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Abstract

This paper presents an efficient methodology for the discrete Asian options consistent with different

types of underlying densities, especially non-normal returns as suggested by the empirical literature

(Mandelbrot (1963) and Fama (1965)). The interest of this method is its flexibility compared to

the more standard ones. Based on Fast Fourier Transform, the method is an enhanced version of

the algorithm of Caverhill and Clewlow (1992). The contribution of this paper is to improve their

algorithm and to adapt it to non-lognormal densities. This enables us to examine the impact of fat-

tailed distributions on price as well as on delta. We find evidence that fat tails lead to wider jumps in

the delta.

1 Introduction

First introduced in Tokyo, Asian options are options based on any type of average of underlying equity

prices, interest rates or indices. They are among the most popular path-dependent derivatives, since their

characteristics capture partially the trajectory of the underlying, with often reduced exposure to volatility.

In addition, Asian options are less sensitive to possible spot manipulations or extreme movements at

settlement and offer flexibility in the way the average is settled. Consequently, they have become very

attractive for investors since they provide a customized cheap way to hedge periodic cash-flows (see Longstaff

(1995) for a discussion of the efficiency of Asian interest-rate options for corporations with reasonably

predictable cash flows)

When pricing an option, one of the first questions that arises concerns the distributional assumptions

for the underlying. Very often the distribution of the latter is taken to be lognormal as in the Black Scholes

model. However, when it comes to arithmetic Asian options, one is confronted with the problem of the

distributions. Indeed, the empirical literature has rejected normality of returns and hence the geometric

Brownian motion. It has rather suggested fat-tailed distributions (see Mandelbrot (1963) and Fama (1965)

for the early ones).
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The motivation of this paper is to provide an efficient method for the pricing of Asian options consistent

with various underlying densities, especially non log-normal ones. Because of the challenge of getting a

correct price for Asian option with a widely used option pricing model, previous research has focussed on

the Black Scholes model, adopting different strategies. It has first focussed on the geometric Asian option

case (Vorst (1992), Turnbull and Wakeman (1991), Zhang (1995)). It has as well looked at the question of

the continuous-time Asian options (Geman and Yor (1993), Rogers and Shi (1995), Alziary et al. (1997), He

and Takahashi (1996), Forsyth et al. (1998), Nielsen and Sandmann (1998)). However, the type of average

for traded Asian options is arithmetic and discrete: daily, weekly or monthly. Approximating these options

by their continuous-time limit is inaccurate and misleading for options with a period of time between two

fixing dates longer than a day.

To account for the discrete arithmetic averaging, it has been suggested to use different approximations

of the density of the sum of lognormal variables leading to various closed-form solutions: approximation

via the geometric average (Vorst (1992)), via a lognormal density (Turnbull and Wakeman (1991)), via

an Edgeworth expansion (Levy and Turnbull (1992) and Jacques (1996)), via a Taylor expansion (Zhang

(1998) and Bouaziz et al. (1998)) or via the reciprocal Gamma distribution (Milesvky and Posner (1997)).

It has also been advocated to use different numerical methods: Monte Carlo (Kemma and Vorst (1990)),

tree methods (Hull and White (1997)) and Fast Fourier Transform techniques (Caverhill and Clewlow

(1992)). However, none of these works has considered non-lognormal distributions.

When the underlying density is not lognormal, the approximation methods do not hold any more since

they heavily rely on the lognormal assumption. Numerical methods like PDE or lattice methods are as

well not easy to adapt to the non-lognormal case, since we need to restrict ourselves to certain types of

diffusion like stochastic volatility or deterministic volatility models which implies strong assumptions on

the underlying diffusion. It is not very straightforward to derive an empirical density from market data,

requiring very often a calibration stage. The two methods adaptable to an ad-hoc empirical non lognormal

distribution without too much difficulty, are indeed the Monte Carlo and the Fast Fourier Transform

method. However, these two methods perform poorly for non-lognormal case as well as for lognormal one.

The Monte Carlo has the drawback to be slow. The algorithm of Caverhill and Clewlow (1992) requires

large discretization grid and has slow convergence.

