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The numerical calculation of the Rayleigh–Sommerfeld diffraction integral is investigated. The imple-
mentation of a fast-Fourier-transform (FFT) based direct integration (FFT-DI) method is presented, and
Simpson’s rule is used to improve the calculation accuracy. The sampling interval, the size of the
computation window, and their influence on numerical accuracy and on computational complexity are
discussed for the FFT-DI and the FFT-based angular spectrum (FFT-AS) methods. The performance of
the FFT-DI method is verified by numerical simulation and compared with that of the FFT-AS
method. © 2006 Optical Society of America
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1. Introduction

The Helmholtz–Kirchhoff and the Rayleigh–
Sommerfeld diffraction formulas have been widely
used to analyze the propagation and diffraction of light
in an isotropic, homogenous linear medium and have
proved to be valid when the aperture size of the light
field is much larger than the wavelength of light.1,2

The Rayleigh–Sommerfeld diffraction formula has
been proved to yield exact evaluations of the light fields
by methods of Fourier treatment3–5 and gives correct
results for both far-field and near-field diffraction.6,7

Unfortunately, in most cases, these formulas can-
not be solved analytically. Some approximations,
such as Fresnel and Fraunhofer, are used to ease the
difficulties in using these integral formulas for re-
gions not close to the aperture. Also, paraxial approx-
imations are often used for regions close to the optical
axis. The validity of these approximations has been
one issue in diffraction theories.8,9

The development of high-speed computers makes it
possible to calculate these diffraction formulas with-
out the need for Fresnel or Fraunhoffer approxi-
mations. In this paper we focus on the numerical
calculation of the Rayleigh–Sommerfeld diffraction

integral of an aperture under normal chromatic
plane-wave illumination. The observation plane is
parallel to the aperture plane, as Fig. 1 shows. The
numerical solution of the Rayleigh–Sommerfeld inte-
gral can be calculated by either of two methods: an-
gular spectrum (AS) and direct integration (DI). The
AS method treats the propagation of light as a super-
position of plane waves with different wave vectors
and uses a Fourier transform to compute the light
fields in the spatial-frequency domain.5,10,11 A fast-
Fourier-transform (FFT) based AS (FFT-AS) method
can have a high calculation speed and can be used for
both parallel and arbitrarily oriented planes.12 The
DI method computes the diffraction integrals in the
spatial domain by means of numerical integration,
which can be treated as a linear convolution and can
be effectively calculated by means of a FFT and an
inverse FFT (IFFT).13–15

Although numerical calculation of both the AS and
the DI methods has been discussed extensively in the
literature,4,6,7,12–16 there is still some confusion to be
cleared up. First, the implementation of the diffrac-
tion integral by means of convolution and a FFT
was not clearly presented. Proper implementation re-
quires that the sampling intervals be properly se-
lected and the discrete Fourier transformation be
properly zero padded; improper implementation will
cause erroneous results. Second, the selection of the
sampling interval for a given diffraction problem was
not clearly discussed. Li et al. suggested using an
energy conservation criterion for validation of the
sampling quality, but it is difficult to select a proper
sampling interval in advance.15 Delen and Hooker
used a small sampling interval (less than half of a
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wavelength) for the FFT-AS method but encountered
a large computational load.16 An improper sampling
interval will cause either a large aliasing error or a
large computation load. Third, the selection of the
computation window size in the FFT-AS method and
its influence on numerical calculation accuracy, espe-
cially for an observation window that is not on the
optical axis, was not clearly discussed. Some other
confusion includes the applicable regions and compu-
tational complexity of the two methods. For example,
although the FFT-AS method had been considered
suitable for solving full scalar propagation prob-
lems,12 its expected numerical calculation accuracy
and applicability to different regions have not been
completely verified.

In this paper we present an implementation of a
fast-Fourier-transform based DI (FFT-DI) method
to calculate the Rayleigh–Sommerfeld diffraction
integral and use Simpson’s rule to improve the cal-
culation accuracy. The selections of the sampling
interval and the computation window and their in-
fluence on the calculation accuracy and computa-
tional load are discussed. The calculation accuracy,
the computational speed, and the applicability re-
gions of the FFT-DI and the FFT-AS methods are
compared.

