithm. To recover the original polynomial, we must multiply the final result of

the algorithm by 1/n at a cost of n additional multiplications in R. The operation

counts of the IFFT algorithms considered so far differ from the companion FFT

algorithms only by the n additional multiplication operations needed to undo the

scaling.

4.3 Other multiplicative IFFTs

For any other multiplicative FFT algorithm, it is possible to construct an

IFFT algorithm by determining the inverse of each line of the FFT algorithm and

performing these instructions in reverse order. However, the instruction(s) used to

end the recursion (typically the line 0’s in each algorithm) will still be done first

122

in the inverse algorithm. Additionally, operations which do not depend on previous

instructions in a particular FFT algorithm do not need to be performed in reverse

order in the IFFT algorithm.

There will be a constant multiplicative factor that will be ignored by each

interpolation step of the IFFT algorithm. To recover the desired polynomial at the

end of the algorithm, an n additional multiplications are needed to multiply the final

result by 1/n to compensate for these ignored factors. The resulting IFFT algorithm

will require the same number of additions and n more multiplications compared to

its companion FFT algorithm. This technique works for the radix-3 and radix-p

algorithms as well.

As two additional examples of this process, the pseudocode for the conjugate

pair version of the split-radix IFFT algorithm will be presented and then the pseu-

docode for the improved twisted radix-3 IFFT algorithm. These algorithms efficiently

compute the inverse FFT of sizes n = 2k and n = 3k, respectively.

The inverse of the matrix transformation used in the split-radix FFT is

+1 0 +1 0

0 +1 0 +1

−I −1 +I +1

+I −1 −I +1

−1

=

+1
2

0 +I

4
−I

4

0 +1
2

−1
4

−1
4

+1
2

0 −I

4
+I

4

0 +1
2

+1
4

+1
4

. (4.13)

In the IFFT algorithm, the intermediate results are not scaled and the factors in

front of fW , fX , fY and fZ compensates for the denominators in this transformation.

Thus, the transformation used in the split-radix IFFT algorithm is

123

Algorithm : Split-radix IFFT (conjugate-pair version)

Input: The evaluations f(ωσ′(j·4m+0)), f(ωσ′(j·4m+1)), . . . , f(ωσ′(j·4m+4m−1))
of some polynomial with coefficients in a ring R.
Here R has a nth root of unity ω, and m is a power of two where 4m ≤ n.

Output: (4m) · f(ωσ′(j)/(4m) · x) mod (x4m − 1).

0A.If (4m) = 1, then return f(ωσ′(j) · x) mod (x− 1) = f(ωσ′(j)).
0B. If (4m) = 2, then call a radix-2 IFFT algorithm to compute the result.
1. Compute the IFFT of f(ωσ′(j·4m)), f(ωσ′(j·4m+1)), . . . , f(ωσ′(j·4m+2m−1))

to obtain fW · xm + fX = (2m) · f(ωσ′(2j)/(2m) · x) mod (x2m − 1) .
2. Compute the IFFT of f(ωσ′(j·4m+2m)), f(ωσ′(j·4m+2m+1)), . . . , f(ωσ′(j·4m+3m−1))

to obtain m · f(ωσ′(4j+2)/m · x) mod (xm − 1).
3. Compute the IFFT of f(ωσ′(j·4m+3m)), f(ωσ′(j·4m+3m+1)), . . . , f(ωσ′(j·4m+4m−1))

to obtain m · f(ωσ′(4j+3)/m · x) mod (xm − 1).
4. Compute fY = m · f(ωσ′(4j)/m · x) mod (xm − I)

by twisting m · f(ωσ′(4j+2)/m · x) mod (xm − 1) by ω−σ′(2)/m.
5. Compute fZ = m · f(ωσ′(4j)/m · x) mod (xm + I)

by twisting m · f(ωσ′(4j+3)/m · x) mod (xm − 1) by ωσ′(2)/m.
6. Compute fα = I · (fY − fZ).
7. Compute fβ = fY + fZ .
8. Compute fA = fW + fα.
9. Compute fB = fX − fβ.
10. Compute fC = fW − fα.
11. Compute fD = fX + fβ.
12. Return (4m)·f(ωσ′(j)/(4m) ·x) mod (x4m−1) = fA ·x3m+fB ·x2m+fC ·xm+fD.

Figure 4.3 Pseudocode for split-radix IFFT (conjugate-pair version)

124

fA

fB

fC

fD

=

+1 0 +I −I

0 +1 −1 −1

+1 0 −I +I

0 +1 +1 +1

·

fW

fX

fY

fZ

(4.14)

and the results are twisted by σ(j) for the traditional version of the split-radix algo-

rithm or σ′(j) for the conjugate-pair version after these reductions have been com-

pleted. Pseudocode that implements the conjugate-pair version of the split-radix

IFFT algorithm is given in Figure 4.3. Note that operations which do not depend on

previous results in the FFT algorithm are not performed in reverse order in the IFFT

algorithm.

The recurrence relations for the split-radix IFFT algorithm are the same as

those used for the split-radix FFT algorithm. Thus, the total number of operations

to compute the inverse FFT of size n using this algorithm is given by

M(n) =
1

3
· n · log2(n) +

1

9
· n− 1

9
· (−1)n + 1 (4.15)

≤ 1

3
· n · log2(n) +

1

9
· n+

10

9
,

A(n) = n · log2(n). (4.16)

As with the other multiplicative IFFT algorithms, an additional n multiplications in

R are needed to recover the unscaled version of the output polynomial.

It is possible to add the scaling factors of Johnson and Frigo’s modified split-

radix FFT algorithm [44] to the above pseudocode and obtain the companion IFFT

algorithm. The details of this process will not be given here.

125

Turning our attention to the twisted radix-3 IFFT, we first provide the pseu-

docode for this algorithm in Figure 4.4, obtained by following the general procedure

for constructing an IFFT algorithm. The inverse of the transformation used in a

twisted radix-3 FFT algorithm is given by

1 1 1

Ω2 Ω 1

Ω Ω2 1

−1

=
1

3
·

1 Ω Ω2

1 Ω2 Ω

1 1 1

. (4.17)

Similar to the 2-adic multiplicative IFFTs, the factors of 1/3 are saved until the end

of the algorithm. Thus, the transformation for a twisted radix-3 IFFT algorithm is

given by

fA

fB

fC

=

1 Ω Ω2

1 Ω2 Ω

1 1 1

·

fX

fY

fZ

. (4.18)

However, the result of line 2 of the algorithm is f̃Y , the polynomial which results from

twisting fY by ζ = ω∆′(1)/m. Similarly, the result of line 3 of the algorithm is f̃Z ,

the polynomial which results from twisting fZ by ζ. These polynomials need to be

“untwisted” before they can be used as input to (4.18). Instead of doing this compu-

tation explicitly before the interpolation step, it turns out that it is more efficient to

combine the twisting with the interpolation step as described in the pseudocode.

Let us now count the operations required to implement this algorithm. Line

0 simply ends the recursion and costs no operations. The cost of lines 1, 2, and 3 is

the number of operations needed to compute three IFFTs of size m. Line 4 is just a

126

Algorithm : New twisted radix-3 IFFT

Input: The evaluations f(ω∆′(j·3m+0)), f(ω∆′(j·3m+1)), . . . , f(ω∆′(j·3m+3m−1))
of some polynomial with coefficients in a ring R.
Here R has a nth root of unity ω, and m is a power of three where 3m ≤ n.

Output: (3m) · f(ω∆′(j)/(3m) · x) mod (x3m − 1).

0. If (3m) = 1 then return f(ω∆′(j) · x) mod (x− 1) = f(ω∆′(j)).
1. Compute the IFFT of f(ω∆′(j·3m+0)), f(ω∆′(j·3m+1)), . . . , f(ω∆′(j·3m+m−1))

to obtain fX = m · f(ω∆′(3j)/m · x) mod (xm − 1).
2. Compute the IFFT of f(ω∆′(j·3m+m)), f(ω∆′(j·3m+m+1)), . . . , f(ω∆′(j·3m+2m−1))

to obtain f̃Y = m · f(ω∆′(3j+1)/m · x) mod (xm − 1).
3. Compute the IFFT of f(ω∆′(j·3m+2m), f(ω∆′(j·3m+2m+1)), . . . , f(ω∆′(j·3m+3m−1))

to obtain f̃Z = m · f(ω∆′(3j+2)/m · x) mod (xm − 1).
4. Let ζ = ω∆′(1)/m.

5. Compute (fγ)d = ζ−d · (f̃Y)d + ζ−d · (f̃Z)d for all d in 0 ≤ d < m.
Combine the (fγ)d’s to obtain fγ = fY + fZ .

6. Compute (fβ)d = Ω2 · ζ−d · (f̃Y)d + Ω2 · ζ−d · (f̃Z)d for all d in 0 ≤ d < m.
Combine the (fβ)d’s to obtain fβ = Ω2 · fY + Ω · fZ .

7. Compute fα = fβ + fγ = −Ω · fY − Ω2 · fZ .
8. Compute fA = fX − fα = fX + Ω · fY + Ω2 · fZ .
9. Compute fB = fX + fβ = fX + Ω2 · fY + Ω · fZ .
10. Compute fC = fX + fγ = fX + fY + fZ .
11. Return (3m) · f(ω∆′(j)/(3m) · x) mod (x3m − 1) = fA · x2m + fB · xm + fC .

Figure 4.4 Pseudocode for new twisted radix-3 IFFT

127

table lookup and requires no operations. We will assume that all of the powers of ζ

can also be implemented with table lookups. By Theorem 46 in the appendix, line

5 costs m − 1 multiplications and 2m additions. This is the same technique used in

the new classical radix-3 algorithm presented in Chapter 3. Note that when d = 0,

no multiplication is necessary in this instruction. Line 6 only costs m multiplications

because we can reuse f̃Y + f̃Z and f̃Y − f̃Z which were already computed in line 5.

Lines 7-10 each require m additions in R. Line 11 just involves logicially joining these

three results, requiring no operations. The total number of operations to compute

the unscaled IFFT of size n using this algorithm is given by

M(n) = 3 ·M
(n

3

)
+

2

3
· n− 1, (4.19)

A(n) = 3 · A
(n

3

)
+ 2 · n, (4.20)

where M(1) = 0 and A(1) = 0. Solving these recurrence relations for closed-form

formulas gives

M(n) =
2

3
· n · log3(n) − 1

2
· n+

1

2
(4.21)

=
2

3 · log2(3)
· n · log2(n) − 1

2
· n+

1

2

≈ 0.4206 · n · log2(n) − 0.5 · n+ 0.5,

A(n) = 2 · n · log3(n) (4.22)

=
2

log2(3)
· n · log2(n)

≈ 1.2619 · n · log2(n).

128

As with the other multiplicative IFFT algorithms, an additional n multiplications in

R are needed to recover the unscaled version of the output polynomial.

4.4 Wang-Zhu-Cantor additive IFFT

We now turn our attention to finding the companion IFFT for some of the

additive FFT algorithms. Each IFFT receives as input n = 2k evaluations of some

unknown function f at each of the elements of some subspace Wk of a finite field F of

characteristic 2. The algorithms in the following sections can be generalized to finite

fields of other characteristics if desired. We will assume that Cantor’s special basis

discussed in the appendix is used for each algorithm as well.

The inverse of the Wang-Zhu-Cantor additive FFT ([12], [81]) interpolation

step can be viewed as the transformation

R[x]/(si −̟) → R[x]/
(
si+1 − (̟2 +̟)

)
. (4.23)

× R[x]/ (si − (̟ + 1))

Here, si(x) is the minimal polynomial of Wi ⊆ Wk and ̟ is an element of Wk−i that

satisfies ̟ = si(ε) for some ε that is a linear combination of {βi+2, βi+3, · · · , βk} if

i < k − 1 and is zero when i = k − 1. Then si − ̟ is the minimal polynomial of

ε+Wi ⊆ Wk. If the special basis is used, then si(βi+1) = 1 for all i < k and si−(̟+1)

is the minimal polynomial of βi+1 + ε+Wi ⊆ Wk. Here, (ε+Wi)
⋃

(βi+1 + ε+Wi) =

ε+Wi+1 ⊆ Wk and si+1 − (̟2 +̟) is the minimal polynomial of ε+Wi+1.

129

The Wang-Zhu-Cantor additive FFT reduction step divides

f mod (si+1 − (̟2 +̟)) by (si −̟) to obtain f mod (si+1 − (̟2 +̟)) = q · (si −

̟) + r. Then

f mod (si −̟) = r, (4.24)

f mod (si − (̟ + 1)) = q + r. (4.25)

Suppose that we wish to interpolate f mod (si−̟) and f mod (si − (̟ + 1))

into f mod (si+1 − (̟2 +̟)). Solving (4.24) and (4.25) for q and r, 2 we obtain

q = f mod (si − (̟ + 1)) − f mod (si −̟), (4.26)

r = f mod (si −̟). (4.27)

Then f mod (si+1 − (̟2 +̟)) is computed using

f mod
(
si+1 − (̟2 +̟)

)
= q · (si −̟) + r (4.28)

and the interpolation step is completed.

Note that each interpolation step actually produces f mod (si+1 − (̟2 +̟))

instead of a scaled version of this result. So unlike the multiplicative IFFT algorithms,

there is no need to multiply the final result of this additive IFFT algorithm by 1/n.

2 The Chinese Remainder Theorem can also be applied here, but simply solving
the system of equations for q and r is somewhat easier.

130

Algorithm : Wang-Zhu-Cantor additive IFFT

Input: The evaluations f(̟j·2m+0), f(̟j·2m+1), . . . , f(̟j·2m+2m−1)
of some polynomial f with coefficients in a finite field F

with n = 2k elements. Here, m = 2i and 2m ≤ n.
Output: f mod (si+1 −̟j).

0. If (2m) = 1, then return f mod (x−̟j) = f(̟j).
1. Compute the IFFT of f(̟j·2m+0), f(̟j·2m+1), . . . , f(̟j·2m+m−1)

to obtain r = f mod (si −̟2j).
2. Compute the IFFT of f(̟j·2m+m), f(̟j·2m+m+1), . . . , f(̟j·2m+2m−1)

to obtain f mod (si −̟2j+1).
3. Compute q = f mod (si −̟2j+1) − f mod (si −̟2j).
4. Return f mod (si+1 −̟j) = q · (si −̟2j) + r.

Figure 4.5 Pseudocode for Wang-Zhu-Cantor additive IFFT

Like the companion additive FFT algorithm, the ̟’s are stored in an array

with the properties that ̟2j+1 = 1 + ̟2j and ̟j = ̟2j
2 + ̟2j for all j < n/2.

One should substitute ̟ = ̟2j into the interpolation step to use this array for the

calculations. Pseudocode for Wang-Zhu-Cantor additive IFFT algorithm is given in

Figure 4.5.

Let us compute the cost of this algorithm. Line 0 is used to end the recursion

and does not cost any operations. The cost of lines 1 and 2 is equal to the number of

operations needed to compute two IFFTs of size m. In line 3, we need to perform m

subtractions to obtain q. Finally, the computation in line 4 requires m multiplications

and (ci + 1) · (m) additions in F where ci is the number of nonzero coefficients in si.

However, if j = 0, then no multiplications and only ci ·m additions are required to

complete this instruction.

If j 6= 0, then the total number of operations to compute this IFFT of size n

is

131

M(n) = 2 ·M
(n

2

)
+

1

2
· n, (4.29)

A(n) = 2 · A
(n

2

)
+

1

2
· clog2(n)−1 · n+ n, (4.30)

where M(1) = 0 and A(1) = 0.

We must also subtract operations saved for the case when j = 0. The solution

of the recurrence relations proceeds identically to those given for Cantor’s additive

FFT algorithm and results in operation counts of

M(n) =
1

2
· n · log2(n) − n+ 1, (4.31)

A(n) =
1

2
· Clog2(n) · n+ n · log2(n) − n+ 1 (4.32)

≤ 1

2
· n · log2(n)1.585 + n · log2(n) − n+ 1.

No scaling is involved in this inverse FFT algorithm and the number of operations

required is identical to those required to implement the companion FFT algorithm.

4.5 A new additive IFFT

Finally, we will construct the companion IFFT algorithm for the new additive

FFT algorithm introduced in Chapter 3. Let F be a finite field of characteristic 2 of

size N = 2K and let {β1, β2, . . . βK} once again be the special basis introduced by Can-

tor. As usual, define subspace Wi of F to be all linear combinations of {β1, β2, . . . , βi}

for all i ≤ K. We may enumerate the 2k elements of Wk by

̟j = bk−1 · βk + bk−2 · βk−1 + · · · + b1 · β2 + b0 · β1 (4.33)

132

where k ≤ K. Here, 0 ≤ j < 2k and the b’s are given by the binary representation of

j, i.e. j = (bk−1bk−2 · · · b1b0)2.

The algorithm discussed in this section computes the IFFT over the points of

any ̟nJ +Wk ⊆ F where k ≤ K, n = 2k, and J < 2K−k. That is to say, we are given

n evaluations of some unknown polynomial f at {̟J ·n+0, ̟J ·n+1, . . . ̟J ·n+n−1} and

we wish to interpolate these evaluations back into f .

As with the companion algorithm, the interpolation step of the IFFT algorithm

is based on the factorization

xη − x− (aτ + a) =
∏

δ∈(a+Wt)

(xτ − x− δ). (4.34)

Here, η = τ 2, t = log2(τ), and a is a linear combination of the basis elements

{βt+1, βt+2, . . . , β2t}. The interpolation step can be interpreted as the transforma-

tion given by

R[x]/(xτ − x− δ0) → R[x]/(xη − x− (aτ + a)), (4.35)

× R[x]/(xτ − x− δ1)

× R[x]/(xτ − x− δ2)

. . .

× R[x]/(xτ − x− δτ−1)

where δ0, δ1, δ2, . . . , δτ−1 are the elements of a+Wt.

133

The input to the interpolation step is the collection of polynomials

f mod (xτ − x− δ0), f mod (xτ − x− δ1), · · · , f mod (xτ − x− δτ−1) and the desired

output is f ◦ = f mod (xη −x− (aτ + a)). An intermediate result of the interpolation

step is the computation of the Taylor expansion of f ◦ at xτ . That is, we will find

“coefficients” {g0(x), g1(x), . . . , gτ−2(x), gτ−1(x)} such that

f ◦ = gτ−1 · (xτ − x)τ−1 + gτ−2 · (xτ − x)τ−2 + · · · + g1 · (xτ − x) + g0.

(4.36)

Here, each “coefficient” is itself a polynomial of degree less than τ in x. The Taylor

expansion is equivalent to

g(y) = gτ−1 · xτ−1 + gτ−2 · xτ−2 + · · · + g1 · x+ g0. (4.37)

Since xτ−x mod (xτ−x−δ) = δ for any δ ∈ a+Wt, then the input to the interpolation

step can also be viewed as the set of evaluations of g(y) at every δ ∈ a+Wt.

To find the Taylor expansion, we can compute τ IFFT’s of size τ over a+Wt.

As with the companion FFT algorithm, define hλ(x) as the polynomial

hλ(x) = (gτ−1)λ · xτ−1 + (gτ−2)λ · xτ−2 + · · · + (gτ−1)λ · x+ (g0)λ (4.38)

formed by extracting the coefficients of degree λ from g0(x), g1(x), . . . , gτ−1(x). The

coefficient of degree d in hλ(x) is given by the coefficient of degree λ in gd(x). One

134

way to conceptualize the construction of these polynomials is to write the coefficients

of the gd’s across the rows of a τ × τ matrix

(g0)0 (g0)0 . . . (g0)τ−1

(g1)0 (g1)1 . . . (g1)τ−1

...
...

. . .
...

(gτ−1)0 (gτ−1)1 . . . (gτ−1)τ−1

. (4.39)

The coefficients of the polynomial hλ are determined by reading down column λ+ 1

of this matrix. Since the known evaluations of g(y) also give us the evaluation of each

hλ(x) at every δ ∈ a + Wt, then we can compute τ IFFTs of size τ to obtain hλ(x)

for all 0 ≤ λ < τ . The Taylor expansion g(y) can be formed from these results.

An algorithm discussed in the appendix which computes the Taylor expansion

of a polynomial at xτ can be reversed to obtain a new algorithm which can transform

g(y) into f ◦. Pseudocode for the inverse Taylor expansion algorithm is not given in

this manuscript, but requires the same number of operations as the Taylor expansion

algorithm given in the appendix.

So the interpolation step amounts to computing τ IFFTs of size τ followed by

one inverse Taylor expansion of a polynomial at xτ . Either the above interpolation

step can be used recursively or the Wang-Zhu-Cantor IFFT can be used to compute

the IFFTs. If k is a power of two, then the Wang-Zhu-Cantor algorithm will be

needed to resolve the IFFTs of size 2.

As with the companion FFT algorithm, Cantor’s special basis simplifies the

interpolation step of the new additive IFFT algorithm. Recall that for any j < τ

where τ ≤ √
n, then ̟j = (̟j·τ)

τ +̟j·τ . Also recall that if c1 < τ and c2 ≥ τ , then

̟c1 +̟c2 = ̟c1+c2 . Using these results, the interpolation step can be expressed by

135

R[x]/(xτ − x−̟j·τ) → R[x]/(xη − x−̟j). (4.40)

× R[x]/(xτ − x−̟j·τ+1)

× R[x]/(xτ − x−̟j·τ+2)

. . .

× R[x]/(xτ − x−̟j·τ+τ−1)

Here, {̟j·τ , ̟j·τ+1, ̟j·τ+2, . . . , ̟j·τ+τ−1} = ̟j +Wt.

The algorithm will be initialized with f mod (x − ̟n·J+d) = f(̟n·J+d) for

every d in 0 ≤ d < n for some J < 2K−k. Assuming that k is a power of two, then

one stage of interpolation steps from the Wang-Zhu-Cantor IFFT algorithm will be

needed before we can start to use the interpolation step presented in this section.

The interpolation step will receive the polynomials f mod (xτ −x−̟φ) for each φ in

j · τ ≤ φ < (j + 1) · τ where τ = 2t for some t and j < t. We will recursively call the

IFFT algorithm τ times and then apply an inverse Taylor expansion of the result at

xτ to combine these results into f mod (xη − x−̟j) where η = τ 2. After all of the

interpolation steps have been completed, we will obtain f mod (xn − x −̟J). This

final result equals f if f has degree less than n.

If K is not a power of two, then it will not be possible to constuct the spe-

cial basis and the companion IFFT algorithm for the von zur Gathen-Gerhard ad-

ditive FFT algorithm must be used instead. This algorithm is not discussed in this

manuscript, but can be constructed using a technique similar to the other additive

IFFT algorithms.

If k is not itself a power of two, then let κ be the largest power of two such

that κ ≤ k. The improved algorithm can used to compute f mod (xκ−x−̟j) for all

136

Algorithm : New additive IFFT
Input: The evaluations f(̟j·η+0), f(̟j·η+1), . . . , f(̟j·η+η−1)

of some polynomial f with coefficients in a finite field F

with n = 2k elements. Here, η is a power of two.
Output: f mod (xη − x−̟j).

0. If η = 2, then return (f(̟2j+1) − f(̟2j)) · (x−̟2j) + f(̟2j).
1. Set τ =

√
η.

2. for φ = j · τ to j · τ + τ − 1 do

3. Recursively call the IFFT algorithm with input
f(̟φ·τ), f(̟φ·τ+1), · · · , f(̟φ·τ+τ−1)
to obtain f mod (xτ − x−̟φ).

4. end for (Loop φ)
5. Assign the coefficient of xλ from f mod (xτ − x−̟φ) to hλ(̟φ)

for each φ in j · τ ≤ φ < (j + 1) · τ and each λ in 0 ≤ λ ≤ τ − 1.
6. for λ = 0 to τ − 1 do

7. Recursively call the new IFFT algorithm with input
hλ(̟j·τ), hλ(̟j·τ+1), · · · , hλ(̟j·τ+τ−1)
to obtain hλ(x) mod (xτ − x−̟j) = hλ(x).

8. end for (Loop λ)
9. Construct g(y) using the coefficients of hλ(x) for each λ in 0 ≤ λ < τ .
10. Recover f mod (xη − x−̟j) by computing the inverse Taylor expansion

of g(y) at xτ .
11. Return f mod (xη − x−̟j).

Figure 4.6 Pseudocode for the new additive IFFT

j in 0 ≤ j < 2k−κ. Interpolation steps from the Wang-Zhu-Cantor IFFT algorithm

can be used to complete the recovery of f . For the sake of simplicity, we will assume

that k is a power of two in the pseudocode of the new IFFT algorithm given in Figure

4.6.

We now analyze the cost of this algorithm for the case where where κ is a

power of two and η = 2κ. Line 0 ends the recursion by calling the Wang-Zhu-Cantor

algorithm with input size 2 at a cost of M(2) = 1 and A(2) = 2. We will assume

that line 1 costs no operations as the work to complete this instruction is insignificant

137

compared to the rest of the algorithm. Lines 2-4 involve
√
η recursive calls to the IFFT

algorithm, each at a cost of M(
√
η) multiplications and A(

√
η) additions. In theory,

line 5 costs no operations. However, in practice it may be necessary to rearrange the

coeffficients of the polynomials determined in lines 2-4 so that each of the evaluations

of hλ are adjacent to each other in memory. This costs a total of η copies. As with the

FFT algorithm, we will only assume that this is necessary when η ≥ 232. Lines 6-8

involve another
√
η recursive calls to the IFFT algorithm, each at a cost of M(

√
η)

multiplications and A(
√
η) additions. In line 9, the elements of the hλ’s need to be

reorganized into g(y). In theory, this costs no operations, but in practice this will

cost an additional τ copies when η ≥ 232. Finally, in line 10, we need to perform one

inverse Taylor expansion of g(y) at xτ at a cost of no multiplications and 1/4·η·log2(η)

additions. Line 11 costs no operations.

The total number of operations to compute this IFFT of size n using the new

algorithm is

M(n) = 2 ·
√
n ·M(

√
n), (4.41)

A(n) = 2 ·
√
n · A(

√
n) +

1

4
· n · log2(n), (4.42)

where M(2) = 1 and A(2) = 2. We must also subtract operations of both types

to account for the cases where j = 0. The solution of these recurrence relations is

the same as those used for the new additive FFT algorithm and results in operation

counts of

138

M(n) =
1

2
· n · log2(n) − n+ 1, (4.43)

A(n) =
1

4
· n · log2(n) · log2 log2(n) + n · log2(n) − n+ 1, (4.44)

when n < 232. If n ≥ 232 then the addition count increases to

A(n) =
1

4
· n · log2(n) · log2 log2(n) +

9

8
· n · log2(n) − 3 · n+ 1 (4.45)

to account for the copies required in lines 5 and 9.

If k is not a power of two, then let κ be the largest power of 2 such that κ ≤ k.

In this case, the number of operations when n < 232 is

M(n) =
1

2
· n · log2(n) − n+ 1, (4.46)

A(n) =
1

2
· n · log2(n)1.585 + n · log(n) − n+ 1 (4.47)

−1

2
· n · κ1.585 +

1

4
· n · κ · log2(κ),

and an additional 1
8
· n · κ− 2n copies are needed for n ≥ 232.

In any case, the new additive IFFT algorithm requires the same number of

operations as the new additive FFT algorithm.

4.6 Concluding remarks

In this chapter, we examined a variety of IFFT algorithms. In the case of the

multiplicative IFFT algorithms, the number of operations required was the number of

139

operations of the companion FFT algorithm, plus n additional multiplications. In the

case of the additive IFFT algorithms, the number of operations required was exactly

the same as the number of operations of the companion FFT algorithm.

140

CHAPTER 5

POLYNOMIAL MULTIPLICATION ALGORITHMS

5.1 Karatsuba multiplication

The classical algorithm for multiplying two polynomials of degree less than n

into a product of degree less than 2n− 1 requires Θ(n2) operations or is said to have

a quadratic operation count with respect to the input polynomial size. This is the

method learned in a typical high school introductory algebra course [5] and will not

be discussed in any more detail here.

The first subquadratic multiplication algorithm was proposed by Karatsuba

in the 1960’s [46]. 1 This technique is based on the observation that multiplication is

often a more expensive operation than addition in the coefficient ring of the polynomi-

als. For example, in the ring of complex numbers C, addition requires two arithmetic

operations, whereas multiplication requires six operations. Karatsuba’s algorithm is

based on a technique that allows one to reduce the number of multiplications at the

expense of extra additions. By recursively applying the basic idea, the overall result

is a faster algorithm.

If (f1 ·x+f0) ·(g1 ·x+g0) = f1g1 ·x2 +(f1g0 +f0g1) ·x+f0g0 is multiplied using

classical multiplication, a total of 4 multiplications is required. Karatsuba’s algorithm

is based on the following alternative method of computing the product polynomial.

1 The technique is sometimes called Karatsuba-Ofman multiplication because both
of these individuals were authors of the paper which first introduced the algorithm.
It appears [47] that Ofman only helped to write the paper and that Karatsuba was
the sole inventor of this technique.

141

(f1 · x+ f0) · (g1 · x+ g0) (5.1)

= f1g1 · x2 + ((f0 + f1) · (g0 + g1) − f0g0 − f1g1) · x+ f0g0.

Thus, the computation of the product polynomial requires 4 additions / subtractions,

but only 3 multiplications.

Karatsuba’s algorithm uses this idea recursively to further reduce the number

of multiplications. Let f(x) and g(x) be polynomials of degree over any ring R of

degree less than 2m where m is a power of two. By splitting f and g into two blocks

of size m, then these polynomials can be written as

f = fA · xm + fB, (5.2)

g = gA · xm + gB. (5.3)

Observe that fA, fB, gA and gB are each polynomials of degree less than m. The

polynomials f and g can be multiplied into the product polynomial h using

h = f · g (5.4)

= (fA · xm + fB) · (gA · xm + gB)

= fA · gA · x2m + (fA · gB + fB · gA) · xm + fB · gB.

Observe that the middle term can be computed using

142

fA · gB + fB · gA = (fA + fB) · (gA + gB) − fA · gA − fB · gB. (5.5)

Thus, h can also be expressed as

h = fA · gA · x2m + (fA · gB + fB · gA) · xm + fB · gB (5.6)

= fA · gA · x2m + ((fA + fB) · (gA + gB) − fA · gA − fB · gB) · xm + fB · gB.

Computation of h now involves four additions / subtractions of polynomials of size

m and three multiplications of polynomials of size m. The additions (subtractions)

can be completed by pointwise adding (subtracting) the elements of the two polyno-

mials. The multiplications are completed by recursively applying this technique to

two polynomials of size m. When (2m) = 2, the computation is equivalent to (5.1).

When (2m) = 1, then the multiplication is simply a pointwise product and no more

recursion is necessary. Pseudocode for Karatsuba’s algorithm is given in Figure 5.1.

Let M(4m − 1) be the number of multiplications in R required to compute

the product of two polynomials with degree less than 2m and let A(4m − 1) be the

number of additions in R required. If (2m) = 1, then M(1) = 1 and A(1) = 0.

If (2m) > 1, then h is computed using lines 2-8. Lines 2 and 3 simply consist

of relabeling existing elements and are not assumed to require any operations. Lines

4, 5, and 8 each require M(2m− 1) multiplications and A(2m− 1) additions. Lines

6 and 7 are each additions of two polynomials of size m. Each polynomial addition

costs no multiplications and m additions. In line 9, two polynomial subtractions need

to be completed. Each of these computations requires no multiplications and 2m− 1

143

Algorithm : Karatsuba multiplication

Input: Polynomials f and g of degree less than 2m in any ring R
where m is a power of two.

Output: Polynomial h of degree less than 4m− 1 in R.

1. If (2m) = 1, then return h = f0 · g0.
2. Split f into two blocks fA and fB, each of size m, such that f = fA ·xm+fB.
3. Split g into two blocks gA and gB, each of size m, such that g = gA ·xm +gB.
4. Compute fA · gA by recursively calling Karatsuba multiplication.
5. Compute fB · gB by recursively calling Karatsuba multiplication.
6. Compute fA + fB.
7. Compute gA + gB.
8. Compute (fA + fB) · (gA + gB) by recursively

calling Karatsuba multiplication.
9. Return h = (fA · gA) · x2m + ((fA + fB) · (gA + gB) − fA · gA − fB · gB) · xm

+ (fB · gB).

Figure 5.1 Pseudocode for Karatsuba multiplication

subtractions. Additionally, 2m− 2 elements of the middle term overlap with those of

the first and last terms. These elements need to be combined as well.

Combining these results, the total number of operations needed to compute a

product of degree less than 2n− 1 is given by

M(2n− 1) = 3 ·M
(
2 · n

2
− 1
)
, (5.7)

A(2n− 1) = 3 · A
(
2 · n

2
− 1
)

+ 4n− 4, (5.8)

where M(1) = 0 and A(1) = 0. In a section of the appendix, these recurrences are

solved for the closed-form formulas

144

M(2n− 1) = nlog2(3) ≈ n1.585, (5.9)

A(2n− 1) = 6 · nlog2(3) − 8n+ 2 ≈ 6 · n1.585 − 8n+ 2. (5.10)

As reported in [82], the operation count provided in this section is based on work

found in C. Paar’s doctoral dissertation and is slightly lower than what is found in

other sources. The improvement in the count is due to the fact that one of the

elements in the middle term of line 8 does not need to be added to an element from

the first term or last term of this expression. This is an improvement that can be

implemented in practice as well as a theoretical observation.

5.2 Karatsuba’s algorithm for other sizes

If n is not a power of two, one can “pad” the input polynomials with zeros so

that these input polynomials are the required size to use the algorithm discussed in

the previous section. However, this increases the amount of effort needed to compute

the polynomial product.

Several papers ([58], [82]) have been written on computing Karatsuba’s algo-

rithm for other sizes. Of particular interest in this chapter will be the case where n

is a power of 3 and a product of degree less than 2n − 1 is desired. The paper [82]

describes how to construct a version of Karatsuba’s algorithm that can compute a

product of size 2 · 6 − 1 using 18 multiplications and 59 additions. The algorithm

can also be used to compute a product of size 2 · 18 − 1 using 108 multiplications

and 485 additions, and a product of size 2 · 54 − 1 using 648 multiplications and

3329 additions. Montgomery [58] reduced the number of multiplications to 102 and

646 for the two cases respectively, while preserving the number of additions. The

145

multiplication method to be discussed later in this chapter requires fewer operations

than Karatsuba’s algorithm when n = 34 or higher, so there is no need to present any

additional results of these papers here.

5.3 FFT-based multiplication

Suppose that we have two polynomials f(x) and g(x) of degree less than n with

coefficients over some ring R and we wish to compute h = f · g. Another method

of computing the product first evaluates f and g at n points in R using an FFT

algorithm. Then these evaluations are multiplied pointwise using the fact that

h(ε) = f(ε) · g(ε) (5.11)

for any ε ∈ R. Finally, the n pointwise evaluations of h are interpolated into h using

an IFFT algorithm.

If the degree of f and the degree of g sum to less than n, then the result of

this process will be the desired product polynomial. Otherwise, the result will be h

modulo a polynomial of degree n which is the minimal polynomial of the n points

which were evaluated. If this is not desired, then n should be chosen to be a bigger

value.

In order to multiply two polynomials based on a multiplicative FFT where

p = 2, R must (1) possess some primitive nth root of unity ω where n = 2k and (2) n

must be invertible in R. Unfortunately, a finite field F of characteristic 2 fails to meet

both of these conditions. Cantor [13] provided an alternative algorithm to overcome

the second requirement in general, but F still does not contain the required root of

unity in order to use the multiplicative FFT algorithms. This is due in part to the

146

Algorithm : FFT-based multiplication

Input: Polynomials f and g of degree less than n in a ring R;
a set of points S = {ε0, ε1, . . . , εn−1} in R that supports
some type of FFT algorithm.

Output: Polynomial h of degree less than n in R.
If deg(f) + deg(g) < n, then h = f · g; otherwise h = f · g mod M

where M is the minimal polynomial of the points in S.

1. Evaluate f at each of the points in S using an FFT algorithm.
2. Evaluate g at each of the points in S using an FFT algorithm.
3. for i = 0 to n− 1 do

4. Compute h(εi) = f(εi) · g(εi).
5. end for (Loop i)
6. Interpolate h(ε0), h(ε1), . . . , h(εn−1) into h using an IFFT algorithm.
7. Return h = f · g mod M.

Figure 5.2 Pseudocode for FFT-based multiplication

property that −1 = 1 in a finite field of characteristic 2. Instead, one of the additive

FFT algorithms discussed in Chapter 3 must be used.