In this paper, we offer a solution to improve the method of Caverhill and Clewlow (1992) and to adapt

it to the case of non-lognormal densities. To reduce the size of the grid and therefore the computational

time, we recenter intermediate densities. We test this algorithm in the lognormal case since it is only

in this particular situation that we have benchmarks in the literature. We then examine the impact of

non-lognormal densities on the price as well as on the delta.

The remainder of this paper is organized as follows. In section 2, we describe our algorithm in detail.

In section 3, we examine numerical results for the lognormal case, using it as a benchmark for the efficiency

of our method. Section 4 deals with non-lognormal densities. It examines the impact of various densities

on the price of the option as well as on the delta. We conclude briefly in section 5 suggesting further

developments.
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2 Description of the method

2.1 Framework

We consider a continuous-time trading economy with infinite horizon. The uncertainty in the economy is

classically modelled by a complete probability space (Ω, F,Q) . The underlying is denoted by (St)t∈R+ . The

information evolves according to the natural filtration (Ft)t∈R+ implied by the underlying process. Following

the traditional empirical literature, we assume that returns (Rti
)i∈N

, defined by Rti
= log

(
Sti

/Sti−1

)
for

a given sequence of time (ti)i∈N
, are independently distributed and have a well-known density fi (.) , with

a well-known mean denoted by µi. In the case of the Black Scholes model, each of these densities is a

normal distribution with mean
(
r − σ2

2

)
(ti − ti−1) and variance σ2 (ti − ti−1). The underlying price is

then calculated as the initial price St0 increased by the different returns eRti :

Sti
= St0e

Rt1+Rt2+...+Rti

Assuming that we have n fixing dates for the average, denoted by t1,t2,...,tn, the arithmetic average A

is defined through:

A =
1
n

n∑
i=1

Sti
(2.1)

In complete markets with no arbitrage opportunity, there is a unique risk neutral martingale measure

denoted by Q. In this framework, the price P of an Asian call, with strike K, expiring at time T , is defined

as the expected value of the time-T payoff discounted at the risk-free rate r :

P = E
Q

[
e−rT (A−K)+

]
(2.2)

where X+ stands for max (X, 0) . Since the discrete average process has no well-known density, there is

no closed formula. However, we show in this paper that we can compute numerically this density, giving

a method which converges to the real densities as long as the size of the discretization grid tends to the

infinity.

2.2 Why Fast Fourier Transform?

Well known in signal theory, Fast Fourier Transform (FFT) is efficient for the resolution of many numerical

problems. More specifically, the FFT is an efficient algorithm for computing the sum:

FFT (f (k)) =
1√
2π

N−1∑
j=1

e−i 2π
N (j−1)(k−1)f (j) for k = 1...N

where N is typically a power of 2. This algorithm reduces the number of multiplications in the required

N summations from O
(
N2

)
to that of O (N log2 (N)). This suggests that for a grid with 2p points, the

complexity is p2p, which is typically the complexity of a binomial tree.

Recently, this technique has gained popularity in option valuation (Baskhi and Chen (1998), Scott

(1997), Chen and Scott (1992), Carr and Madan (1999)) in view of its numerical efficiency. The property of

the Fourier transform used here is its efficiency to calculate convolution products. The Fourier transform

of such a product is simply the product of the Fourier transforms. This is helpful in getting the density of

the sum of two variables since this is just the convolution product of the individual densities as long as the

variables are independent. In the case of the Asian option, the expression involved is not a straightforward
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sum of independent variables. In the algorithm section, we show how to use independent variables in a

recursive scheme.

The interest of this method is its efficiency compared to a straightforward computation of the density.

Instead of computing an n−1 dimensional integral with a complexity of O
(
Nn−1

)
, we reduce this complexity

by means of Fast Fourier Transform to O
(
N2 log (N)

)
.

The use of FFT method for Asian option valuation was first suggested by Carverhill and Clewlow (1992).