This paper is arranged as follows: In Section 2 a
brief review of the AS method and the DI method is
given. In Section 3 a method of implementing the
FFT-DI method is described with improved accu-
racy by use of Simpson’s rule. In Section 4 the sam-
pling intervals, the computation window size, the
calculation accuracy, and the computational load of
the two methods are discussed. In Section 5 the
simulation results for diffraction behind a circular
aperture and a single slit are demonstrated; the
calculation accuracy and computational speeds of
the two methods are compared. In Section 6 our
conclusions are given.

2. Review

The three-dimensional scalar Helmholtz equation for
a linear homogenous isotropic medium,

�2U

�x2 �
�2U

�y2 �
�2U

�z2 � k2U � 0, (1)

can be solved by either the AS method or the DI
method described below.

A. Angular Spectrum Method

In the AS method the initial light field and its prop-
agation are handled in the spatial-frequency domain.
The propagation of the light can be given as

A��, �, z� � A��, �, 0�G��, �, z�, (2)

where A��, �, z� is the Fourier transformation of the
light field at distance z,

A��, �, z� � F�U�x, y, z��

���U�x, y, z�exp��j�x � j�y�dxdy,

(3)

and

G��, �, z� � exp�j�k2 � �2 � �2z� (4)

is the optical transfer function of the linear homoge-
nous isotropic medium. Then the light field U�x, y, z�
can be solved as the two-dimensional (2D) inverse
Fourier transformation of A��, �, z�, given as

U�x, y, z� � F�1�A��, �, z��

�
1

4�2 ��A��, �, 0�

� exp�j�x � j�y � j�k2 � �2 � �2z�d�d�.

(5)

The FFT-AS method for calculating U�x, y, z� nu-
merically has been reported and can be given as

Q � IFFT2�FFT2�U�xm, yn, 0�� ·� G��m, �n, z��,
(6)

where U�xm, yn, 0� and G��m, �n, z� are samples of
U�x, y, 0� and G��, �, z�, FFT2 and IFFT2 denote a
2D FFT and a 2D IFFT, and ·� means element-by-
element multiplication.5,10–12

B. Direct Integration Method

G��, �, z� in Eq. (4) is the optical transfer function of
the medium, and its inverse Fourier transformation

Fig. 1. Illustration of the coordinate system of the Rayleigh–
Sommerfeld diffraction theory.
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will give the impulse response as

g�x, y, z� �
1

4�2 ��G��, �, z�

� exp�j�x � j�y�d�d�

�
1

2�

exp�jkr�
r

z

r �1

r
� jk	, (7)

where r � �x2 � y2 � z2.10 Thus U�x, y, z� can be
solved as the convolution of U�x, y, 0� and g�x, y, z�:

U�x, y, z� ���
A

U�	, 
, 0�g�x � 	, y � 
, z�d	d


���
A

U�	, 
, 0�
exp�jkr�

2�r

z

r

� �1

r
� jk	d	d
, (8)

where r � ��x � 	�2��y � 
�2�z2. It is exactly the
Rayleigh–Sommerfeld diffraction integral formula,
which can be used for both near and far fields without
any approximation.

In most cases, the diffraction integral in Eq. (8) has
to be calculated by direct numerical integration. On
the aperture plane, U�	, 
, 0� is sampled to N � N
equidistant grids. For a point on the observation

plane �xm, yn, z�, the integral can be calculated by
numerical integration as a Riemann sum:

U�xm, yn, z� � 

i�1

N



j�1

N

U�	i, 
j, 0�g

� �xm � 	i, yn � 
j, z��	�
, (9)

where �	 and �
 are sampling intervals on the ap-
erture plane.