Pseudocode for FFT-based multiplication is given in Figure 5.2. Most of the

work required of this algorithm is contained in the two evaluations (lines 1 and 2) and

the interpolation (line 6). The time required to perform these operations depends on

the structure of S. Any set S of points can be evaluated or interpolated in O(n1.585 ·

log2(n)) operations using the techniques discussed in Chapters 1 and 10. Thus, the

cost of the multiplication algorithm in the pseudocode is also O(n1.585 · log2(n)). For

large n, this somewhat improves the cost to compute a polynomial product compared

to the classical method which requires Θ(n2) operations. The polynomial product

can be computed even more efficiently if S supports a multiplicative or additive FFT

algorithm. Refer to Chapters 2 and 3 to determine the operations needed to complete

these evaluations using the FFT and Chapter 4 to determine the operations needed

for the required interpolation using the companion IFFT algorithm.

147

The remaining work in this algorithm is contained in the “pointwise multiplies”

completed in lines 3-5 of the algorithm. In line 4, one pointwise multiply costs no

additions and 1 multiplication. Since n pointwise multiplies are completed in the loop

found in lines 3-5, then a total of n multiplications are needed.

We will say that the cost of computing the polynomial product is given by

3 ·MF (n)+n multiplications 2 and 3 ·AF (n) additions where MF (n) is the number of

multiplications needed to compute one FFT of size n in R and AF (n) is the number

of additions required.

We will further explore FFT-based multiplication using the new additive FFT

algorithm in a later section.

5.4 Schönhage’s algorithm

In 1971, Schönhage and Strassen presented an algorithm [70] that allows FFT-

based multiplication to work over coefficient rings that do not possess a nth root of

unity, but where 2 is a unit in the ring. The rational numbers Q is an example of

such a coefficient ring. The algorithm transforms polynomials with coefficients in this

ring to polynomials with coefficients over a quotient ring that contains the required

root of unity. For example, polynomials with rational coefficients, Q[x], could be

transformed to a polynomial with coefficients in the quotient ring Q[x]/(xn + 1). In

this case, ω = x is a (2n)th root of unity in Q[x]/(xn + 1). We will not present the

details of Schönhage and Strassen’s algorithm here. The interested reader that is not

fluent in German can refer to [34] for an explanation of how this algorithm works.

In 1977, Schönhage presented [68] a radix-3 variant of this algorithm. Here,

the input polynomials are transformed to polynomials in a coefficient ring where there

2 If an additive FFT is used, then the multiplication count is reduced to 3 ·MF (n)
since the output of the IFFT does not need to be scaled.

148

exists a primitive nth root of unity where n = 3k. The algorithm then makes use of

the radix-3 FFT and IFFT algorithms to perform the computations. In this section,

we show how to use this algorithm to multiply polynomials with coefficients from a

finite field F of characteristic 2.

Let f and g be polynomials of degree less than n = 3k for some positive

integer k > 1 with coefficients that are elements of F. The original presentation of

Schönhage’s algorithm transformed f, g ∈ F[x] to polynomials with coefficients over

the quotient ring D = F[x]/(x3m − 1) where m = 3⌈k/2⌉. A more recent version of the

algorithm as described in [34] works over the quotient ring D = F[x]/(x2m + xm + 1)

instead and yields a lower operation count. Let t = n/m. If t = m, then let ω = x and

observe that ω2t = xm + 1 and ω3t = x2m + xm mod (x2m + xm + 1) = 1. Otherwise,

t = m/3 and we will let ω = x3. In this case, ω3t = (x3)3t = (x3)m = x3m = 1. In

both cases, xt 6= 1, so ω is a primitive (3t)th root of unity.

To transform a polynomial f ∈ F[x] to a new polynomial f ∗ with coefficients

in D, let us group the terms of f into blocks of size m where zero coefficients should

be included in each block and factor out the largest multiple of xm from each block.

Then f ∗ is a polynomial in xm with coefficients in D. To make it easier to distinguish

between the elements of D and the powers of xm, we will relabel the polynomial in

terms of y = xm. So, f ∗ is a polynomial of degree less than t in y with coefficients

that are elements of D = F[x]/(x2m + xm + 1). This new polynomial will be said to

be a member of D[y].

To multiply two polynomials f and g in F[x], we first transform each of these

to polynomials f ∗ and g∗ in D[y]. Since ω is a (3t)th root of unity where t is a power

of 3, then we could use the radix-3 FFT algorithm to evaluate f ∗ and g∗ at 3t powers

of ω, pointwise multiply these evaluations, and then use the radix-3 IFFT algorithm

to obtain the product polynomial h∗ in D[y].

149

The improved version of Schönhage’s algorithm takes advantage of the fact

that since f ∗ and g∗ have degree less than t = 3d for some d < k, then h∗ will have

degree less than 2t. Therefore, it is only necessary to evaluate and interpolate at 2t

points of D rather than the 3t points considered above.

If the full radix-3 FFT were to be computed, the first level of reduction steps

would reduce f ∗ mod (y3t − 1) into

f ∗ mod (yt − 1), (5.12)

f ∗ mod (yt − ωt), (5.13)

f ∗ mod (yt − ω2t). (5.14)

Since the degree of f ∗ is less than t, then each of these three results is equal to f ∗.

To implement the improved version of Schönhage’s algorithm, we will compute

a “truncated” FFT of f ∗ by only evaluating f ∗ at the points associated with the

expressions (5.13) and (5.14). 3 Once this has been completed, we will have 2t

evaluations which can be pointwise multiplied with 2t evaluations of g∗. Note that

each of these “evaluations” is an element of D which is a polynomial in x. Pointwise

multiplications inD involves multiplication of polynomials in x reduced modulo x2m+

xm +1. We will discuss pointwise multiplication of elements in D later in this section.

After the pointwise multiplies have been completed, the IFFT will interpolate

the results into the two expressions

3 In theory, one could use a different selection of two of these three expressions, but
the selection of (5.13) and (5.14) is advantageous when the Schönhage’s algorithm is
called recursively.

150

hY = h∗ mod (yt − ωt), (5.15)

hZ = h∗ mod (yt − ω2t). (5.16)

Now, the Extended Euclidean Algorithm discussed in Chapter 8 can be used to derive

(1) · (yt − ωt) − (1) · (yt − ω2t) = −ωt + ω2t (5.17)

= −ωt + (ωt + 1) = 1.

So by the Chinese Remainder Theorem,

h∗ mod (y2t + yt + 1) = (1) · hZ · (yt − ωt) + (−1) · hY · (yt − ω2t) (5.18)

= (hZ − hY) · yt − ωt · hZ + ω2t · hY

= (hZ − hY) · yt − ωt · hZ + (ωt + 1) · hY

= (hZ − hY) · yt − ωt · (hZ − hY) + hY .

By reversing the transformation process described earlier, we obtain the desired poly-

nomial h in F[x]. Here, we substitute xt in place of y and then simplify the resulting

expression. However, since any of the 2m coefficients of an element of D can be

nonzero in the product polynomial, some additional simplification is usually neces-

sary.

151

The only detail that remains to be worked out is how to handle the pointwise

products in D. To multiply two elements in D, each with degree less than 2m, one

multiplies the two polynomials considered as elements of F[x] and then computes the

remainder of this result when divided by x2m+xm+1. Since the output of Schönhage’s

algorithm is modularly reduced by y2t + yt + 1, then the result can be computed by

simply recursively calling Schönhage’s algorithm and combining like terms. In this

case, the input polynomials to Schönhage’s algorithm can be of degree at most 2t− 1

when transformed to D[y].

For large values of n, the improved version of Schonhage’s algorithm efficiently

computes the product of two polynomials modulo x2n + xn + 1, calling the algorithm

recursively to handle the pointwise multiplications in D. For small values of n, it

is more efficient to compute these products using Karatsuba’s algorithm and then

reduce the product modulo x2n +xn +1. The modular reductions are implemented by

deleting each coefficient of the product polynomial with degree d ≥ 2n and adding this

coefficient to the coefficients of d− n and d− 2n. The cost of this modular reduction

is 2n additions. Pseudocode for an implementation of Schönhage’s algorithm is given

in Figure 5.3.

Let M(2n) be the number of multiplications needed to multiply two polyno-

mials of degree at most 2n = 2 · 3k modulo x2n + xn + 1 and A(2n) be the number

of additions required. We will assume that it is more efficient to use Karatsuba’s

algorithm when we wish to multiply two polynomials with product degree of 54 or

less. This can be verified by adjusting the condition in line 0 of the algorithm and

comparing the operations required. So in line 0, if the input polynomials are of degree

less than 54, then we need to use Karatsuba’s algorithm to multiply two polynomials

with input size 2 ·3k and reduce the result modulo x2n +xn +1. The operation counts

152

Algorithm : Schönhage’s multiplication

Input: Polynomials f, g ∈ F[x] each of degree less than 2n
where F is any finite field of characteristic 2 and n = 3k where k > 1.

Output: h mod (x2n + xn + 1) = (f · g) mod (x2n + xn + 1), a polynomial
of degree less than 2n in F/(x2n + xn + 1); If the degrees of f and g
sum to less than 2n, then this result is also h = f · g where h ∈ F[x].

0. If (2n) ≤ 54, then use Karatsuba’s algorithm to compute f · g
and then reduce this result modulo (x2n + xn + 1).

1. Let m = 3⌈k/2⌉ and t = n/m where k = log2(n).
2. Transform f, g ∈ F[x] to polynomials f ∗, g∗ of degree less than 2t

in D[y] where D = F[x]/(x2m + xm + 1) using y = xt and grouping.
3. If t = m, let ω = x ∈ D; otherwise, let ω = x3 ∈ D.
4. Compute radix-3 FFT to evaluate f ∗(y) at ωσ(t), ωσ(t+1), . . . , ωσ(2t−1).
5. Compute radix-3 FFT to evaluate f ∗(y) at ωσ(2t), ωσ(2t+1), . . . , ωσ(3t−1).
6. Compute radix-3 FFT to evaluate g∗(y) at ωσ(t), ωσ(t+1), . . . , ωσ(2t−1).
7. Compute radix-3 FFT to evaluate g∗(y) at ωσ(2t), ωσ(2t+1), . . . , ωσ(3t−1).
8. for i = t to 3t− 1 do

9. Recursively call Schönhage’s Algorithm to compute
h∗(ωσ(i)) = f ∗(ωσ(i)) · g∗(ωσ(i)).

10. end for (Loop i)
11. Compute radix-3 IFFT to compute hY = h∗(y) mod (yt − ωt).
12. Compute radix-3 IFFT to compute hZ = h∗(y) mod (yt − ω2t).
13. Compute h∗ mod (y2t + yt + 1) = (hZ − hY) · yt − ωt · (hZ − hY) + hY .
14. Transform h∗(y) mod (y2t + yt + 1) to h(x) mod (x2n + xn + 1)

using xt = y and simplifying.
15. Return h mod (x2n + xn + 1).

Figure 5.3 Pseudocode for Schönhage’s multiplication

153

of Karatsuba’s algorithm were given in a previous section and the result is a polyno-

mial of degree less than 4n−1. A total of 2 · (2n−1) = 4n−2 addition operations are

required to implement the modular reduction. Combining these results, we obtain

M(6) = 17, A(6) = 69, M(18) = 102, A(18) = 519, M(54) = 646, and A(54) = 3435.

Now suppose that (2n) > 54. Assume that the effort required to compute m

and t is insignificant compared to an operation in F, so line 1 does not contribute to

the operation count. Line 2 is just a relabeling of the coefficients of f and g and we

will assume that this does not contribute to the operation count either. An imple-

mentation of Schönhage’s algorithm must be able to communicate to the recursive

FFTs that only m coefficients in the input polynomials contribute to a “coefficient” in

D = F[x]/(x2m + xm + 1), however. Line 3 is simply the assignment of the generator

in D and this requires no operations in F or D. Lines 4-7 are four radix-3 FFTs

in D, each of size t and lines 11-12 are two radix-3 IFFTs in D, each of size t as

well. It can be shown that the total amount of work required for these six lines is no

multiplications and

6 ·
(

11

2
· n · log3(t) −

3

4
· n+

3

4
·m
)

= 33 · n · log3(t) −
9

2
· n+

9

2
·m

(5.19)

additions in F.

In lines 8-10, we need to compute 2t “pointwise products”, each a multiplica-

tion of two polynomials of size 2m modulo x2m +xm +1. For each pointwise product,

Schonhage’s algorithm is called recursively with n = m. Thus, the amount of work

required in these lines is 2t ·M(2m) multiplications and 2t · A(2m) additions.

154

Next we need to compute the amount of work needed in line 13 of the algo-

rithm. Computation of hZ−hY consists of t subtractions in D where each subtraction

in D consists of 2m subtractions for a total of 2n subtractions in F. This result is

then multiplied by ωt in D. The computation requires no multiplications in F, but

t · m = n additions in F. Finally, this result is added to hY which will require t

additions in D or t · 2m = 2n additions in F. Combining these results gives a total of

5n additions / subtractions in F required to complete step 13.

Line 14 of the algorithm transforms polynomial in D[y] back into a polynomial

in F[x] at a cost of n+m additions 4 in F. We will assume that line 15 requires no

operations to complete.

The total number of operations to compute a product of degree less than 2n

using Schönhage’s algorithm is

M(2n) = 2 · t ·M(2m), (5.20)

A(2n) = 2 · t · A(2m) + 33 · n · log3(t) +
3

2
· n+

11

2
·m (5.21)

with the initial conditions stated above. Here, if n = 3k, then m = 3⌈k/2⌉ and

t = 3⌊k/2⌋.

If k is a power of two, then t = m =
√
n and log3(t) = log3(n)/2. In this case,

we can replace the above recurrence relations with

4 If the input polynomials are each of size n, then only n−m additions are required.
When the input polynomials are each of size 2n, then an additional 2m additions are
needed to implement a modular reduction by x2n + xn + 1 on h.

155

M(2n) = 2 ·
√
n ·M(2

√
n), (5.22)

A(2n) = 2 ·
√
n · A(2

√
n) +

33

2
· n · log3(n) +

3

2
· n+

11

2
·
√
n, (5.23)

and the initial conditions M(18) = 102, A(18) = 519. Solving these recurrence

relations for closed-form solutions results in

M(2n) =
17

3
· n · log3(n) (5.24)

≥ 7

2
· n · log2(n),

A(2n) ≥ 33

2
· n · log3(n) · log2 log3(n) +

157

12
· n · log3(n) − 3

2
· n+

11

2
·
√
n

≥ 52

5
· n · log2(n) · log2 log2(n) +

3

2
· n · log2(n) − 3

2
· n+

11

2
·
√
n.

(5.25)

If k is not a power of two, then the results are somewhat greater. In this case,

M(2n) = 6 ·n · ⌈log3(n)⌉ and (5.25) still gives a lower bound for A(2n). However, the

bound is not as tight as when k is a power of two.

5.5 FFT-based multiplication using the new additive FFT algorithm

Suppose that the new additive FFT algorithm is used to multiply two polyno-

mials with product degree of less than the number of elements in the finite field. Using

the formulas M(n) = 3 ·MF (n) and A(n) = 3 · AF (n) derived in a previous section

to compute the cost of this polynomial product, then the number of multiplications

is given by

156

M(n) = 3 ·
(

1

2
· n · log2(n) − n+ 1

)
(5.26)

=
3

2
· n · log2(n) − 3n+ 3

and the number of additions required is

A(n) = 3 ·
(

1

2
· n · log2(n)1.585 + n · log(n) − n+ 1 (5.27)

− 1

2
· n · κ1.585 +

1

4
· n · κ · log2(κ)

)

=
3

2
· n · log2(n)1.585 + 3 · n · log(n) − 3 · n+ 3

− 3

2
· n · κ1.585 +

3

4
· n · κ · log2(κ).

One may have noticed that Schönhage’s algorithm uses Karatsuba multiplica-

tion to handle the polynomial products of small degree. It is possible to use Karatsuba

multiplication in a similar manner with FFT-based multiplication using the new ad-

ditive FFT algorithm as discussed in the appendix. If this idea is used, then the

number of multiplies in F needed to compute a polynomial product is reduced to

M(n) =
3

2
· n · log2(n) − 15

4
· n+ 8 (5.28)

while the number of additions remains the same.

157

5.6 Comparison of the multiplication algorithms

We will now compare the costs of the algorithms presented in this chapter to

determine if there are any additional crossover points in the timings for a possible

hybrid algorithm combining several of the methods. This is somewhat difficult to

do precisely because Schönhage’s algorithm can only compute products of size 2 · 3k

and the other methods can only compute products of size 2k. However, for the sake

of comparing the algorithms, let us assume that the formulas given in the previ-

ous sections hold for any n. Because the algorithms produce different product sizes

with respect to the input size, we must compare M(2n) and A(2n) for each of the

algorithms.

By inspection of the formulas, it is obvious that there is no advantage to

Schönhage’s algorithm over FFT-based multiplication using the new additive FFT

algorithm in terms of the multiplication count. Instead, the new approach improves

the asymptotic multiplication count for polynomial multiplication over finite fields by

over 16 percent. Because of the influence of the lower-order terms in the operation

counts for FFT-based multiplication, the overall improvement is much greater on

practical-sized problems (n ≤ 232).

A comparison of the algorithms in terms of the number of additions requires a

more careful analysis. Recall that when k is not a power of two, then the new additive

FFT and IFFT algorithms involves reduction and interpolation steps from the Wang-

Zhu-Cantor algorithms for FFT-based multiplication. A computer was used to show

that FFT-based multiplication using the new additive FFT algorithm requires fewer

additions than Schönhage’s algorithm for all product sizes less than 2866. At this

point, the contribution from the Wang-Zhu-Cantor algorithms begins to dominate

the overall cost up to a product size of 21024. Since 1024 is a power of two, then the

reduction / interpolation step of the new additive FFT and IFFT algorithms once

158

again performs most of the computations. It turns out that the FFT-based algorithm

requires less additions than Schönhage’s algorithm up to product size of 21476. A

comparison of the addition counts of the algorithms is mostly academic, for it will

be many years before computers will be invented to handle the problem sizes just

discussed.

To further support the claim that the FFT-based algorithm is more efficient

than Schönhage’s algorithm for all practical sizes, a range of actual product sizes that

could be computed with Schönhage’s algorithm was considered. For each product size

up to 2·320, a computer was used to carefully evaluate the original recurrence relations

of each algorithm and show that a product of greater size can be computed using the

FFT-based multiplication algorithm. A summary of some of the results of these

computations is given in Table 5.1.

Since the multiplication count for the FFT-based multiplication is also lower

than the count for Schönhage’s algorithm, then the overall cost for the FFT-based

multiplication is lower than the overall cost for Schönhage’s algorithm for all current

practical sizes. When computers are invented to handle problem sizes of 2866 or

greater, it might be more appropriate to consider the problem of trying to develop a

hybrid multiplication algorithm that includes Schönhage’s technique.

If implemented carefully, FFT-based multiplication using the new algorithm

should outperform Schönhage’s algorithm for all sizes when the product size is less

than N where N is the number of elements in F. If the product size is N or greater,

then a multiplication method introduced by Reischert can be used. This technique

is discussed in a section of the appendix and can be combined with truncated FFTs

discussed in Chapter 6. If the product size is significantly larger than N , then a

technique described in [32] may be used to map polynomials with coefficients in

159

Table 5.1 Addition cost comparison between Schönhage’s algorithm and
FFT-based multiplication using the new additive FFT algorithm

Product Schönhage’s algorithm New additive FFT algorithm
polynomial size additions additions

2 · 37 < 213 1.02 × 106 8.26 × 105

2 · 38 < 214 3.28 × 106 1.88 × 106

2 · 39 < 216 1.53 × 107 6.09 × 106

2 · 310 < 217 4.79 × 107 1.41 × 107

2 · 311 < 219 1.55 × 108 7.34 × 107

2 · 312 < 221 4.83 × 108 3.63 × 108

2 · 313 < 222 1.81 × 109 8.00 × 108

2 · 314 < 224 5.59 × 109 3.80 × 109

2 · 315 < 225 1.77 × 1010 8.22 × 109

2 · 316 < 227 5.45 × 1010 3.79 × 1010

2 · 317 < 228 2.35 × 1011 8.12 × 1010

2 · 318 < 230 7.19 × 1011 3.63 × 1011

2 · 319 < 232 2.23 × 1012 9.14 × 1011

2 · 320 < 233 6.81 × 1012 2.01 × 1012

GF (N) to polynomials with coefficients in an extension field with more elements

than the degree of the new polynomial.

A subject for debate is whether Schönhage’s algorithm or FFT-based multi-

plication using the new additive FFT will perform better when we wish to multiply

polynomials with coefficients in GF (2). Two perspectives on this topic are summa-

rized in another section of the appendix.

5.7 Concluding remarks

This chapter demonstrated how a new additive FFT algorithm can be applied

to the problem of polynomial multiplication over finite fields of characteristic 2 to yield

a new algorithm that performs faster than Schönhage’s algorithm for most cases. In

160

order for the new algorithm to be faster, the finite field must be of size N = 2K where

K is a power of two and the product polynomial must be of degree less than N . Most

cases where products need to be computed over a finite field of characteristic 2 will

satisfy these two restrictions.

161

CHAPTER 6

TRUNCATED FAST FOURIER TRANSFORM ALGORITHMS

Let R be a commutative ring and let f(x), g(x) be two polynomials defined

over R[x]. If R contains a primitive Nth root of unity where N is a power of two, then

we learned in Chapter 5 that the product of these polynomials given by h(x) ∈ R[x]

can be computed in Θ(N log2N) operations using the (multiplicative) Fast Fourier

Transform (FFT) if the degree of h is less than N .

When the product polynomial has degree less than n < N where n is not a

power of two, we can still view this product as a polynomial of degree less than N .

Here, FFT-based multiplication can be used to compute this product polynomial,

but it will have zero coefficients in the highest degree terms. The operation count for

computing a product of size n based on the FFT is constant in the range 1/2 ·N ≤

n < N . A graph of this operation count as a function of n will look like a staircase

with a step corresponding to each new power of two. This technique wastes significant

computational effort since the zero coefficients in the terms of degree n or higher are

known before the computations are even started. The number of wasted operations

is greatest when n is slightly greater than a power of two.

To reduce this waste, Crandall and Fagin [18] suggest selecting two powers

of two, N0 and N1 such that N0 + N1 ≥ n. As discussed in [2], one can compute

the product modulo xN0 + 1 and xN1 + 1 using FFT-based multiplication and then

combine these results using the Chinese Remainder Theorem. Note that this only

works for values of n of the form N1 · N2. In [3], this technique is generalized to

handle additional values of n by working with d powers of two, {N0, N1, · · · , Nd−1}

such that N0 + N1 + · · · + Nd−1 ≥ n. If n is a fixed value, then this technique can

162

be used to make a custom FFT routine for computing over a particular length. For

arbitrary n, there would be significant computational effort to derive the parameters

needed by the Chinese Remainder Theorem and it would not be practical to compute

these values each time the multiplication routine is called. Also, as d increases, the

expressions for combining the results by the Chinese Remainder Theorem become

more and more complicated. In summary, this is a good technique when n is fixed

and d is small (like two or three), but not a good solution for computing the FFT of

arbitrary n.

Another technique was introduced by van der Hoeven ([41], [42]) which com-

putes the FFT using Θ(n log2 n) operations. In [41], it is noted that two of the paper

referees wondered if there might be a connection between this “truncated Fast Fourier

Transform” and Crandall and Fagin’s technique, but an exploration of this question

was left as an open problem. The referees also noted that no mention has been made

of the number of operations required to implement Crandall and Fagin’s technique.

This “truncated Fast Fourier Transform” does not apply for finite fields of

characteristic 2 because this structure does not contain a primitive Nth root of unity.

Instead, the “additive FFT” discussed in Chapter 3 can be used to evaluate and

interpolate polynomials based on the roots of xN − x where N is a power of two.

However, we are faced with the same problem of wasted computations discussed

above for the multiplication of polynomials with finite field coefficients.

In this chapter, we give a modified version of van der Hoeven’s algorithms

which has also been generalized to work with both multiplicative and additive FFTs.

In the case where the truncated algorithms are applied to FFTs involving a primitive

Nth root of unity, we will show how the techniques are equivalent to that of Crandall

and Fagin, but can be computed without the Chinese Remainder Theorem. We will

163

also show how the new algorithms can be used when R is a finite field of characteristic

2.

6.1 A truncated FFT algorithm

Let N be a power of two and let K = log2(N). Define s0(x) = x and define

si+1(x) and s̄i(x)
1 to be polynomials of degree 2i such that si+1(x) = si(x) · s̄i(x)

for all 0 ≤ i ≤ K − 1. Here, s̄i(x) = si(x) + C for some constant C. We will assume

that there exists an FFT algorithm that can efficiently evaluate a polynomial at each

of the roots of si(x) or s̄i(x). The reduction step for this algorithm receives as input

f ◦ = f mod si+1 and divides this polynomial by si(x) to produce quotient q and

remainder r = f mod si. Since s̄i = si + C, then the other part of the reduction step

computes f mod s̄i with the formula r − C · q.

Suppose that f is a polynomial of degree less than n < N that we wish to

evaluate at n of the roots of sK(x). 2 To determine which n points will be selected

for the evaluations, write n in binary form, i.e. n = (bK−1bK−2 · · · b1b0)2. We are

going to evaluate f at each of the roots of s̄i(x) where bi is 1. In other words, we will

evaluate f at the polynomial

M =
K−1∏

i=0

(s̄i(x))
bi . (6.1)

The algorithm is initialized with f = f mod sK since f has degree less than N . A

loop will iterate starting at i = K − 1 and ending at i = 0. Iteration i of the loop

1 In this chapter, s̄i(x) is notation used to express a polynomial related to si(x)
and is not related to complex conjugation.

2 If n = N , then we will assume that one can just use the FFT algorithm that
evaluates f at each of the roots of sK(x).

164

will receive as input f mod si+1 and reduce this polynomial into f mod si. If bi is 1,

then the loop will also reduce the polynomial into f mod s̄i and call the existing FFT

algorithm to evaluate f at each of the roots of f mod s̄i. At the end of the algorithm,

we will have evaluated f at each of the n roots of (6.1). Pseudocode for the truncated

FFT algorithm is provided in Figure 6.1.

Algorithm : Truncated FFT

Input: f = f mod sK(x) = f mod M(x), a polynomial of degree less than
n in a ring R. Here, n = (bK−1bK−2 · · · b1b0)2 where K = log2(N).

Output: The evaluation of f at each of the n roots of
M(x) = (s̄0)

b0 · (s̄1)
b1 · (s̄2)

b2 · · · (s̄K−1)
bK−1 .

1. Determine L, the smallest integer such that bL = 1.
2. for i from K - 1 downto L do

3. Reduce f mod si+1 into f mod si.
4. if bi is 1
5. Compute f mod s̄i.
6. Call the FFT algorithm to compute the

evaluation of f mod s̄i at each of the roots of s̄i.
7. end if

8. end for

9. Return the evaluation of f at each of the n roots of
M(x) = (s̄0)

b0 · (s̄1)
b1 · (s̄2)

b2 · · · (s̄K−1)
bK−1 .

Figure 6.1 Pseudocode for truncated FFT

Let us compute the cost of this algorithm. Assume that lines 1 and 9 cost no

operations and all of the work takes place in a loop spanning lines 3 through 7 for

all L ≤ i ≤ K − 1. Note that the loop iterations can stop once all of the values of

the output have been determined and L is the index where these computations are

completed. Select some i in the above interval, let m = 2i and assume that si(x)

has ci + 1 coefficients in it. Then line 3 requires m · ci multiplications and m · ci

165

additions. If all of the nonzero coefficients of si(x) are 1 or -1, then only m · ci
additions are required. Unless stated otherwise, we will assume that we are dealing

with this simplified case for the rest of this chapter. Lines 5 and 6 are only executed

if bi is 1. Line 5 requires m multiplications and m additions. The cost of line 6 is

the cost of the FFT algorithm with size 2i. We will assume that the cost of this

algorithm is MF (2i) multiplications and AF (2i) additions. If M(n) is the number of

multiplications needed to compute the truncated FFT for an input polynomial of size

n and A(n) is the number of additions or subtractions required, then formulas for the

number of these operations is

M(n) =
K−1∑

i=L

(
bi ·
(
2i +MF (2i)

))
, (6.2)

A(n) =
K−1∑

i=L

(
ci · 2i + bi ·

(
2i + AF (2i)

))
. (6.3)

It can be shown that the cost of the (untruncated) FFT algorithm is

MF (N) =
K−1∑

i=0

(
2i +MF (2i)

)
, (6.4)

AF (N) =
K−1∑

i=0

(
(ci + 1) +AF (2i)

)
. (6.5)

By comparing these formulas, we can see that the truncated algorithm requires fewer

operations. It can be shown that the truncated algorithm is an improvement over the

untruncated algorithm by a factor of somewhere between 1 and 2.

We will provide further details of this cost of the truncated algorithm once ci,

MF (2i), and AF (2i) are known for particular cases.

166

6.2 An inverse truncated FFT algorithm

We now need an algorithm that can interpolate the collection of evaluations

of f at each of the n roots of M(x) into f mod sK . Since M(x) has degree n and f

is assumed to have degree less than n, then f mod sK = f and is also equivalent to

f mod M.

Here, we will assume that there exists an inverse FFT algorithm that can effi-

ciently interpolate the evaluations of some unknown polynomial at each of the roots

of si(x) or s̄i(x). We will also assume that this inverse FFT algorithm contains an in-

terpolation step that produces as output f mod si+1 given the two input polynomials

f mod si and f mod s̄i. Furthermore, we will assume that there exists the companion

FFT algorithm used in the previous section.

Suppose that we are trying to determine f mod si+1, but already know the

coefficients with degree δi+1 or higher in this polynomial. In other words, we need to

recover the lower δi+1 coefficients of this result. Let m = 2i. If δi+1 ≥ m, then we are

going to use the inverse FFT algorithm along with the given evaluations to compute

f mod s̄i. Then we will combine f mod s̄i and the known coefficients of f mod si+1

into the coefficients of f mod si with degree δi = δi+1−m or higher using the following

result:

Theorem 26 (Operation A) Given f mod s̄i and the coefficients of f mod si+1 of

degree d + 2i and higher, we can compute the coefficients of f mod si with degree d

and higher for any d < 2i.

Proof: Let f ◦ = f mod si+1 and let m = 2i. Since si+1 has degree 2m, then f ◦ will

have degree less than 2m. The given polynomial r̄ = f mod s̄i satisfies

f ◦ = q̄ · (s̄i) + r̄ (6.6)

167

where the degree of r̄ is less than the degree of s̄i. Since s̄i(x) = si(x) + C, then

f ◦ = q̄ · (si) + (r̄ + C · q̄), (6.7)

and f mod si = r̄+ C · q̄. So all that is needed to recover f mod si is to find a way to

determine q̄.

Now write f ◦ as f ◦ = fα · xd+m + fβ and q̄ as qα · xd + qβ where d < m. Then

fα · xd+m + fβ = (qα · xd + qβ) · (s̄i) + r̄. (6.8)

By the hypothesis, the coefficients of fα are known and the coefficients of fβ are

unknown. Suppose that we divide fα · xm by s̄i to obtain quotient q∗ and remainder

r∗, i.e.

fα · xm = q∗ · (s̄i) + r∗. (6.9)

Multiplying this equation by xd and substituting this result into (6.8), we obtain

(q∗ − qα) · xd · (s̄i) = qβ · (s̄i) + r̄ − r∗ · xd − fβ. (6.10)

168

Now,

deg(qβ · s̄i) = deg(qβ) + deg(s̄i) < d+m,

deg(r̄) < d+m,

deg(r∗ · xd) = deg(r∗) + d < d+m,

deg(fβ) < d+m.

(6.11)

Then (q∗− qα) ·xd · (s̄i) must have degree less than d+m. Since deg(xd · s̄i) = d+m,

it must be the case that q∗ − qα = 0, i.e. q∗ = qα.

Thus, we can divide the known coefficients of f ◦ of degree d and higher by s̄i

to obtain quotient q∗. This polynomial can be substituted into r̄ + C · q∗ · xd which

matches f mod si = f ◦ mod si in the terms of degree d and higher. �

If δi+1 < m, then we will combine the known evaluations of f mod si+1 into

f mod si with degree δi = δi+1 or higher. We will now prove that this can be accom-

plished with the reduction step of the companion FFT algorithm.

Theorem 27 Given the coefficients of f mod si+1 of degree d and higher, we can

compute the coefficients of f mod si with degree d and higher for any d < 2i.

Proof: Let f ◦ = f mod si+1 and let m = 2i. Since si+1 has degree 2m, then f ◦ will

have degree less than 2m. If f ◦ is written as f ◦ = fα · xd + fβ for some d < m, then

the desired polynomial r = f mod si satisfies

fα · xd + fβ = q · (si) + r, (6.12)

169

where q and r each have degree less than m.

By hypothesis, the coefficients of fα are known and the coefficients of fβ are

unknown. Suppose we divide fα · xd by si to obtain quotient q∗ and remainder r∗.

Then

fα · xd = q∗ · (si) + r∗. (6.13)

Substituting this result into (6.12), we obtain

(q∗ − q) · si = r − r∗ − fβ. (6.14)

Since r, r∗, and fβ all have degree less than m, but the degree of si is equal to m,

then q∗ − q = 0 or q∗ = q. It follows then that

r = r∗ + fβ. (6.15)

Since fβ with degree less than d is unknown, then we cannot determine the coeffi-

cients of degree less than d in r. However, this equation tells us that the coefficients

of r∗ with degree of d or higher are also the coefficients of r = f mod si with degree

d or higher. So, the coefficients of f mod si with degree d or higher can be computed

by dividing the known coefficients of f mod si+1 by si and reporting the terms of

degree d and higher. Observe that this calculation is just the reduction step of the

170

companion FFT algorithm. �

Regardless of the value of δi+1, we then recursively consider the problem of

computing f mod si−1 with the coefficients of degree δi or higher already known in

this result.

Observe that δK = n. Also, δi is simply the remainder resulting when n is

divided by 2i. So at some point in the recursion, δi will equal 2i−1. This will occur

for the value of i corresponding to the least significant bit in the binary expansion

of n. For this value of i, we can combine f mod s̄i and the known components of

f mod si+1 into the remaining components of this result.

Theorem 28 (Operation B) Given f mod s̄i and the coefficients of f mod si+1 of

degree 2i and higher, we can recover all of the coefficients of f mod si+1.

Proof: Let f ◦ = f mod si+1 and let m = 2i. Since si+1 has degree 2m, then f ◦

will have degree less than 2m. If f ◦ is written as f ◦ = fA · xm + fB, then the given

polynomial r̄ = f mod s̄i satisfies

fA · xm + fB = q̄ · s̄i + r̄, (6.16)

where q̄ and r̄ each have degree less than m.

By hypothesis, the coefficients of fA are known and the coefficients of fB are

unknown. Suppose that we divide fA · xm by s̄i to obtain quotient q∗ and remainder

r∗. Then

fA · xm = q∗ · s̄i + r∗. (6.17)

171

Repeating the technique employed in the proofs of the previous theorems, we will

again find that q̄ = q∗. In this case, this means that

fB = r̄ − r∗. (6.18)

So, to compute all of f mod si+1, we divide the known coefficients of f mod si+1 by

s̄i and subtract the result from the given expression r̄ = f mod s̄i. �

We can now undo the recursion. If f mod s̄i is known, then we can use the

known interpolation step to combine f mod si and f mod s̄i into f mod si+1. Another

method is use (6.6) and (6.7) to solve for q̄ = qα · xd+m + qβ. Then solve (6.10) for fβ

to obtain

fβ = qβ · (s̄i) + r̄ − r∗ · xd. (6.19)

Here r̄ and r∗ can be reused from Operation A. The value of δi+1 will determine which

of these two methods is advantageous.

If f mod s̄i is not known, then we can combine f mod si and the known coef-

ficients of f mod si+1 into the remaining coefficients of this result.

Theorem 29 (Operation C) Given f mod si and the coefficients of f mod si+1

with degree d or higher, we can compute all of the coefficients of f mod si+1 where

d < 2i.

172

Proof: Let f ◦ = f mod si+1 and r = f mod si. Now write f ◦ as f ◦ = fα · xd + fβ.

If r∗ = (fα · xd) mod si, then the proof of Theorem 27 tells us that fβ = r − r∗.

Observe that r∗ is already computed in this FFT reduction step and in this case all

of r = f mod si is assumed to be known. If r∗ is saved from the earlier computation,

it does not need to be recomputed here. So the remaining coefficients of f mod si+1

can be recovered by simply subtracting r∗ from f mod si. �

After all of the recursion is undone, then we will have recovered f mod M = f .

Pseudocode for the inverse truncated FFT algorithm is given in Figure 6.2.

Let us determine the cost of the inverse algorithm. Assume that the algorithm

is called for some value of κ = i + 1 where i is in the range L ≤ i ≤ K − 1. The

algorithm has two cases depending on the value of bi.