However, their work assumes lognormal densities and is not very efficient since it requires large grid and

converges rather slowly. To speed up convergence, one needs to reduce the size of the grid required by the

FFT algorithm. To cope with smaller grid, we introduce a proxy for the mean of intermediate densities.

This enables us to recenter the different variables. We extend as well the FFT method to non-lognormal

densities. We look particularly on the Student-density case since the latter is a well-known example of a

fat-tailed distribution. We use the FFT algorithm as described in Press et al. (1992). Indeed, the method

explained here is very general and can be applied to many other fat-tailed densities, like extreme value,

Pareto and generalized Pareto distributions.

2.3 Algorithm

2.3.1 Inefficiency of the Carverhill and Clewlow method

A simple way to calculate the density of a sum of dependent variables is to transform then into independent

variables. With our assumptions on the independence of returns, this comes naturally. Notice that when

the underlying distribution is lognormal, returns are normal and their Fourier transform has a closed form

solution equal to f (w) = 1√
2π
e

(
iwm−w2σ2

2

)
, where m stands for the mean and σ2 the variance. We introduce

the sequence (Bi)i=0..n−1 defined by its initial condition: B1 = Rtn
and for the recursion i = 2...n,

Bi = Rtn+1−i
+ log (1 + expBi−1) (2.3)

The Steward and Hodges factorization expresses the sum variable A defined by (2.1) in terms of the variable

Bn as stated in the following proposition:

Proposition 1 The sum variable A can be expressed in terms of the last term of the sequence (Bi)i=0..n−1:

Bn−1; through :

A =
St0

n
eBn

Proof : We decompose the underlying price as a function of the difference of returns: Sti
= St0e

Rt1+Rt2+...+Rti .

Factoring terms leads to a multiplicative expression of the sum variable:

A =
St0

n

[
eRt1 ∗ (

1 + eRt2 ∗ (
1 + eRt3

(
1 + ...

(
1 + eRtn

))))]

When taking the logarithm of the above equation, we get an additive expression:

A =
St0

n
∗ exp (Rt1 + log (1 + exp (Rt2 + log (... + log (1 + Rtn

)))))

The term inside the outermost exponential can be calculated recursively using the sequence (Bi)i=1..n.�
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Figure 1: Evolution of the densities

The Proposition 1 together with the recursive equation (2.3) was the starting point of the work of

Carverhill and Clewlow (1992). At the ith step of the recursive equation (2.3) the return Rtn+1−i
is added.

The latter is, however, not centred and has often a positive mean which for high volatilities can become

negative (see the expression for the mean
(
r − σ2

2

)
∗ T

n ). For positive mean, the distribution of Bi+1 is

consequently shifted to the right of the distribution of Bi. If we discretize the distribution of Bi+1 on the

same grid as the one of Bi, this implies that the discretization grid must be large enough to contain the two

distributions. When we have n dates in our arithmetic average, this tends to shift more and more in one

direction as the order of the distribution increases as shown in figure 1. This is precisely why the algorithm

of Carverhill and Clewlow requires a large grid.

2.3.2 Recentering intermediate densities

In order to obtain a smaller grid and therefore to reduce computational time, we can recenter the densities

at each step. The difficulty here is that we do not know the exact mean of the variable Bi. Denoting by µi

the mean of the return Rti
(µi = E [Rti

]), which is supposed to be known, we can approximate the mean

of the variable Bi with the following sequence: (mi)i=1..n initialized with m1 = µn and for i = 2...n

mi = µn+1−i + log (1 + expmi−1) (2.4)

The term mi acts as a proxy for the mean of the variable Bi. The approximation of the average is done

by taking the lagged Bi−1 equal to its mean mi−1 in the recursive equation (2.3). It is worth noticing

that even if we do an approximation on the mean, it does not mean that we approximate the density of

Bi. It just means that we do not perfectly center this variable. However, there is no new error implied by

the recentering. Indeed, since the function log (1 + ex) is convex, we are underestimating some convexity

adjustment term as stated by the Jensen inequality for convex functions f (E (X)) ≤ E (f (X)).