3. Fast-Fourier-Transform Based Direct

Integration Method

The Riemann sum in Eq. (9) can be regarded as a
discrete linear convolution of U�	i, 
j, 0� and
g�xm, yn, z�, which can be calculated effectively by
means of a FFT. We present a FFT-DI implementa-
tion for N2 points located at sampling grids on the
observation plane. The discrete convolution in Eq. (9)
can be calculated as

S � IFFT2�FFT2�U� ·� FFT2�H���	�
, (10)

where

The sampling grid of U�	i, 
j, 0� is zero padded to
�2N � 1� � �2N � 1� as shown in Eq. (11) because
Eq. (10) gives the circular convolution of U and H.
The result S is a �2N � 1� � �2N � 1� complex matrix.
The desired light fields in the observation plane can
be given by the N � N lower right submatrix of S:

U�xm, yn, z� � Sm�N, n�N. (15)

U � U0 0

0 0�
(2N�1)�(2N�1)

� �
U�	1, 
1, 0� · · · U�	1, 
N, 0� |

É Ì É | 0N�(N�1)

U�	N, 
1, 0� · · · U�	N, 
N, 0� |

� � � | �

0(N�1)�N | 0(N�1)�(N�1)

�, (11)

H � g�X1, Y1, z� · · · g�X1, Y2N�1, z�
É Ì É

g�X2N�1, Y1, z� · · · g�X2N�1, Y2N�1, z�
�

(2N�1)�(2N�1)

, (12)

Xj ��x1 � 	N�1�j j � 1, . . . , N � 1

xj�N�1 � 	1 j � N, . . . , 2N � 1, (13)

Yj ��y1 � 
N�1�j j � 1, . . . , N � 1

yj�N�1 � 
1 j � N, . . . , 2N � 1. (14)

1104 APPLIED OPTICS � Vol. 45, No. 6 � 20 February 2006



The accuracy of the FFT-DI method depends on the
sampling intervals. Higher accuracy can be obtained
when smaller sampling intervals are used. The error
of the numerical integration in Eq. (9) can be esti-
mated as

E � O��	2� � O��
2�. (16)

One can use Simpson’s rule to improve the accuracy
of numerical integration by introducing weight ma-
trix W into Eq. (11) as

U � W ·� U0 O

O O�
(2N�1)�(2N�1)

, (17)

where

W � BTB, (18)

B � 1⁄3�1 4 2 4 2 . . . 2 4 1� (19)

for an odd N.17 The error of Simpson’s rule for 2D
numerical integration can be estimated as

E � O��	4� � O��
4�, (20)

which is smaller than that of Eq. (16).
The FFT-DI method discussed above can also be

extended to calculation of the Helmholtz–Kirchhoff
integrals by use of different values of g�x, y, z� in
Eq. (9).

4. Discussion

A. Sampling

Both the FFT-AS and the FFT-DI methods need dis-
crete U�	, 
, 0�. If U�	, 
, 0� is band limited in the
spatial-frequency domain as A��, �, 0�||�|��M or |�|��M

� 0, then, according to the Nyquist sampling theo-
rem, the sampling intervals have to be less than

�2�M��1 and �2�M��1, respectively. However, most ap-
ertures are finite in spatial size, and their Fourier
transformations are infinite in the spatial-frequency
domain. Thus the frequency components greater
than the sampling frequencies are truncated. When
the sampling frequency is high enough, the total
power of the truncated band is usually much lower
than that of the low frequencies, and thus the trun-
cation error can be neglected in most cases.

The FFT-DI method in Eq. (10) requires discrete
g�x, y, z�. Because g�x, y, z� is not band limited; the
sampling of g�x, y, z� is always aliased. However,
g�x, y, z� is of low frequencies for paraxial points and
relatively long propagation distances. Thus, for a
given diffraction problem, one can estimate the max-
imum frequency and select the appropriate sampling
interval. The magnitude and the oscillation period of
g�x, y, z� at different observations planes are plotted
in Figs. 2 and 3, respectively, with a simulation wave-
length of 0.5 �m.

The attenuation of light fields with respect to the
offset between the point and the optical axis at planes
z � 0.5, 1, 2.5, 5, 10, 25, 50, 100 m are plotted in
Fig. 2. It is evident that more energy is diffracted to
areas far from the optical axis as z increases, but the
attenuation rate gets smaller. This implies that more
sampling points are required for small z because of
the rapid variations in the light field.