If bi = 1, then instructions 2-9 are performed. In line 2, the inverse FFT

algorithm is called with size m = 2i. We will assume that this algorithm requires

MF (2i)+2i multiplications and AF (2i) additions where MF (2i) is the number of mul-

tiplications in the companion FFT algorithm and AF (2i) is the number of additions

required. The extra 2i multiplications are due to scaling of the final output that is

sometimes necessary in the inverse FFT. If i > L, then lines 4-6 are executed. Since

δi+1 is the number of known coefficients in f ◦ = f mod si+1, then the cost of line 4

is ci · δi+1 additions where ci is the number of coefficients in si(x). Again, we will

assume that all of the nonzero coefficients of si(x) are 1 or -1. The cost of line 5 is

the number of operations needed to implement the algorithm with κ = i. We will use

the second method discussed above to implement line 6. The cost of this technique

is at most m multiplications and 3m+ (m− δi+1) · ci additions. If i = L, then line 7

is executed. The cost of this instruction is at most ci ·m+m additions.

173

Algorithm : Inverse truncated FFT

Input: The coefficients with degree δκ or higher in some unknown
polynomial f ◦ = f mod sκ ∈ R[x] of degree less than 2m = 2κ

where m is a power of two.
The evaluation of f ◦ at the δκ roots of Mκ where
Mκ = (s̄0)

b0 · (s̄1)
b1 · (s̄2)

b2 · · · (s̄κ−1)
bκ−1 .

Here, δκ < 2m and δκ = (bκ−1bκ−2 · · · b1b0)2.
Output: All of the coefficients of f mod sκ.

1. if bκ−1 = 1 do

2. Call inverse FFT to compute f mod s̄κ−1.
3. if δκ < 2κ−1 then

4. Use “Operation A” to compute the coefficients of f mod sκ−1

of degree δκ−1 = δκ − 2κ−1 or higher.
5. Recursively call algorithm to compute f mod sκ−1

given the coefficients of degree δκ−1 or higher.
6. Use inverse FFT interpolation step to combine f mod sκ−1

and f mod s̄κ−1 into f mod sκ.
7. else

8. Use “Operation B” to compute f mod sκ

given the coefficients of this result of degree 2κ−1 or higher.
9. end if

10. else

11. Use FFT reduction step to compute the coefficients of f mod sκ−1

of degree δκ−1 = δκ or higher.
12. Recursively call algorithm to compute f mod sκ−1

given the coefficients of degree δκ−1 or higher.
13. Use “Operation C” to compute f mod sκ

given the coefficients of this result of degree δκ or higher
and f mod sκ−1.

14. end if

15. Return f mod sκ.

Figure 6.2 Pseudocode for inverse truncated FFT

174

If bi = 0, then lines 11-13 are performed. The cost of line 11 is at most

δi+1 · ci + m + m < m · ci + m additions. The cost of line 12 is the number of

operations needed to implement the algorithm with κ = i. The cost of line 13 is at

most m subtractions.

Combining these results, the cost of the inverse algorithm is at most

M(n) =
K−1∑

i=L

(
bi ·
(
2 · 2i +MF (2i)

))
, (6.20)

A(n) =
K−1∑

i=L

(
2 · 2i + ci · 2i + bi ·

(
2i + AF (2i)

))
(6.21)

operations. With these formulas, it can be easily shown that the cost of the inverse

truncated FFT algorithm is the same as the cost of the truncated FFT algorithm

plus at most n multiplications and 2N < 4n additions.

6.3 Illustration of truncated FFT algorithms

Figure 6.3 is provided to illustrate the truncated FFT and inverse truncated

FFT algorithms for the case where n = 21. In the example, the truncated FFT

computes the evaluation of some polynomial f at each of the roots of M(x) = s̄4(x) ·

s̄2(x) · s̄0(x) and the inverse truncated FFT interpolates these evaluations into f mod

M. Again, this selection for M was obtained by writing 21 in binary form, i.e. (10101)2

and including the factor s̄i(x) for each i such that bi = 1 in this binary representation.

Figure 6.3 adopts the same representation of the input and output that is used

in [41]. In particular, the top row of the figure represents a polynomial

f = a20 · x20 + a19 · x19 + · · · + a1 · x+ a0 of degree less than 21 as an array

[a0, a1, a2, . . . , a20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. The bottom row of the figure represents

175

(a) Truncated FFT for n = 21

♠ ♠ ♠ ♠ ♠

♠

♣

(b) Inverse truncated FFT for n = 21

• Known value at beginning of algorithm (zero value)

� Known value at beginning of algorithm (not necessarily zero)

H Value computed using FFT step

◭ Value computed using Operation A

♣ Value computed using Operation B

N Value computed using inverse FFT step

♠ Value computed using Operation C

Figure 6.3 Illustration of truncated FFT algorithms

176

the evaluations of f where some of these evaluations are “truncated”. These evalua-

tions are presented in the order determined by the roots of s0, s̄0, s̄1, · · · , s̄4.

The legend at the bottom of the figure gives the methods used to obtain

the results computed by the algorithm. The symbols used to represent the various

operations generally illustrate the flow of the steps if the symbols are viewed as

arrows. In the case of the inverse truncated FFT diagram, the algorithm works from

the right side of the figure to the left, recovering as many values as possible. As the

recursion of the algorithm is undone, the algorithm works from left to right in the

figure, recovering the remaining values. Figure 6.3a illustrates the truncated FFT

algorithm and Figure 6.3b illustrates the inverse truncated FFT algorithm.

6.4 Truncated algorithms based on roots of xN − 1

In the classical form of the radix-2 version of the multiplicative FFT, R con-

tains a primitive Nth root of unity ω and one evaluates a polynomial at each of

N powers of ω. These N points used for the multipoint evaluation are roots of

sK = xN − 1 where K = log2(N). This algorithm is based on the factorization

x2m − b2 = (xm − b) · (xm + b) where m = 2i for any 0 ≤ i < K and contains a

reduction step that converts f ◦ = f mod (x2m − b2) into fY = f mod (xm − b) and

fZ = f mod (xm+b). In this case, C = 2 and a simple way to implement the reduction

step is to split f ◦ into two polynomials of degree less than m, say f ◦ = fA · xm + fB.

Then fY = b · fA + fB and fZ = −b · fA + fB. This evaluation step can be applied to

si+1(x) = x2m − 1 = (xm − 1) · (xm + 1) = si(x) · s̄i(x) by letting b = 1. Observe here

that s̄i(x) = si(x) + 2. It can be shown that the interpolation step of the companion

IFFT is given by fA = 1/2 · b−1 · (fY − fZ) and fB = 1/2 · (fY + fZ).

Some simplifications are possible with Operations A, B, and C because si will

always have the form xm − 1 and s̄i will always have the form xm + 1. Express

177

f ◦ = fA1
· xd+m + fA2

· xm + fB1
· xd + fB2

where d < m. In Operation A, the

division of fA1
· xm by xm + 1 produces quotient fA1

and remainder −fA1
. So if

f mod (xm + 1) = fZ = fZ1
· xd + fZ2

, then the upper coefficients of f mod (xm − 1)

are simply given by fZ1
+2 ·fA1

since C = 2. Similarly, in Operation B, the division of

fA ·xm by xm +1 has quotient fA and remainder −fA. So this operation simplifies to

fB = fA + fZ . Finally in Operation C, the division of (fA1
·xm+d + fA2

·xm + fB1
·xd)

by xm−1 has remainder (fA1
+fB1

) ·xd +fA2
. Then if f mod (x2i −1) = fY1

·xd +fY2
,

the lower coefficients of f mod (x2m − 1) are simply given by fB2
= fY2

− fA2
.

In this case, ci = 1 for all i, MF (2i) = 1/2·2i ·i and AF (2i) = 2i ·i. As discussed

in the appendix, these results can be substituted into the operation count formulas

derived earlier to show that the truncated algorithms have complexity Θ(n · log2(n)).

The other algorithms from Chapter 2 can also be used to compute the FFTs of

size 2i in the truncated algorithms. In many cases, this will reduce the number of

multiplications required.

The computations of the truncated algorithms involve the roots of

f mod M = f mod
K−1∏

i=0

(
x2i

+ 1
)bi

. (6.22)

Observe that these are the same roots involved in the generalization of Crandall and

Fagin’s technique and that we can interpolate a collection of evaluations at these

points without the use of the Chinese Remainder Theorem. The algorithms of van

der Hoeven ([41], [42]) are based on other sets of n roots of xN −1, involve more cases

than the algorithms discussed in this paper, and require slightly more operations.

178

6.5 Truncated algorithms based on roots of xN − x

In Chapter 3, additive FFTs were discussed to efficiently compute the multi-

point evaluation of a polynomial where the coefficient ring is a finite field F with 2K

elements. The most efficient FFT algorithms in this case represent each element of F

as a vector space using the special basis discussed in Chapter 3. If this basis is used,

then si is a polynomial such that all of its nonzero coefficients are 1 and are located

in terms of degree that are a power of two. Furthermore, the coefficient of degree

2d is determined by dividing the binomial coefficient C(i, d) by 2 and recording the

remainder of this computation. Also, s̄i(x) = si(x) + 1 so that C = 1. The reduc-

tion step divides f mod (si+1 + (b2 + b)) by si(x) to obtain quotient q and remainder

r = f mod (si + b). Then f mod (s̄i) = f mod (si + (b + 1)) is determined by the

computation r− q = r+ q since F has characteristic 2. The interpolation step simply

performs the inverse of these instructions in reverse order. This evaluation step can

be applied to si+1(x) = si(x) · s̄i(x) by letting b = 0.

In this case, ci is one less than the number of ones in the binary representation

of 2i, MF (2i) = 1/2·2i·i and AF (2i) = 1/2·2i·i1.585+2i·i. By substituting these results

into the operation count formulas derived earlier, we can show that the truncated

algorithms require Θ(n · (log2(n))1.585) operations using a computation similar to

the multiplicative case. With some modification of the operation count derivations

given earlier, we can apply the truncated algorithms to the more general form of the

additive FFT also discussed in [32]. In this case, the truncated algorithms require

Θ(n · (log2(n))2) operations. On the other hand, the new additive FFT algorithm

introduced in this chapter can be used to reduce the number of operations required

to compute the FFTs of size 2i in the truncated algorithm.

179

6.6 Concluding remarks

It is possible to develop a truncated FFT based on an FFT of any size N = pK

where p is a prime number. For example, if p = 3, then the truncated algorithm for

the multiplicative FFT is based on the factorization

xN − 1 = (x− 1) ·
K−1∏

i=0

(x3i − Ω) · (x3i − Ω2), (6.23)

where Ω is a primitive 3rd root of unity and Ω2+Ω+1 = 0. To compute the truncated

FFT of size n < N , write n in ternary form, i.e. (tK−1tK−2 · · · t1t0)3. If ti = 1, then

we will use the radix-3 FFT to compute evaluations corresponding to the roots of

xm − Ω where m = 3i. If ti = 2, then we will use the radix-3 FFT to compute

evaluations corresponding to the roots of (xm −Ω) · (xm −Ω2) = x2m + xm + 1 where

again m = 3i. One can mimic the techniques discussed in this chapter to construct

the inverse truncated FFT algorithm for this case, using linear algebra to solve several

systems of 3 × 3 equations for unknowns present on both sides of the equations.

In summary, this chapter presented a generalization of a truncated FFT algo-

rithm introduced by van der Hoeven that can also be applied to polynomials where

the coefficient ring is a finite field of characteristic 2. In the multiplicative case, the

algorithms here differ from those of van der Hoeven because they are based on a

factorization introduced by Crandall and Fagin and require slightly fewer operations.

Depending on the input size, these algorithms require as few as half of the operations

required to compute an FFT of size n by the common technique of selecting an input

size N = 2K to perform the computation where n ≤ N . This can significantly im-

prove the operations needed to multiply two polynomials of degree less than n. With

the new algorithm, this technique can also be applied to polynomials with finite field

coefficients.

180

CHAPTER 7

POLYNOMIAL DIVISION WITH REMAINDER

Let a(x) and b(x) 6= 0 be polynomials with coefficients in R, a commutative

ring. The problem of computing division with remainder is to determine the unique

polynomials q(x) and r(x) that satisfy

a = q · b+ r, (7.1)

where the degree of r is less than the degree of b. Here, b has degree less than n,

and a has degree deg(b) + δ for some δ > 0. If R is not a field, then b must have the

further restriction that it is monic, i.e. it has a leading coefficient of 1.

If it is known at the beginning of the computation that r is 0, then the quotient

can be computed using the technique of deconvolution if R supports division and

some type of FFT. In this case, we would compute the FFT of a and b, compute

the “pointwise quotients” a(ε)/b(ε) = q(ε) for each ε in the set of elements used

in the FFT, and finally compute the IFFT of this collection of evaluations. Such a

computation would require roughly the same effort as multiplying the two polynomials

with product degree less than n+ δ.

For the rest of this chapter, we will assume that r 6= 0. We will examine two

techniques for computing this quotient, namely classical division and division based

on Newton’s method. Several improvements to Newton division will then be reviewed

if R supports an FFT. The chapter will also show how Newton division can be further

181

improved with the truncated Fast Fourier Transform techniques covered in Chapter

6.

7.1 Classical division

Classical division is the technique typically learned in a high school algebra

course (e.g. [5]). Assuming that R is a field or b is monic, the algorithm begins

by dividing the leading coefficient of a by the leading coefficient of b to obtain the

leading coefficient of the quotient q. If this leading coefficient is denoted by qδ, then

the next step of the process is to multiply qδ ·xδ by b and subtract the result from a to

obtain a polynomial of degree less than δ. The above process is repeated on this new

polynomial to obtain qδ−1. Similarly, we can compute qδ−2, qδ−3, · · · , q0 and combine

the results into the polynomial q = qδ ·xδ + qδ−1 ·xδ−1 + · · ·+ q1 ·x+ q0. At the end of

the procedure, a has been reduced to a polynomial r with degree less than n. Thus,

given polynomials b with degree less than n, and a with degree deg(b) + δ for some

δ > 0, we have computed polynomials q with degree δ and r with degree less than b

such that a = q · b + r if a 6= 0. If a = 0, then q = r = 0. The pseudocode in Figure

7.1 summarizes these steps used to implement classical division.

Let us now analyze the cost of this algorithm. Assume that the cost of line

1 is one inversion operation in R (if R is a field) and lines 7, 8, and 9 do not cost

any operations. Thus, most of the work of the algorithm is containing in the loop

spanning lines 2-7. We will now analyze a single iteration of this loop for some value

of i.

In line 3, a decision is made which we will assume to cost no operations. If

the condition was satisified, then line 4 involves one multiplication in R and line 5

involves n multiplications and n subtractions in R. If the condition was not satisifed,

182

Algorithm : Classical division

Input: Polynomials b(x) with degree less than n
and a(x) with degree deg(b) + δ for some δ > 0.

Output: Polynomials q(x) with degree δ and r(x) with degree less than deg(b)
such that a = q · b+ r.

1. Let r = a and let ρ be the inverse of the leading coefficient of b.
2. for i = δ downto 0 do

3. if deg(r) = n+ i then

4. qi = ri · ρ.
5. Set r equal to r − qi · xi · b.
6. else qi = 0.
7. end if

8. end for (Loop i)
9. Return q = qδ · xδ + qδ−1 · xδ−1 + · · · + q1 · x+ q0 and r.

Figure 7.1 Pseudocode for classical division

then line 6 requires an assignment which we will assume will cost no operations. Thus,

the loop requires at most n+ 1 multiplications and n subtractions.

Since the loop must iterate δ + 1 times, then the cost of the algorithm is

δ · n+ δ + n+ 1 multiplications and δ · n+ n subtractions, plus one inversion in R.

Note that the cost of this algorithm is Θ(δ · n) where δ is the difference in

degrees between the two input polynomials. If deg(a) is about 2n, then δ = n and

the algorithm is Θ(n2).

7.2 Newton division

We are are now going to examine an algorithm that computes division with

remainder more efficiently than classical division when the degree of a is much larger

than the degree of b and the degree of b is reasonably large as well. The algorithm is

based on Newton’s method, a technique typically introduced in a Calculus course for

183

finding roots of equations. Surprisingly, the technique can also be applied to finite

fields.

Classical division solves for the two unknown polynomials q and r at the same

time. In constrast, Newton division first solves for q and then uses a = q · b + r to

recover r. Suppose that 1/x is substituted for x in (7.1) and the result is multiplied

by xn+δ. If the reversal of f , revd(f), is defined 1 as xd · f(1/x) for any polynomial

f(x) and any integer d, then we obtain

revn+δ(a) = revδ(q) · revn(b) + revn+δ(r). (7.2)

Since the degree of r is less than n, then revn+δ(r) mod xδ+1 = 0 and

revδ(q) · revn(b) = revn+δ(a) − C · xδ+1. (7.3)

Let N(x) be a polynomial such that revn(b) · N mod xδ+1 = 1. Multiplying (7.3) by

N and modularly reducing both sides of the equation by xδ+1 we obtain

revδ(q) = revn+δ(a) · N mod xδ+1. (7.4)

The problem of division with remainder essentially becomes the problem of finding N,

also called the “Newton inverse” of a power series modulo some xm. In other words,

1 Another interpretation of revd(f) is to create a polynomial of degree d by writing
the coefficients of f in reverse order.

184

given a power series f(x), we desire to compute another power series g(x) such that

f · g mod xm = 1. In this section, we will assume that m = δ + 1 is a power of two.

In exercise 9.6 of [34], an algorithm that works for arbitrary m is considered.

The technique used to find N is based on Newton’s method which is typically

introduced in a Numerical Analysis course (e.g. [11]) for solving nonlinear equations.

Suppose that we wish to find a solution g to the equation 1/g− f = 0 for some given

f . Let Φ(g) = 1/g − f . Newton’s method receives some initial approximation g(0) as

input and computes better approximations to g using the iteration

g(i) = g(i−1) −
Φ(g(i−1))

Φ′(g(i−1))
, (7.5)

where Φ′(g(i−1)) is the derivative of Φ(g(i−1)). In the case of the problem at hand,

Φ′(g(i−1)) = −1/(g(i−1))
2. So then, (7.5) simplifies to

g(i) = g(i−1) −
1/g(i−1) − f

−1/(g(i−1))2
= 2 · g(i−1) − f · (g(i−1))

2. (7.6)

Newton’s method can also be used to find a polynomial g such that f · g mod

xm = 1 for some known polynomial f . In this case, g(0) is initialized to be the inverse

of the constant term of f . Again, if R is not a field, then this term must be 1. Note

that by the construction of g(0), then f · g(0) mod x1 = 1. Now, for any i ≤ log2(m),

then

g(i) = 2 · g(i−1) − f · (g(i−1))
2 mod x2i

(7.7)

185

provides a polynomial that matches g in the lower 2i coefficients if g(i−1) is already

known. So starting with g(0), each call to (7.7) doubles the number of recovered

coefficients of g. Thus, iteration (7.7) is said to possess “quadratic convergence”. A

proof of the quadratic convergence of this iteration is given in [34] for the case of

polynomials by using Calculus concepts.

One may object to this procedure in the case where R is a finite field because

the concept of limits does not exist in this structure. In [34], a derivation of the

Newton inversion iterative step is provided using the “formal derivative” which does

not depend on limits in its definition. It can be shown [34] that the “formal derivative”

has the properties of the product rule and the chain rule which allow the derivative

of Φ(g) to be computed using a algebraic definition.

Alternatively, [30] provides a derivation of the iterative step which does not

require the use of derivatives at all in its presentation and clearly shows the quadratic

convergence of the iterative step. A modified version of this derivation is given in the

appendix.

Once N has been recovered using Newton’s method, this result can be substi-

tuted into (7.4) to obtain revδ(q). The reversal of this polynomial can be computed

to determine q. Then use

r = a− q · b (7.8)

to recover the remainder. The pseudocode provided in Figure 7.2 summarizes these

procedures.

Let us compute the cost of this algorithm. Most of the work will take place in

the loop spanning lines 2-4 which implements Newton’s method. At iteration i, we

186

Algorithm : Newton division

Input: Polynomials b(x) with degree less than n and a(x) with degree
deg(b) + δ for some δ where 2κ = δ + 1 for some κ.

Output: Polynomials q(x) with degree δ and r(x) with degree less than deg(b)
such that a = q · b+ r.

1. Compute the reversal polynomial f = revn+δ(a);
Let g(0) = (f0)

−1.
2. for i = 1 to κ do

3. Set g(i) = 2 · g(i−1) − f · (g(i−1))
2 mod x2i

.
4. end for (Loop i)
5. Compute revδ(q) = f · g(κ).
6. Reverse revδ(q) to obtain q.
7. Compute r = a− q · b.
8. Return q and r.

Figure 7.2 Pseudocode for Newton division algorithm

only need to compute the upper 2i−1 coefficients of g(i) since the lower 2i−1 coefficients

are given by g(i−1) computed in the previous iteration. Thus to compute g(i), we need

to compute a product of degree less than 2i to form g(i−1)
2, compute a product of

degree less than 2i+1 to form f ·g(i−1)
2, and finally combine 2 ·g(i−1) with the negative

of the upper 2i−1 coefficients of this result. If MM(2n) and AM(2n) give the number

of multiplications and additions to multiply two polynomials with product degree less

than 2n, then the cost of the iteration step for a given value of i is MM(2i)+MM(2i+1)

multiplications and AM(2i) + AM(2i+1) + 2i−1 additions. Summing over all values

of i used in the algorithm gives an operation count of
∑κ

i=1(MM(2i) + MM(2i+1))

multiplications and
∑κ

i=1(AM(2i) + AM(2i+1) + 2i−1) additions. If we assume that

2·MM(2i) ≤MM(2i+1) and 2·AM(2i) ≤ AM(2i+1) for all i ≤ k, then the total number

of operations needed to compute the Newton inversion is at most
∑κ

i=1(3/2·MM(2i+1))

multiplications and
∑κ

i=1(3/2·AM(2i+1)+1/2·2i) additions. Using Master Equation V,

187

it can be shown that at most 3·MM(2·(δ+1)) multiplications and 3·AM(2·(δ+1))+δ+1

additions are required.

Now let us compute the cost of the rest of the algorithm. We will assume that

lines 1, 6, and 8 do not cost any operations. The multiplication in line 5 costs MM(2n)

multiplications and AM(2n) additions if n ≥ δ + 1. If δ + 1 > n, then line 5 costs

MM(2 · (δ + 1)) multiplications and AM(2 · (δ + 1)) additions. The multiplication in

line 7 costs MM(2 ·(δ+1)) multiplications and AM(2 ·(δ+1)) additions if n ≥ δ+1. If

δ+ 1 > n, then line 7 costs MM(2n) multiplications and AM(2n) additions. In either

case, at most n subtractions are required to recover r since deg(r) < deg(b) = n.

Combining the results, we find that the total number of operations required

to implement this algorithm is at most 4 ·MM(2 · (δ + 1)) +MM(2n) multiplications

and 4 · AM(2 · (δ + 1)) + AM(2n) + n + δ + 1 additions. A number of researchers

(e.g. Bernstein [3]) prefer to express the operations for the case where δ = n − 1.

Using this convention, one would say that the cost of dividing a polynomial of degree

less than 2n− 1 by a polynomial of degree less than n is roughly 5 times the cost of

multiplying two polynomials of degree less than n using the above algorithm.

7.3 Newton divison using the multiplicative FFT

In [3], Bernstein summarizes a progression of improvements made to the com-

putation of Newton inversion which exploits known coefficients in each g(i) computed

in the iterations. These improvements require R to contain a (2k+1)th primitive root

of unity ω for some k, i.e. R supports a multiplicative Fast Fourier Transform.

In the derivation of Newton’s Method given in the appendix, g(i) is represented

as g(i) = gA · x2i−1

+ g(i−1) for some polynomial gA. If g(i)
∗ = gA in this expression,

then

188

g(i)
∗ · x2i−1

= g(i−1) − f · (g(i−1))
2 mod x2i

(7.9)

using a result derived in the appendix. Let us compute

g(i)
† = g(i−1) − f ∗ · (g(i−1))

2 (7.10)

where f ∗ = f mod x2i

. Here, we have truncated f to the lower 2i coefficients because

the terms of degree 2i or higher will be truncated in (7.9) and are unnecessary to the

computation. Observe that g(i)
† is a polynomial of degree 2i+1 with zeros in the lower

2i−1 coefficients.

Since R contains a primitive (2k+1)th root of unity ω, then each of f ∗, g(i−1)

and g(i)
† can be evaluated at each of the powers of ω. Since function evaluation is a

linear operation, then

g(i)
†(ωθ) = g(i−1)(ω

θ) − f ∗(ωθ) · g(i−1)(ω
θ) · g(i−1)(ω

θ) (7.11)

for any θ in 0 ≤ θ ≤ 2k. So g(i)
† can be determined by computing the FFT of size 2i+1

of f ∗, computing the FFT of size 2i+1 of g(i−1), using (7.11) in place of the pointwise

products, and then using an inverse FFT of size 2i+1 to recover the result.

We can further improve this computation by taking advantage of the 2i−1

known coefficients in g(i)
†. Instead of computing the FFTs of size 2i+1 for f ∗ and

g(i−1), compute the FFTs to be of size m = 3 · 2i where we will evaluate the two

189

polynomials at each of the roots of (x2i

+1) · (x2i−1

+1) = x3·2i−1

+x2i

+x2i−1

+1. The

result of interpolating the evaluation of (7.11) at each of the roots of this polynomial

will be g(i)
†† = g(i)

† mod (x3·2i−1

+x2i

+x2i−1

+1). To recover g(i)
†, one could multiply

the coefficients of degree less than 2i−1 in g(i)
†† by x3·2i−1

+ x2i

+ x2i−1

+ 1 and then

subtract the result from g(i)
††.

Another approach is to directly compute g(i)
∗ without first recovering g(i)

†.

First, compute the reverse polynomials of f ∗ and g(i−1) with respect to degree ν =

3 · 2i. One then computes the product of these polynomials using the Truncated Fast

Fourier Transform (TFFT) discussed in Chapter 6. This product will be the reverse

polynomial of g(i)
∗ with respect to ν because the known zero coefficients in the upper

positions of the reverse of g(i)
† do not influence the results in the lower 3 ·2i positions.

So the reverse of this product can be computed to recover g(i)
∗. An advantage of this

approach over the previous methods is that is can be easily adapted to the case where

the size of g(i) is not a power of two. Specificially, if g(i) is of size n, then one can

efficiently compute this result using a TFFT of size ν = 3/4 · n.

The pseudocode provided in Figure 7.3 shows how to compute a quotient with

remainder using these improvements to Newton division. To analyze this algorithm,

we only need to consider the number of operations required for the Newton inversion

(lines 2-11) and then add these results to those obtained from the previous section.

We will first determine the cost of a single iteration of this loop (lines 3-10). Line

3 simply extracts some of the coefficients from f and costs no operations. We will

assume that the cost of line 4 is no arithmetic operations, although copy operations

are required to implement the instruction. The TFFT discussed in Chapter 6 can be

used to compute the product represented by lines 5-8 in 0.75·MM(2i+1) multiplications

and 0.75 ·AM(2i+1) additions. We will assume that the cost of line 9 is no arithmetic

operations, although copy operations are required to implement the instruction. Line

190

Algorithm : Improved Newton division

Input: Polynomials b(x) ∈ R[x] with degree less than n
and a(x) ∈ R[x] with degree deg(b) + δ for some δ where 2k = δ + 1
for some k. R has a (2k+1)th primitive root of unity ω.

Output: Polynomials q(x) with degree δ and r(x) with degree less than deg(b)
such that a = q · b+ r.

1. Compute the reversal polynomial f = revn+δ(a);
Let g(0) = (f0)

−1 where f0 is the constant term of f .
2. for i = 1 to k do

3. Let f ∗ = f mod x2i

.
4. Compute fr = revν(f

∗) and gr = revν(g(i−1)) where ν = 3 · 2i.

5. Evaluate fr at each of the roots of (x2i

+ 1) · (x2i−1

+ 1).

6. Evaluate gr at each of the roots of (x2i

+ 1) · (x2i−1

+ 1).
7. Compute g∗r(ω

θ) = gr(ω
θ) − fr(ω

θ) · gr(ω
θ) · gr(ω

θ) for each ωθ

that is a root of (x2i

+ 1) · (x2i−1

+ 1).

8. Compute g∗r mod (x2i

+ 1) · (x2i−1

+ 1) by interpolating the evaluations
from line 7.

9. Compute g(i)
∗ = revν(g

∗
r).

10. Compute g(i) = g(i)
∗ · x2i−1

+ g(i−1).
11. end for (Loop i)
12. Compute revδ(q) = f · g(k).
13. Reverse revδ(q) to obtain q.
14. Compute r = a− q · b.
15. Return q and r.

Figure 7.3 Pseudocode for improved Newton division

191

10 involves concatenating two polynomials at no cost. Master Equation V can be

used to show that the cost of this loop is at most 1.5 ·MM(2 · (δ+ 1)) multiplications

and 1.5 · AM(2 · (δ + 1)) additions.

Combining these results with the rest of cost analysis for this algorithm given

in the previous section, we find that the total number of operations required to im-

plement this algorithm is at most 2.5 ·MM(2 · (δ+ 1)) +MM(2n) multiplications and

2.5 · AM(2 · (δ + 1)) + AM(2n) + n + δ + 1 additions. If δ = n − 1, then the cost of

dividing a polynomial of degree less than 2n− 1 by a polynomial of degree less than

n is roughly 3.5 times the cost of multiplying two polynomials of degree less than n

using the above algorithm.

These performance results are not new. Schonhage [69] and Bernstein [3] each

independently published an algorithm with a similar running time in 2000. Schonhage

computes polynomial products using a technique similar to Reischert’s Method [64],

a multiplication technique discussed in a section of the appendix. Bernstein’s method

computes g(i)
† mod (x2i

+ 1) and g(i)
† mod (x2i−1

+ 1) which are combined using the

Chinese Remainder Theorem. Note that the TFFT obtains a similar result without

the use of the Chinese Remainder Theorem and allows more flexible input sizes. The

application of the TFFT to this problem may also be viewed as simpler to work with

than the other algorithms; indeed, Bernstein describes his own method [3] as a “rather

messy algorithm”.

7.4 Newton divison for finite fields of characteristic 2

The method described in the previous section does not apply to finite fields

of characteristic 2 because they do not support a multiplicative FFT. However, the

method can be adapted to work with finite fields by using the additive FFT described

in Chapter 3 and the truncated version of the algorithm described in Chapter 6.

192

Furthermore, these finite fields possess a different property which allows an even

more efficient algorithm to be generated.

Suppose that F is a finite field of characteristic 2 withN elements. To construct

g(i−1)
2 in such a field, simply square each of the coefficients of g(i−1) and assign each

result to the coefficient of twice the degree in g(i−1)
2. Thus, term a·xi of g(i−1) becomes

a2 · x2i

in g(i−1)
2. Note that all of the terms of g(i−1)

2 are of even degree. So it is

possible to compute g(i)
† using (7.10) by splitting f ∗ into a polynomial fe consisting

of even degree terms of f ∗ and fo consisting of the odd degree terms. Then g(i)
† is

computed by combining

g(i)
†
e

= (g(i−1))e − fe · g(i−1)
2, (7.12)

g(i)
†
o

= (g(i−1))o − fo · g(i−1)
2. (7.13)

It may helpful to use the transformation y = x2 for generating the polynomials g(i)
†
e

and g(i)
†
o
.

To complete the derivation of the improved Newton division method for finite

fields, replace each application of the multiplicative FFT in the previous section with

an additive FFT. The details are left to the reader.

Following an analysis similar to the previous section, Master Equation V can

be used to show that at most 2.25 ·MM(2 · (δ + 1)) + MM(2n) multiplications and

2.25 · AM(2 · (δ + 1)) + AM(2n) + n + δ + 1 additions are required for the Newton

inversion. Since Gao’s algorithm and the new additive FFT algorithm only work

193

for certain input sizes, the Wang-Zhu-Cantor algorithm should be used for the FFT-

based multiplication to achieve the above results. 2 If δ = n − 1, then the cost of

dividing a polynomial of degree less than 2n− 1 by a polynomial of degree less than

n is roughly 3.25 times the cost of multiplying two polynomials of degree less than n.

7.5 Concluding remarks

This chapter summarized a number of existing techniques in the literature

to compute division with remainder using Newton inversion. We also showed how

the truncated Fast Fourier Transform can be used to obtain a new algorithm that

can be used to complete the division of a polynomial of degree less than 2n by a

polynomial of degree less than n in roughly 3.5 times the cost of a multiplication of

two polynomials of degree less than n. When the coefficients are elements of a finite

field of characteristic 2, the factor can be reduced to 3.25.

One needs to carefully analyze the degrees of the two input polynomials when

deciding with division algorithm to use. The Newton division methods are better

than classical division for large sizes when one polynomial has degree roughly twice

that of the other. However, if the polynomials are of small degree or have roughly the

same degree, then one should consider classical division over Newton division. Since

other factors contibute to the cost of the algorithms (e.g. the time needed for the

copies required for the reversal of polynomials in Newton division) and will vary from

computer platform to computer platform, one should implement both algorithms and

develop criteria to select the best algorithm to use based on the degrees of the input

polynomials.

2 This reduction in operations is due to the reuse of the FFT of g(i−1) in (7.12) and
(7.13).

194

CHAPTER 8

THE EUCLIDEAN ALGORITHM

The Euclidean Algorithm is one of the oldest techniques in mathematics that

is still used today. Invented around 400 B.C., its purpose is to find the “largest”

element of a given algebraic structure that divides each of two or more inputs to the

algorithm. This element is called a “greatest common divisor” or GCD. Although

it was originally invented to operate on integers, mathematicians have since specified

conditions whereby the algorithm can work on other algebraic structures. Mathe-

maticians call a structure where the Euclidean Algorithm can be applied a Euclidean

Domain. In this chapter, we will first assume that the algebraic structure is univariate

polynomials with coefficients over any field F and will later restrict F to finite fields.

8.1 The Euclidean Algorithm

Let a(x), b(x) ∈ F[x] and define the greatest common divisor of a and b,

gcd(a, b), to be the common divisor of a and b which has the greatest degree and is

monic. If a = 0 and b = 0, then the greatest common divisor is defined to be 0.

A Euclidean Domain D is an algebraic structure for which division with re-

mainder is possible. In other words, if a and b are two elements of D with b 6= 0, then

there exist q and r in D such that a = q · b + r where either r = 0 or δ(r) < δ(b).

Here, δ is a function called the “norm” that maps the nonzero elements of D to the

nonnegative integers. In the case of F[x], then [34] explains that δ is defined to map

an element of F[x] to the degree of the polynomial and that q, r are unique in this

case.

Let us now prove the two key facts that are used to find gcd(a, b).

195

Theorem 30 Let f(x) and g(x) be two polynomials in F[x] and let f = q ·g+r where

q(x) and r(x) are the quotient and remainder of dividing f by g. Then gcd(g, r) =

gcd(f, g).

Proof: Let G(x) = gcd(f, g). Then G is the monic polynomial of maximum degree

such that G divides both f and g. Represent f = G · p1 and g = G · p2 for some

polynomials p1(x) and p2(x). Then r = f − q ·g = G ·p2− q · (G ·p1) = G · (p2− q ·p1).

So G is a divisor of r.

Suppose that there exists a divisor G′(x) of both g and r such that the degree

of G′ exceeds the degree of G. Since f = q ·g+r, then G′ divides f . So G′ is a divisor

of both f and g with degree that exceeds G. But this contradicts the definition of

greatest common divisor.

Thus, G must be a monic divisor of g and r with maximum degree. We now

need to show that it is unique. Suppose that there exists another monic polynomial

G†(x) with degree equal to G such that G† divides both g and r. Since G and G† are

both monic polynomials with equal degree, it follows that G† = G. Thus, G is the

unique monic divisor of g and r with maximum degree, i.e. gcd(g, r) = G = gcd(f, g).

�

Theorem 31 Let f(x) be a polynomial in F[x] and let g(x) = 0. Then gcd(f, g) =

N(f) where the normalization function N makes the input polynomial monic by di-

viding each term by its leading coefficient.

Proof: Compute f ′ = N(f) by dividing each coefficient of f by its leading coefficient

ρ. Since g = 0 ·f ′ and f = ρ ·f ′, then f ′ is a divisor of f and g with leading coefficient

of 1. Since the degree of f is the same as the degree of f ′, there cannot exist a divisor

of f with greater degree. Thus, f ′ is the greatest common divisor of f and g, i.e.

196

gcd(f, g) = N(f). �

The Euclidean Algorithm for polynomials determines gcd(a, b) by computing a

sequence of remainders {r1, r2, . . . , rℓ−1, rℓ = 0} based on the previous two theorems.