The recentered sequence is defined as (Ai)i=1..n with Ai = Bi −mi. Replacing Bi−1 by its expression

in terms of Ai−1 and mi−1 leads to a recursive two dimensional sequence summarized by the following

proposition:

Proposition 2 The sum variable A can be expressed in terms of the last term of the recursive sequence

An and mn : as follows:

A =
St0

n
eAn+mn
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where the sequence (mi)i=1...n is defined as above (2.4) and the sequence (Ai)i=1..n is given by the initial

condition A1 = Rtn
−m1 and for i = 2..n

Ai = Rtn+1−i
+ log (1 + expAi−1 expmi−1) −mi

To get the density of Ai with respect to the one of Ai−1, we use the standard change of variable theorem,

which relates the density of a variable Y = g (X) , denoted by dqY , with the one of the variable X, denoted

by dpf−1(y), through the Jacobian of the function f−1 (Y ) = X

dqY = dpf−1(x)

∣∣Jf−1(y)

∣∣ dy
leading to the interpolation formula:

dplog(1+emi−1+X)−mi
(y) =

ey+mi

ey+mi − 1
pX

(
log

(
ey+mi − 1

) −mi−1

)
1{y>−mi}dy (2.5)

We can now describe the different steps of the first algorithm. The algorithm is initialized with the value

of the two dimensional sequence m1 = µn and A1 = Rtn
−m1. It finishes when we get mn and An.

The recursive sequence is calculated as follows. Assume that we know the value of the bi-dimensional

sequence at step i− 1 , that is mi−1 and Ai−1.

• We then interpolate the variable Ai−1 by means of the remark (2.5) to get the density of the variable

log
(
1 + emi−1+Ai−1

) −mi.

• We calculate the density of Ai, which is is the sum of the two independent variables Rtn+1−i
and

log
(
1 + emi−1+Ai−1

) −mi, by calculating the convolution product via FFT.

• Having obtained the density of the average, we calculate the payoff of the option, defined as an

expectation, by a numerical integration, using the Simpson rule.

2.3.3 Discussion of the numerical techniques

The FFT algorithm requires the density function to be represented at a sufficient number of equally spaced

points. The grid for the discretization of the different densities needs to be sufficiently dense as well as

sufficiently large to avoid interference errors implied by the periodisation of the density function in the

FFT algorithm. We use the FFT algorithm as described in Press et al. (1992)

Errors in the numerical integration by the Simpson rule (exact for the integration of polynom up to

degree 3) are negligible compared to the ones produced by the discretization of the distribution. The error

in the Simpson rule for the integral of a function f infinitely differentiable
∫ b

a
f (x) dx can be shown to be

an O
((

b−a
2

)5
f (4)

)
.

3 Efficiency of the algorithm for the lognormal case

3.1 Black Scholes assumption

The information evolves according to the augmented filtration {Ft, t ∈ [0, T ]} generated by a standard one-

dimensional standard Brownian motion (Wt)t∈R+
. We assume the underlying price process is a geometric

Brownian motion, solution of the Black Scholes (1973) diffusion defined by equation (3.6) with initial

condition St=0 = S0
dSt

St
= µdt + σdWt (3.6)
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In this case the returns Rti
have a normal density with mean

(
r − σ2

2

)
(ti − ti−1) and variance σ2 (ti − ti−1) .

3.2 Choice of the Grid

The choice of an efficient grid is not easy. The grid is determined by its range as well as its number of

points. Choosing a range not correctly leads to interference errors. Taking a grid not dense enough leads

as well to inaccurate Fourier Transform computation. We choose a centred grid with 4096 points, that is

212 and with a width of 9nσ
√
dt, where n stands for the number of fixing dates, σ the volatility, dt the

time between two fixings. For a one year weekly Asian option, with fifty fixings, the number of fixing n is

equal to 50 and the period of time between two successive prices dt is equal to one week or 1/52 of a year.