We can estimate the oscillation period of g�x, y, z�
by calculating the interval �� between points on the
observation plane with 2� phase difference, given as

k��� � ���2 � z2 � k��2 � z2 � 2�, (21)

where � � �x2 � y2 is the offset of a point from the
optical axis. The solution is

�� � ��2 � �2 � 2���2 � z2 � �. (22)

Fig. 2. Magnitude of g�x, y, z� at several observation planes. Fig. 3. Oscillating period of g�x, y, z� at several observation
planes.
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The relationship between �� and � on different
planes is shown in Fig. 3. When z is large and � is
small, which is a paraxial case, the oscillation period
of g�x, y, z� is large and g�x, y, z� is of low frequency.
Thus a large sampling interval can be used without
sacrificing calculation accuracy. However, when � is
large or z is small, which is not the paraxial case, the
oscillating period of g�x, y, z� is asymptotic to �, and
the sampling intervals for g�x, y, z� need to be smaller
than half of the optical wavelength at least.

The minimum �� for a given z and � is a measure
of the maximum frequency that g�x, y, z� contains.
Equation (22) gives a convenient rule for the selection
of the sampling interval. For a light diffraction prob-
lem to be solved, the minimum propagation distance
zmin and the maximum offset from the optical axis �max

can be substituted into Eq. (22) to yield a minimum
��min. The sampling intervals on the x–y plane should
be less than ��min�2 to reduce the aliasing error.

B. Accuracy

The ranges of the integration in Eq. (5) and the re-
sultant light fields are infinite. However, for a nu-
merical calculation with the FFT-AS method, the size
of the computation window is finite. The result of the
IFFT in Eq. (6), Q�xm, yn, z�, is a replica of U�x, y, z� in
the spatial domain, which can be given as the sum-
mation of samples of U�x, y, z� at all the grid points
with equal distances of the computation window size:

Q�xm, yn, z� � 

i���

�



j���

�

U�xm � iX, yn � jY, z�, (23)

where X and Y are dimensions of the computation
window.18

It is evident that the calculation error of the
FFT-AS method depends mainly on the light fields of
grid points outside the computation window on the
observation plane. Therefore the size of the compu-
tation window has to be large enough that the light
fields outside the computation window can be ne-
glected. An oversampling of the same computation

window with small sampling intervals will not in-
crease the accuracy. The accuracy of the DI method
depends on the accuracy of the numerical integration
in Eq. (9), which in turn depends on the sampling
intervals, as shown in Eqs. (16) and (20). Small sam-
pling intervals will yield high calculation accuracy. A
simulation result for comparison of the accuracy of
the FFT-AS method and the FFT-DI method is given
in Subsections 5.A and 5.B below.

C. Computation Window

The rule for the selection of computation window size
in the FFT-AS method is that all the light fields
outside the window can be neglected for a given de-
sired accuracy. In practice, owing to the diffraction of
light, the size of the computation window has to be
selected to be much larger than the aperture size,
even if only a small observation window is desired.
However, a large computation window will cause a
large sampling array and thus a high computational
load. Therefore the application of the FFT-AS method
is limited to small apertures and near-field cases.

When the observation window is not on the optical
axis, a large computation window centered on the
optical axis has to be selected. This is not computa-
tionally efficient. Delen et al. tried to use a shifted
Fourier transform to handle this problem with a
smaller computation window by moving the center of
the computation window to the optical axis.12 How-
ever, because the mathematical shift of the compu-
tation window does not change the real light field
distribution, a small computation window will result
in an incorrect calculation.

Here is a general guideline that we used for se-
lection of the computation window in the FFT-AS
method. For a given propagation distance z, the mag-
nitude of g�x, y, z� for light fields outside the compu-
tation window should be much smaller than that on
the optical axis, given by

�g�x, y, z�� � ��g�0, 0, z��, (24)

Fig. 4. Axial intensity distribution behind a circular aperture. Fig. 5. Calculation errors of the FFT-AS method and the FFT-DI
method: (a) FFT-AS and (b) FFT-DI methods.