For initialization purposes, we will define r−1(x) = a and r0(x) = b. Then for each

i > 0, divide ri−2 by ri−1 and obtain remainder ri. Because F[x] is a Euclidean

Domain, then either the degree of ri will be less than ri−1 or else ri = 0. In the

first case, we can use Theorem 30 to reduce the problem of computing gcd(a, b)

to the problem of computing gcd(ri, ri−1). In the second case (when i = ℓ), then

gcd(a, b) = N(rℓ−1) by Theorem 31 and we are done. The number of times for

which Theorem 30 must be applied before we obtain the desired GCD is called the

“Euclidean length” and is denoted by ℓ above and throughout this chapter.

An algorithm can be constructed for computing gcd(a, b) by recursively ap-

plying this reduction step. Since the degree of ri decreases by at least one on each

application of the reduction step, then we must encounter the second case after at

most m + 1 iterations of this process. Thus, the algorithm would compute gcd(a, b)

in a finite amount of time. Pseudocode which implements the Euclidean Algorithm

is given in Figure 8.1.

Let us compute the cost of this algorithm. Line 0 performs some initialization

and is assumed to have no cost. Lines 1-4 perform most of the work of the algorithm

and consists of ℓ iterations of lines 2 and 3. We will assume that line 2 requires no

operations. If we let ni = deg(ri) for each i in −1 ≤ i ≤ ℓ and use classical division,

then the cost of line 3 is (ni−2−ni−1+1)·(ni−1) multiplications, (ni−2−ni−1+1)·(ni−1)

additions, plus one inversion in F. However, if ri is monic for any i, then an inversion

is not needed in that step. Finally, line 5 consists of computing one inversion in F,

197

Algorithm : Euclidean Algorithm

Input: Polynomials a(x), b(x) ∈ F [x] where n = deg(a) and m = deg(b) < n.
Output: G(x) = gcd(a, b), i.e. the monic polynomial of greatest degree

such that G divides a and G divides b.

0. Set r−1(x) = a; Set r0(x) = b; Set i = 0.
1. While ri 6= 0
2. Increment i.
3. Set ri = ri−2 mod ri−1.
4. End While

5. Return G = N(ri−1).

Figure 8.1 Pseudocode for Euclidean Algorithm

plus at most m multiplications by the inverse of the leading coefficient to normalize

ri−1.

Cumulating the operation counts for all of the applications of Theorem 30, we

obtain a total of

ℓ∑

i=1

((ni−2 − ni−1 + 1) · (ni−1)) +m (8.1)

multiplications,

ℓ∑

i=1

(ni−2 − ni−1 + 1) · (ni−1) (8.2)

additions, plus at most ℓ+ 1 inversions in F.

For most applications of Theorem 30 in the Euclidean Algorithm, the division

with remainder produces a quotient of degree 1 and a remainder of degree ni = ni−1−

198

1. In these cases, then the division only requires 2 · (ni−1 + 1) multiplications and 2 ·

(ni−1) additions, plus at most one inversion. Since the divisions are essentially linear-

time operations using classical division, there is no advantage to applying Newton

division in these cases.

The situation where ni = ni−1 − 1 for all i in 1 ≤ i ≤ ℓ is called the “normal

case” by mathematicians. Here, the number of multiplications needed to implement

the Euclidean Algorithm is given by

(n−m+ 1) ·m+
ℓ=m+1∑

i=2

(2 · (m− i+ 1)) +m = nm+m, (8.3)

and the number of additions / subtractions is given by nm using a similar calculation.

Since m = n − k for some k > 0, then the number of multiplications is given by

n2 − n · k + n− k − 1 and the number of additions is given by n2 − n · k − 1. In this

case, the Euclidean Algorithm is Θ(n2).

In [34], a proof is given that no other remainder sequence requires more opera-

tions than the “normal case”. In other words, if ni < ni−1 − 1 for one or more i, then

the number of operations needed to implement the Euclidean Algorithm is bounded

above by the number of operations needed for the normal case remainder sequence.

Thus, the Euclidean Algorithm requires Θ(n2) operations for any input polynomials

a and b.

8.2 The Extended Euclidean Algorithm

The Extended Euclidean Algorithm not only computes gcd(a, b), but performs

additional computations to express the result as a linear combination of a and b. That

199

is to say, if G(x) = gcd(a, b), then we will also find polynomials u(x) and v(x) such

that

G = u · a+ v · b. (8.4)

We are going to express each intermediate result of the Euclidean Algorithm, ri(x),

as a linear combination of a and b. Thus, we will find polynomials ui and vi such that

ri = ui · a+ vi · b. (8.5)

Since the Euclidean Algorithm is initialized with r−1(x) = a and r0(x) = b, then

clearly u−1 = 1, v−1 = 0, u0 = 0, and v0 = 1. In matrix form, the linear combinations

for the input polynomials can be expressed as

r−1

r0

 =

1 0

0 1

 ·

a

b

 . (8.6)

Now let us compute r1(x) using r1 = r−1 − q1 · r0 where q1(x) is the quotient that

results when r−1 is divided by r0. We can obtain the vector (r0, r1)
T by using the

linear transformation

200

r0

r1

 =

0 1

1 −q1

 ·

r−1

r0

 (8.7)

=

0 1

1 −q1

 ·

1 0

0 1

 ·

a

b

 .

Let us define the matrices Qi by

Q0 =

1 0

0 1

 , (8.8)

Qi =

0 1

1 −qi

 for all i > 0, (8.9)

and then define PU,L as

PU,L = QU ·QU−1 · · · · ·QL+1 ·QL. (8.10)

The Extended Euclidean Algorithm is based on the following results:

Lemma 32 Select any i in 1 ≤ i ≤ ℓ and let Pi,0 be defined as in (8.10). Then

Pi,0 = Qi · Pi−1,0. (8.11)

201

Proof: Using the definition of Pi,0 as given by (8.10),

Pi,0 = Qi ·Qi−1 · · · · ·Q1 ·Q0 (8.12)

= Qi · (Qi−1 ·Qi−2 · · · ·Q1 ·Q0)

= Qi · Pi−1,0.

�

Theorem 33 Select any i in 1 ≤ i ≤ ℓ and let Pi,0 be defined as in (8.10). Then

ri−1

ri

 = Pi,0 ·

a

b

 . (8.13)

Proof: We will prove this result by induction. The case i = 1 is proven by (8.6).

Suppose that the result holds for i = κ where κ ≥ 1. We need to show that the result

holds for i = κ+ 1.

By the definition of Pi,0 as defined as in (8.10) and Lemma 32,

202

Pκ+1,0 ·

a

b

 = Qκ+1 · Pκ,0 ·

a

b

 (8.14)

=

0 1

1 −qκ+1

 ·

rκ−1

rκ

=

rκ

rκ−1 − qκ+1 · rκ

=

rκ

rκ+1

 .

Thus, the theorem is proven by mathematical induction. �

Corollary 34 Select any i in 1 ≤ i ≤ ℓ and let Pi,0 be defined as in (8.10). Then

Pi,0 =

ui−1 vi−1

ui vi

 . (8.15)

Proof: Since Pi,0 is a matrix that transforms (a, b)T into (ri−1, ri)
T by

Theorem 33, then the corollary is proven by (8.5). �

203

Corollary 35 For any i in 0 ≤ i ≤ ℓ, then

Pi,0 =

ui−1 vi−1

ui vi

 =

0 1

1 −qi

 ·

ui−2 vi−2

ui−1 vi−1

 . (8.16)

Proof: By Lemma 32, Pi,0 = Qi · Pi−1,0. Substituting (8.9) and (8.15) into this

equation yields the result. �

Corollary 36 Select any i in 0 ≤ i ≤ ℓ and let Qi be defined as in (8.9). Then

ri−1

ri

 = Qi ·

ri−2

ri−1

 . (8.17)

Proof: By Lemma 32 and Theorem 33,

ri−1

ri

 = Pi,0 ·

a

b

 = Qi · Pi−1,0 ·

a

b

 = Qi ·

ri−2

ri−1

 . (8.18)

�

The Extended Euclidean Algorithm is initialized with r−1 = a, r0 = b, and P0,0

(the 2×2 identity matrix). On each reduction step i where i > 0, then ri−2 is divided

by ri−1 to produce a quotient qi and remainder ri. In theory, Theorem 33 could be

204

used to compute ri. However, Corollary 36 shows how this result could be computed

using one reduction step of the Euclidean Algorithm. Based on the material covered

so far, the polynomials involved with Theorem 33 are larger than the polynomials

involved with Corollary 36 and so it is more efficient to simply apply a reduction step

of the Euclidean Algorithm to obtain ri.

The Extended Euclidean Algorithm also computes the polynomials ui(x) and

vi(x) that express ri as a linear combination of a and b. To do so, we will first

construct Qi using (8.9) and then compute Pi,0 using (8.16). In practice, only the

second row of Pi,0 actually needs to be computed as the first row can be obtained by

simply copying the second row of Pi−1,0. It can be easily verified that the formulas

ui = ui−2 − qi · ui−1, (8.19)

vi = vi−2 − qi · vi−1 (8.20)

are equivalent to these matrix computations. The following theorem gives the degrees

of each of these polynomials.

Theorem 37 For all i in 1 ≤ i ≤ ℓ,

deg(ui) = deg(b) − ni−1, (8.21)

deg(vi) = deg(a) − ni−1, (8.22)

where n−1 = deg(a), n0 = deg(b), and nj = deg(rj) for all 1 ≤ j ≤ ℓ.

205

Proof: We will prove the second part of the theorem by the second principle of

mathematical induction. 1 Observe that by (8.19), vi = vi−2 − qi · vi−1 for all

1 ≤ i ≤ ℓ. For i = 1, then v1 = v−1 − q1 · v0 = −q1. Thus, deg(v1) = deg(q1) =

deg(a) − deg(b) = deg(a) − n0. For i = 2, then v2 = v0 − q2 · v1 = 1 + q1 · q2. Thus,

deg(v2) = deg(q1) + deg(q2) = (deg(a) − n0) + (n0 − n1) = deg(a) − n1. Assume

that the result holds for i = κ − 1 and i = κ where 2 ≤ k < ℓ. We need to show

that the result holds for i = κ + 1. Since the degrees of the remainders of the

Euclidean Algorithm is a strictly decreasing sequence, then nκ−1 > nκ. Now by the

inductive hypothesis, deg(vκ−1) = deg(a) − nκ−1 < deg(a) − nκ = deg(vκ). Then

clearly deg(vκ−1) < deg(qκ+1) + deg(vκ) = deg(qκ+1 · vκ) and thus,

deg(vκ+1) = deg(vκ−1 − qκ+1 · vκ) (8.23)

= deg(qκ+1) + deg(vκ)

= (nκ−1 − nκ) + (deg(a) − nκ−1)

= deg(a) − nκ.

So, the second part of the theorem is proven by the second principle of mathematical

induction. A slightly simpler proof used the same approach can be used to establish

the first part of the theorem. �

Since the Extended Euclidean Algorithm is essentially the Euclidean Algo-

rithm with some additional computations, there will again exist an ℓ > 0 such that

1 The second part was chosen because this particular result will be used in Chapter
9.

206

Algorithm : Extended Euclidean Algorithm

Input: Polynomials a(x), b(x) ∈ F [x] where n = deg(a) and m = deg(b) < n.
Output: G(x) = gcd(a, b), i.e. the monic polynomial of greatest degree

such that G divides a and G divides b.
Also, u(x), v(x) such that G = u · a+ v · b.

0. Set r−1(x) = a, u−1(x) = 1, v−1(x) = 0.
Set r0(x) = b, u0(x) = 0, v0(x) = 1.
Set i = 0.

1. While ri 6= 0
2. Increment i.
3. Set qi = ri−2 div ri−1, ri = ri−2 mod ri−1.
4. Set ui = ui−2 − qi · ui−1.
5. Set vi = vi−2 − qi · vi−1.
6. End While

7. Let ρ be the leading coefficient of ri−1.
8. Return G(x) = ri−1/ρ = N(ri−1), u(x) = ui−1/ρ, v(x) = vi−1/ρ.

Figure 8.2 Pseudocode for Extended Euclidean Algorithm

rℓ = 0. When this occurs, the Extended Euclidean Algorithm will terminate and the

desired greatest common divisor will be determined by Theorem 31.

Pseudocode for the Extended Euclidean Algorithm is provided in Figure 8.2.

Let us compute the cost of this algorithm. Line 0 performs some initialization and

is assumed to have no cost. Lines 1-6 perform most of the work of the algorithm

and consists of ℓ iterations of lines 2-5. We will assume that line 2 requires no

operations. Line 3 is just one reduction step of the Euclidean Algorithm and requires

(ni−2 − ni−1 + 1) · (ni−1) multiplications, (ni−2 − ni−1 + 1) · (ni−1) additions, plus one

inversion in F from the discussion in the previous section. Again, if ri is monic for

any i, then an inversion is not needed in that step. Note that qi is obtained as part of

this calculation at no additional cost. If i = 1, then lines 4 and 5 can be computed at

no cost. Otherwise, Theorem 37 can be used to show that the number of operations

needed to implement line 4 is (ni−2 − ni−1 + 1) · (m − ni−2 + 1) multiplications and

207

(ni−2−ni−1)·(m−ni−2+1)+(m−ni−1) additions, assuming that classical multiplication

is used in this step. Similarly, line 5 requires (ni−2 − ni−1 + 1) · (n − ni−2 + 1)

multiplications and (ni−2 − ni−1) · (n − ni−2 + 1) + (n − ni−1) additions. After the

loop is completed, line 7 is assumed to require no operations and line 8 requires 1

inversion of ρ, plus at most n+m− 1 multiplications.

Cumulating the operation counts for all values of i in the algorithm, we obtain

a total of

ℓ∑

i=1

((ni−2 − ni−1 + 1) · (ni−1)) (8.24)

+
ℓ∑

i=2

((ni−2 − ni−1 + 1) · (m− ni−2 + 1))

+
ℓ∑

i=2

((ni−2 − ni−1 + 1) · (n− ni−2 + 1))

+ n+m− 1

multiplications,

ℓ∑

i=1

((ni−2 − ni−1 + 1) · (ni−1)) (8.25)

+
ℓ∑

i=2

((ni−2 − ni−1) · (m− ni−2 + 1) + (m− ni−1))

+
ℓ∑

i=2

((ni−2 − ni−1) · (n− ni−2 + 1) + (n− ni−1))

additions, plus at most ℓ+ 1 inversions in F.

208

For the normal case, n−1 = n, and ni = m − i for all i ≥ 0. In this case, the

total number of operations is given by

(n−m+ 1) ·m+ 2 ·
ℓ∑

i=2

(n+ i− 1) + n+m− 1 (8.26)

= 3nm+ 3m+ n− 1

multiplications, and 3nm+2m additions using a similar calculation. Since m = n−k

for some k > 0, then the number of each of these operations is Θ(n2).

Note that if one does not need the greatest common divisor expressed as a

linear combination of a and b, then the Euclidean Algorithm should be used instead

of the Extended Euclidean Algorithm since less work is required. One situation where

the Extended Euclidean Algorithm is useful is when gcd(a, b) = 1 and we desire to

compute b−1 modulo a. In this case b−1 = vℓ−1. Note that we can compute this result

by omitting line 4 from the Extended Euclidean Algorithm and can deduct m2 +m

multiplications and additions each from the above operation counts.

8.3 Normalized Extended Euclidean Algorithm

In [34], von zur Gathen and Gerhard argue that when the Extended Euclidean

Algorithm is applied to polynomials with coefficients in the field of rational numbers,

the coefficients involved in the intermediate calculations have huge numerators and

denominators even for inputs of moderate size. In the text, the authors demonstrate

that the Extended Euclidean Algorithm works much better in this case if each ri(x)

is normalized after each division step. The cost of the normalization is mostly com-

pensated by a reduction in the operations needed for the polynomial divisions in the

algorithm since the leading coefficient of the divisor is 1.

209

For the rest of this chapter, we will assume that the coefficients of the polyno-

mials are from a field such that there is no advantage to normalizing each intermediate

result of the Euclidean Algorithm. The interested reader can refer to [34] to learn

how to adapt the techniques discussed in the remainder of this chapter to the case

where the result of each division step is normalized.

8.4 The Fast Euclidean Algorithm

In this section, we will present an asymptotically faster algorithm for com-

puting the greatest common divisor based on ideas introduced in [8] and [56]. The

algorithm here is based on one found in [34] which more clearly presents these ideas

and corrects some problems associated with these earlier algorithms. To simplify the

presentation, the algorithm in this section is based on the Extended Euclidean Algo-

rithm, whereas the algorithm in [34] is based on the Normalized Extended Euclidean

Algorithm. Additionally, the algorithm presented in this section introduces some im-

provements to the algorithm resulting from the present author’s solutions to some of

the exercises proposed in [34].

Suppose that some polynomial f in F[x] is divided by another polynomial g

in F[x] to obtain a quotient q and remainder r. The following theorem shows that

obtaining this quotient only depends on the upper coefficients of f and g.

Theorem 38 Let f be a polynomial of degree nf in F[x] and let g be a polynomial

of degree ng < nf in F[x]. The quotient q = f div g can be computed using only

the terms of f and g with degree nf − k or higher where k is any integer such that

2 · deg(q) ≤ k ≤ nf .

Proof: Select f, g ∈ F [x] where f has degree nf and g has degree ng and nf > ng.

The desired quotient f div g is the unique polynomial q that satisfies

210

f = q · g + r (8.27)

and has degree nf − ng. Select any integer k that satisfies 2 · deg(q) ≤ k ≤ nf . Next,

partition each of f and g into two blocks such that

f = fA · xnf−k + fB, (8.28)

g = gA · xnf−k + gB. (8.29)

Here, fB and gB are polynomials of degree less than nf − k, fA has degree less than

k, and gA has degree less than k− (nf −ng). Now divide fA by gA to obtain quotient

q∗ and remainder r∗, i.e.

fA = q∗ · gA + r∗ (8.30)

By substituting (8.28) and (8.29) into (8.27), multiplying (8.30) by xnf−k, and sub-

tracting the results, we obtain

fB = (q − q∗) · gA · xnf−k + q · gB + (r − r∗ · xnf−k). (8.31)

211

Now,

deg(fB) < nf − k ≤ nf − 2 · deg(q) ≤ 2 · ng − nf < ng,

deg(q · gB) < deg(q) + nf − k ≤ deg(q) + 2 · ng − nf

= deg(q) + 2 · ng − (ng + deg(q)) = ng,

deg(r) < ng,

deg(r∗ · xnf−k) < (k − (nf − ng)) + (nf − k) = ng.

(8.32)

Thus, (q−q∗) ·gA ·xnf−k must have degree less than ng < nf −k. The only way

that this can occur is for q− q∗ = 0, i.e. q = q∗. Thus, the quotient of f divided by g

is the same result as the quotient of fA divided by gA. In other words, the quotient

can be computed using only the terms of f and g with degree nf − k or higher. �

Corollary 39 The coefficients of r = f mod g with degree nf − k + deg(q) or higher

are the same as the coefficients of r∗ = fA mod gA with degree deg(q) or higher.

Proof: Since q = q∗, then (8.31) becomes

fB = q · gB + (r − r∗ · xnf−k). (8.33)

Since deg(fB) < nf − k and deg(q · gB) < deg(q) + nf − k, then deg(r− r∗ · xnf−k) <

deg(q) + nf − k. Thus, the coefficients of r with degree nf − k + deg(q) or higher are

the same as the coefficients of r∗ · xnf−k with degree nf − k + deg(q) or higher and

the coefficients of r∗ with degree deg(q) or higher. �

212

These two results can be used to improve the Euclidean Algorithm.

Theorem 40 Let {r1, r2, r3, . . . , rℓ} be the remainder sequence produced by the Ex-

tended Euclidean Algorithm to compute gcd(a, b) and let {q1, q2, q3, . . . , qℓ} be the as-

sociated quotient sequence. Select k ≤ n where n = deg(a). Then the coefficients of

degree max{n− 2k, 0} or higher of a and b can be used to compute M such that

rs−1

rs

 = M ·

a

b

 , (8.34)

where deg(q1) + deg(q2) + deg(q3) + · · · + deg(qs) ≤ k.

Proof: Suppose that one uses the Extended Euclidean Algorithm to determine

gcd(a, b) with the remainder sequence {r1, r2, r3, . . . , rℓ} and the quotient sequence

{q1, q2, q3, . . . , qℓ}. Select any k < deg(a) and any s ≤ ℓ such that deg(q1)+deg(q2)+

deg(q3) + · · ·+ deg(qs) ≤ k. We desire to compute M = Ps,0. Clearly, we can use the

Extended Euclidean Algorithm to compute Pi,0 for any i ≤ ℓ. So, if n− 2k ≤ 0, then

use all of the coefficients of a and b to compute M = Ps,0.

Assume that n − 2k > 0. Let f = r−1 = a and g = r0 = b. Now subdivide f

and g into two blocks as follows: f = fA · xn−2k + fB and g = gA · xn−2k + gB. Here,

deg(fA) = 2k and deg(gA) = 2k − deg(q1). Compute q∗1 = fA div gA. By Theorem

38, q1 = q∗1. Then compute r∗1 = fA − q1 · gA and observe that deg(r∗1) has degree

2k − deg(q1) − deg(q2).

We will now inductively compute the sequence of polynomials {q2, q3, . . . , qs}.

Choose some i that satisfies 2 ≤ i ≤ s and assume that {r∗−1, r
∗
0, . . . , r

∗
i−1} are known.

Let f = r∗i−2 and g = r∗i−1. If D = deg(q1) + · · · + deg(qi−1), then deg(f) = 2k −D,

deg(g) = 2k − (D + deg(qi)), deg(ri−2) = n−D, and deg(ri−1) = n− (D + deg(qi)).

213

By repeated application of Corollary 39, the coefficients of ri−2 and ri−1 with degrees

(n −D) − (2k −D) +D = n − 2k +D or higher are the same as the coefficients of

f and g with degree D or higher. Now subdivide f and g into two blocks as follows:

f = fA · xn−2k+D + fB and g = gA · xn−2k+D + gB. Here, deg(fA) = 2k − 2D and

deg(gA) = 2k − 2D − deg(qi). Since deg(q1) + deg(q2) + deg(q3) + · · · + deg(qi) ≤ k,

then 2k − 2D − 2 · deg(qi) ≥ 0. Since 2k − 2D ≥ 2 · deg(qi), then is possible to

compute q∗i = fA div gA and qi = q∗i , proven as part of Theorem 38. Now compute

r∗i = fA − qi · gA and observe that deg(r∗i) has degree n− (D + deg(qi+1)).

Since {q∗1, q∗2, . . . , q∗s} have been computed and qi = q∗i for all i in 1 ≤ i ≤ s,

then it is possible to construct

M =
s∏

i=1

0 1

1 −qi

 (8.35)

using only the terms of a and b of degree n− 2k or higher by the above discussion.

In either case, we have computed M = Ps,0. By Theorem 33, then

rs−1

rs

 = M ·

a

b

 (8.36)

as desired. �

Corollary 41 If k < n/2, a = aA +xn−2k +aB, b = bA ·xn−2k + bB, and r∗1, r
∗
2, . . . , r

∗
ℓ′

is the remainder sequence of gcd(aA, bA), then

214

rs−1

rs

 =

r∗s−1

r∗s

 · xn−2k +M ·

aB

bB

 . (8.37)

Proof: Using the notation from Theorem 40, the computation of gcd(aA, bA) has

quotient sequence {q∗1, q∗2, · · · , q∗ℓ′} and remainder sequence {r∗1, r∗2, · · · , r∗ℓ′}. By The-

orem 33,

r∗s−1

r∗s

 =

s∏

i=1

0 1

1 −q∗i

 ·

aA

bA

 . (8.38)

Since q∗i = qi for all 1 ≤ i ≤ s, then

s∏

i=1

0 1

1 −q∗i

 =

s∏

i=1

0 1

1 −qi

 = M. (8.39)

Thus,

r∗s−1

r∗s

 = M ·

aA

bA

 . (8.40)

Since

215

rs−1

rs

 = M ·

a

b

 (8.41)

= M ·

aA · xn−2k + aB

bA · xn−2k + bB

= M ·

aA

bA

 · xn−2k +M ·

aB

bB

=

r∗s−1

r∗s

 · xn−2k +M ·

aB

bB

 ,

then the result has been proven. �

Suppose that we are given the polynomials a with degree n, b with degree m,

and some parameter k ≤ n. The Fast Euclidean Algorithm computes (rs−1, rs)
T and

the matrix

M =

us−1 vs−1

us vs

 (8.42)

where s is the largest integer such that deg(q1) + deg(q2) + deg(q3) + · · ·+ deg(qs) ≤

k. If k = n, then M gives the result after all ℓ steps of the Extended Euclidean

Algorithm and gcd(a, b) = N(rℓ−1). The basic idea of the Fast Euclidean Algorithm

is to partition the s division steps of the Extended Euclidean Algorithm into two

subproblems, each of which is solved through a recursive call to the Fast Euclidean

Algorithm. For small values of k, then Theorem 38 will not apply and the Fast

216

Euclidean Algorithm will essentially solve the problem through one or more division

steps of the Extended Euclidean Algorithm.

Prior to the computation of the first subproblem, we first choose some param-

eter k1 ≤ k. If k1/2 ≤ n, then split a and b into two blocks using a = aA ·xn−2k1 + aB

and b = bA · xn−2k1 + bB. Otherwise, let aA = a and bA = b. In either case, we now

recursively call the Fast Euclidean Algorithm with aA, bA, and parameter k1. If the

Extended Euclidean Algorithm is used to compute gcd(aA, bA), we would obtain quo-

tient sequence {q∗1, q∗2, . . . , q∗ℓ′} 2 and remainder sequence {r∗1, r∗2, . . . , r∗ℓ′} where ℓ′ ≤ ℓ.

Instead, the recursive call to the Fast Euclidean Algorithm will compute α division

steps of gcd(aA, bA) where deg(q1) + deg(q2) + deg(q3) + · · · + deg(qα) = d1 ≤ k1 and

α < s. The algorithm will return (r∗α−1, r
∗
α)T and the matrix

R =

uα−1 vα−1

uα vα

 . (8.43)

If aA = a and bB = b, then (rα−1, rα)T = (r∗α−1, r
∗
α)T . Otherwise, Corollary 41 can be

used to efficiently compute (rα−1, rα)T .

At this point, it may not be possible to compute any additional division steps

in the computation of gcd(a, b). If this is the case, then set s = α and return

(rs−1, rs)
T = (rα−1, rα)T along with matrix M = R. Otherwise, one division step

of the Extended Euclidean Algorithm will be performed to compute Q = Qα+1. In

this case, then set β = α + 1, and d′ = d1 + deg(qβ). If the division step was not

implemented then set Q to be the 2×2 identity matrix, β = α, and d′ = d1. In either

event,

2 Recall that qi = q∗i for all i in 1 ≤ i ≤ ℓ′

217

Pβ,0 = Q ·R (8.44)

and we will set f = rβ−1, g = rβ, n′ to be the degree of f , and the param-

eter to the second subproblem to be k2 = k − d′. If k2/2 ≤ n′, then split f

and g into two blocks using f = fA · xn′−2k2 + fB and g = gA · xn′−2k2 + gB.

Otherwise, let fA = f and gA = g. In either case, we now recursively call the

Fast Euclidean Algorithm with fA, gA, and parameter k2. If the Extended Eu-

clidean Algorithm is used to compute gcd(fA, gA), we would obtain quotient se-

quence {q∗β+1, q
∗
β+2, . . . , q

∗
ℓ} and remainder sequence {r∗β+1, r

∗
β+2, . . . , r

∗
ℓ}. Instead, the

recursive call to the Fast Euclidean Algorithm will compute γ − β division steps

of gcd(fA, gA) where deg(qβ+1) + deg(qβ+2) + deg(qβ+3) + · · · + deg(qγ) = d2 < k2.

The algorithm will return (r∗γ−1, r
∗
γ)

T and the matrix S = Pγ,β+1. If fA = f , then

(rγ−1, rγ)
T = (r∗γ−1, r

∗
γ)

T . Otherwise, Corollary 41 can be used to efficiently compute

(rγ−1, rγ)
T .

It remains to determine M = Ps,0 where s = γ. Since Pβ,0 = Q · R by (8.44),

then

M = Pγ,0 = Qγ ·Qγ−1 · · · ·Q1 ·Q0 (8.45)

= (Qγ ·Qγ−1 · · · ·Qβ+2 ·Qβ+1) · (Qβ ·Qβ−1 · · · · ·Q1 ·Q0)

= Pγ,β+1 · Pβ,0

= S ·Q ·R.

Once M has been computed, the algorithm returns (rγ−1, rγ)
T and M .

218

The number of division steps that a particular call to the Fast Euclidean Algo-

rithm can implement is a function of k, not a function of the sizes of the polynomials

passed to the algorithm. If we wish to subdivide a problem with parameter k into

two subproblems of roughly equal size, then we should set k1 = ⌊k/2⌋ and clearly

the first subproblem has parameter less than or equal to k/2. If d1 = k/2, then the

second subproblem has parameter k2 = k−k/2 = k/2 and a problem with parameter

k has been subdivided into two subproblems with parameter k/2. If k is even and the

quotient sequence of the Extended Euclidean Algorithm is normal, i.e. deg(qi) = 1

for all 1 ≤ i ≤ ℓ, then this will be indeed be the case. We will now discuss three

different strategies for subdividing a problem in the general case.

The method discussed in [34] always performs one step of the Extended Eu-

clidean Algorithm before starting the second subproblem. Since d1+deg(qα+1) > k/2,

then the second subproblem has parameter k2 = k− (d1 + deg(qα+1)) < k/2. Thus, a

problem with parameter k is subdivided into two problems with parameter less than

or equal to k/2.

Two improvements to this strategy will now be considered. In first improve-

ment, the step of the Extended Euclidean Algorithm is omitted for those cases where

d1 = k/2. Here, a problem with parameter k can still be subdivided into two sub-

problems with parameter k/2, but qα+1 is now computed with the second subproblem.

Hopefully, some of the lower coefficients rα−1 and rα can be omitted from this com-

putation using Theorem 38 and some operations can be saved in these cases. In this

strategy, whenever d1 < k/2, we still explicitly perform one step of the Extended

Euclidean Algorithm as with the strategy of [34].

For the sake of developing a closed-form formula for the operation counts of the

algorithm, it is desirable to reduce a problem with parameter k into two subproblems

with parameter k/2 or less. However, if the goal of the algorithm is to compute

219

the greatest common divisor with the least number of operations, we should never

explicitly perform one step of the Extended Euclidean Algorithm unless absolutely

necessary. The second improvement to the strategy is to put the computation of qα+1

in the second subproblem as often as possible using the condition to omit the explicit

step of the Extended Euclidean Algorithm when ⌊(k − d1)/2⌋ < nα−1 − nα. If the

Extended Euclidean Algorithm division step is omitted, then the second subproblem

will have parameter k−d1. In the subproblem, the Fast Euclidean Algorithm is called

again with parameter ⌊(k − d1)/2⌋. At this point, if ⌊(k − d1)/2⌋ < nα−1 − nα, then

Theorem 38 cannot be applied and no division steps are possible with the reduced

number of coefficients in the second subproblem. Thus, there was no advantage to

skipping the explicit step of the Extended Euclidean Algorithm.

On the other hand, if ⌊(k − d1)/2⌋ ≥ nα−1 − nα, then we may gain some

division steps in the second subproblem. If not, then still get another chance to

apply the division step of the Extended Euclidean Algorithm, now with the condition

⌊(k− d1)/4⌋ < nα−1 − nα. At some recursive call to the algorithm, we may be forced

to explictly perform a step of the Extended Euclidean Algorithm, but hopefully we

have achieved some division steps through some of the other subproblems before this

occurs.

Pseudocode for the Fast Euclidean Algorithm is provided below in Figure

8.3. Note that the pseudocode is given for the case of the first improvement to the

algorithm. If the strategy of [34] is employed, then line 6A should be omitted and

line 6B should always be executed. If the second improvement is implemented, then

the condition for executing line 6A should be changed to “If (k−d1)/2 < nα−1−nα”.

The pseudocode was written with the first improvement because it allows closed-

form operation count formulas to be developed which is not possible with the second

improvement strategy.

220

To simplify the pseudocode, the cases where n− k1 < 0 or n′ − k2 < 0 are not

handled. Due to the selection of the two subproblem parameters, it should nearly

always be possible to split the polynomial as shown in the pseudocode. However, if it

is not possible to split the polynomial, then all of the polynomial coefficients should

be used as input to the subproblem. In this case, it not necessary to use Corollary

41 to recover the desired result of the division steps.

Let us now compute an upper bound for the cost of the algorithm provided

in the pseudocode. We will compute the number of multiplications, M(k) and the

number of additions, A(k), each of which is a function of the algorithm parameter k.

Lines 0 and 5 simply end the recursion when k is too small to compute any results

and do not cost any operations. We will assume that lines 1 and 7 also cost no

operations. Lines 2 and 8 simply partition a polynomial into two blocks, requiring no

operations. Line 3 requires at mostM(⌊k/2⌋) multiplications and A(⌊k/2⌋) additions.

Since k− d′ ≤ ⌊k/2⌋, then line 9 similarly requires at most M(⌊k/2⌋) multiplications

and A(⌊k/2⌋) additions. If the condition for line 6A is satisfied, then the algorithm

proceeds to line 7 with no operations in F. It remains to analyze lines 4, 6B, 10, and

11 where all of the actual computations take place in the algorithm.

In line 4, the degree of aB and bB is at most k−1, the degrees of R1,1, R1,2, and

R2,1 are at most k/2 − 1, and the degree of R2,2 is at most k/2. By breaking aB and

bB into two blocks of size at most k/2, then the cost for line 4 is at most 8 ·MM(k)+k

multiplications and 8 · AM(k) + 3k/2 additions. 3 The extra operations in each of

these counts is due to the degree k coefficient of R2,2 which is explicitly multiplied

by each coefficient bB and combined with the other results. It can be shown that

3 Here the notation MM(k) denotes the number of multiplications needed to multi-
ply two polynomials of size k/2 into a polynomial of size k. Similarly, AM(k) denotes
the number of additions needed to multiply two polynomials of size k/2 into a poly-
nomial of size k.

221

Algorithm : Fast Euclidean Algorithm

Input: Polynomials a(x), b(x) ∈ F [x] where n = deg(a)
and m = deg(b) < n; An integer k such that n/2 ≤ k ≤ n.

Output:

(
rs−1

rs

)
and M =

(
us−1 vs−1

us vs

)
,

i.e. the result of s steps of the Extended Euclidean Algorithm.

Here, 0 ≤ s ≤ ℓ and deg(q1) + deg(q2) + · · · + deg(qs) ≤ k,
where {q1, q2, . . . , qℓ} is the quotient sequence that
would be produced by the Extended Euclidean Algorithm
in the computation of gcd(a, b).
Note: r−1 = a and r0 = b.

0. If b = 0 or k < n−m, then return

(
r−1

r0

)
and M =

(
1 0
0 1

)
.

1. Let k1 = ⌊k/2⌋.
2. Split a and b into two blocks such that

a = aA · xn−2k1 + aB and b = bA · xn−2k1 + bB.
3. Recursively call the Fast Euclidean Algorithm with input aA, bA, and k1

and output

(
r∗α−1

r∗α

)
and R =

(
uα−1 vα−1

uα vα

)
.

Let d1 = deg(R2,2). Then deg(q1) + deg(q2) + · · · + deg(qα) = d1 ≤ k1.

4. Compute

(
rα−1

rα

)
=

(
r∗α−1

r∗α

)
· xn−2k1 +R ·

(
aB

bB

)
.

5. If rα = 0 or k < n− deg(rα) then s = α; return

(
rα−1

rα

)
and M = R.

6A.If d1 = k1, then let β = α, Q be the 2 × 2 identity matrix, and d′ = d1.
6B. If d1 < k1, then β = α+ 1, qβ = rβ−2 div rβ−1, rβ = rβ−2 div rβ−1,

Q =

(
0 1
1 −qβ

)
, and d′ = d1 + deg(qβ).

7. Let k2 = k − d′ and let n′ = deg(rβ−1).
8. Split f = rβ−1 and g = rβ into two blocks such that

f = fA · xn′−2k2 + fB and g = gA · xn′−2k2 + gB.
9. Recursively call the Fast Euclidean Algorithm with input fA, gA, and k2

and output

(
r∗γ−1

r∗γ

)
and S =

(
uγ−1 vγ−1

uγ vγ

)
.

Let d2 = deg(S2,2). Then deg(qβ+1) + · · · + deg(qγ) = d2 = k2.

10. Compute

(
rγ−1

rγ

)
=

(
r∗γ−1

r∗γ

)
· xn′−2k2 + S ·

(
fB

gB

)
.