3.2.1 Recentering the densities

The improvement of this paper is to recenter densities at each step. Since we approximate the mean,

the recentering is imperfect as figure 2 shows. For low volatilities up to 20%, densities are perfectly

recentered for a one-year weekly Asian option. For volatilities higher than 20%, the approximation of the

mean is not rigorously correct and leads to a shift of the different densities to the right. Indeed, since

the function log (1 + ex) is convex, we are underestimating a convexity adjustment term, as stated by the

Jensen inequality for a convex function f , f (E (X)) ≤ E (f (X)). However, the bias in our estimation is

quite small, since for large values of x, the function log(1 + exp (x)) is very little convex, roughly equal to

x, justifying our method.

In the figure 2, we can see that for small volatility level (20%, figure on the left), the recentering is perfect

whereas for higher volatility (30%, figure on the right), we are missing the convexity adjustment term. In

the original algorithm of Caverhill and Clewlow, the grid size can be shown to be equal to 9nσ
√
dt + µn.

The gain in our method can be measured by the grid width ratio
(
9nσ

√
dt + mn

)
/9nσ

√
dt. For the case

of a one year option with 10% volatility and a risk-free rate of 20%, this gain is equal to 1.317. This means

that with the old algorithm, we need 1317 points to get the same precision as 1000 points with the new

one. This means that the equivalent of 4096 points with the new algorithm is about 5400 points with the

old algorithm.

It is worth noticing that the difference between our method and the one of Caverhill and Clewlow

is larger for big volatility. This is because the advantage of getting a correct distribution becomes more

relevant for high volatility even if the comparative advantage of recentering becomes less and less important

for larger grids caused by larger volatilities.

3.2.2 Interference on the FFT algorithm

When the grid is not large enough, interference alters the results’quality as shown in figure 3, where we used

a grid width of only 4nσ
√
dt. This comes from the fact that the FFT algorithm assumes the periodicity of

our function. It can cause interference terms when the grid size is too small.
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Figure 2: Evolution of the density with recentering at each step. The two graphics concern a one year

weekly Asian option. The figure on the top is with 20% of volatility whereas the one on the bottom is for

30% volatility.

Density for 10% Volatility

0

0.7

1 1000 1999 2998 3997

Value

de
ns

ity
va

lu
e

Figure 3: Interferences on the densities

8



3.3 Comparison of the different methods

Because of no well-known example, we arbitrary decided to use as a benchmark the same option example

as in the work of Levy and Turnbull (1992) . We compute the price of a one year Asian option, with the

underlying starting at 100 (S = 100), with a risk-free interest rate of 10% (r = 10%), and 50 fixings per

year (weekly average with two weeks of holidays).

The results, given in the table 1, compare different methods and show that the convolution method is

efficient for the pricing of Asian option. Regarding the column titles, MC stands for Monte Carlo with its

standard error given in the next column SE. WE means Wilkinson Estimates, E Edgeworth method, RG

the reciprocal Gamma approximation, CV the Convolution method of Caverhill and Clewlow, CVR the

convolution method with recentering. The reference price is the one of the Monte Carlo simulation. The

accuracy of a formula is given by its comparison with this reference price.

We found that recentering the density improves significantly the efficiency of the Fast Fourier Transform

method for high volatilities since the estimation of the density becomes more important. Among the tra-

ditional approximation methods, we tested Wilkinson estimates, Edgeworth expansion, and the reciprocal

gamma approximation. We found that Wilkinson estimates was the most robust method. The Edgeworth

expansion formula can blow up when the third and fourth moments are too different from the ones im-

plied by a lognormal. We also got poor results for the reciprocal gamma approximation. This comes from

the small number of variables in our Asian options. The density of the average is therefore far from its

asymptotic limit, which can be shown to be a reciprocal gamma density (see Milesvky and Posner (1997)).