1106 APPLIED OPTICS � Vol. 45, No. 6 � 20 February 2006



where ε is a small number. Inequality (24) can be
rewritten as

� 1

r2 �1

r
� jk	���� 1

z2 �1

z
� jk	�, (25)

where r � ��2 � z2. In practice, z is usually much
larger than several wavelengths; thus inequality (23)
can be simplified to

1

r2 � �
1

z2, (26)

and the minimum � can thus be solved as

� � z��1��� � 1�1�2. (27)

The minimum computation window can then be se-
lected to be �2� � a� � �2� � b�, where a � b is the size
of the aperture.

The FFT-DI method, however, requires that the
size of the computation window be the same as that of
the aperture window. When the observation window
is larger than the aperture, one can either enlarge the
aperture window or divide the observation window
into subwindows with smaller sizes. In Subsection
4.D below, we show that the latter method is more
computationally effective.

D. Computational Complexity

The computational load of the FFT-AS method in
Eq. (6) comes from (a) a FFT of U, (b) calculation of G,
(c) element-by-element multiplication A � FFT�U�
· � G, and (d) IFFT (A). Assuming that the array size
is N � N, the computational complexity is

C1 � Ca � Cb � Cc � Cd

� O�N2 log2 N� � O�N2� � O�N2� � O�N2 log2 N�.
(28)

When N2 points on the observation plane are arbi-
trarily located, the computational complexity of the
traditional DI method is O�N4� (Ref. 12) because each
point has a computational complexity of O�N2�, as
shown in Eq. (9). The FFT-DI method calculates the
light fields on grid points and uses a FFT and an
IFFT to improve the calculation speed. The compu-
tational load of the FFT-DI method in Eq. (10) comes
from (a) FFT(U), (b) calculation of H, (c) FFT(H), (d)
the element-by-element product of FFT(U) and
FFT(H), and (e) the IFFT of the product. For maxi-
mum efficiency of FFT and IFFT, U and H should be
zero padded to have the size 2m � 2m, where m is an
integer. Assuming that the length of the FFT is NF,
the computational complexity of the FFT-DI method
is

C2 � Ca � Cb � Cc � Cd � Ce

�O�NF
2 log2 NF� � O�NF

2� � O�NF
2 log2 NF�

� O�NF
2� � O�NF

2 log2 NF�, (29)

which is much lower than O�N4�.
If the N � N sampling array in the FFT-DI method

is zero padded to 2N � 2N, then the lengths of the
FFTs in the FFT-DI method are the same as in the
FFT-AS method when a computation window with
2 � 2 times the aperture size is used. From Eqs. (28)
and (29), one can find that the FFT-DI method needs
only one more 2D FFT than the FFT-AS method does,
which means that the computational loads of the
FFT-DI and FFT-AS methods are comparable.

In the FFT-DI method the size of the computation
window is the same as that of the aperture window.
One can divide a large observation window into
smaller subwindows that have the same size as the
aperture, such that the maximum computational ef-
ficiency of the FFT algorithm can be obtained. For
example, if the desired observation window is 2 � 2

Fig. 6. Calculation errors of the FFT-AS method for the sampling
numbers and computation window sizes shown.

Fig. 7. Calculation errors of the FFT-DI method for several sam-
pling numbers.
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times the aperture, one can divide it into four sub-
windows with N � N � �N1�2� � �N1�2� arrays, where
N1 is the sampling number for the large computation
window. The computational complexity for the FFT
and the IFFT for the small windows is

4 � O�N2 log2 N� � O�N1
2�log2 N1 � 1��,

which is less than that for the large computation
windows, whose computational complexity is
O�N1

2 log2 N1�.