11. Return

(
rγ−1

rγ

)
and M = S ·Q ·R (Note: s = γ).

Figure 8.3 Pseudocode for Fast Euclidean Algorithm

222

2 ·MM(k) ≤MM(2k) and 2 ·AM(k) ≤ AM(2k) for any of the available methods used

to perform polynomial multiplication. Then the cost of line 4 is at most 4·MM(2k)+k

multiplications and 4 · AM(2k) + k additions. Since none of the coefficients of this

result will be of degree 2k1 or higher, this result can be combined with the result of

line 3 at no cost.

In line 6B, nβ−2 ≤ 2k and nβ−1 = nβ−2 − c for some c in 1 ≤ c ≤ k. The

computation of the quotient and remainder in this line requires at most 4 ·MM(2c)+

MM(4k− 2c) multiplications and 4 ·AM(2c) +AM(4k− 2c) additions, assuming that

the computations are completed using Newton division without any use of the Fast

Fourier Transform. Since the second derivative of MM and AM is strictly positive for

all available multiplication methods in the range 1 ≤ c ≤ 2k, then these functions

are concave up and the maximum number of multiplications in this range must occur

at c = 1 or c = k. An evaluation of each of the multiplication count functions at

c = 1 and c = k shows that the maximum occurs at c = k for each case. So the total

number of operations for line 6B is at most 5 ·MM(2k) multiplications and 5 ·AM(2k)

additions. However, it is extremely unlikely that this step will require anywhere near

this number of operations. While it will often be the case that deg(a) = 2k, the only

way that rβ−2 can be 2k is when k1 is too small to make any progress in computing

gcd(aA, bA). Another reason why line 6B usually requires fewer operations has to do

with typical values for deg(qβ). Recall that most of the time, the degrees of each of the

polynomials in the quotient sequence will be 1. In this case, classical division should

be used instead of Newton division at a cost of 2k multiplications and 2k additions.

In nearly all cases, deg(qβ) < 6 · log2(k) and it is better to use classical division

instead of Newton division for this step. To establish a upper bound for the cost of

this algorithm that can be demonstrated mathematically, we will always assume the

worst case, i.e. a cost of 5 ·MM(2k) multiplications and 5 ·AM(2k) additions, for this

223

step using Newton divison. The reader is cautioned, however, that this assumption

greatly inflates the cost of this algorithm.

In line 10, the degrees of fB and gB is at most k/2 − 1, the degree of S1,1,

S1,2, and S2,1 is at most k/2 − 1, and the degree of S2,2 is at most k/2. Following a

technique similar to line 4, the cost of the premultiplication of (fB, gB)T by S is at

most 2 ·MM(2k) + k/2 multiplications and 2 · AM(2k) + k/2 additions. Since none

of the coefficients of this result will be of degree 2k2 or higher, this result can be

combined with the result of line 9 at no cost.

In line 11, we will compute the matrix product by first computing QR =

Q · R. If line 6B is executed, then the upper row of Q · R is equivalent to the lower

row of R and can be determined with no operations. In the worst case scenario,

deg(qβ) = k and the computation of R1,1 − qβ ·R2,1 and R1,2 − qβ ·R2,2 each requires

at most 4 ·MM(k) + O(k) multiplications and 4 · AM(k) + O(k) additions, following

the technique of lines 4 and 9. Thus, at most 2 · MM(2k) + O(k) multiplications

and 2 · AM(2k) + O(k) additions are required. As with line 6B, most of the time

deg(qβ) = 1. In this normal case, the computation of Q · R only requires at most

2 · (2 · (k/2 + 1)) = 2k + 4 multiplications and 2k additions. We will again assume

the worst-case for this mathematical analysis, but caution the reader that this also

greatly inflates the operation count.

To complete line 11, we must computeM = S·(QR). Recall that deg(QR1,1) =

deg(R2,1) < k/2 and deg(QR1,2) = deg(R2,2) ≤ k/2. Because deg(q1) + deg(q2) +

· · · + deg(qγ) ≤ k, deg(QR2,1) is at most k − 1 and deg(QR2,2) is at most k. The

degrees of each of the components of S were given in the analysis of line 10. Using

the technique of multiplying polynomials of different degrees, this operation requires

12·MM(k)+O(k) ≤ 6·MM(2k)+O(k) multiplications and 6·AM(2k)+O(k) additions.

Since each polynomial in M has degree k or less, there is no need to add any terms of

224

degree k+ 1 or greater in the products computed in this step. If the degree sequence

is normal, then deg(QR2,1) = k/2 and deg(QR2,2) = k/2 + 1. It can be shown in this

case that the number of operations drops to 4 ·MM(2k) + O(k) multiplications and

4 · AM(2k) + O(k) additions.

Combining these results, we obtain

M(k) = 2 ·M(k/2) + 19 ·MM(2k) + O(k), (8.46)

A(k) = 2 · A(k/2) + 19 · AM(2k) + O(k) (8.47)

for the operation counts of the algorithm. Assuming that n is a power of two and

letting k = n, i.e. we want to compute all of the steps of the Extended Euclidean

Algorithm, we obtain operation counts of

M(n) = 19 ·MM(2n) · log2(n) + O(n) · log2(n), (8.48)

A(n) = 19 · AM(2n) · log2(n) + O(n) · log2(n) (8.49)

by Master Equation VI. If we assume that the quotient sequence is normal, then the

operation counts reduce to

M(n) = 10 ·MM(2n) · log2(n) + O(n) · log2(n), (8.50)

A(n) = 10 · AM(2n) · log2(n) + O(n) · log2(n). (8.51)

While it is very unlikely that the degree of every polynomial in the quotient sequence

225

will be 1, it will typically be the case that most of these polynomials will have degree 1.

So the operation count for a typical greatest common divisor calculation will typically

be somewhere between these two results and closer to the normal case.

8.5 Algorithm improvements due to the Fast Fourier Transform

Recall that all of the actual computations in the Fast Euclidean Algorithm

were contained in lines 4, 6B, 10, and 11. In this section, we will discuss how the

Fast Euclidean Algorithm can be significantly improved if FFT-based multiplication

is employed in these steps. For the first part of this section, assume that k is a power

of two.

First, consider the division which takes place in line 6 of the algorithm. In

Chapter 7, it was established that Newton division of a polynomial of degree 2k

by a polynomial of degree k can implemented using at most 3.5 · MM(2k) + O(k)

multiplications and 3.5 · AM(2k) + O(k) additions, including the computation of the

remainder along with the quotient. Using a argument similar to the previous section,

it can be shown that this case requires the maximum number of operations for this

line of the algorithm. Again, if the degree sequence of the Euclidean Algorithm is

normal, then line 6B only requires O(k) operations.

Now, let us consider the computation of the product required in line 4 of

the algorithm. Let aB = aB1 · xk/2 + aB2 and bB = bB1 · xk/2 + bB2. Using the

technique discussed in the previous section, the polynomial r∗α−1 is computed using

R1,1 · aB1 + R1,2 · bB1 and R1,1 · aB2 + R1,2 · bB2 and the polynomial r∗α is computed

using R2,1 ·aB1 +R′
2,2 · bB1 and R2,1 ·aB2 +R′

2,2 · bB2. Here R′
2,2 denotes the coefficients

of R2,2 of degree less than k. For FFT-based multiplication, we will instead just use

R2,2 and compute the products modulo M(x) where M(x) is a polynomial of degree

226

k with a root at each of k points that will be used for the polynomial evaluations and

interpolations.

Let F(p) represent the FFT of polynomial p and F−1 denote the inverse FFT.

To compute one of the above 8 products modulo M(x) using FFT-based multiplica-

tion, for example R1,1 ·aB1, one would compute two FFTs of size k, pointwise multiply

k evaluations of the polynomials, and then compute one inverse FFT of size k. In the

case of the example, we would compute F−1 (F(R1,1) ⊙ F(aB1)) where ⊙ denotes a

pointwise product of the evaluation points. So the first polynomial used to construct

r∗α−1 could be computed as

F
−1(F(R1,1) ⊙ F(aB1)) + F

−1(F(R1,2) ⊙ F(bB1)). (8.52)

Again, this computation only gives the resulting polynomial modulo M(x). However,

since the degree of any of the polynomials contained in R is at most k/2 and the

maximum degree of any of {aB1, aB2, bB1, bB2} is at most k/2− 1, then the maximum

degree of any of the polynomial products is k/2+(k/2−1) = k−1. Thus, computing

any of the products modulo M(x) is the same as computing the product directly.

Because the Fourier Transform and its inverse are linear functions, then this

result can also be computed as

F
−1 (F(R1,1) ⊙ F(aB1) ⊕ F(R1,2) ⊙ F(bB1)) , (8.53)

where ⊕ denotes a pointwise addition of the product of the evaluations. So this

polynomial can be computed using only 4 FFTs and 1 inverse FFT, rather than with

227

2 inverse FFTs above. Note that F(R1,1), F(R1,2), F(R2,1), F(R2,2), F(aB1), F(aB2),

F(bB1), and F(bB2) are reused in the computations of the 4 polynomials and these are

the only 8 FFTs required. Additionally, one inverse FFT is required for each of the

4 desired polynomials in this step. Since one multiplication with product of size k

consists of 2 forward FFTs plus 1 inverse FFT, the work of this line of the algorithm

is 4 ·MM(k)+O(k) ≤ 2 ·MM(2k)+O(k) multiplications and at most 2 ·AM(2k)+O(k)

additions.

A similar technique can be used to implement line 10 of the algorithm. Because

fB and gB are each of degree at most k/2−1, it is not necessary to split each of these

polynomials into two blocks. In this case, only 6 forward FFTs and 2 inverse FFTs

are needed to complete this line of the algorithm. Thus, the work of this line of the

algorithm is 8/3 ·MM(k) + O(k) ≤ 4/3 ·MM(2k) + O(k) multiplications and at most

4/3 · AM(2k) + O(k) additions.

In line 11 of the algorithm, we need to compute M = S · Q · R. Here, we

will consider the case where Q is not the identity matrix and note that the operation

count derived here is an upper bound for the case where Q is the identity matrix. We

need to compute

M1,1 M1,2

M2,1 M2,2

 =

S1,1 S1,2

S2,1 S2,2

 ·

0 1

1 −qβ

 ·

R1,1 R1,2

R2,1 R2,2

 . (8.54)

Using the technique discussed in line 4, then M1,1 can be computed using

M1,1 = F
−1 (F(S1,1) ⊙ F(R2,1) ⊕ F(S1,2) ⊙ (F(R1,1) ⊖ F(qβ) ⊙ F(R2,1))) ,

(8.55)

228

where ⊖ denotes a pointwise difference. This will compute M1,1 modulo M(x) = M1,1

since M1,1 has degree less than k. The technique can also be used to produce M1,2

and M2,1. Since the degree of M2,2 is at most k, then

M∗
2,2 = F

−1 (F(S2,1) ⊙ F(R2,2) ⊕ F(S2,2) ⊙ (F(R1,2) ⊖ F(qβ) ⊙ F(R2,2))) (8.56)

may not actually be M2,2. Compute deg(S2,2) + deg(qβ) + deg(R2,2). If this sum is

less than k, then M∗
2,2 = M2,2. Otherwise, let M∗

2,2 = M2,2 mod M(x) and

M2,2 = M∗
2,2 + C(x) · M(x) (8.57)

for some polynomial C(x). Since M2,2 has degree k and M(x) has degree k, then C(x)

must be a constant and is the leading coefficient of M2,2. Multiply the leading coef-

ficients of S2,2, qβ, and R2,2 together to determine C(x). Then M2,2 can be recovered

with T multiplications and T additions where T is the number of nonzero coefficients

in M(x).

Note that in (8.54), the FFTs of each of the components in R were already

computed in line 4, and the FFTs of each of the components in S were already

computed in line 10. Furthermore, if the remainder in line 6B was computed using

FFT-multiplication, then F(qβ) has already been computed as well. These FFTs can

be saved from the earlier lines of the algorithm and reused in line 11. Thus, the

computation of (8.54) requires only 4 inverse FFTs of size k, plus O(k) pointwise

229

multiplications, additions and subtractions. Thus, the work of this line of the algo-

rithm is 4/3 · MM(k) + O(k) ≤ 2/3 · MM(2k) + O(k) multiplications and at most

2/3 · AM(2k) + O(k) additions.

Letting k = n and combining these operation counts, a total of

M(n) = 7.5 ·MM(2n) · log2(n) + O(n) · log2(n), (8.58)

A(n) = 7.5 · AM(2n) · log2(n) + O(n) · log2(n) (8.59)

operations are required in the general case using Master Equation VI. If we assume

that the quotient sequence is normal, then the operation counts reduce to

M(n) = 4 ·MM(2n) · log2(n) + O(n) · log2(n), (8.60)

A(n) = 4 · AM(2n) · log2(n) + O(n) · log2(n). (8.61)

It was mentioned above that these operation counts were derived for the case where k

is a power of two so that FFTs of size a power of two could be used in the multiplica-

tions. In practice, one can use multiplication based on the truncated FFT discussed

in Chapter 6 to reduce the number of multiplications. In this case, the formulas above

with arbitrary k can be used to provide reasonable estimates for upper bounds of the

operation counts.

It appears difficult to improve upon the above upper bound formulas, but ad-

ditional practical improvements are possible with the algorithms. When k is “small”,

it will often be faster to implement the multiplications using Karatsuba’s algorithm

230

or classical multiplication rather than FFT-based multiplication. It was already men-

tioned that classical division should be used instead of Newton division for the com-

putation of all quotients and remainders except when the input polynomials are of

large degree and the difference between the degrees of the input polynomials is also

large. Furthermore, the above operation counts do not take into account the reduction

observed by implementing the two improvements to the Fast Euclidean Algorithm dis-

cussed earlier. The author implemented the Fast Euclidean Algorithm presented in

the previous section and compared the number of operations required for the various

strategies. While the exact amount of improvement depends on the sizes of the input

polynomials and the degrees of the polynomials in the quotient sequence, the author

observed around a 15 percent reduction in operations when the first improvement was

implemented and a reduction by about 20 percent when the second improvement was

implemented, compared to the strategy of explicitly performing a division step after

the completion of every first subproblem.

8.6 Concluding remarks

This chapter presented several algorithms which efficiently compute the great-

est common divisor of two polynomials. Solutions for several exercises related to the

Fast Euclidean Algorithm proposed in [34] were also provided along with several ad-

ditional ideas for improving the algorithm. Several improvements in the analysis of

the Fast Euclidean Algorithm were also given. Although the algorithm presented here

has the same asymptotic complexity as the algorithm in [34], the research summa-

rized in this chapter reduced the multiplicative constant from 24 to 19 in the general

case when FFT-multiplication was not applied, compared to the results given in [34].

If FFT-based multiplication is permitted, then this chapter showed how to further

231

reduce the multiplicative constant to 7.5 in the general case and to 4 when the degree

sequence is normal.

The chapter also presented several improvements to the Fast Euclidean Al-

gorithm which reduce the number of operations by about 15-20 percent in practice,

but could not be established mathematically. The reason for this is the presence of

a computational step between the two Fast Euclidean Algorithm subproblems that

cannot be accurately modeled. The goal of the practical improvements was to skip

the computational step when the algorithm parameter was large, deferring it to re-

cursive calls where the algorithm parameter is smaller and would require less effort to

complete. The reason why it is difficult to derive mathematical formulas to describe

the improvements is because one cannot know when to skip this computational step

without prior knowledge of the degrees of each of the polynomials in the quotient

sequence needed to compute the GCD. Furthermore, the second improvement typi-

cally subdivides a problem into two subproblems of unequal size. Because the second

subproblem typically has parameter greater than half of the parameter to the original

call to the Fast Euclidean Algorithm, the techniques discussed in this chapter cannot

be used to mathematically analyze the effect of these improvements.

Because the actual number of operations needed to implement the Fast Eu-

clidean Algorithm is so dependent on the degrees of each of the polynomials in the

quotient sequence, it appears difficult to develop any further improvements to the

Fast Euclidean Algorithm. One should be aware of a paper by Strassen [72] which

uses an entropy argument to claim that the asymptotic number of operations needed

to solve the greatest common divisor problem has a lower bound which coincides with

the Fast Euclidean Algorithm presented in this chapter. If Strassen’s claim is true,

then it appears that there is little additional improvement that can be made to the

232

algorithm presented in this chapter, other than further improvements to the multi-

plicative constants of the operation counts and other practical improvements which

cannot be established mathematically.

233

CHAPTER 9

REED-SOLOMON ERROR-CORRECTING CODES

Reed-Solomon codes are a powerful method of correcting errors introduced

when a message is transmitted in a noisy environment. These codes are very popular

and can be found in compact disc players and NASA satellites used for deep-space

exploration. The power of these codes resides in algebraic properties of finite fields

which allows for multiple errors to be corrected in each codeword. Unfortunately,

most algorithms used for decoding Reed-Solomon codes are somewhat complicated

and require an advanced knowledge of algebra to understand how the decoding process

works.

In 1988, Shiozaki [71] published a simple algorithm for decoding Reed-Solomon

codewords. Unaware of the earlier publication, Gao [29] reinvented essentially the

same algorithm some 15 years later. Both of these algorithms decode a Reed-Solomon

codeword which is nonsystematically encoded, which means that the message does

not appear in the transmitted codeword. This is the approach of Reed and Solomon

in their original presentation of the code [63]. Most practical applications of Reed-

Solomon codes, however, use the systematic encoding popularized by Gorenstein and

Zierler [38] which uses generator polynomials to encode each codeword. A 2005 paper

by Fedorenko [23] 1 claims that the method for decoding Reed-Solomon codewords

does not depend on whether the codeword was encoded systematically or nonsys-

tematically. However, Fedorenko does not provide any proof of this claim in the

1 A 2006 correction to this paper [24] was also published in which Shiozaki is given
credit for also discovering the algorithm.

234

paper, nor any details about how Gao’s decoding algorithm could be applied to the

systematic encoding case.

In this chapter, we explicitly show how to apply the simple decoding algorithm

to Reed-Solomon codewords that are systematically encoded for the most popular

version of the codes where the underlying finite field is characteristic 2. The reader

can generalize the techniques presented here to other Reed-Solomon codes if desired.

9.1 Systematic encoding of Reed-Solomon codewords

Let F be a finite field with q elements where q is a power of two. A standard

result of finite field theory states that the nonzero elements of F can generated by

some α ∈ F. Thus, F consists of the zero element as well as the set of elements

{1, α, α2, α3, . . . , αn−1} where n = q − 1. Note that αn = 1 where α 6= 1.

A (n, k, d) Reed-Solomon codeword is a vector consisting of n elements of F

and can also be expressed as a polynomial. This codeword is used to transmit a

message consisting of k < n elements of F. In a standard coding theory textbook

(e.g. [59]), it is shown that the minimum distance for this code is d = n−k+1. This

means that the code is capable of correcting up to t = (n−k)/2 errors in the received

codeword.

To systematically encode the message {m0,m1,m2, . . . ,mk−1} ∈ F, we will

first construct the message polynomial

m(x) = mk−1 · xk−1 +mk−2 · xk−2 + · · · +m1 · x+m0 (9.1)

and generating polynomial

235

g(x) = (x− α) · (x− α2) · · · · · (x− αn−k). (9.2)

We will divide the polynomial m ·xn−k by g and obtain quotient Q(x) and remainder

R(x). Thus, m · xn−k = g ·Q+ R. The Reed-Solomon codeword

C(x) = Cn−1 · xn−1 + Cn−2 · xn−2 + · · · + C1 · x+ C0 is given by

C = m · xn−k + R, (9.3)

that is

C = g ·Q. (9.4)

Thus, C is a multiple of g for any Reed-Solomon codeword C.

Since g has degree n − k, then the Division Algorithm implies that R(x) has

degree less than n − k. Thus the coefficients of C of degree n − k or higher simply

consist of the coefficients of m. Since all of the elements of m appear in C, then C is

systematic.

236

9.2 A transform of the Reed-Solomon codeword

Let us consider the polynomial F (x) defined by

F (x) =
n−1∑

i=0

Ci · Li(x), (9.5)

where Li(x) is the Lagrange interpolating polynomial given by

Li(x) = αi · x
n − 1

x− αi
= αi · xn−1 + α2i · xn−2 + · · · + α(n−1)·i · x+ 1 (9.6)

and {C0, C1, C2, · · · , Cn−1} is a set of elements extracted from the corresponding

coefficients of C(x). Recall from Chapter 1 that Li(x) = 0 when x 6= αi and that

Li(x) = 1 when x = αi. Note that F (x) has the property that F (αi) = Ci for all i

in 0 ≤ i ≤ n− 1. Thus, F (x) is said to be an interpolating polynomial for the set of

evaluations {C0, C1, C2, · · · , Cn−1} at the set of points {1, α, α2, . . . , αn−1}.

The formulas (9.5) and (9.6) represent a rather complicated method of gener-

ating the polynomial F . Fortunately, there is a much easier method. Note that

F = C0 · xn−1 + C0 · xn−2 + · · · + C0 · x+ C0 (9.7)

+ C1 · α · xn−1 + C1 · α2 · xn−2 + · · · + C1 · αn−1 · x+ C1

+ C2 · α2 · xn−1 + C2 · α4 · xn−2 + · · · + C2 · α2(n−1) · x+ C2

...

+ Cn−1 · αn−1 · xn−1 + Cn−1 · α2(n−1) · xn−2

+ · · · + Cn−1 · α(n−1)(n−1) · x+ Cn−1.

237

Collecting all common terms of xj together, the coefficient of xj in F , denoted by Fj,

is given by

Fj = Cn−1 · α(n−1)(n−j) + Cn−2 · α(n−2)(n−j) + · · · + C2 · α2(n−j) + C1 · αn−j + C0

= C(αn−j). (9.8)

In other words, Fj can be determined by simply evaluating C at αn−j and F is ob-

tained by computing the multipoint evaluation ofC at {αn = 1, αn−1, αn−2, . . . , α2, α}.2

In coding theory, the “Galois Field Fourier Transform” is defined by

V (x) = F[v(x)] = Vn−1 · xn−1 + Vn−2 · xn−2 + · · · + V1 · x+ V0 (9.9)

where

Vj =
n−1∑

i=0

ωi·j · vi = v(ωj) (9.10)

for v(x) = vn−1 · xn−1 + vn−2 · xn−2 + · · · + v2 · x2 + v1 · x+ v0 and the Inverse Galois

Field Fourier Transform is defined by

F
−1[V (x)] = vn−1 · xn−1 + vn−2 · xn−2 + · · · + v1 · x+ v0, (9.11)

2 This is a consequence of the duality property of the multiplicative FFT.

238

where

vi =
n−1∑

j=0

ω−i·j · Vj = V (ω−i). (9.12)

Here, ω is a generator of the multiplicative subgroup of F and is a primitive nth root

of unity. Then F can be determined by computing the Inverse Galois Field Fourier

Transform of C with ω = α. Since αn−1 also generates the multiplicative subgroup

of F, one can also determine F by computing the Galois Field Fourier Transform of

C with ω = αn−1. So depending on one’s perspective, we may regard F as either the

Galois Field Fourier Transform of C or the inverse Galois Field Fourier Transform of

C.

Efficient algorithms for computing the multipoint evaluation of a function at

all of the elements of F were explored in Chapter 3. Interpolation algorithms to

reverse the process were discussed in Chapter 4. In order to apply these algorithms

to the computation of the Galois Field Fourier Transform and its inverse, one must

precompute and store an array which will permute the output of these fast algorithms

into the order of the coefficients of F . It is not possible to specify the elements of

the permutation array in general because it is dependent upon the polynomial used

to construct the finite field F.

We conclude this section by proving a property of the polynomial F which is

important for the decoding algorithm of systematic Reed-Solomon codewords.

Theorem 42 If F is the Inverse Galois Field Fourier Transform of C, then F has

degree less than k.

239

Proof: By (9.8), the coefficient Fj of xj in F is given by C(αn−j). By (9.4), C = g·Q

where g is given by (9.2). Choose any j such that k ≤ j ≤ n− 1. Then n− j falls in

the range 1 ≤ n− j ≤ n− k and

Fj = C(αn−j) (9.13)

= g(αn−j) ·Q(αn−j)

= 0 ·Q(αn−j)

= 0

since αn−j is a root of g by (9.2). Thus, Fj = 0 for all j ≥ k and the theorem is

proven. �

9.3 Decoding of systematic Reed-Solomon codewords

In an ideal environment, the codeword polynomial C would be transmitted

with no errors introduced and we could recover the message polynomial m by simply

extracting the coefficients of degree n− k or higher from C by using (9.3). Unfortu-

nately, in a practical transmitting environment, it possible for errors represented by

E(x) = En−1 ·xn−1 +En−2 ·xn−2 + · · ·+E1 ·x+E0 to be introduced to the codeword

and the receiver instead receives the collection of elements of F represented by the

polynomial R(x) = Rn−1 · xn−1 +Rn−2 · xn−2 + · · ·+R1 · x+R0 . Here, R could also

be represented as

R = C + E. (9.14)

240

Our task now is to recover C given R and the properties of Reed-Solomon codewords.

Instead of solving this problem directly, we are going to compute the Inverse

Galois Field Fourier Transform with generator α of {R,C,E} and do our decoding

in this transformed domain. Following the procedure used to construct F (x), we

construct a polynomial whose coefficients are equal to the evaluations of R(x) at each

of the primitive roots of unity and obtain

F ′(x) = R(α) · xn−1 +R(α2) · xn−2 + · · · +R(αn−1) · x1 +R(1) (9.15)

which has the property that F ′(αi) = Ri for all i in 0 ≤ i ≤ n− 1. Similarly, we can

construct the polynomial

E(x) = E(α) · xn−1 + E(α2) · xn−2 + · · · + E(αn−1) · x1 + E(1) (9.16)

which has the property that E(αi) = Ei for all i in 0 ≤ i ≤ n − 1. Note that unless

F ′ is a valid Reed-Solomon codeword (and thus a multiple of g), the degree of F ′ can

be at most n− 1. Similarly, E may have degree at most n− 1.

We are now going to give an alternative representation of E necessary for the

decoding algorithm. Let X be the set of positions where there is a discrepancy between

C and R. Then define the error locator polynomial by

W (x) =
∏

ε∈X

(x− αε). (9.17)

241

Note that W has a value of 0 for each αj such that Rj was received incorrectly and

returns a nonzero value for each αj such that Rj was received correctly. We can also

define the function

W ∗(x) =
xn − 1

W (x)
(9.18)

which has the property that W ∗ has a nonzero value for each αj such that Rj is

incorrect and returns 0 for each αj such that Rj was received correctly. Note that if

W has degree at most t = (n−k)/2, thenW ∗ will have degree at least n−t = (n+k)/2.

Next, define the error corrector polynomial according to

Y (x) =
F (x) − F ′(x)

W ∗(x)
. (9.19)

A typical Reed-Solomon decoding algorithm first explicitly computes an error locator

polynomial similar to W , 3 factors the error locator polynomial to determine the

locations of the errors in R, computes an error-corrector polynomial similar to Y ,

and concludes by evaluating this error-corrector polynomial at each of the roots of

the error-locator polynomial to determine the necessary adjustments of R.

The simple algorithm will instead directly compute the polynomial F using

the Extended Euclidean Algorithm which was discussed in Chapter 8. Observe that

3 Typically, the error locator used is given by
∏

ε∈X
(1−αε · x). This polynomial is

zero for each α−ε such that ε ∈ X.

242

E(x) = F (x) − F ′(x) = Y (x) ·W ∗(x) =
Y (x) · (xn − 1)

W (x)
. (9.20)

By multiplying (9.20) by W and rearranging the result, we obtain

Y · (xn − 1) +W · F ′ = W · F. (9.21)

Theorem 43 below is a modified version of a result given in [54] which states that F

can be computed using the Extended Euclidean Algorithm.

Theorem 43 Suppose that the degree of W is less than or equal to (n− k)/2. Let

{r1, r2, . . . , rℓ} be the remainder sequence produced by the Extended Euclidean Algo-

rithm to compute gcd(xn − 1, F ′). If s is the smallest integer such that deg(rs) <

(n+ k)/2, then

F =
rs

vs

(9.22)

where vs is the polynomial produced by the Extended Euclidean Algorithm such that

us · (xn − 1) + vs · F ′ = rs. (9.23)

243

Proof: By (9.21),

Y · (xn − 1) +W · F ′ = P (9.24)

where P = W ·F . Since deg(W) ≤ (n−k)/2 and deg(F) < k, then deg(P) < (n+k)/2.

Suppose that the Extended Euclidean Algorithm is used to determine gcd(xn−1, F ′).

At step s of these calculations, we have

us · (xn − 1) + vs · F ′ = rs (9.25)

where deg(rs) < (n + k)/2, deg(rs−1) ≥ (n + k)/2 and by Theorem 37, deg(vs) =

n− deg(rs−1) ≤ (n− k)/2. Now, multiply (9.21) by vs and multiply (9.25) by W to

obtain

vs · Y · (xn − 1) + vs ·W · F ′ = vs · P, (9.26)

W · us · (xn − 1) + vs ·W · F ′ = W · rs. (9.27)

Thus,

vs · P = W · rs + K · (xn − 1) (9.28)

244

for some polynomial K(x). Since deg(vs ·P) = deg(vs)+deg(P) < n and deg(W ·rs) =

deg(W) + deg(rs) < n, then it must be the case that K = 0 and

vs · P = W · rs. (9.29)

Then,

F =
W · F
W

=
P

W
=
rs

vs

. (9.30)

�

The Galois Field Fourier Transform can be used to efficiently recover F if

every possible received vector differs in at most (n− k)/2 positions from some valid

codeword. Once rs and vs have been determined, one can can compute the Galois

Field Fourier Transform of rs and vs, compute the pointwise quotients rs(ε)/vs(ε) =

F (ε) for each ε in the multiplicative subgroup of F, and then use the inverse Galois

Field Fourier Transform to interpolate the evaluations into F (x). Recall that this

process is called deconvolution and is only valid when the remainder of a division

computation is known to be 0 in advance. If there exists a received vector that differs

from every valid codeword in at least (n− k)/2 positions, then Theorem 43 does not

apply. In this case, the division of rs by vs will produce a quotient with degree k or

higher and a nonzero remainder. One should use classical division or Newton division

to efficiently perform the computation in this case.

245

Once F (x) has been determined, one can evaluate F (x) at each of the roots of

xn − 1 using the Galois Field Fourier Transform to recover the transmitted codeword

C(x) and easily recover m(x) as described at the beginning of this section. If more

than (n + k)/2 errors were introduced during the transmission process, then the

algorithm instead returns another valid Reed-Solomon codeword that is closer to

R(x). In this case, the number of errors is beyond the capacity of the code.

9.4 Pseudocode and operation count of the simple decoding algorithm

Given a received vector represented by R(x), the decoding algorithm proceeds

by interpolating R into the polynomial F ′. The Extended Euclidean Algorithm is

used to start the computation of gcd(xn−1, F ′). When a remainder rs is encountered

with degree less than (n+k)/2, the computations stop. At this point, we also have vs

as part of the computations of the Extended Euclidean Algorithm. If rs mod vs = 0,

then compute rs/vs; otherwise report “Decoding Failure”.

If R has less than (n−k)/2 differences compared to the transmitted codeword

C, then F = rs/vs. One can evaluate F at each of the roots of xn − 1 to recover

C. The desired message m is contained in the coefficients of C with degree n− k or

higher.

If R and C differ in at least d = (n − k)/2 positions, then the algorithm will

return some other message m†. Again, the error-correcting capability of the (n, k)

Reed-Solomon code is at most d = (n − k)/2 and it is not possible to recover m in

this case regardless of the decoding algorithm used.

The pseudocode given in Figure 9.1 can be used to implement the simple

decoding algorithm. By using the basic techniques for implementing lines 1-4 of this

algorithm discussed in the previous chapters, it can be shown that each of these

instuctions requires at most O(n2) additions and O(n2) multiplications. Line 5 only

246

Algorithm : Simple Reed-Solomon decoding algorithm

Input: The polynomial R(x) of degree less than n which represents
the received vector of a (n, k, d) Reed-Solomon codeword
transmitted through a noisy environment where d = (n− k)/2.

Output: A message polynomial m†(x) of degree less than k
which can be encoded with the Reed-Solomon codeword C†(x)
such that C† and R differ in at most (n− k)/2 positions
or “Decoding Failure”.

1. Interpolate R(x) into F ′(x) using the inverse Galois Field Fourier Transform.
2. Apply the Extended Euclidean Algorithm to xn − 1 and F ′.

Stop after s steps where s is the first division step such that
the degree of rs is less than (n+ k)/2.
At this point, we will have rs = us · (xn − 1) + vs · F ′.

3. Divide rs by vs.
If the remainder is nonzero, then return “Decoding Failure”;
Otherwise, let F † = rs/vs.

4. Evaluate F † at each of the roots of xn − 1 to form C†

using the Galois Field Fourier Transform.
5 Extract m† from the coefficients of C† of degree n− k and higher.
6. Return m†.

Figure 9.1 Pseudocode for simple Reed-Solomon decoding algorithm

247

requires n−k copy instructions to transfer the appropriate components of C† into m†.

Line 6 requires no operations. So the overall complexity of the decoding algorithm is

O(n2), the same as other Reed-Solomon decoding algorithms discussed in [59].

Using the techniques discussed in Chapters 3 and 4 for computing the Fast

Fourier Transform over all of the elements of a Galois Field, lines 1 and 4 can each be

computed using O(n log2(n)) multiplications and O(n log2(n) log2 log2(n)) additions.

This algorithm can be used in conjunction with Newton division discussed in Chap-

ter 7 to compute line 3 in O(n log2(n)) multiplications and O(n log2(n) log2 log2(n))

additions as well. Finally, the Fast Euclidean Algorithm discussed in Chapter 8 can

be used to show that line 2 can be computed in O(m(log2(m))2) multiplications and

O(m(log2(m))2 log2 log2(m)) additions where m = (n+k)/2. This is because the Fast

Euclidean Algorithm only uses the upper coefficients of xn − 1 and F ′(x) to recover

F (x). It should be noted that Gao similarly shows how to adapt the partial GCD

computation in line 2 to compute F (x) using only the upper coefficients of xn − 1

and F ′(x) in [29]. Without specific knowledge of n and k, one cannot determine the

overall complexity of the algorithm using the asymptotically faster techniques, but in

any case the overall complexity will be better than O(n2).

Although the techniques mentioned in the previous paragraph require fewer

operations than traditional techniques for large values of n, Reed-Solomon codeword

sizes are not typically large in practice. For example, the Reed-Solomon codes used

in CD players use n ≤ 256. In this case, one needs to carefully compare the various

methods of performing each of the steps. For such small sizes, the overall cost of each

of these operations will likely depend on factors other than the number of additions

and the number of multiplications and will likely vary from computer platform to

computer platform. One must carefully implement the decoding algorithm described

above and then compare the overall time with existing techniques to determine the

248

most efficient method for decoding a Reed-Solomon codeword. Although the decoding

method described here is expected to be comparible to existing techniques, it is

not known which is the most efficient method for a particular Reed-Solomon code

on a particular machine. The author plans to experiment with timing comparisons

of the simple decoding algorithm with other methods at some point in the future

using Reed-Solomon codes typically encountered in practice. These results, however,

will likely have little value for other readers because the timing results will only

be valid on the author’s computer. Anyone interested in the most efficient Reed-

Solomon decoding algorithm for a particular application should carefully implement

the available algorithms on his or her computer and make this decision based on

performance tests of these methods.

9.5 Concluding remarks

This chapter introduced a simple algorithm for decoding systematic Reed-

Solomon codewords based on the nonsystematic decoding algorithms presented in

[71], [29], [23], and [24]. It should be mentioned at this point that a nonsystematic

encoder essentially lets F (x) = m(x) and evaluates F (x) at each of the roots of xn−1

to obtain the transmitted codeword C(x). The decoding algorithm in each of these

cases proceeds by only implementing lines 1-3 of the pseudocode provided in the

previous section.

The algorithm presented in his chapter only decodes the most commonly en-

countered Reed-Solomon codewords where F is a finite field of characteristic 2 with q

elements and n = q− 1. Once the reader understands the principles described in this

chapter, he or she can read [29] to understand how to adapt the algorithm to work

with other possible Reed-Solomon codes. In these cases, one must replace the poly-

nomial xn − 1 used throughout this chapter with a polynomial that characterizes the

249

roots used in the other codes. One must also derive different Lagrange interpolating

polynomials for this case and develop a method of efficiently computing multipoint

evaluation and interpolation for this case. Gao’s paper also briefly mentions how the

algorithm can be adapted for erasure decoding of the Reed-Solomon codewords.