σ K MC
Std

Err
WE E RG CV CVR

80 22.78 0.00 22.78 22.78 21.64 22.78 22.78

90 13.73 0.00 13.73 13.73 13.1 13.73 13.73

10% 100 5.24 0.00 5.25 5.25 4.98 5.25 5.25

110 0.72 0.00 0.72 0.72 0.71 0.72 0.72

120 0.03 0.00 0.02 0.02 0.02 0.02 0.02

80 23.07 0.01 23.14 23.07 21.92 23.09 23.08

90 15.22 0.01 15.30 15.16 14.46 15.29 15.26

30% 100 9.01 0.01 9.08 9.00 8.56 9.08 9.05

110 4.83 0.01 4.84 4.85 4.58 4.86 4.84

120 2.35 0.01 2.33 2.40 2.23 2.40 2.33

80 24.83 0.03 25.06 24.10 23.58 25.01 24.88

90 18.32 0.03 18.57 17.83 17.40 18.50 18.37

50% 100 13.18 0.03 13.34 13.02 12.52 13.47 13.20

110 9.23 0.03 9.33 9.36 8.77 9.45 9.19

120 6.36 0.03 6.37 6.63 6.04 6.68 6.40

Table 1: Comparison of different methods for the Asian option σ stands for the volatility,

K for the strike

Our results confirm that the lognormal approximation slightly overprices Asian options as already shown

by Levy and Turnbull (1992), Zhang (1998). This can be seen in figure 4 by the skew to the right of the

Wilkinson estimates (or lognormal approximation) density. The accuracy of the FFT method is confirmed
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Figure 4: Comparison of the different densities for a one year Asian option for 30 % volatility

by the close fit with the Monte Carlo sampling in figure 4. The Monte Carlo sampling was based on a

simulation of a Sobol sequence with 30,000 draws.

It is worth noting that the precision of the method is heavily depending on the type of the options:

in, at or out-of-the-money. One should expect little difference in price for options depending on a wide

part of the distribution like in or at-the-money options. However, for out-of-the-money options, that are

depending mainly on the tails of the distribution, there is a real advantage in terms of precision to use the

Fast Fourier Transform method compared to Wilkinson estimates. Indeed, fat tails are the true motivation

of this paper. It is already interesting to realize that even in the case of a lognormal underlying, the Fast

Fourier Transform method takes better account for fat tails than most standard approximation methods

with closed form.

4 Using non-lognormal densities

4.1 Interest of the method

It is now widely accepted that markets differ from the seminal Black Scholes (1973) lognormal model. The

empirical literature has extensively reported on these anomalities, especially on two of them, which indeed

are closely linked. First, it is has been shown that unconditional returns show excess kurtosis and skewness,

inconsistent with normality assumptions (see Mandelbrot (1963) and Fama (1965) for the early ones, Kon

(1984), Jorion (1988) and Bates (1996)). Second, research has concentrated its attention on the implied

volatility smile or skew (see Dumas et al. (1995) for a survey). Interestingly, the second fact is just another

hint of the non-normality of returns. However, research has focussed at implied Black Scholes volatility

since implied volatility has become a key concept in option pricing. Option prices are often quoted by their

implied volatility. A more rigorous justification of the interest in modelling volatility is its less volatile

character when compared with prices. Since, corresponding prices fluctuate more than implied volatilities,

the trading environment is best captured by a model about the implied volatility.

How to cope with the smile in option pricing has become an extensive field of research. Classically, it

is divided into two different approaches: parametric and non-parametric ones.
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In the first method, the equation of the evolution of the underlying process is given. This description

can consist in a continuous diffusion process with either a so called deterministic volatility (Rubinstein

(1994), Dupire (1993) and Derman and Kani (1994)) or a stochastic volatility process (Hull and White

(1987), Wiggings (1987), Melino and Turnbull (1990), Stein and Stein (1991), Amin and Ng (1993) and

Heston (1992)) or a model with jumps (Aase [1993, Ahn and Thompson (1988), Amin (1993), Bates (1991),

Jarrow (1984), Merton (1976)).

Other works close in spirit are assuming constant elasticity of volatility distribution often called power-

law (Cox Ross (1976)) or a mapping principle between normal and lognormal distributions (Hagan (1998),

Pradier and Lewicki (1999)).

The second type of methods involves infering the underlying distribution from market data. This

has been called the expansion method where one induces the different terms of the expansion and can

reconstitute the distribution (Jarrow and Rud (1982), Bouchaud et al.(1998), Abken et al. (1996)).