E. Two-Dimensional Diffraction

The impulse response of a 2D linear isotropic homog-
enous medium is7,11

h�x, z� �
jkz

2r
H1

�1��kr�, (30)

where H1
�1��kr� is the first-order, first-kind Hankel

function and r � �x2 � z2. Thus the propagation of
light can be represented as the convolution of U�x, 0�
and h�x, z�:

U�x, z� ��
A

U�	, 0�h�x � 	, z�d	

��
A

U�	, 0�
jkz

2r
H1

�1��kr�d	, (31)

where r � ��x � 	�2 � z2.
The FFT-DI method for 2D diffraction can be given

as

S � IFFT�FFT�U� ·� FFT�H���	, (32)

where

U � �U�	1, 0� . . . U�	N, 0� 0 . . . 0�2N�1
, (33)

H �
jkz

2 H1
�1��kr1�

r1
· · ·

H1
�1��kr2N�1�

r2N�1
�

2N�1

, (34)

rj ����x1 � 	N�1�j�2 � z2, j � 1, . . . , N � 1

��xj�N�1 � 	1�2 � z2, j � N, . . . , 2N � 1
, (35)

and S�N:2N � 1� gives the desired light fields. Sim-
ilarly, Simpson’s rule can also be applied to improve
the accuracy of the calculation.

5. Simulation Results

A. Circular Aperture

It has been shown that the light fields on the optical
axis behind a circular aperture under normal uni-
form plane-wave illumination have the following ex-
act solution:

U�z� � U0zexp�jkz�
z

�
exp�jk�z2 � a2�

�z2 � a2 �, (36)

where U0 is the magnitude of the incident light and a
is the radius of the circular aperture.19,20

We used both the FFT-AS and the FFT-DI methods
to calculate the light fields of axial points and com-
pared the results with the theoretical solution in
Eq. (36) to evaluate the accuracy of the two methods.
The parameters used in the simulation are as follows:
The wavelength of the chromatic light was �
� 0.5 m, the radius of the circular aperture was a
� 10� � 5 m, and the sampling interval was 0.1�.
For the FFT-AS method the computation window was
set to 2 � 2 times the aperture window.

The simulation results of the axial intensity distri-
bution are shown in Fig. 4. The FFT-DI method gives
consistent simulation results for both small and large
z. In contrast, the FFT-AS method gives consistent
results only for small z. When z is increased, because
more light power is diffracted outside the computa-
tion window, a larger error occurs. The square errors
of the calculations, |U � UAS|

2 and |U � UDI|
2, are

plotted in Fig. 5, where U is the theoretical value and
UAS and UDI are the simulation results. The FFT-DI
method has a much smaller calculation error than
the FFT-AS method for a relatively large z. The error
of the FFT-AS method tends to increase with z,
whereas the error of the FFT-DI method shows a
maximum at a certain z and is asymptotic to zero
when z is large.

The errors of the FFT-AS method for several sam-
pling intervals and computation window sizes are
shown in Fig. 6. Figure 6(a) shows the errors of the
FFT-AS method when the aperture is sampled from
128 � 128 to 512 � 512 with the computation window
kept at the same size, which is 2 � 2 of the aperture
window. The results show that oversampling on the
aperture will not reduce the calculation error. Figure

Fig. 8. Simulation results of diffraction pattern of a single slit.
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6(b) shows the errors of the FFT-AS method when the
computation window size is selected from 2 � 2 to
6 � 6 of the aperture size while the sampling num-
bers of the aperture are kept at 128 � 128. The
results show that a large computation window will
decrease the calculation error.

The errors of the FFT-DI method for several sam-
pling numbers are shown in Fig. 7. The calculation
error |U � UDI|

2 at z � 8 m for sampling numbers
from 128 � 128 to 1024 � 1024 are plotted together
with the calculation errors of Simpson’s rule. It can be
seen that the calculation error decreases when the
sampling number increases. However, when the sam-
pling interval is small enough, the rate of decrease in
error becomes saturated. Simpson’s rule can greatly
reduce the calculation error and thus improve the
calculation accuracy.

B. Single Slit

We verified the 2D diffraction formulas in Eqs. (30)–
(35) by calculating the diffraction patterns of a single
infinite slit under uniform plane-wave illumination.
The wavelength of the light was 0.5 m. The width of
the slit was 10 m. The aperture plane was sampled
to 1024 points along the x axis. The observation win-
dow was set to 80 m width with the center on the
optical axis. In the FFT-AS method the computation
window was the same size as the observation win-
dow, which was eight times the size of the aperture.
The diffraction patterns at observation planes of
z � 5, 50, 250 m, calculated by both the FFT-AS
and the FFT-DI methods, are plotted in Fig. 8.