Although the algorithm described here is believed to have a simpler presen-

tation and proof than existing decoding methods, it is not clear yet how it performs

compared to existing techniques. The simple decoding algorithm has similar asymp-

totic operation counts compared to existing decoding methods, but these operation

counts have little practical value because typical Reed-Solomon codewords have rela-

tively small sizes and work over small finite fields. One must carefully implement the

various decoding algorithms to determine the most efficient method of recovering a

message from a received Reed-Solomon codeword.

250

CHAPTER 10

FURTHER APPLICATIONS AND CONCLUDING REMARKS

In this final chapter, we will first return to some topics left unresolved from the

first chapter. In particular, we will discuss how the FFT algorithms developed in this

manuscript can be used to compute the coefficients of a discrete Fourier series and

how to improve multipoint evaluation and interpolation over an arbitrary collection

of points. Next, we will briefly describe other applications of the FFT which can be

explored as further areas of research. Finally, some concluding remarks will be given,

including a summary of the highlights of this manuscript.

10.1 Computing the coefficients of a discrete Fourier series

Recall that in Chapter 1, we mentioned that engineers defined the “Fast

Fourier Transform” as an algorithm which can be used to compute the coefficients of a

discrete Fourier series given a collection of samples of some signal. In this section, we

will more carefully define this problem and show how the FFT algorithms developed

in the earlier chapters can be used to solve the problem.

Let fa(t) be some continuous periodic real-valued function with fundamental

period T0, i.e. fa(t) = fa(t + T0) for all t. Suppose that fa(t) is sampled uniformly

at n points over each period of fa(t) to obtain the discrete-time function f(τ). The

sampling rate T is given by T0/n. The sample at τ = 0 can be chosen to correspond

to any t, but we will assume here that sample τ will correspond to t = τ · T for all

integer values of τ . Note that the fundamental period of f(τ) is n samples.

251

As presented in [62], fa(t) can be approximated by interpolating the values of

the discrete signal f(τ) into a function called the discrete Fourier series which is a

summation of harmonically related sinusoidal functions given by

f(t) = a0 +

n2∑

k=1

(ak · cos(k · 2πf0 · t) + bk · sin(k · 2πf0 · t)) , (10.1)

where f0 = 1/T0. Also, n2 = n/2 if n is even and (n− 1)/2 if n is odd.

Our goal is to determine the coefficients {a0, a1, a2, · · · , an2
, b1, b2, · · · , bn2

} ∈ R

in (10.1). To do so, let us instead consider the related discrete-time function

f(τ) = a0 +

n2∑

k=1

(ak · cos(2πk/n · τ) + bk · sin(2πk/n · τ)) (10.2)

which matches f(t) at all values of t of the form t = τ · (T0/n) where τ is any integer.

Observe that if n is even, then sin(2πk/n · τ) = 0 for all integer values of τ and the

related term in f(t) will not contribute to the discrete Fourier series. So (10.1) will

always have exactly n terms in it.

We desire to interpolate the evaluations {f(τ = 0), f(1), · · · , f(n − 1)} into

f(τ). At first glance, it does not appear that the FFTs presented in Chapters 2 and

4 can be used to solve this problem. However, if the following results learned in a

course in complex variables (e.g. [67])

cos(2πk/n · τ) =
1

2
· (eI·2πk/n·τ + e−I·2πk/n·τ), (10.3)

sin(2πk/n · τ) =
1

2I
· (eI·2πk/n·τ − e−I·2πk/n·τ) (10.4)

252

are substituted into (10.1) for each k in 1 ≤ k ≤ n2, we obtain

f(τ) = a0 +
1

2
·

n2∑

k=1

(
(ak − I · bk) · eI·2πk/n·τ

)
(10.5)

+
1

2
·

n2∑

k=1

(
(ak + I · bk) · e−I·2πk/n·τ

)
.

Now since e−I·2πk/n·τ = eI·2π(n−k)/n·τ for all integer values of τ , then

f(τ) = a0 +

n2∑

k=1

(
ak − I · bk

2
· eI·2πk/n·τ

)
(10.6)

+
n−1∑

k=n−n2

(
an−k + I · bn−k

2
· eI·2πk/n·τ

)
.

If n is odd, then let us now define c0 = a0, ck = (ak − I · bk)/2 for all k in 1 ≤ k < n2,

and ck = (an−k+I·bn−k)/2 for all k in n2+1 ≤ k < n. If n is even, then define the ck’s

in the same manner except that cn2
= an2

. In either case, the unknown polynomial

will have the form

f(τ) =
n−1∑

k=0

ck · eI·2πk/n·τ (10.7)

where each ck is an element of C, but f(τ) is a real-valued function. This is a

consequence of the fact that ck and cn−k are complex conjugates.

Finally, apply the transformation x = eI·2π/n·τ . Then we obtain

253

f(x) =
n−1∑

d=0

fd · xd (10.8)

where fd = cd for all 0 ≤ d < n. If we let ω = eI·2π/n, then (10.8) can be used to

compute {f(x = 1), f(ω), f(ω2), · · · , f(ωn−1)}. If n is a power of two, then the coeffi-

cients of f(x) can be recovered by applying any power-of-two inverse FFT algorithm

found in Chapter 4. The coefficients of the discrete Fourier series f(t) can then be

determined using the formulas

a0 = f0 (10.9)

ak = fk + fn−k (10.10)

an/2 = fn/2 (10.11)

bk = I · (fk − fn−k) (10.12)

for 0 ≤ k ≤ n/2 − 1.

Because of the duality property of multiplicative FFT algorithms, f(x) can also

be recovered by any forward FFT algorithm with ω replaced by ω−1. This accounts

for the use of W = e−I·2π/n as the primitive nth root of unity which frequently appears

in engineering literature.

Assuming that the signal inputs are all elements of the real number system,

it turns out that we can exploit the fact that f(t) is a real-valued function to reduce

the number of computations. Several algorithms for computing a real FFT in roughly

half of the operations of an FFT with complex input are given in [53] and [14].

254

It should also be pointed out that the result of the engineer’s version of the

FFT gives the coefficients of the discrete Fourier series, but scaled by n/T0. The most

frequent use of the FFT in engineering is to perform the operation of convolution,

essentially equivalent to the mathematician’s operation of polynomial multiplication.

The engineering version of the FFT is computed for two sequences of time samples to

be convoluted. The result of these computations is two scaled discrete Fourier series.

The coefficients of these discrete Fourier series can be pointwise multiplied to form the

scaled discrete Fourier series of the desired output sequence. The engineering version

of the inverse FFT is then computed to evaluate the Fourier series at the desired

points in time. The result of this computation is the desired output, but scaled by

n. Each component of the inverse FFT output is then multiplied by 1/n to undo

the scaling and obtain the original signal samples. So convolution and polynomial

multiplication essentially follow an identical sequence of steps, but with a different

selection of the primitive root of unity. For this reason, engineering and mathematical

FFT literature will appear very similar, but there will be subtle differences because

the mathematician defines the FFT differently than the engineer.

10.2 Fast multipoint evaluation: revisited

Recall that in Chapter 1, we also presented an algorithm that could efficiently

evaluate a polynomial f of degree 1 less than n = 2k with coefficients in some ring R

at any set S consisting of n points in R. The reduction step of this algorithm consists

of computing two remainders of a polynomial of degree less than 2m by a polynomial

of degree m. From the discussion on the fast division algorithms presented in Chapter

7, we can reduce the number of multiplications needed to obtain each of these modular

1 Again, the results in this section can be generalized to other selections of n if
desired.

255

reductions from m2 to 5 ·MM(2m) where MM(2m) is number of multiplications in R

needed to compute a product of polynomials of degree less than 2m. Similarly, the

number of additions needed to compute a modular reduction used in the algorithm

is reduced from m2 to 5 · AM(2m).

It turns out that in the case of this fast multipoint evaluation algorithm, we can

reduce the operation counts associated with the remainder computations even more.

Recall that we assumed that set S was fixed and that Mi,j could be precomputed for

all 0 ≤ i < k and 0 ≤ j ≤ 2k−i. In this case, all of the Newton inverses needed in the

fast division algorithm can be precomputed and the cost of each modular reduction

is decreased to 2 ·MM(2m) multiplications and 2 · AM(2m) additions.

We are going to use these improvements to reduce the operation counts of the

fast multipoint evaluation algorithm. Substituting the reduced operation counts for

the modular reductions into the recurrence relations derived in Chapter 1, we obtain

new recurrence relations given by

M(n) = 2 ·M
(n

2

)
+ 4 ·MM(n), (10.13)

A(n) = 2 · A
(n

2

)
+ 4 · AM(n). (10.14)

As before, the operation counts for the case where n = 1 are given by M(1) = 0 and

A(1) = 0. Master Equation VI can be used to solve these recurrence relations for the

formulas given by:

M(n) ≤ 4 ·MM(n) · log2(n), (10.15)

A(n) ≤ 4 · AM(n) · log2(n). (10.16)

256

For most practical cases where a multiplicative FFT can be used to implement the

modular reduction, then these results imply that the multipoint evaluation can be

implemented using no more than O(n · (log2(n))2) operations. If R is a finite field

with 2k elements where k is a power of two, then the multipoint evaluation can be

implemented using no more than O(n ·(log2(n))2.585) operations. 2 If k is not a power

of two, then O(n·(log2(n))3) operations are required. In the worst-case scenario where

R has no special structure, then Karatsuba’s algorithm can be used to implement the

modular reductions. In this case, the multipoint evaluation can be implemented in

O(n1.585 · log2(n)) operations.

10.3 Fast interpolation: revisited

In Chapter 1, a fast interpolation algorithm was also presented. This algorithm

interpolates an collection of n evaluations of some function f at each of the points in

some set S into the original function f . Each interpolation step receives as input two

polynomials of degree less than m which were computed by two recursive calls to the

fast interpolation algorithm. The interpolation step produces a polynomial of degree

less than 2m using two multiplications of a polynomial of degree less than m by a

polynomial of degree exactly m and one addition of two polynomials of degree less

than 2m. Replacing the multiplication method used in Chapter 1 with the improved

multiplication methods covered in Chapter 5, we obtain new recurrence relations for

the operation count of the fast interpolation algorithm given by

2 These results are for the evaluation of a polynomial at an arbitrary collection of
points. The results of Chapters 2 and 3 are for specially chosen collections of points.

257

M(n) = 2 ·M
(n

2

)
+ 2 ·MM(n), (10.17)

A(n) = 2 · A
(n

2

)
+ 2 · AM(n) + n (10.18)

where M(1) = 0 and A(1) = 0. Master Equation VI can be used to solve these

recurrence relations for the formulas given by:

M(n) ≤ 2 ·MM(n) · log2(n), (10.19)

A(n) ≤ 2 · AM(n) · log2(n) + n · log2(n). (10.20)

These results tell us that the number of operations to implement the fast interpola-

tion algorithm is roughly equal to the number of operations required to complete the

fast multipoint evaluation algorithm. So the fast interpolation algorithm can be im-

plemented in at most O(n1.585 · log2(n)) operations by using Karatsuba multiplication

to help perform the modular reductions.

10.4 Other research areas involving FFT algorithms

As we prepare to conclude this manuscript, this section presents some addi-

tional areas for research involving FFT algorithms besides trying to further improve

upon the methods already presented. Many of the following topics have already been

considered in the literature before, but some can be improved upon using the methods

discussed in the previous chapters. To prevent this manuscript from becoming a two

volume work, we will only briefly mention these areas here and leave the details for a

later time or another author.

258

Factorization of polynomials over finite fields is covered in [34] and could be

a next logical choice for a topic to continue in this research. The case where the

coefficient ring is finite fields of characteristic 2 is covered in a separate paper [32]. The

factorization technique covered in these sources works in three phases: (1) Square-free

factorization which removes repeated factors in the polynomials; (2) Distinct-degree

factorization which splits polynomials into products of factors of equal degree; and

(3) Equal-degree factorization which completes the factorization of the polynomial.

Each of these three phases replies upon computing the greatest common divisor. By

incorporating the improvements to the greatest common divisor operation covered in

Chapter 8 into the factorization routines discussed in [32] and [34], it is reasonable

to expect a modest improvement in the performance of these algorithms. It may also

be possible to improve upon the algorithms used to complete the three phases of the

factorization process.

Another area of future research is multiplication of polynomials with finite

field coefficients that do not support one of the FFT algorithms discussed in this

manuscript. The most common example of this situation is GF(2) which only has two

elements and cannot be used to multiply polynomials of product degree 2 or higher.

As discussed in Chapter 5, the technique of clumping is used to map polynomials over

GF(2) to polynomials over larger finite fields to handle this case. If one is forced to

work over a finite field of size 2k and k is not a power of two, a technique similar to

clumping may be used to map polynomials defined over such a finite field to another

finite field which can use the more efficient additive FFT routines. This may be an

area to explore further if one needs to compute over one of these other finite fields.

Yet another area for future research involves multivariate polynomials. One

technique for handling this situation is to map such polynomials into one-dimensional

polynomials with sufficient zero-padding. Many of the coefficients in this polynomial

259

will be zero and there will be significant waste involved in FFTs which compute with

these polynomials. One of the applications of the truncated Fast Fourier Transform

presented in [41] and [42] is to efficiently compute over such multivariate polynomials,

exploiting the known zeros. Since the author did not have an interest in computing

over multivariate polynomials, he did not explore this topic any further. Additional

algorithms for computing over multidimensional data structures are covered in [31].

If one wishes to compute over large data structures, he or she may consider

researching methods of implementing any of the FFT algorithms presented in the

previous chapters in parallel. A number of efficient parallel FFT algorithms are

discussed in [14]. These algorithms can also be used to efficiently multiply polynomials

using FFT-based multiplication. Open problems are how to compute division with

remainder and the greatest common divisor in parallel. The present author started

to investigate these problems, but has not yet made any progress in developing these

parallel algorithms.

Finally, there are many applications of the FFT algorithm that can be im-

proved upon by using the techniques discussed in this manuscript. Bernstein sum-

marizes many of the applications of interest to mathmaticians in [3]. Brigham [9]

contains an extensive bibliography which gives many other applications of the FFT

algorithm to areas of science and engineering.

10.5 Concluding remarks

This chapter returned to the topics discussed at the beginning of this document

and showed how the FFT algorithms discussed in the earlier chapters could be used

to efficiently solve each of these problems. Topics for additional research were also

discussed that may be further investigated by the author at a later date or by another

individual.

260

The purpose of this manuscript was to explore several types of FFT algorithms

and to explore several common applications of the FFT algorithm. The multiplicative

FFT algorithms are extensively covered in the literature and this research effort was

unable to improve any of these algorithms. However, the research did extend the work

of Bernstein and presented each of these algorithms in terms of modular reductions,

several for the first time. This study of the multiplicative FFT algorithms also allowed

insights to be drawn which resulted in new algorithms for computing the additive FFT

that can be applied to certain finite fields. The additive FFT was then used to derive a

new multiplication method that is superior to Schönhage’s algorithm for multiplying

many polynomials over characteristic 2. Next, we introduced new truncated FFT

algorithms which can be used to efficiently multiply polynomials with finite field

coefficients of arbitrary degree. We then used the results of the earlier chapters to

improve the performance of polynomial division, computation of the greatest common

divisor, and decoding Reed-Solomon codes. It is expected that the performance of

many other applications of the FFT can be improved as well, but this seems to be an

appropriate stopping point for the current research effort.

One additional goal of this manuscript is to allow mathematicians and engi-

neers to more easily translate each other’s work so that both communities may be

able to benefit from one another. While mathematicians will likely still use “i” and

engineers will likely still use “j” to represent the imaginary element, mathematicians,

engineers, and computer scientists would better appreciate each other’s work if a

common treatment of the Fast Fourier Transform was taught to these students in

colleges and universities. The author hopes that this manuscript and future revisions

of the material presented in this document will ultimately become one step toward

the realization of this vision.

261

APPENDICES

262

Appendix A

Master equations for algorithm operation counts

Many of the algorithms in this document are governed by recurrence relations

which are special cases of a few general recurrence relations. In this section of the

appendix, we will develop closed-form equations for each of these general recurrence

relations.

A technique called iteration will be used to develop the closed-form solutions.

As discussed in [17], this method recursively substitutes the formula into itself with

the appropriate input size. Initial conditions for the recurrence relation are used to

end the recursion and obtain the closed-form formula.

Let us first consider the recurrence relation

F1(n) = 2 · F1

(n
2

)
+ A · n2 + B · n+ C + D · n · log2(n) + E · n · clog2(n)−1

(A.1)

where F1(1) = 0. Here, clog2(n)−1 is defined by 2d where d is the number of ones in the

binary expansion of log2(n) − 1. We are going to solve this recurrence relation using

iteration:

F1(n) = 2 · F1

(n
2

)
+ A · n2 + B · n+ C + D · n · log2(n) + E · n · clog2(n)−1 (A.2)

= 2 ·
(

2 · F1

(n
4

)
+ A ·

(n
2

)2

+ B · n
2

+ C + D ·
(n

2

)
· log2

(n
2

)

+ E · n
2
· clog2(n)−2

)
+ A · n2 + B · n+ C + D · n · log2(n) + E · n · clog2(n)−1

263

= 4 · F1

(n
4

)
+

(
1 +

1

2

)
· A · n2 + 2 · B · n+ (1 + 2) · C

+D · n ·
(
log2(n) + log2

(n
2

))
+ E · n ·

(
clog2(n)−1 + clog2(n)−2

)

= 8 · F1

(n
8

)
+

(
1 +

1

2
+

1

4

)
· A · n2 + 3 · B · n+ (1 + 2 + 4) · C

+D · n ·
(
log2(n) + log2

(n
2

)
+ log2

(n
4

))

+E · n ·
(
clog2(n)−1 + clog2(n)−2 + clog2(n)−3

)

= . . .

= n · F1(1) +

(
1 +

1

2
+

1

4
+ · · · + 1

n/2

)
· A · n2 + B · n · log2(n)

+C ·
(
1 + 2 + 4 + · · · + n

2

)

+D · n ·
(
log2(n) + log2

(n
2

)
+ log2

(n
4

)
+ · · · + 1

)

+E · n ·
(
clog2(n)−1 + clog2(n)−2 + clog2(n)−3 + · · · + clog2(n)−log2(n)

)

= 2 ·
(

1 − 1

n

)
· A · n2 + B · n · log2(n) + C · (n− 1)

+
1

2
· D · n ·

(
(log2(n))2 + log2(n)

)

+E · n ·
(
clog2(n)−1 + clog2(n)−2 + clog2(n)−3 + · · · + c0

)

= 2A · (n2 − n) + B · n · log2(n) + C · (n− 1) +
1

2
· D · n ·

(
(log2(n))2 + log2(n)

)

+E · n · (clog2(n)−1 + clog2(n)−2 + clog2(n)−3 + · · · + c0).

The final line of (A.2) is referred to as Master Equation I throughout the

manuscript and is used to derive operation count formulas of the form (A.1). Here,

we made use of the identity

k∑

i=0

ai =
ak+1 − 1

a− 1
(A.3)

264

which holds for all a 6= 1. In the derivation above, the identity was used with a = 2

and a = 1/2.

In [12], Cantor explains that clog2(n)−1 + clog2(n)−2 + clog2(n)−3 + · · ·+ c0 is equal

to (log2(n))log2(3) ≈ (log2(n))1.585 when n = 2k and k is a power of two. This can be

seen by applying the Binomial Theorem to (1 + 2)log2(n) and then using properties

of logarithms to show that 3log2(n) = log2(n)log2(3). If k is not a power of two, then

log2(n)log2(3) is an upper bound for clog2(n)−1 + clog2(n)−2 + clog2(n)−3 + · · · + c0.

By properly setting the constants of Master Equation I, this formula can also

be used to solve recurrence relations of the form

F1(n) = 4 · F1

(n
4

)
+

(
1 +

1

2

)
· A · n2 + 2 · B · n+ (1 + 2) · C. (A.4)

In this case, then the solution is given by (A.2) or

F1(n) =
n

2
· F1(2) +

(
1 +

1

2
+

1

4
+ · · · + 1

n/4

)
· A · n2 + B · n · (log2(n) − 1)

+C ·
(
1 + 2 + 4 + · · · + n

4

)
(A.5)

=
n

2
· F1(2) +

(
2 − 4

n

)
· A · n2 + B · n · (log2(n) − 1) + C ·

(n
2
− 1
)

if n is not divisible by a power of four.

Similarly, Master Equation I can be used to solve recurrence relations of the

form

265

F1(n) = 8 · F1

(n
8

)
+

(
1 +

1

2
+

1

4

)
· A · n2 + 3 · B · n+ (1 + 2 + 4) · C.

(A.6)

In this case, then the solution can be given by (A.2), (A.5) or

F1(n) =
n

4
· F1(4) +

(
1 +

1

2
+

1

4
+ · · · + 1

n/8

)
· A · n2 + B · n · (log2(n) − 2)

+C ·
(
1 + 2 + 4 + · · · + n

8

)
(A.7)

=
n

4
· F1(4) +

(
2 − 8

n

)
· A · n2 + B · n · (log2(n) − 2) + C ·

(n
4
− 1
)

if n is not divisible by a power of 8.

Next, let us consider the recurrence relation

F2(n) = F2

(n
2

)
+ A · n (A.8)

where F2(1) = 0. We are now going to solve this recurrence relation using iteration:

266

F2(n) = F2

(n
2

)
+ A · n (A.9)

=
(
F2

(n
4

)
+ A · n

2

)
+ A · n

= F2

(n
4

)
+

(
1 +

1

2

)
· A · n

= F2

(n
8

)
+

(
1 +

1

2
+

1

4

)
· A · n

= · · ·

= F2(1) +

(
1 +

1

2
+

1

4
+ · · · + 1

n/2

)
· A · n

= 2 · A ·
(

1 − 1

n

)
· n

= 2 · A · (n− 1).

The final line of (A.9) is referred to as as Master Equation II throughout the manuscript

and used to solve operation count formulas of the form (A.8). Here, we made use of

(A.3) with a = 1/4. By properly setting the constants of Master Equation II, this

formula can also be used to solve recurrence relations of the form

F2(n) = F2

(n
4

)
+

(
1 +

1

2

)
· A · n. (A.10)

The solution is given by (A.9) or

F2(n) = F2(2) +

(
1 +

1

2
+

1

4
+ · · · + 1

n/4

)
· A · n (A.11)

= F2(2) + 2 · A · (n− 2)

267

if n is not a power of four.

Similarly, equations of the form

F2(n) = F2

(n
8

)
+

(
1 +

1

2
+

1

4

)
· A · n (A.12)

can be solved by using (A.9), (A.11) or

F2(n) = F2(4) +

(
1 +

1

2
+

1

4
+ · · · + 1

n/8

)
· A · n (A.13)

= F2(4) + 2 · A · (n− 4)

if n is not a power of eight.

Now, let consider the recurrence relation

F3(n) = 3 · F3

(n
3

)
+ A · n+ B (A.14)

where F3(1) = 0. We are going to solve this recurrence relation using iteration:

268

F3(n) = 3 · F3

(n
3

)
+ A · n+ B (A.15)

= 3 ·
(
3 · F3

(n
9

)
+ A · n

3
+ B

)
+ A · n+ B

= 9 · F3

(n
9

)
+ 2 · A + (1 + 3) · B

= 27 · F3

(n
27

)
+ 3 · A + (1 + 3 + 9) · B

= · · ·

= n · F3(1) + log3(n) · A · n+
(
1 + 3 + 9 + · · · + n

3

)
· B

= n · log3(n) · A +
1

2
· (n− 1) · B.

The final line of (A.15) is referred to as Master Equation III throughout the manuscript

and is used to solve recurrence relations of the form (A.14). Here, we made use of

(A.3) with a = 3.

The next recurrence relation to be considered is given by

F4(n) = 2 ·
√
n · F4(

√
n) + A · n · log2(n) + B ·

√
n · log2(

√
n) (A.16)

where F4(2) is a given initial condition. We will also solve this recurrence relation

using iteration. Let n = 22I

. Then

269

F4

(
22I
)

= 2 · 22I−1 · F4

(
22I−1

)
+ A · 22I · 2I + B · 22I−1 · 2I−1 (A.17)

= 2 · 22I−1 ·
(
2 · 22I−2 · F4

(
22I−2

)
+ A · 22I−1 · 2I−1

+B · 22I−2 · 2I−2
)

+ A · 22I · 2I + B · 22I−1 · 2I−1

= 22 · 22I−1+2I−2 · F4

(
22I−2

)
+ 2 · A · 22I · 2I

+B · 2I−1 ·
(
22I−1+2I−2

+ 22I−1
)

= 23 · 22I−1+2I−2+2I−3 · F4

(
22I−3

)
+ 3 · A · 22I · 2I

+B · 2I−1 ·
(
22I−1+2I−2+2I−3

+ 22I−1+2I−2

+ 22I−1
)

· · ·

= 2I · 22I−1+2I−2+2I−3+···+20 · F4(2) + A · 22I · 2I · I

+B · 2I−1 ·
(
22I−1+2I−2+2I−3+···+1 + 22I−1+2I−2+2I−3+···+2 + · · · + 22I−1

)

= 2I · 22I−1 · F4(2) + A · 22I · 2I · I

+B · 2I−1 ·
(

1

220
· 22I

+
1

221
· 22I

+ · · · + 1

22I−1
· 22I

)

= 2I · 22I−1 · F4(2) + A · 22I · 2I · I

+B · 2I−1 · 22I ·
(

1

220
+

1

221
+ · · · + 1

22I−1

)
.

So Master Equation IV is given by

F4(n) =
1

2
· n · log2(n) · F4(2) + A · n · log2(n) · log2 log2(n)

+
1

2
· B · Λ · n · log2(n) (A.18)

where

270

Λ =
I−1∑

i=0

(
1

2

)2i

(A.19)

and Λ is bounded by 1/2 ≤ Λ < 1.

The next Master Equation is not recursively defined, but involves iteration to

determine its solution. Let G(n) be a function such that 2 · G(n) ≤ G(2n). Thus,

G(n) ≤ 1/2 ·G(2n). Then let F5(n) be defined by

F5(n) =
k∑

i=1

(
A ·G(2i+1) + B · 2i

)
(A.20)

where k = log2(n). An upper bound for the solution to this equation is given by

F5(n) =
k∑

i=1

(
A ·G(2i+1) + B · 2i

)
(A.21)

= A ·
k∑

i=1

G(2i+1) + B

k∑

i=1

·2i

= A ·
(
G(2k+1) +

k−1∑

i=1

G(2i+1)

)
+ B · (2k+1 − 1)

≤ A ·
(
G(2k+1) +

k−1∑

i=1

1

2
·G(2i+2)

)
+ B · (2k+1 − 1)

= A ·
(
G(2k+1) ·

(
1 +

1

2

)
+

k−2∑

i=1

1

2
·G(2i+2)

)
+ B · (2k+1 − 1)

271

F5(n) ≤ A ·
(
G(2k+1) ·

(
1 +

1

2
+

1

4

)
+

k−3∑

i=1

1

4
·G(2i+3)

)
+ B · (2k+1 − 1)

. . .

≤ A ·G(2k+1) ·
(

1 +
1

2
+

1

4
+ · · · + 1

n

)
+ B · (2k+1 − 1)

< 2 · A ·G(2n) + 2 · B · n

where the last row of this analysis is Master Equation V.

Finally, consider the recurrence relation given by

F6(n) = 2 · F6

(n
2

)
+ A ·G(n) + B · n (A.22)

where G(n) is a function that has the same properties as considered in Master Equa-

tion V and F6(1) = 0. We will now compute an upper bound for F6(n) using iteration:

F6(n) = 2 · F6

(n
2

)
+ A ·G(n) + B · n (A.23)

= 2 ·
(
2 · F6

(n
4

)
+ A ·G

(n
2

)
+ B · n

2

)
+ A ·G(n) + B · n

= 22 · F6

(n
4

)
+ A · 2 ·G

(n
2

)
+ A ·G(n) + 2 · B · n

≤ 22 · F6

(n
4

)
+ 2 · A ·G(n) + 2 · B · n

≤ 23 · F6

(n
8

)
+ 3 · A ·G(n) + 3 · B · n

· · ·

≤ n · F6(1) + log2(n) · A ·G(n) + B · n · log2(n)

= A ·G(n) · log2(n) + B · n · log2(n).

272

The final row of (A.23) is referred to as Master Equation VI in the manuscript and

can be used to solve operation count formulas of the form (A.22).

273

Appendix B

Operation count: split-radix FFT

The total number of operations to compute the FFT of size n is

M(n) = M
(n

2

)
+ 2 ·M

(n
4

)
+

1

2
· n− 2, (B.1)

A(n) = A
(n

2

)
+ 2 · A

(n
4

)
+

3

2
· n (B.2)

where M(1) = 0, A(1) = 0, M(2) = 0, and A(2) = 2.

We are going to use a combinatorics-based technique to solve for these opera-

tion counts. This technique is developed in [65] and [78] for the case of linear, homo-

geneous recurrence relations and limited nonhomogeneous cases and can be used as

an alternative method of deriving a number of the Master Equations. The combina-

torics text [55] covers additional nonhomogenous cases and can be used to solve the

above recurrence relations.

First, let us solve for M(n). Let n = 2k and rewrite the recurrence relation as

mk = mk−1 + 2 ·mk−2 + 2k−1 − 2 where mi = M(2i). The characteristic polynomial

of the homogeneous part of the recurrence relation, i.e. mk = mk−1 + 2 · mk−2, is

x2 − x − 2 = (x + 1) · (x − 2). The general solution to this recurrence relation is

mk = c′1 · (2)k + c′2 · (−1)k where c′1 and c′2 need to be determined using the initial

conditions. According to the technique covered in [55], the solution to the given

recurrence relation will have the formmk = c1·k·(2)k+c2·(2)k+c3·(−1)k+c4·k+c5. We

are given that m0 = 0 and m1 = 0. We can use the recurrence relation to determine

that m2 = 0, m3 = 2, and m4 = 8. Now, solve the system of equations

274

0 · c1 + 1 · c2 + 1 · c3 + 0 · c4 + 1 · c5 = 0,

2 · c1 + 2 · c2 + (−1) · c3 + 1 · c4 + 1 · c5 = 0,

8 · c1 + 4 · c2 + 1 · c3 + 2 · c4 + 1 · c5 = 0,

24 · c1 + 8 · c2 + (−1) · c3 + 3 · c4 + 1 · c5 = 2,

64 · c1 + 16 · c2 + 1 · c3 + 4 · c4 + 1 · c5 = 8

(B.3)

to obtain c1 = 1
3
, c2 = −8

9
, c3 = −1

9
, c4 = 0 and c5 = 1. Thus, the closed-form formula

for M(n) is

M(n) =

1
3
· n · log2(n) − 8

9
· n+ 8

9
if log2(n) is even

1
3
· n · log2(n) − 8

9
· n+ 10

9
if log2(n) is odd.

(B.4)

Now, let us solve for A(n). Let n = 2k and rewrite the recurrence relation

as ak = ak−1 + 2 · ak−2 + 3
2
· 2k where ai = A(2i). The characteristic polynomial

of the homogeneous part of the recurrence relation, i.e. ak = ak−1 + 2 · ak−2, is

x2 − x− 2 = (x+ 1) · (x− 2). The general solution to this recurrence relation is the

same as mk. The solution to ak will have the form ak = (c1 · k+ c2) · (2)k + c3 · (−1)k.

We are given that a0 = 0 and a1 = 2. We can use the recurrence relation to determine

that a2 = 8. Now, solve the system of equations

0 · c1 + 1 · c2 + 1 · c3 = 0,

2 · c1 + 2 · c2 + (−1) · c3 = 2,

8 · c1 + 4 · c2 + 1 · c3 = 8

(B.5)

to obtain c1 = 1, c2 = 0, and c3 = 0. Thus, the closed-form formula for A(n) is

275

A(n) = n · log2(n). (B.6)

The number of multiplications by primitive 8th roots of unity in the split-radix algo-

rithm is given by the recurrence relation

M8(n) = M8

(n
2

)
+ 2 ·M8

(n
4

)
+ 2 (B.7)

for n ≥ 8 where M8(1) = 0, M8(2) = 0 and M8(4) = 0.

Let us solve for M8(n). If n = 2k, we can rewrite the recurrence relation

as ψk = ψk−1 + 2 · ψk−2 + 2 where ψi = M8(2
i). The characteristic polynomial of

the homogeneous part of the recurrence relation, i.e. ψk = ψk−1 + 2 · ψk−2, is again

x2 − x − 2 = (x + 1) · (x − 2). The general solution to this recurrence relation is

the same as the general solution for mk and ak. The solution to the given recurrence

relation will have the form ψk = c1 · (2)k + c2 · (−1)k + c3 · k + c4. We are given that

ψ1 = 0 and ψ2 = 0. We can use the recurrence relation to determine that ψ3 = 2,

ψ4 = 4. Now, solve the system of equations

2 · c1 + (−1) · c2 + 1 · c3 + 1 · c4 = 0,

4 · c1 + 1 · c2 + 2 · c3 + 1 · c4 = 0,

8 · c1 + (−1) · c2 + 3 · c3 + 1 · c4 = 2,

16 · c1 + 1 · c2 + 4 · c3 + 1 · c4 = 4

(B.8)

276

to obtain c1 = 1
3
, c2 = −1

3
, c3 = 0, and c4 = −1. Thus, a closed-form formula for

M8(n) is

M8(n) =

1
3
· n− 4

3
if log2(n) is even

1
3
· n− 2

3
if log2(n) is odd

(B.9)

which holds for all n > 1. When n = 1, then M8(1) = 0.

277

Appendix C

Additional details of the modified split-radix FFT

In this section of the appendix, we will first present the four different reduction

steps of the new split-radix algorithm. In each version, we will use the notation f ◦
4m,j to

indicate the polynomial where the degree d coefficient of f(ωσ′(j)/(4m)·x) mod (x4m−1)

has been scaled by S4m,d for all d in 0 ≤ d < 4m where S4m,d was defined in Chapter

2.

Version A will be used for every reduction step where j = 0. It receives as

input the unscaled polynomial f ◦
4m,0. Its role is to introduce the scaling factor Sm,d

into each term of f ◦
m,2 and f ◦

m,3 so that the scaled twisted polynomials can be used

on the reduction steps that receive these two polynomials as input. Pseudocode for

this reduction step is given in Figure C.1.

Version B of the reduction step is the most favorable case that takes advantage

of the scaled twisted polynomials. In order to use this reduction step, the input

polynomials must be scaled by S4m,d for all d < 4m and S4m,d = S4m,d+m = S4m,d+2m =

S4m,d+3m for all d ≤ m. We will defer adjustment of f ◦
2m,2j until a lower level reduction

step. The two results of size m will always be able to use version B for each of the

four versions of the algorithm. Pseudocode for this reduction step is given in Figure

C.2.

Versions C and D of the reduction step handle the two cases where f ◦
2m,2j has

not been adjusted in the previous reduction step. In version C, the input will be

scaled by S8m,d where S8m,d = S8m,d+2m for all d ≤ 2m, but S8m,d 6= S8m,d+m for all

d ≤ 3m. In this case, the pairs {fA, fC} and {fB, fD} can be combined into fα and fβ

since the same scaling factor is used for each degree term in each pair. When fα and

fβ are combined into fY and fZ , different scaling factors appear in common degree

terms of these two expressions. We will scale each term of these two expressions in

278

Algorithm : Modified split-radix FFT (version A reduction step)

Input: The unscaled polynomial f ◦
4m,0 where 4m is a power of two.

Output: f(ωσ′(0)), f(ωσ′(1)), . . . , f(ωσ′(4m−1)).

0A.If (4m) = 1, then return f(ωσ′(0)) = f(ωσ′(0) · x) mod (x− 1).
0B. If (4m) = 2, then call a radix-2 algorithm to compute the FFT.
1. Split f ◦

4m,0 into four blocks fA, fB, fC , and fD

each of size m such that f ◦
4m,0 = fA · x3m + fB · x2m + fC · xm + fD.

2. Compute f ◦
2m,0 = fW · xm + fX = (fA + fC) · xm + (fB + fD).

3. Compute fα = −fB + fD.
4. Compute fβ = I · (−fA + fC).
5. Compute fY = fα + fβ.
6. Compute fZ = −fα + fβ.
7. Compute f ◦

m,2 by multiplying fY by ωσ′(2)/m · Sm,d for all d < m.

8. Compute f ◦
m,3 by multiplying fZ by ω−σ′(2)/m · Sm,d for all d < m.

9. Compute the FFT of f ◦
2m,0 using the version A reduction step to obtain

f(ωσ′(0)), f(ωσ′(1)), . . . , f(ωσ′(2m−1)).
10. Compute the FFT of f ◦

m,2 using the version B reduction step to obtain

f(ωσ′(2m)), f(ωσ′(2m+1)), . . . , f(ωσ′(3m−1)).
11. Compute the FFT of f ◦

m,3 using the version B reduction step to obtain

f(ωσ′(3m)), f(ωσ′(3m+1)), . . . , f(ωσ′(4m−1)).
12. Return f(ωσ′(0)), f(ωσ′(1)), . . . , f(ωσ′(4m−1)).

Figure C.1 Pseudocode for modified split-radix FFT (version A reduction step)

279

Algorithm : Modified split-radix FFT (version B reduction step)

Input: The polynomial f ◦
4m,j that has been scaled by S4m,d for all d < 4m.

Here, S4m,d = S4m,d+m = S4m,d+2m = S4m,d+3m for all d ≤ m.

Output: f(ωσ′(j·4m+0)), f(ωσ′(j·4m+1)), . . . , f(ωσ′(j·4m+4m−1)).

0A.If (4m) = 1, then return f(ωσ′(j)) = f(ωσ′(j) · x) mod (x− 1).
0B. If (4m) = 2, then call a radix-2 algorithm to compute the FFT.
1. Split f ◦

4m,j into four blocks fA, fB, fC , and fD

each of size m such that f ◦
4m,j = fA · x3m + fB · x2m + fC · xm + fD.

2. Compute f ◦
2m,2j = fW · xm + fX = (fA + fC) · xm + (fB + fD).

3. Compute fα = −fB + fD.
4. Compute fβ = I · (−fA + fC).
5. Compute fY = fα + fβ.
6. Compute fZ = −fα + fβ.
7. Compute f ◦

m,4j+2 by multiplying fY by T4m,d for all d < m.

8. Compute f ◦
m,4j+3 by multiplying fZ by T4m,d for all d < m.

Note: T4m,d is the complex conjugate of T4m,d.
9. Compute the FFT of f ◦

2m,2j using the version C reduction step to obtain

f(ωσ′(j·4m+0)), f(ωσ′(j·4m+1)), . . . , f(ωσ′(j·4m+2m−1)).
10. Compute the FFT of f ◦

m,4j+2 using the version B reduction step to obtain

f(ωσ′(j·4m+2m)), f(ωσ′(j·4m+2m+1)), . . . , f(ωσ′(j·4m+3m−1)).
11. Compute the FFT of f ◦

m,4j+3 using the version B reduction step to obtain

f(ωσ′(j·4m+3m)), f(ωσ′(j·4m+3m+1)), . . . , f(ωσ′(j·4m+4m−1)).
12. Return f(ωσ′(j·4m+0)), f(ωσ′(j·4m+1)), . . . , f(ωσ′(j·4m+4m−1)).

Figure C.2 Pseudocode for modified split-radix FFT (version B reduction step)

280

Algorithm : Modified split-radix FFT (version C reduction step)

Input: The polynomial f ◦
4m,j that has been scaled by S8m,d for all d < 4m.

Here, S8m,d = S8m,d+2m for all d ≤ 2m, but S8m,d 6= S8m,d+m for all d ≤ 3m.

Output: f(ωσ′(j·4m+0)), f(ωσ′(j·4m+1)), . . . , f(ωσ′(j·4m+4m−1)).

0A.If (4m) = 1, then return f(ωσ′(j)) = f(ωσ′(j) · x) mod (x− 1).
0B. If (4m) = 2, then call a radix-2 algorithm to compute the FFT.
1. Split f ◦

4m,j into four blocks fA, fB, fC , and fD

each of size m such that f ◦
4m,j = fA · x3m + fB · x2m + fC · xm + fD.

2. Compute f ◦
2m,2j = fW · xm + fX = (fA + fC) · xm + (fB + fD).

3. Compute fα = −fB + fD.
3A.Compute fα′ by scaling term d of fα by (S4m,d/S8m,d) for all d < m.
4. Compute fβ = I · (−fA + fC).
4A.Compute fβ′ by scaling term d of fβ by (S4m,d/S8m,d+2m) for all d < m.
5. Compute fY = fα′ + fβ′ .
6. Compute fZ = −fα′ + fβ′ .
7. Compute f ◦

m,4j+2 by multiplying fY by T4m,d for all d < m.

8. Compute f ◦
m,4j+3 by multiplying fZ by T4m,d for all d < m.

Note: T4m,d is the complex conjugate of T4m,d.
9. Compute the FFT of f ◦

2m,2j using the version D reduction step to obtain

f(ωσ′(j·4m+0)), f(ωσ′(j·4m+1)), . . . , f(ωσ′(j·4m+2m−1)).
10. Compute the FFT of f ◦

m,4j+2 using the version B reduction step to obtain

f(ωσ′(j·4m+2m)), f(ωσ′(j·4m+2m+1)), . . . , f(ωσ′(j·4m+3m−1)).
11. Compute the FFT of f ◦

m,4j+3 using the version B reduction step to obtain

f(ωσ′(j·4m+3m)), f(ωσ′(j·4m+3m+1)), . . . , f(ωσ′(j·4m+4m−1)).
12. Return f(ωσ′(j·4m+0)), f(ωσ′(j·4m+1)), . . . , f(ωσ′(j·4m+4m−1)).

Figure C.3 Pseudocode for modified split-radix FFT (version C reduction step)

such a way as to set up f ◦
2m,4j+2 and f ◦

2m,4j+3 for the more favorable version B in the

next reduction step as well as implement the adjustment on f ◦
4m,j that was put off in

the previous reduction step. Pseudocode for the version C reduction step is given in

Figure C.3.

Version D of the reduction step is the least favorable case. Here, the input

has been subdivided into fA, fB, fC , and fD, where none of the corresponding degree

terms among any pair of {fA, fB, fC , fD} has been scaled by the same amount. At

281

Algorithm : Modified split-radix FFT (version D reduction step)

Input: The polynomial f ◦
4m,j that has been scaled by S16m,d for all d < 4m.

Here, S16m,d 6= S16m,d+m 6= S16m,d+2m 6= S16m,d+3m for all d ≤ m.

Output: f(ωσ′(j·4m+0)), f(ωσ′(j·4m+1)), . . . , f(ωσ′(j·4m+4m−1)).

0A.If (4m) = 1, then return f(ωσ′(j)) = f(ωσ′(j) · x) mod (x− 1).
0B. If (4m) = 2, then call a radix-2 algorithm to compute the FFT.
1. Split f ◦

4m,j into four blocks fA, fB, fC , and fD

each of size m such that f ◦
4m,j = fA · x3m + fB · x2m + fC · xm + fD.

1A.Compute fA′ by scaling term d of fA by (S4m,d/S16m,d) for all d < m.
Compute fB′ by scaling term d of fB by (S4m,d/S16m,d+m) for all d < m.
Compute fC′ by scaling term d of fC by (S4m,d/S16m,d+2m) for all d < m.
Compute fD′ by scaling term d of fD by (S4m,d/S16m,d+3m) for all d < m.

2. Compute f ◦
2m,2j = fW · xm + fX = (fA′ + fC′) · xm + (fB′ + fD′).

3. Compute fα = −fB′ + fD′ .
4. Compute fβ = I · (−fA′ + fC′).
5. Compute fY = fα + fβ.
6. Compute fZ = −fα + fβ.
7. Compute f ◦

m,4j+2 by multiplying fY by T4m,d for all d < m.

8. Compute f ◦
m,4j+3 by multiplying fZ by T4m,d for all d < m.

Note: T4m,d is the complex conjugate of T4m,d.
9. Compute the FFT of f ◦

2m,2j using the version C reduction step to obtain

f(ωσ′(j·4m+0)), f(ωσ′(j·4m+1)), . . . , f(ωσ′(j·4m+2m−1)).
10. Compute the FFT of f ◦

m,4j+2 using the version B reduction step to obtain

f(ωσ′(j·4m+2m)), f(ωσ′(j·4m+2m+1)), . . . , f(ωσ′(j·4m+3m−1)).
11. Compute the FFT of f ◦

m,4j+3 using the version B reduction step to obtain

f(ωσ′(j·4m+3m)), f(ωσ′(j·4m+3m+1)), . . . , f(ωσ′(j·4m+4m−1)).
12. Return f(ωσ′(j·4m+0)), f(ωσ′(j·4m+1)), . . . , f(ωσ′(j·4m+4m−1)).

Figure C.4 Pseudocode for modified split-radix FFT (version D reduction step)

this point, we have no choice but to scale each of these polynomials before proceeding

with the rest of the reduction step. Since some type of scaling is necessary for each

of the four subdivisions of the input polynomial, we should select a scaling that puts

us in as favorable a position as possible. With the scaling shown in the version D

pseudocode given in Figure C.4, we are now essentially in the version B case and copy

the rest of that pseudocode to complete the remainder of the reduction step.

282

Bernstein presents the “Tangent FFT” [4] in terms of two reduction steps

rather than four. One of these reduction steps is essentially version A given above.

The other is a mixture of version B and version C. Note that the only difference

between version B and version D is that version D scales the input polynomial at

the beginning of the algorithm. Bernstein instead scales one of the outputs of his

reduction step at the end of the reduction for the same effect. Thus, Bernstein’s

algorithm is essentially equivalent to that of Johnson and Frigo.

We will now compute the cost of an algorithm based on the new reduction

steps following the analysis presented by Johnson and Frigo in their paper. Note

that the number of additions required by this algorithm is the same as the conjugate

pair split-radix FFT algorithm. Rather than explicitly computing the multiplication

count, we will instead compute the number of multiplications saved in this algorithm

compared to the split-radix algorithm. Let MA(n), MB(n), MC(n), and MD(n) be

the number of multiplications in R saved by using each of the four versions of the

reduction step compared to the split-radix algorithm with input size n. Following the

arguments made by Johnson and Frigo, it can be shown that

MA(n) = 0 +MA

(n
2

)
+ 2 ·MB

(n
4

)
, (C.1)

MB(n) = n− 4 +MC

(n
2

)
+ 2 ·MB

(n
4

)
, (C.2)

MC(n) = −2 +MD

(n
2

)
+ 2 ·MB

(n
4

)
, (C.3)

MD(n) = −n− 2 +MC

(n
2

)
+ 2 ·MB

(n
4

)
. (C.4)

The base cases of the recursion are MA(1) = MA(2) = MB(1) = MB(2) = MC(1) =

MC(2) = MD(1) = 0 and MD(2) = −2.

283

Version B is a reduction step that will save us multiplications, versions A and

C are reduction steps that are fairly neutral, while version D is a reduction step that

will significantly cost us multiplications. As long as version B is called significantly

more times than the other versions, an overall savings will be achieved for the new

algorithm. As discussed in [44], this system of recurrence relations can be solved

through the use of generating functions and the number of multiplications in R saved

by using the new algorithm compared to the split-radix algorithm is given by

2

9
· n · log2(n) − 38

27
· n+ 2 · log2(n) +

2

9
· (−1)log2(n) · log2(n) − 16

27
· (−1)log2(n)

(C.5)

which results in a reduced multiplication count of

MR(n) =
6

9
· n · log2(n) − 10

27
· n+ 2 · log2(n) (C.6)

−2

9
· (−1)log2(n) · log2(n) +

22

27
· (−1)log2(n) + 2.

284

Appendix D

Complex conjugate properties

The following theorems give several properties involving complex conjugates.

One may assume that R is the complex numbers, but R can be any ring where the

element ε ∈ R can be expressed as εr + I · ει where I2 = −1. These properties are

used in the new radix-3 FFT and IFFT algorithms presented in Chapters 2 and 4.

Theorem 44 Let a and b be elements of a ring R where each element ε of R is

expressed as εr + I · ει. Furthermore, let a be the complex conjugate of a and b be the

complex conjugate of b. Then a · b = a · b.

Proof: Let a = ar + I · aι and b = br + I · bι be elements of R. Now a · b can be

computed using (ar · br − aι · bι) + I · (aι · br + ar · bι). Next, let a be the complex

conjugate of a, i.e. a = ar + I · (−aι) and let b be the complex conjugate of b, i.e.

b = br + I · (−bι). Now, a · b = (ar · br + (−aι) · (−bι)) + I · ((−aι) · br + ar · (−bι)) =

(ar · br + aι · bι) − I · (aι · br + ar · bι) = ab. �

Theorem 45 Let a, b, c, and d be elements of a ring R where each element ε of R

is expressed as εr + I · ει. Furthermore, let a be the complex conjugate of a and let c

be the complex conjugate of c. If a · b+ c · d has been computed, then a · b+ c · d can

be computed at the cost of one addition in R.

Proof: First compute the expressions (ar · br + cr · dr) + I · (ar · bι + cι · dι) and

(−aι · bι − cι · dι) + I · (aι · br + cι · dr). The two expressions can be added to form

a · b + c · d. The total cost of this computation is equivalent to other methods of

computing a · b+ c · d.

Assuming that these two expressions used to form a·b+c·d are saved, subtract

(−aι · bι − cι · dι) + I · (aι · br + cι · dr) from (ar · br + cr · dr) + I · (ar · bι + cι · dι)

285

at the cost of one addition in R. It can be verified that the resulting expression is

equivalent to a · b+ c · d. �

Theorem 46 Let a, b, and c be elements of a ring R where each element ε of R is

expressed as εr +I ·ει. Furthermore, let a be the complex conjugate of a. Then ab+ac

can be computed at the cost of one multiplication and two additions in R.

Proof: Let a = ar + I · aι, b = br + I · bι, and c = cr + I · cι be elements of a ring R.

Since a = ar−I·aι, then ab+ac = (ar+I·aι)·b+(ar−I·aι)·c = ar ·(b+c)+I·aι ·(b−c).

So compute b + c and b − c at the cost of two additions in R. The two components

of b + c are multiplied by ar, the two components of b − c are multiplied by I · aι

and the results are added together. The cost of this operation is equivalent to one

multiplication in R. �

286

Appendix E

Proof of the existence of the Cantor basis

In this section of the appendix, we will prove that the set of elements

{β1, β2, · · · , βk} which satisfy

β1 = 1, (E.1)

βi = (βi+1)
2 + βi+1 for 1 ≤ i < k

can be constructed and that they form a basis for F, a finite field with 2k elements

where k is a power of two. The following theorem will be used to construct the set

of elements. Proof of this theorem can be found in any standard textbook on finite

fields ([52], [80]).

Lemma 47 Let F = GF (2k) where k is a power of two. Then for every a ∈ F such

that the trace of a over GF (2) is equal to zero, there exists an element b ∈ F such

that b2 + b = a.

Consider the function ϕ(x) = x2 + x given in [32]. Here, each coefficient

of ϕ is regarded as an element of GF (2). Cantor defines ϕm+1(x) = ϕ1(ϕm(x))

in [12] where ϕ1(x) = ϕ(x). By associativity of composition, it is also true that

ϕm+1(x) = ϕ1(ϕm(x)) = ϕm(ϕ1(x)) for all m ≥ 1. Cantor also states the following

result for a nonrecursive definition of ϕm(x). Here, we also provide a proof of this

theorem which is not found in [12].

Theorem 48 For m ≥ 1, we have

ϕm(x) =
m∑

i=0

(
m

i

)
x2i

, (E.2)

287

where the notation
(

m
i

)
will be used throughout this section to represent the binomial

coefficient C(m, i) reduced modulo 2.

Proof: We prove the theorem by induction. Note that

ϕ1(x) = x2 + x =
1∑

i=0

(
1

i

)
x2i

, (E.3)

so the theorem holds for m = 1. Assume that the result is true for m = κ. Then

ϕκ+1(x) = ϕ(ϕκ(x)) (E.4)

=

(
κ∑

i=0

(
κ

i

)
x2i

)2

+

(
κ∑

i=0

(
κ

i

)
x2i

)

=

(
κ∑

i=0

(
κ

i

)2

x2i+1

)
+

(
κ∑

i=0

(
κ

i

)
x2i

)

=

(
κ+1∑

i=1

(
κ

i− 1

)
x2i

)
+

(
κ∑

i=0

(
κ

i

)
x2i

)

=

(
κ+ 1

0

)
x20

+
κ∑

i=1

((
κ

i

)
+

(
κ

i− 1

))
x2i

+

(
κ+ 1

κ+ 1

)
x2κ+1

=

(
κ+ 1

0

)
x20

+
κ∑

i=1

(
κ+ 1

i

)
x2i

+

(
κ+ 1

κ+ 1

)
x2κ+1

=
κ+1∑

i=0

(
κ+ 1

i

)
x2i

.

So, the result is true for m = κ+ 1. By induction, the theorem holds for all k. �

288

The following special case of Lucas’ Lemma will be helpful for determining

which coefficients of ϕm(x) are ones. The following proof is based on the method

used in [26].

Lemma 49 Suppose i ≤ m and let d be the smallest integer such that m ≤ 2d.

Now represent m and i in binary form, i.e. m = (mdmd−1 · · ·m1m0) and i =

(idid−1 · · · i1i0) where mj, ij ∈ {0, 1}. Then

(
m

i

)
=

(
m0

i0

)(
m1

i1

)
· · ·
(
md

id

)
.

Proof: On the one hand, by the Binomial Theorem, we have

(x+ 1)m =
m∑

i=0

(
m

i

)
xi. (E.5)

On the other hand,

(x+ 1)m = (x+ 1)m0+m1·2+···+md2d

(E.6)

=
d∏

j=0

(
x2j

+ 1
)mj

=
d∏

j=0

mj∑

ij=0

(
mj

ij

)
xij2

j

=
m∑

i=0

(
d∏

j=0

(
mj

ij

))
xi.

The lemma follows by comparing the coefficients of (E.5) with the coefficients in the

last expression of (E.6). �

289

Theorem 50 Let d be the smallest integer such that m ≤ 2d and let

(md−1md−2 · · ·m2m1m0)2 be the binary representation of m. If c = md +md−1 + · · ·+

m1 +m0, then 2c of the coefficients of ϕm(x) are 1.

Proof: By Lemma 49,
(

m
i

)
= 1 iff mj = 1 or ij = 0 for all j in 0 ≤ j ≤ d.

Let us count the number of integers in the range 0 ≤ i ≤ m that satisfy these

restrictions. For each j such that mj = 1, then there are 2 possibilities for ij while

for each j such that mj = 0, then there is only one possibility for ij. Multiplying

the number of possibilities for each j, we obtain 2md · 2md−1 · 2md−2 · · · 2m1 · 2m0 =

2md+md−1+md−2+···+m1+m0 = 2c terms of ϕm(x) that have a coefficient of 1. �

Corollary 51 If k is a power of two, then the trace function of an element in GF (2k)

over GF (2) given by Tr(x) = x+ x2 + x22

+ · · · + x2k−1

, is equivalent to ϕk−1(x).

Proof: Since k is a power of two, then k = 2d for some d. Then

k − 1 = 2d − 1 (E.7)

=
d−1∑

i=0

2i

and the binary expansion of k− 1 is all ones. Thus, by Theorem 50, all 2d = k of the

coefficients of ϕk−1(x) are 1. In other words,

ϕk−1(x) =
k−1∑

i=0

x2i

(E.8)

= Tr(x).

�

290

Corollary 52 If k is a power of two, then ϕk(x) = x2k

+ x.

Proof: Let k be a power of two and let d be the integer that satisfies k = 2d. Since

the binary expansion of k is (1000 . . . 0)2, then by Theorem 50,
(

k
i

)
is 1 if ij = 0 for

all j < d in the binary expansion of i. The only integers that satisfy this restriction

in 0 ≤ i ≤ k are 0 and k. Thus, ϕk(x) = x2k

+ x. �

We are now ready to construct the set of elements. Let β1 = 1. If k = 1,

then the basis has been determined. Otherwise, Tr(β1) = ϕk−1(β1) has k terms where

k > 1 is a power of two. Thus, Tr(β1) = 0. By Theorem 47, there exists some β2 such

that β1 = β2
2 + β2 = ϕ(β2). For each 2 ≤ i < k, we must first show that βi has trace

0. Observe that Tr(βi) = ϕk−1(βi) = ϕk−2(ϕ(βi)) = ϕk−2(βi−1) = · · · = ϕk−i(β1) =

ϕk−i(1). Let c be the number of nonzero entries in the binary expansion of k − i.

Since k − i > 0, then c ≥ 1 and 2c must be even. So there must be an even number

of 1’s added together to compute the trace of βi and thus Tr(βi) = 0. So by Theorem

47, there exists some βi+1 such that βi = βi+1
2 + βi+1 = ϕ(βi+1). By repeating this

procedure, it is possible to solve for each of {β1, β2, . . . , βk}.

The above analysis only says that it is possible to solve for each of the elements,

but does not give a method for constructing the elements. In [80], the formula

βi+1 = βi · θ2 + (βi + βi
2) · θ22

+ . . . (E.9)

+(βi + βi
2 + · · · + βi

2k−2

) · θ2k−1

is provided to construct the elements and the author states that the construction is

based on Hilbert’s Theorem 90. Here θ is any element of trace 1 in F. Since F has

characteristic 2, then half of the elements in F must have this property.

291

Now that we have shown that it is possible to construct the elements, we need

to show that the elements form a basis for F.

Theorem 53 The elements {β1, β2, . . . , βk} are linearly independent in F, i.e. if

a1 · β1 + a2 · β2 + · · · + ak · βk = 0 where {a1, a2, . . . , ak} ∈ GF (2), then a1 = a2 =

· · · = ak = 0.

Proof: We will prove the theorem inductively. If a1 · β1 = 0, then clearly a1 = 0

since β1 = 1. Thus, the result is true for k = 1.

Assume that {β1, β2, . . . , βκ} are linearly independent where κ < k. We need

to show that {β1, β2, . . . , βκ+1} are linearly independent. Suppose instead that this

set of elements is linearly dependent. So if a1 · β1 + a2 · β2 + · · · + aκ+1 · βκ+1 = 0

where {a1, a2, . . . , aκ+1} ∈ GF (2), then ai 6= 0 for some i. Since {β1, β2, . . . , βκ}

are linearly independent, then it must be the case that aκ+1 = 1. Then βκ+1 =

a1 · β1 + a2 · β2 + · · · + aκ · βκ. By the equations used to construct the elements and

the Freshman’s Dream Theorem,

βκ = (βκ+1)
2 + βκ+1 (E.10)

= (a1 · β1 + a2 · β2 + · · · + aκ · βκ)
2 + (a1 · β1 + a2 · β2 + · · · + aκ · βκ)

= a1
2 · β1

2 + a2
2 · β2

2 + · · · + aκ
2 · βκ

2 + a1 · β1 + a2 · β2 + · · · + aκ · βκ

= a1 · β1
2 + a2 · β2

2 + · · · + aκ · βκ
2 + a1 · β1 + a2 · β2 + · · · + aκ · βκ

= a1 · (β1
2 + β1) + a2 · (β2

2 + β2) + · · · + aκ · (βκ
2 + βκ)

= a1 · (0) + a2 · β1 + a3 · β2 + · · · + aκ · βκ−1

= a2 · β1 + a3 · β2 + · · · + aκ · βκ−1.

So βκ can be expressed as a linear combination of {β1, β2, . . . , βκ−1}, contradicting

292

the assumption that {β1, β2, . . . , βκ} are linearly dependent. It must be the case that

{β1, β2, . . . , βκ+1} are linearly independent.

By induction, {β1, β2, . . . , βk} are linearly independent. �

Theorem 54 The set of elements S = {β1, β2, . . . , βk} forms a basis for F = GF (2k)

over GF (2).

Proof: Since F is a vector space of dimension k over GF(2) and S is a linearly

independent set of k vectors in F, then S spans F. Since S is a linearly independent

set of vectors that spans F, then S is a basis for F. �

Thus, we have shown that the collection of elements introduced in [32] can be con-

structed and forms a basis for F. 1

1 In the above iterative construction of the β’s, there are two choices at each step.
Hence we have a binary tree of height k starting at β1 = 1. Each sequence of β’s
corresponds to a path of the tree. Cantor shows how to get a specific sequence. A
topic for further exploration is whether there exists a simpler construction.

293

Appendix F

Taylor shift of a polynomial with finite field coefficients

Given a polynomial

f(x) = f2m−1 · x2m−1 + f2m−2 · x2m−2 + · · · + f1 · x+ f0 (F.1)

of degree less than 2m in R[x], the problem of computing the Taylor shift of f at an

element ξ ∈ R is to find coefficients g0, g1, g2, . . . , g2m−1 ∈ R such that

f(x) = g2m−1 · (x+ ξ)2m−1 + g2m−2 · (x+ ξ)2m−2 + · · · + g1 · (x+ ξ) + g0.

(F.2)

In other words,

g(y) = f(x− ξ). (F.3)

where y = x− ξ.

Since f has a derivative of order n− 1, then the Taylor shift can be computed

using techniques learned in a standard Calculus course (e.g. [73]) using Θ(n2) op-

erations. In the paper [33], von zur Gathen and Gerhard discuss some alternative

techniques which may be faster than the Calculus method if efficient methods for

performing polynomial multiplication such as those discussed in Chapter 5 are used

294

in the algorithms. In [30], Shuhong Gao presented one of these techniques in the case

where R is a finite field, a ring where the Calculus-based techniques do not apply

anyway. Gao’s presentation exploits certain properties of finite fields to eliminate the

need for the polynomial multiplications and substantially reduces the overall number

of operations.

We will assume that R has characteristic 2 and m is a power of two to simplify

the presentation of Gao’s algorithm. Let us split f into two polynomials of degree

less than m denoted by fA and fB such that

f = fA · xm + fB. (F.4)

Since m is a power of two, then by the Freshman’s Dream Theorem,

xm = xm − ξm + ξm (F.5)

= (x− ξ)m + ξm.

Then (F.4) becomes

f = fA · ((x+ ξ)m − ξm) + fB (F.6)

= fA · (x+ ξ)m + (fB − fA · ξm) .

So the problem of computing the Taylor shift of f at ξ has been simplified into

the two subproblems of computing the Taylor shift of fA at ξ and the Taylor shift of

295

Algorithm : Taylor expansion of a polynomial at ξ

Input: f , a polynomial of degree less than 2m in F where
F is a finite field of characteristic 2. An element ξ in F.

Output: The Taylor expansion of f at ξ, i.e. a polynomial g(y) of degree
less than 2m such that g(y) = f(x− ξ).

0. If (2m) = 1, then return g = f (f is a constant).
1. Split f into two blocks fA and fB given by f = fA · xm + fB.
2. Compute fC = fB − fA · ξm.
3. Compute the Taylor expansion of fC at ξ to obtain {g0, g1, g2, . . . gm−1}.
4. Compute the Taylor expansion of fA at ξ

to obtain {gm, gm+1, gm+2, . . . g2m−1}.
5. Return g(y) = g2m−1 · y2m−1 + g2m−2 · y2m−2 + · · · + g1 · y + g0.

Figure F.1 Pseudocode for Taylor expansion of a polynomial at ξ

fC = fB − fA · ξm at ξ. By recursively applying this reduction step, we can compute

the Taylor shift of a polynomial f of degree less than n = 2k at ξ. The pseudocode

in Figure F.1 can be used to perform the computation.

Assume that {ξ, ξ2, ξ4, . . . , ξm} have been precomputed prior to the first call

to the algorithm. If these elements are not stored, then a total of log2(m) − 1 multi-

plications in F are required to generate an array of these elements.

Let us now compute the cost of this algorithm. Line 0 ends the recursion and

costs no operations. Line 1 just involves logicially splitting f into two blocks and does

not require any operations. In line 2, we must first multiply fA by ξm and then add

the result to fB at a cost of m multiplications and m additions. Lines 3 and 4 each

involve the computation of a Taylor expansion of a polynomial of degree less than m

at a by recursively calling the algorithm. Line 5 requires no operations. The total

number of operations to compute this Taylor expansion for a polynomial of degree

less than n is

296

M(n) = 2 ·M
(n

2

)
+

1

2
· n, (F.7)

A(n) = 2 · A
(n

2

)
+

1

2
· n (F.8)

where M(1) = 0 and A(1) = 0. These recurrence relations can be solved using Master

Equation I to obtain

M(n) =
1

2
· n · log2(n), (F.9)

A(n) =
1

2
· n · log2(n). (F.10)

297

Appendix G

Taylor expansion of a polynomial with finite field coefficients at xτ

Suppose that we are given f ∈ F[x] of degree less than n where F is a field

of characteristic 2, n = 22k and k is a nonnegative power of two. Let τ =
√
n =

2k. In this section, we are going to compute the Taylor expansion of f at xτ , i.e.

f(x−xτ) = f(xτ −x). In other words, we desire gτ−1(x), gτ−2(x), . . . , g1(x), g0 ∈ F[x],

each a polynomial of degree less than τ in x, such that

f = gτ−1 · (x− xτ)τ−1 + gτ−2 · (x− xτ)τ−2 + · · · + g1 · (x− xτ) + g0 (G.1)

= gτ−1 · (xτ − x)τ−1 + gτ−2 · (xτ − x)τ−2 + · · · + g1 · (xτ − x) + g0.

The polynomial

g(y) = gτ−1 · yτ−1 + gτ−2 · yτ−2 + · · · + g1 · y + g0 (G.2)

is called the Taylor expansion of f at xτ . Here, y = xτ − x.

First, we will show how to convert the problem of finding the Taylor expansion

of f of degree less than (2m) ≥ 2τ into two problems of finding the Taylor expansion

of a polynomial of degree less than m where m is a power of two. Let δ = m/τ and

partition f into three blocks called fA, fB and fC as follows:

f = fA · x2m−δ + fB · xm + fC . (G.3)

298

Here fA consists of at most δ coefficients of f , fB consists of at most m−δ coefficients

of f , and fC consists of at most m coefficients of f .

By the Freshman’s Dream Theorem,

f = fA · x2m−δ + fB · xm + fC (G.4)

=
(
fA · xm−δ + fB

)
· xm + fC

=
(
fA · xm−δ + fB

)
· xm −

(
fA · xm−δ + fB

)
· xδ +

(
fA · xm−δ + fB

)
· xδ + fC

=
(
fA · xm−δ + fB

)
· (xm − xδ) + fA · xm + fB · xδ + fC

=
(
fA · xm−δ + fB

)
· (xm − xδ) + fA · xm − fA · xδ + fA · xδ + fB · xδ + fC

=
(
fA · xm−δ + fB

)
· (xm − xδ) + fA · (xm − xδ) + (fA + fB) · xδ + fC

=
(
fA · xm−δ + (fA + fB)

)
· (xm − xδ) + (fA + fB) · xδ + fC

=
(
fA · xm−δ + (fA + fB)

)
· (xτδ − xδ) + (fA + fB) · xδ + fC

=
(
fA · xm−δ + (fA + fB)

)
· (xτ − x)δ +

(
(fA + fB) · xδ + fC

)
,

so the problem of finding the Taylor expansion of f at xτ has been reduced to finding

the Taylor expansions of (fA ·xm−δ +fA +fB) at xτ and (fA +fB) ·xδ +fC at xτ . Each

of these is a polynomial of degree less than m. By recursively applying the reduction

step, we can compute the Taylor expansion of f at xτ given by (G.2). Pseudocode

for an algorithm that can compute this Taylor expansion is given in Figure G.1.

Let us now compute the cost of this algorithm. Line 0 ends the recursion and

costs no operations. Line 1 just involves logicially splitting f into three blocks and

does not require any operations. In line 2, we must first add fA to fB at a cost of

δ = m/τ additions. Then in line 3, m − δ additions are needed to add (fA + fB)

299

Algorithm : Taylor expansion at xτ

Input: f , a polynomial of degree less than 2m in F where
F is a finite field of characteristic 2.

Output: The Taylor expansion of f at xτ , i.e. a polynomial g(y) such that
f(x− xτ) = g(y). Here, δ = m/τ .

0. If (2m) ≤ τ , then return g = f (no expansion is possible).
1. Split f into three blocks fA, fB, and fC given

by f = fA · x2m−δ + fB · xm + fC where δ = m/τ .
2. Compute fY = fA · xm−δ + (fA + fB).
3. Compute fZ = (fA + fB) · xδ + fC .
4. Compute the Taylor expansion of fY at xτ to obtain

g2δ−1, g2δ−2, . . . , gδ+1, gδ.
5. Compute the Taylor expansion of fZ at xτ to obtain

gδ−1, gδ−2, . . . , g1, g0.
6. Return g(y) = g2δ−1 · y2δ−1 + g2δ−2 · y2δ−2 + · · · + g1 · y + g0.

Figure G.1 Pseudocode for Taylor expansion at xτ

to fC , starting at the coefficient of degree δ. Now, lines 4 and 5 each involve the

computation of a Taylor expansion of a polynomial of degree less than m at xτ by

recursively calling the algorithm. Line 6 requires no operations. The total number of

operations to compute this Taylor expansion for a polynomial of degree less than n is

M(n) = 0, (G.5)

A(n) = 2 · A
(n

2

)
+

1

2
· n (G.6)

where A(
√
n) = 0.

Let n = 2k and let us solve for A(2k) using iteration with the initial condition

that A(2k/2) = 0. So,

300

A(2k) = 2 · A(2k−1) + 2k−1 (G.7)

= 2 · (2 · A(2k−2) + 2k−2) + 2k−1

= 22 · A(2k−2) + 2 · 2k−1

= 23 · A(2k−3) + 3 · 2k−1

= · · ·

= 2k/2 · A(2k/2) + (k/2) · 2k−1

= 2k/2 · 0 +
1

4
· 2k · k

=
1

4
· 2k · k.

Thus,

A(n) =
1

4
· n · log2(n) (G.8)

additions are required. An important feature of this Taylor expansion is that no

multiplications are needed to compute it.

301

Appendix H

Additional recurrence relation solutions for additive FFT algorithms

We will first compute the number of copy operations needed in both Gao’s

algorithm and the new additive FFT algorithm if n ≥ 232. Let us model one of these

copies as the cost of an addition and let Ac(n) denote the number of these copies

required. If n = 22I

, then we will solve for Ac(2
2I

) using iteration where Ac(2
24

) = 0.

Ac

(
22I
)

= 2 · 22I

+ 2 · 22I−1 · A
(
22I−1

)
(H.1)

= 2 · 22I

+ 2 · 22I−1 ·
(
2 · 22I−1

+ 2 · 22I−2 · A
(
22I−2

))

= 2 · 22I

+ 22 · 22I

+ 22 · 22I−1+2I−2 · A
(
22I−2

)

= 2 · 22I

+ 22 · 22I

+ 23 · 22I

+ 23 · 22I−1+2I−2+2I−3 · A
(
22I−3

)

= · · ·

= (2 + 22 + 23 + · · · + 2I−4) · 22I

+ 2I−4 · 22I−1+2I−2+2I−3+···+24 · A
(
224
)

=

(
1

8
· 2I − 2

)
· 22I

+ 2I−4 · 22I−1+2I−2+2I−3+···+24 · (0)

=
1

8
· 22I · 2I − 2 · 22I

.

So the number of copies needed to compute a large FFT of size n is

Ac(n) =
1

8
· n · log2(n) − 2 · n. (H.2)

Now, let us determine the number of multiplications saved in the new algorithm

when j = 0. A recurrence relation which gives the number of these cases is given by

302

Ms(n) = (
√
n + 1) ·Ms(

√
n) where Ms(2) = 1. Let n = 22I

and let us solve Ms(2
2I

)

using iteration. So,

Ms(2
2I

) = (22I−1

+ 1) ·Ms(2
2I−1

) (H.3)

= (22I−1

+ 1) · (22I−2

+ 1) ·Ms(2
2I−2

)

= (22I−1

+ 1) · (22I−2

+ 1) · (22I−3

+ 1) ·Ms(2
2I−3

)

= · · ·

=
I−1∏

d=0

(22d

+ 1) ·Ms(2
20

)

=
I−1∏

d=0

(22d

+ 1) · (1)

=
I−1∏

d=0

(22d

+ 1)

= 22I − 1.

The simplification used in the last step of this derivation can be proven using

the following theorem.

Theorem 55
∏I−1

d=0(2
2d

+ 1) = 22I − 1 for any I > 0.

Proof: We will prove the result by induction. The result holds for I = 1 since

21 + 1 = 2 + 1 = 3 = 4 − 1 = 222 − 1. Suppose the result holds for some κ > 0. We

need to show that the result holds for κ+ 1. Now,

κ∏

d=0

(
22d

+ 1
)

= (22κ

+ 1) ·
κ−1∏

d=0

(
22d

+ 1
)

(H.4)

= (22κ

+ 1) · (22κ − 1)

= 22κ+1 − 1.

303

Therefore, the result holds by mathematical induction. �

The number of additions saved when j = 0 uses the same recurrence relation and

initial condition. Thus, As(n) = n− 1 as well.

304

Appendix I

Operation count: Karatsuba’s multiplication algorithm

The total number of operations to compute the product of two polynomials of

size n using Karatsuba’s algorithm is given by

M(2n− 1) = 3 ·M
(
2 · n

2
− 1
)
, (I.1)

A(2n− 1) = 3 · A
(
2 · n

2
− 1
)

+ 4 · n− 4 (I.2)

where M(1) = 1 and A(1) = 0. The algorithm will compute a product of size 2n− 1.