When z is small �5 m�, the differences between the
calculation results from the FFT-AS and the FFT-DI
methods are so small that they cannot be identified,
as Fig. 8(a) shows. However, the error of the FFT-AS
method increases when z becomes larger �50 m�, as
Fig. 8(b) shows. When z is large �250 m�, the
FFT-AS method fails to give an accurate result, as
shown in Fig. 8(c).

C. Calculation Speed

In our simulation we used a Compaq personal
computer with a Pentium 4, 1.4 GHz CPU and
512 Mbytes of RAM to investigate the speed of the
FFT-AS and the FFT-DI methods. The simulation
was based on the circular aperture diffraction as de-
scribed in Subsection 5.A. The observation window

was set to be 10 m � 10 m, the same size as the
aperture window. The average execution time of 25
running cycles and the FFT array sizes of the FFT-DI
and the FFT-AS methods are compared in Table 1.
The simulation code was programmed and executed
in Matlab v6.5 on a Windows XP operating system.

It is evident that the FFT-DI method can greatly
reduce the computational load compared with the
traditional DI method. The execution time of the
FFT-DI method for an array size of 512 � 512 is
3.36 s , which is much less than that of the traditional
DI method reported in Ref. 16. The computational
loads of the FFT-DI and the FFT-AS methods are
comparable when the array sizes in these two meth-
ods are the same. The execution times of the FFT-DI
method with a 1024 � 1024 sampling array and of
the FFT-AS method with a computation window of
16 � 16 times the aperture window are 13.34 and
10.80 s, respectively. The lengths of the FFT and the
IFFT are 2048 � 2048 for both cases. The execution
time of the FFT-DI method is only 1.24 times that of
the FFT-AS method.

The FFT-DI method uses one more FFT than the
FFT-AS method and thus needs one more array to
save the FFT result. For example, for an array size of
1024 � 1024 with double precision, the FFT-AS
needs 8 Mbytes of memory to save the result of one
FFT, while the FFT-DI method needs 16 Mbytes of
memory to save the results of the two FFTs.

6. Conclusions

Based on the investigation of the numerical calcula-
tion methods for the Rayleigh–Sommerfeld diffrac-
tion integral, a fast-Fourier-transform based DI
method was implemented to lower the computational
load of the numerical integration. Simpson’s rule was
introduced to improve the calculation accuracy. The
parameter selections and the performance of the
FFT-DI and the FFT-AS methods were discussed.
The sampling of the light fields on the aperture plane
needs to meet the requirements of the Nyquist sam-
pling theorem in both methods. The accuracy of the
FFT-AS method depends on the error caused by the
finite size of the computation window. An oversam-
pling in the aperture window will not increase the
accuracy of the FFT-AS method. The accuracy of the
FFT-DI method depends on the sampling intervals in
the aperture plane. The size of the computation win-

Table 1. Comparison of Calculation Speeds

FFT-DIa FFT-ASb

Array
Size of FFT

Sampling
Grid of Aperture

Execution
Time (s)

Computation
Window

Execution
Time (s)

128 � 128 0.23 2 � 2 0.19 256 � 256
256 � 256 0.95 4 � 4 0.70 512 � 512
512 � 512 3.36 8 � 8 2.56 1024 � 1024

1024 � 1024 13.34 16 � 16 10.80 2048 � 2048

aThe computation window in the FFT-DI method has the same size as the aperture.
bThe sampling grid of the aperture in FFT-AS method is 128 � 128.
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dow in FFT-DI method needs to be the same as that
of the aperture window. The computational load of
the FFT-DI method is comparable to that of the
FFT-AS method but much lower than that of the
traditional DI method. Simulation results have
shown that the FFT-DI method is accurate and effi-
cient and can be used universally, whereas the
FFT-AS method should be restricted to small aper-
tures and near-field cases.

This research was supported in part by the U.S.
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01G011050 and by the National Science Foundation
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