First, let us solve for M(2n− 1) using iteration.

M(2n− 1) = 3 ·M
(
2 · n

2
− 1
)

(I.3)

= 3 ·
(
3 ·M

(
2 · n

4
− 1
))

= 32 ·M
(
2 · n

4
− 1
)

= 33 ·M
(
2 · n

8
− 1
)

= . . .

= 3log2(n) ·M(1)

= 3log2(n) · 1

= nlog2(3) ≈ n1.59.

Next, let us solve for A(2n− 1) using iteration.

305

A(2n− 1) = 3 · A
(
2 · n

2
− 1
)

+ 4n− 4 (I.4)

= 3 ·
(
3 · A

(
2 · n

4
− 1
)

+ 4 · n
2
− 4
)

+ 4n− 4

= 32 · A
(
2 · n

4
− 1
)

+ 4n ·
(

1 +
3

2

)
− 4 · (1 + 3)

= 33 · A
(
2 · n

8
− 1
)

+ 4n ·
(

1 +
3

2
+

(
3

2

)2
)

− 4 ·
(
1 + 3 + 32

)

. . .

= 3log2(n) · A(1) + 4n ·
(

1 +
3

2
+

(
3

2

)2

+ · · ·
(

3

2

)log2(n)−1
)

−4 · (1 + 3 + 32 + · · · + 3log2(n)−1)

= 0 + 4n ·
log2(n)−1∑

i=0

(
3

2

)
− 4 ·

log2(n)−1∑

i=0

(3)

= 4n ·
(

3
2

)log2(n) − 1
3
2
− 1

− 4 · 3log2(n) − 1

3 − 1

= 8n ·
(

3log2(n)

n
− 1

)
− 2 · (3log2(n) − 1)

= 8 · 3log2(n) − 8n− 2 · 3log2(n) + 2

= 6 · 3log2(n) − 8n+ 2

= 6 · nlog2(3) − 8n+ 2 ≈ 6 · n1.585 − 8n+ 2.

306

Appendix J

Operation count: Schönhage’s algorithm

Let us now compute the cost of multiplying two polynomials using Schönhage’s

algorithm. These two polynomials can be of any size, provided that the sum of the

sizes is no greater than 2n where n = 32I

. In this case, we will compute lower bounds

of the operation counts to support the claim that FFT-based multiplication using the

new additive FFT algorithm requires less effort than Schönhage’s algorithm.

We will first find M(2n) using iteration and the initial condition that M(2 ·

321

) = 102.

M(2 · 32I

) = 2 · 32I−1 ·M(2 · 32I−1

) (J.1)

= 2 · 32I−1 · 2 · 32I−2 ·M(2 · 32I−2

)

= 22 · 32I−1+2I−2 ·M(2 · 32I−2

)

= 23 · 32I−1+2I−2+2I−3 ·M(2 · 32I−3

)

= · · ·

= 2I−1 · 32I−1+2I−2+2I−3+···21 ·M(2 · 321

)

= 2I−1 · 32I−21 · (102)

=
102

2 · 9 · 32I · 2I

=
17

3
· 32I · 2I .

Now, let us solve A(2·32I

) using iteration and the initial condition thatA(2·321

) = 519.

307

A(2 · 32I

) = 2 · 32I−1 · A
(
2 · 32I−1

)
+

33

2
· 32I · 2I +

3

2
· 32I

+
11

2
· 32I−1

(J.2)

= 2 · 32I−1 ·
(

2 · 32I−2 · A
(
2 · 32I−2

)
+

33

2
· 32I−1 · 2I−1

+
3

2
· 32I−1

+
11

2
· 32I−2

)
+

33

2
· 32I · 2I +

3

2
· 32I

+
11

2
· 32I−1

= 22 · 32I−1+2I−2 · A
(
2 · 32I−2

)
+ 2 · 33

2
· 32I · 2I

+
3

2
· 32I · (1 + 2) +

11

2
·
(
32I−1

+ 2 · 32I−1+2I−2
)

= 23 · 32I−1+2I−2+2I−3 · A
(
2 · 32I−3

)
+ 3 · 33

2
· 32I · 2I

+
3

2
· 32I · (1 + 2 + 4)

+
11

2
·
(
32I−1

+ 2 · 32I−1+2I−2

+ 4 · 32I−1+2I−2+2I−3
)

= · · ·

= 2I−1 · 32I−1+2I−2+2I−3+···+21 · A
(
2 · 321

)
+

33

2
· 32I · 2I · (I − 1)

+
3

2
· 32I ·

(
1 + 2 + 4 + · · · + 2I−2

)

+
11

2
·

I−2∑

d=0

(
2d · 32I−1+2I−2+···2I−1−d

)

= 2I−1 · 32I−21 · 519 +
33

2
· 32I · 2I · I − 33

2
· 32I · 2I

+
3

2
· 32I · (2I−1 − 1) +

11

2
·

I−2∑

d=0

(
2d · 32I−2I−1−d

)

=
519

18
· 2I · 32I

+
33

2
· 32I · 2I · I − 33

2
· 32I · 2I

+
3

4
· 2I · 32I − 3

2
· 32I

+
11

2
·

I−2∑

d=0

(
2d · 32I

32I−1−d

)

=
33

2
· 32I · 2I · I +

157

12
· 32I · 2I − 3

2
· 32I

+
11

2
·

I−2∑

d=0

(
2d · 32I

32I−1−d

)

≥ 33

2
· 32I · 2I · I +

157

12
· 32I · 2I − 3

2
· 32I

+
11

2
· 32I−1

.

308

Appendix K

Karatsuba’s algorithm in FFT-based multiplication using the new additive FFT

One may have noticed that Schönhage’s algorithm uses Karatsuba multipli-

cation to handle the polynomial products of small degree and may wonder if it is

possible to include this technique with FFT-based multiplication using the new ad-

ditive FFT algorithm. It turns out that this is indeed possible and there are two

options for implementing this idea.

The first option is to use Karatsuba’s algorithm to directly multiply polynomial

reductions of degree less than four. The input for each multiplication in this process

will be f mod (x4 − x−̟) and g mod (x4 − x−̟) for some ̟ ∈Wk−2. The cost of

using Karatsuba’s algorithm to multiply two polynomials of degree less than four is 9

multiplications and 24 additions. The resulting polynomial of degree less than seven

must be reduced modulo x4 − x−̟ to obtain h mod (x4 − x−̟) where h = f · g.

The reduction costs 6 additions if ̟ 6= 0 and 3 additions if ̟ = 0. So a total of 9

multiplications and 24-30 additions are required using this technique. Alternatively,

one could compute 2 FFTs of size 4, 4 pointwise products, and one inverse FFT of

size 4 at a cost of 7 multiplications and 21 additions if ̟ = 0 and 16 multiplications

and 30 additions if ̟ 6= 0. So if ̟ = 0, then it is better to stick with the original

method. If ̟ 6= 0, then using Karatsuba’s algorithm saves 7 multiplications. In the

multiplication of two polynomials with product degree less than n, one can apply

Karatsuba’s algorithm n/4 − 1 times in the computation and obtain a total savings

of (n/4 − 1) · 7 = 7/4 · n− 7 multiplications in F.

The second option is to use Karatsuba’s algorithm to directly multiply the

results of degree less than 16. In this case, we are interested in multiplying f mod

(x16 − x − ̟) and g mod (x16 − x − ̟) into h mod (x16 − x − ̟) for each ̟ ∈

Wk−4. If ̟ = 0, using Karatsuba’s algorithm again requires more operations than

309

the original method. If ̟ 6= 0, then using Karatsuba’s algorithm with modular

reduction requires 81 multiplications and 392 additions while the original method

requires 112 multiplications and 288 additions. For the moment, let us ignore the

fact that more additions are required if Karatsuba’s algorithm is used. Observe that

31 multiplications are saved in each polynomial product and a total of n/16 products

involving Karatsuba’s algorithm are required to determine h = f · g. Since one of

these products is the case where ̟ = 0, then a total of (n/16−1) ·31 = 31/16 ·n−31

multiplications in F are saved in the computation of h.

The decision of which of these two options to select will be determined by the

implementation of multiplication in F. Observe that the second option offers a greater

savings in terms of multiplications in F, but requires more additions in F. It turns

out that if a multiplication in F costs less than 35 times the cost of an addition, then

the first option should be selected. For practical sizes of F in the early 21st century,

the first option will always be used. 2 It is conjectured that as computers increase in

capacity to allow computations over 264 or 2128, then it will also be possible to store

larger lookup tables in the computer. If this conjecture turns out to be true, then the

first option will always be more attractive. Otherwise, the second option should be

more carefully considered. One can verify that application of Karatsuba’s algorithm

to any other size is less attractive than the two cases considered above.

2 If F has size 216 or less, von zur Gathen and Gerhard [32] give a method of
implementing multiplication in F at a cost of about 3 times the cost of addition. If
F has size 232, von zur Gathen and Gerhard give a second method of implementing
multiplication in F at a cost of about 16 times the cost of addition.

310

Appendix L

Reischert’s multiplication method

Suppose that we wish to multiply two polynomials over a finite field with

coefficients in GF (n), but the degree of the product polynomial is greater than n.

In this case, FFT-based multiplication cannot be used directly because there are not

enough points in GF (n) to interpolate into the desired product polynomial. One may

be forced to using Schönhage’s algorithm to compute the desired product.

However, if the product degree is less than µ · n for some “small” value of µ

(say µ ≤ 32), we can adapt a technique first introduced by Reischert [64] to perform

the multiplication. 3 Another description of the method is given in [32]. Here, we

will allow R to be any ring that supports some type of FFT, but it will mainly be

used for the case where R is a finite field of characteristic 2.

Suppose that we wish to compute a product of f, g ∈ R[x] with degree less

than µ · n where µ is some “small” integer. In the paper [2], Bernstein discusses the

technique he calls “clumping” whereby f and g can be mapped to the isomorphic ring

R[x][y]/(xµ − y) which can be represented by polynomials in R[x][y]. The mapping

can be achieved by factoring out the largest power of xµ out of each term of each

polynomial in R[x] and replacing (xµ)d with yd. All terms with a common value of

yd should then be grouped together. The result will be polynomials f ′ and g′ with

y-degree less than n where each “coefficient” of y is a polynomial in x of degree less

than µ.

3 This technique was originally invented for computing products of size n where n
is not a power of 2. However, the truncated FFT discussed in Chapter 6 works much
better for this case.

311

Since f ′ and g′ have y-degree less than n, we can view f ′ and g′ as polynomials

modulo M(y) where M is a degree n polynomial such that its roots {ε0, ε1, · · · , εn}

have some special structure which can be exploited by an FFT algorithm.

Reischert’s multiplication method first computes the FFT of f ′ and g′ at each

of the roots of M(y). This is equivalent to computing µ FFTs of polynomials of degree

less than n in R[x]. The FFT of f ′ can be expressed as f ′ mod (y − ε) = f ′(y = ε)

for each ε that is a root of M. The FFT of g′ can be expressed similarly. Each

“evaluation” of f ′ and g′ will be a polynomial in x of degree less than µ. Substituting

xµ for y, then each evaluation can also be viewed as a polynomial modulo xµ − ε.

The second step of Reischert’s multiplication method is to pointwise multiply

the evaluations of f ′ and g′ for all values of y that are roots of M. Because µ is

assumed to be 32 or less, the fastest method to compute these pointwise products

is to use Karatsuba’s multiplication and then reduce the results modulo xµ − ε. It

will usually be the case that each xµ − ε cannot be factored in µ distinct factors in

R, so FFT-multiplication could not be applied to these multiplications anyway. If

h′ = f ′ · g′, then each pointwise product also represents h′ mod (y − ε) where ε is a

root of M.

The third step of Reischert’s multiplication method interpolates the n point-

wise evaluations h′ mod (y − ε) into h′ mod M(y) using an inverse FFT algorithm.

Since h′ will have y-degree less than n, then this result is equivalent to h′.

To recover h, we need to “unchunk” h′. This is accomplished by substituting

xµ in place of every y in h′. The resulting polynomial in R[x] is the desired product

of f and g. Pseudocode for Reischert’s multiplication method is given in Figure L.1.

Let us compute the cost of this algorithm. Assume that lines 1, 2, 7, and 8 do

not require any operations as most of these instructions are simply a relabeling of the

algorithm inputs and outputs. Lines 3 and 4 each require µ ·MF (n) multiplications

312

Algorithm : Reischert multiplication

Input: f and g, polynomials in a ring R such that deg(f) + deg(g) < µ · n.
A polynomial M of degree n such that its n roots {ε0, ε1, · · · , εn}
has some special structure that can be exploited by an FFT algorithm.

Output: The product polynomial h = f · g.
1. Transform f to f ′ ∈ R[x][y] by replacing xµ with y.
2. Transform g to g′ ∈ R[x][y] by replacing xµ with y.
3. Call FFT to evaluate f ′(y = εd) = f ′ mod (xµ − εd) for 0 ≤ d < n.
4. Call FFT to evaluate g′(y = εd) = g′ mod (xµ − εd) for 0 ≤ d < n.
5. For all 0 ≤ d < n, compute

h′ mod (xµ − εd) = (f ′ mod (xµ − εd) · g′ mod (xµ − εd)) mod (xµ − εd)
using Karatsuba’s algorithm and reducing modulo xµ − εd.

6. Call IFFT to interpolate h′ mod (y − εd) for 0 ≤ d < n
into h′ mod M. This result is equivalant to h′.

7. Transform h′ into h ∈ R[x] by replacing y with xµ.
8. Return h.

Figure L.1 Pseudocode for Reischert multiplication

and µ ·AF (n) additions where MF (n) is the number of multiplications in R needed to

compute an FFT of size n and AF (n) is the number of additions required. Similarly,

line 6 requires µ ·MF (n) multiplications and µ ·AF (n) additions.4 Note that each of

these computations can also be viewed as µ FFTs or IFFTs of the original polynomials

f and g at coefficients located µ positions apart.

The operation count for line 5 of the algrorithm is determined by multiplying

n times the sum of (1) the number of operations needed to use Karatsuba’s algorithm

to multiply two polynomials of degree less than µ into a polynomial of degree less than

2µ − 1 and (2) the number of operations needed to reduce this polynomial modulo

xµ−ε for some ε. The paper by [82] gives operation counts for Karatsuba’s algorithm

4 For the purposes of the operation count, we will assume that R supports an
additive FFT. An additional n multiplications are required if a multiplicative FFT
algorithm is used.

313

Table L.1 Operation counts of “pointwise products” involved in Reischert’s
multiplication method

µ MK(µ) AK(µ) µ MK(µ) AK(µ) µ MK(µ) AK(µ)

1 1 0 12 65 232 23 184 777
2 4 5 13 96 361 24 185 778
3 8 15 14 97 362 25 240 1063
4 12 27 15 95 374 26 241 1064
5 19 50 16 95 375 27 242 1065
6 23 64 17 124 501 28 279 1182
7 33 105 18 125 502 29 271 1232
8 34 106 19 153 616 30 272 1233
9 44 147 20 154 617 31 273 1234
10 54 183 21 182 775 32 274 1235
11 64 231 22 183 776

for arbitrary N up to 128. A total of µ − 1 multiplications and µ − 1 additions are

needed in R to implement each modular reduction.5 Table L.1 gives the total number

of multiplications MK(µ) and additions AK(µ) for each pointwise product of size µ

in the range 1 ≤ µ ≤ 32.

So the total number of operations needed to implement Reischert’s polynomial

multiplication technique is given by

M(µ · n) = 3 · µ ·MF (n) + n ·MK(µ), (L.1)

A(µ · n) = 3 · µ · AF (n) + n · AK(µ). (L.2)

5 However, if ε = 0, then no multiplications and no additions are needed. If ε = 1
or ε = −1, then no multiplications are needed.

314

Appendix M

Two positions on future polynomial multiplication algorithm performance

A subject for debate is whether Schönhage’s algorithm or FFT-based multi-

plication using the new additive FFT will perform better when we wish to multiply

polynomials with coefficients in GF (2). One view counts the number of bit opera-

tions, applying Schönhage’s algorithm directly to the input polynomials. The view

can also be modified to use the technique described in [32] to map the input poly-

nomials to F[x] where F is an extension field of characteristic 2. In either case, this

view argues that scalar multiplication in F is then a function of the input polynomial

size and that Schönhage’s algorithm is superior to FFT-based multiplication for very

large input sizes.

A second view argues that scalar multiplication in F can be implemented

in a constant number of operations, determined by the physical constraints of a

computer.6 As mentioned in a previous section of the appendix, von zur Gathen and

Gerhard [32] give a method of implementing multiplication in F at a cost of about 3

times the cost of an addition in F if the size of the finite field is 216 or less. If F is of size

232, then [32] gives a second method of implementing multiplication in F at a cost of

about 16 times the cost of addition. Using the argument given in [32], this technique

is sufficient for computing the product of two polynomials with product degree less

than 236. The storage of just the input and output polynomials would require 234

bytes of memory. In all of these cases, the FFT-based multiplication is expected to

require fewer operations than Schönhage’s algorithm based on the formulas derived

in Chapter 5.

6 Let us assume that our current computing environment consists of a typical 64-
bit machine capable of storing several arrays of size 2 · 216 bytes in memory. No
further assumptions about current computing capabilities will be made throughout
this section and will likely change over the coming decades.

315

The debate of which algorithm is better begins when we wish to compute

products of degree greater than 236. Reischert’s Method discussed in the previous

section of the appendix can be used to combine Karatsuba’s algorithm with FFT-

based multiplication and will likely outperform Schönhage’s algorithm for product

polynomial degrees of size 240 or lower. At this point, a computer’s memory should

be large enough to store several tables of size 4·232. So a multiplication in GF (232) can

now be implemented in about three times the cost of an addition and multiplication

in GF (264) can be implemented in about 16 times the cost of an addition. In this case,

FFT-based multiplication will definitely outperform Schönhage’s method. Similarly,

once a computer’s memory becomes large enough to store several tables of size 8 ·264,

then multiplication in GF (2128) can be implemented in constant time. This requires

a 128-bit computer to store this lookup table. As the available memory increases

further on a computer, it is expected that extension fields of even greater size will be

able to be computed in constant time.

In any event, the present author feels that the techniques discussed in this

manuscript are sufficient to outperform Schönhage’s algorithm up to the memory

constraints of a computer. The second view argues that as the input sizes which can

be stored in a computer increase in size, the sizes of the lookup tables which can

be stored in a computer will also increase. In this case, multiplication in F should

always be able to be completed in a constant number of operations and the new FFT-

based multiplication should outperform Schönhage’s algorithm for all input sizes. Of

course, future changes in computer architecture may introduce new factors that will

dominate any arguments made here.

316

Appendix N

Complexity of truncated algorithms

Let n be an integer with binary representation n = (bK−1bK−2 . . . b1b0)2 and

let N = 2K be the smallest power of 2 such that n ≤ N . Observe that

F (n) =
K−1∑

i=1

(
A · 2i + bi · (B · 2i + C · 2i · i)

)
(N.1)

= A ·
K−1∑

i=1

2i +
K−1∑

i=1

bi · B · 2i +
K−1∑

i=1

bi · C · 2i · i

< A ·
K−1∑

i=1

2i + B ·
K−1∑

i=1

bi · 2i + C ·
K−1∑

i=1

bi · 2i · (K − 1)

< A ·N + B · n+ C · (K − 1) · n

< A · 2n+ B · n+ C · log2(n) · n

< (2A + B) · n+ C · n · log2(n)

< (2A + B + C) · n · log2(n).

Substituting A = 0, B = 1, and C = 1, we get an upper bound of 2 ·n · log2(n) for the

multiplication count of the truncated FFT based on the multiplicative FFT. Similarly,

substituting A = 1, B = 1, and C = 1/2, we get an upper bound of 3.5 ·n · log2(n) for

the addition count. A lower bound for each case can be obtained by observing that

the total cost is greater than the cost of computing an FFT of size 1/2 ·N and that

1/2 · n ≤ 1/2 ·N . Thus, this algorithm is Θ(n · log2(n)).

The technique can be repeated with the additive FFT to yield a complex-

ity of Θ(n · log2(n)) multiplications and Θ(n · (log2(n))1.585) additions. The overall

complexity of the algorithm is Θ(n · (log2(n))1.585) in this case.

317

Since the inverse algorithms require the same number of operations as the

forward algorithms plus d · n operations for some d, then it can be easily shown that

the complexity of the inverse truncated FFT algorithm is the same as the results

given above for the truncated FFT algorithm in each case.

318

Appendix O

Alternative derivation of Newton’s Method

Theorem 56 Suppose that g(i−1) is a polynomial of degree less than x2i−1

that satisfies

f · g(i−1) mod x2i−1

= 1 where f is some polynomial in R[x] and i ≥ 1. Then

g(i) = 2 · g(i−1) − f · (g(i−1))
2 mod x2i

(O.1)

is a polynomial of degree less than 2i that satisfies f · g(i) mod x2i

= 1.

Proof: Let m = 2i−1 so that 2m = 2i. Now write f = fA · x2m + fB · xm + fC where

fA is a polynomial of degree deg(f) − 2m, and fB and fC are polynomials of degree

less than m. Furthermore, write

g(i) = gA · xm + gB (O.2)

where gA and gB are unknown polynomials of degree less thanm such that g(i) satisfies

the condition f · g(i) mod x2m = 1. If gA and gB are of degree less than m, then g(i)

will naturally satisfy the second condition that g(i) is of degree less than 2m. If

f · g(i) mod x2m = 1, then

((fB · gB + fC · gA) · xm + fC · gB) mod x2m = 1, (O.3)

(fC · gB) mod xm = 1. (O.4)

319

By the hypothesis, f · g(i−1) mod xm = 1 which implies that

fC · g(i−1) mod xm = 1. Let qA and qB be the unique polynomials that satisfy

fC · g(i−1) = qA · xm + 1, (O.5)

fC · gB = qB · xm + 1. (O.6)

By substituting (O.5) into (O.6), we obtain

(qA − qB) · xm + fC · (gB − g(i−1)) = 0. (O.7)

Since fC , gB and g(i−1) are polynomials of degree less than m, it must be the case

that gB = g(i−1).

Now, express fC · gB = fC · g(i−1) as

fC · g(i−1) = A · xm + 1, (O.8)

where A is some polynomial of degree less than m.

By (O.3),

(
fB · g(i−1) + fC · gA + A

)
mod xm = 0, (O.9)

or

320

(
fB · g(i−1) + fC · gA + A

)
= qC · xm (O.10)

for some qC ∈ R[x]. Multiplying (O.10) by xm and substituting (O.8) into the result-

ing equation for A · xm, we obtain

(fB · g(i−1) + fC · gA) · xm + fC · g(i−1) − 1 = qC · x2m. (O.11)

Solving this equation for fC · gA · xm and multiplying the result by g(i−1), we obtain

fC · g(i−1) · gA · xm = −(fB · xm + fC) · g(i−1)
2 + g(i−1) + qC · g(i−1) · x2m.

(O.12)

The expressions in this equation are valid because R is a commutative ring. We can

truncate the results of (O.12) to the terms of degree less than 2m and use the fact

that fC · g(i−1) mod xm = 1 to obtain

gA · xm = −(fB · xm + fC) · g(i−1)
2 + g(i−1) mod x2m (O.13)

= −(fA · x2m + fB · xm + fC) · g(i−1)
2 + g(i−1) mod x2m

= −f · g(i−1)
2 + g(i−1) mod x2m.

Substituting this result and gB = g(i−1) into (O.2), we obtain

321

g(i) = 2 · g(i−1) − f · g(i−1)
2 mod x2m (O.14)

= 2 · g(i−1) − f · g(i−1)
2 mod x2i

and the theorem is proven. �

Clearly, the sequence of polynomials {g(0), g(1), g(2), · · · , g(k)} has the property

that g(i) has twice as many coefficients of g(x) computed compared to g(i−1). This

is quadratic convergence property of Newton inversion mentioned earlier and was

demonstrated without the use of derivatives.

322

BIBLIOGRAPHY

1. Bergland, Glenn D. A Radix-Eight Fast Fourier Transform Subroutine for
Real-Valued Series. IEEE Transactions on audio and electroacoustics,
17(2):138-44, 1969.

2. Bernstein, D. Multidigit Multiplication for mathematicians. Preprint. Available
at: <http://cr.yp.to/papers.html\#m3>.

3. Bernstein, D. Fast Multiplication and its applications. Preprint. Available at:
<http://cr.yp.to/papers.html\#multapps>.

4. Bernstein, D. The Tangent FFT. Preprint. Available at:
<http://cr.yp.to/papers.html\#tangentfft>.

5. Bittinger, Marvin L. Intermediate Algebra, 9th Edition, Pearson Education
(2003).

6. Bouguezel, Saad, M. Omair Ahmad, and M.N.S. Swamy. An Improved Radix-
16 FFT Algorithm, Canadian Conference on Electrical and Computer
Engineering, 2: 1089-92, 2004.

7. Bouguezel, Saad, M. Omair Ahmad, and M.N.S. Swamy. Arithmetic Complexity
of the Split-Radix FFT Algorithms, International Conference on
Acoustics, Speech, and Signal Processing, 5: 137-40, 2005.

8. Brent, Richard P., Fred G. Gustavson, and David Y. Y. Yun. Fast Solution of
Toeplitz Systems of Equations and Computation of Pade Approximants.
Journal of Algorithms, 1: 259-295, 1980.

9. Brigham, E. Oran. The Fast Fourier Transform and its Applications, Prentice
Hall (1988).

10. Buneman, Oscar. Inversion of the Helmholtz (or Laplace-Poisson) Operator for
Slab Geometry, Journal of Computational Physics, 12: 124-30, 1973.

11. Burden, Richard L. and J. Douglas Faires. Numerical Analysis, Fifth Edition,
PWS Publishing Company (1993).

12. Cantor, David G. On arithmetical algorithms over finite fields, J. Combinatorial
Theory, Series A, 50(2): 285-300, 1989.

13. Cantor, David G. and Erich Kaltofen. On fast multiplication of polynomials over
arbitrary algebras, Acta Informatica, 28: 693-701, 1991.

323

14. Chu, Eleanor and Alan George. Inside the FFT Black Box: Serial and Parallel
Fast Fourier Transform Algorithms, CRC Press (2000).

15. Conway, John. The Book of Numbers, Springer (1996).

16. Cooley, J. and J. Tukey. An algorithm for the machine calculation of complex
Fourier series, Mathematics of Computation, 19: 297-301, 1965.

17. Cormen, Thomas H., Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms, MIT Press (1997).

18. Crandall, Richard and Barry Fagin. Discrete weighted transforms and large-
integer arithmetic, Mathematics of Computation, 62: 325-324, 1994.

19. Ding, C., D. Pei, and A. Salomaa. Chinese Remainder Theorem: Applications in
Computing, Coding, Cryptography, World Scientific (1996).

20. Dubois, Eric and Anastasios N. Venetsanopoulos. A New Algorithm for the Radix-
3 FFT, IEEE Transactions on Acoustics, Speech, and Signal Processing,
26(3): 222-5, 1978.

21. Duhamel, Pierre and H. Hollmann. Split-radix FFT algorithm, Electronic Letters,
20: 14-6, 1984.

22. Duhamel, P. and M. Vetterli. Fast Fourier Transforms: A tutorial review and a
state of the art, Signal Processing, 19: 259-99, 1990.

23. Federenko, Sergei V. A Simple Algorithm for Decoding Reed-Solomon Codes and
Its Relation to the Welch Berlekamp Algorithm, IEEE Trans. Inf. Theory,
51(3): 1196-98, 2005.

24. Federenko, Sergei V. Correction to “A Simple Algorithm for Decoding Reed-
Solomon Codes and Its Relation to the Welch Berlekamp Algorithm”,
IEEE Trans. Inf. Theory, 52(3): 1278, 2006.

25. Fiduccia, Charles. Polynomial evaluation via the division algorithm: the fast
Fourier transform revisited, Proceedings of the fourth annual ACM
symposium on theory of computing, 88-93, 1972.

26. Fine, N. J. Binomial coefficients modulo a prime, Mathematical Association of
America Monthly, 54(10): 589-92, 1947.

27. Fourier, Joseph. The Analytical Theory of Heat, 1822; English translation: Dover,
1955.

28. Frigo, Matteo and Steven Johnson. The Design and Implementation of FFTW3,
Proceedings of the IEEE, 93(2): 216-231, 2005.

324

29. Gao, Shuhong. A new algorithm for decoding Reed-Solomon codes,
Communications, Information and Network Security, 712: 55-68, 2003.

30. Gao, Shuhong. Clemson University Mathematical Sciences 985 Course Notes, Fall
2001.

31. Garg, Hari Krishna, Digital Signal Processing Algorithms: Number Theory,
Convolution, Fast Fourier Transforms, and Applications, CRC Press
(1998).

32. von zur Gathen, Joachim and Jürgen Gerhard. Arithmetic and Factorization of
Polynomials over F2. Technical report, University of Paderborn, 1996.

33. von zur Gathen, Joachim and Jürgen Gerhard. Fast Algorithms for Taylor Shifts
and Certain Difference Equations. Proceedings of the 1997 International
Symposism on Symbolic and Algebraic Computation, 40-7, 1997.

34. von zur Gathen, Joachim and Jürgen Gerhard. Modern Computer Algebra,
Cambridge University Press (2003).

35. Gentleman, Morven and Gordon Sande. Fast Fourier Transforms – for fun and
profit, AFIPS 1966 Fall Joint Computer Conference. Spartan Books,
Washington, 1966.

36. Good, Irving J. Random motion on a finite abelian group, Proceedings of the
Cambridge Philosophical Society, 47: 756-62, 1951.

37. Gopinath, R. A. Comment: Conjugate Pair Fast Fourier Transform, Electronic
Letters, 25(16) 1084, 1989.

38. Gorenstein, D. and N. Zierler, A Class of error-correcting codes in pm symbols,
J. Soc. Indust. Appl. Math, 9: 207-14, 1961.

39. Heideman, M. T. and C. S. Burrus, A Bibliography of Fast Transform and
Convolution Algorithms II, Technical Report Number 8402, Electrical
Engineering Dept., Rice University, Houston, TX 77251-1892, 1984.

40. Heideman, M. T., Don H. Johnston, and C. S. Burrus, Gauss and the History of
the Fast Fourier Transform, IEEE ASSP Magazine, 14-21, October 1984.

41. van der Hoeven, Joris. The Truncated Fourier Transform and Applications.
ISSAC ’04 Proceedings, 2004.

42. van der Hoeven, Joris. Notes on the Truncated Fourier Transform. Preprint.,
2005.

43. Horowitz, Ellis. A fast method for interpolation using preconditioning,
Information Processing Letters, 1: 157-63, 1972.

325

44. Johnson, Steven G. and Matteo Frigo. A modified split-radix FFT with fewer
arithmetic operations, IEEE Trans. Signal Processing, 55 (1): 111-119,
2007.

45. Kamar, I. and Y. Elcherif. Conjugate Pair Fast Fourier Transform. Electronic
Letters, 25 (5): 324-5, 1989.

46. Karatsuba, A. and Y. Ofman. Multiplication of Multidigit Numbers on Automata,
Soviet Physics - Doklady, 7: 595-6, 1963.

47. Karatsuba, A. A. The Complexity of Computations, Proceedings from the Steklov
Institute of Mathematics, 211: 169-183, 1995.

48. Knuth, D. E. The Art of Computer Programming, Vol I: Fundamental Algorithms,
3rd edition., Addison Wesley (1997).

49. Knuth, D. E. The Art of Computer Programming, Vol II: Seminumerical
Algorithms, 3rd edition., Addison Wesley (1998).

50. Krot, A. M. and H. B. Minervina. Comment: Conjugate Pair Fast Fourier
Transform, Electronic Letters, 28(12): 1143-4, 1992.

51. Lay, David C. Linear Algebra and its Applications, Second Edition, Addison-
Wesley (2000).

52. Lidl, Rudolf, and Harald Neiderreiter. Finite Fields. Encyclopedia of Mathematics
and Its Applications, Volume 20, Cambridge University Press (1987).

53. Van Loan, Charles. Computational Frameworks for the Fast Fourier Transform,
Society of Industrial and Applied Mathematics (1992).

54. McEliece, R. J. The Theory of Information and Coding, Addison-Wesley (1977).

55. Merris, Russell. Combinatorics (Second Edition), Wiley (2003).

56. Moenck, R. T. Fast Computation of GCD’s, Proceedings of the Fifth Annual ACM
Symposium on the Theory of Computing, 142-151, 1973.

57. Moenck, R. and A. Borodin. Fast modular transform via division, Proceedings of
the 13th Annual IEEE Symposium on Switching and Automata Theory,
90-96, 1972.

58. Montgomery, Peter L. Five, Six, and Seven-Term Karatsuba-Like Formulae, IEEE
Transactions on Computers, 54(3): 362-9, 2005.

59. Moon, Todd K. Error Correction Coding: Mathematical Methods and Algorithms,
Wiley (2005).

326

60. Nicholson, W. Keith. Introduction to Abstract Algebra, Third Edition, Wiley
(2007).

61. Nussbaumer, H.J. Fast Fourier Transforms and Convolution Algorithms, Springer
(1990).

62. Proakis, John G. and Dimitris G. Manolakis. Digital Signal Processing:
Principles, Algorithms, and Applications, Third Edition, Prentice Hall
(1996).

63. Reed, I. S. and G. Solomon. Polynomial codes over certain finite fields, SIAM J.
Appl. Math, 8: 300-4, 1960.

64. Reischert, D. Schnelle Multiplikation von Polynomen über GF(2) und
Anwendungen. Diplomarbeit, University of Bonn, Germany, 1995.

65. Roberts, Fred S. Applied Combinatorics, Prentice Hall (1984).

66. Rosen, Kenneth H. Discrete Mathematics and its applications, Sixth Edition,
McGraw Hill (2007).

67. Saff, E. B. and A. D. Snider. Fundamentals of Complex Analysis with Applications
to Engineering and Science, Peason Education, Inc. (2003).

68. Schonhage, Arnold. Schnelle Multiplikation von Polynomen uber Korpern der
Characteristik 2, Acta Informatica, 7: 395-8, 1977.

69. Schonhage, Arnold. Variations on Computing Reciprocals of Power Series,
Information Processing Letters, 74: 41-6, 2000.

70. Schonhage, Arnold and V. Strassen. Schnelle Multiplikation grosser Zahlen,
Computing, 7: 281-292, 1971.

71. Shiozaki, A. Decoding of redundant residue polynomial codes using Euclid’s
Algorithm, IEEE Trans. Inf. Theory, 34(5): 1351-1354, 1988.

72. Strassen, V. The Computational Complexity of continued fractions, SIAM
Journal on Computing, 12(1): 1-27, 1983.

73. Stewart, James. Calculus, Fourth edition, Brooks/Cole Publishing Company
(1999).

74. Suguyama, Y., M. Kasahara, S. Hirasawa, and Toshihiko Namekawa. A method
for solving key equation for decoding Goppa codes, Information and
Control, 27: 87-99, 1975.

75. Sunzi Suanjing (Sunzi’s Computational Canon).

327

76. Suzuki, Yōiti, Toshio Sone, and Kenuti Kido. A New FFT algorithm of Radix 3,
6, and 12, IEEE Transactions on Acoustics, Speech, and Signal Processing,
34(2): 380-3, 1986.

77. Takahashi, Daisuke. An Extended Split-Radix FFT Algorithm, IEEE Processing
Letters, 8 (5): 145-7, 2001.

78. Tucker, Alan. Applied Combinatorics: Fourth Edition, Wiley (2002).

79. Vetterli, Martin and Pierre Duhamel, IEEE Transactions on Acoustics, Speech,
and Signal Processing, 37(1): 57-64, 1989.

80. Wan, Zhe-Xian. Lectures on Finite Fields and Galois Rings, World Scientific
Publishing Co. (2003).

81. Wang, Yao and Xuelong Zhu. A Fast Algorithm for Fourier Transform Over Finite
Fields and its VLSI Implementation, IEEE Journal on Selected Areas in
Communications, 6 (3): 572-7, 1988.

82. Weimerskirch, Andre and Christof Paar. Generalizations of the Karatsuba
Algorithm for Polynomial Multiplication. Preprint submitted to Design,
Codes, and Cryptography, 2002.

83. Winograd, S. On Computing the DFT, Math. Comp., 32(1): 175-99, 1978.

84. Yavne, R. An economical method for calculating the discrete Fourier transform,
Proc. Fall Joint Computing Conference, 115-25, 1968.

328

	Clemson University
	TigerPrints
	8-2008

	Fast Fourier Transform Algorithms with Applications
	Todd Mateer
	Recommended Citation

	phd.dvi