The interest of our methodology lies in its flexibility on the distributions of returns. We do not assume

any specific distribution. The distribution is an input like all other parameters. Therefore, we can use

distribution derived from market data, like option prices. In this paper, we decided to illustrate the fat-

tailed distribution with the specific case of a Student density. This is because this density is often used

in the literature. It has the additional advantage to converge to the normal density when the number of

degree of freedom tends to infinity. Indeed, there are many other densities which could have been used,

like Pareto, generalized Pareto, power-laws distributions and many more.

4.2 Densities for leptokurtic effect

To account for leptokurtic returns, we assume that centred and pseudo-normalized (with a parameter

λ > 1) returns
Rti

−
(

r−σ2
2

)
(ti−ti−1)√

σ2(ti−ti−1)
λ

have a density given by a Student distribution with a degree of freedom

n = 2λ
λ−1 given by

Γ(n+1
2 )

Γ(n
2 )
√
πn

(
1 + t2

n

)−
n + 1

2 . The cumulative distribution is then given by

Pr (X ≤ t) =
Γ(n+1

2 )
Γ(n

2 )
√
πn

∫ t

−∞

(
1 +

1
n
u2

)−n+1
2

du

where Γ (y) =
∫ ∞
0

e−xxy−1dx is the Gamma function at y. Since a Student density has always a variance

bigger than one we need to specify this variance by the parameter λ.

4.3 Numerical results

4.3.1 Effect on the price

As expected, fat-tailed distributions hereby illustrated by the Student density lead to a more expensive

price of the Asian option. The Fast Fourier method is efficient as confirmed by a comparison with Monte

Carlo simulations with 20,000 draws. To simulate the Student density, we simulate uniform distribution

and inverse the cumulative distribution by means of the approximation given in the appendix section.

Without any surprise, the discrepancy between the lognormal distribution and a distribution with fat

tails increases with the volatility. It also grows for distribution with fatter tails as shown by the increase of

price between the Student density with 44 degrees of freedom and the one with only 22. We have chosen
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the Student density since its asymptotic distribution is precisely the normal distribution when the degrees

of freedom tend to infinity.

Interestingly, practitioners have kept on using the lognormal approximation for the Asian option. We

have seen that the approximation of a sum of lognormal by a lognormal distribution is not correct. It tends

to overprice the Asian option. However, when assuming a fat-tailed distribution for the underlying, we also

found that the price of the option was more expensive than the corresponding one with lognormal individual

underlyings. This explains why practitioners have been very keen on using the lognormal approximation

since this includes the rise of price due to fat-tailed distributions.

In a sense, over-estimation suits practioners since the lognormality of the law is not very realistic.

However, by using the lognormal distribution, practitioners are confusing getting a correct price with

correct assumptions and correct method with getting a correct price with wrong assumptions and wrong

method. Because the lognormal approximation method has the advantage of overestimating, practitioners

get a price which in a sense include the fat tailed distribution. However, first, it is not easy to know by

how much traders need to overprice to obtain market price and second, the hedging position is with the

lognormal distribution not including fat tails even it leads to a correct price. In this article, we argue that

the convolution method enable to calculate accurately both the price and the hedging strategy. Because

actual distributions exhibit fatter tails than normal distributed returns, fat-tailed distributions like Student

distribution are more appropriate. The core of this methodology is then to calibrate the Student distribution

to know which degree of freedom to apply.

σ K Lognormal
Student

44 df

MC

Student

44 df

Student

22 df

MC

Student

22 df

80 22.7838 22.7911 22.7914 22.8021 22.8028

90 13.7347 13.7420 13.7425 13.7539 13.7550

10% 100 5.2438 5.2843 5.2850 5.3278 5.3294

110 0.7211 0.7642 0.7649 0.8078 0.8094

120 0.0336 0.0358 0.0362 0.0423 0.0430

80 23.0733 23.2033 23.2050 23.3372 23.3406

90 15.2231 15.4014 15.4036 15.5808 15.5855

30% 100 9.0110 9.2238 9.2277 9.4335 9.4416

110 4.8338 5.0345 5.0379 5.2355 5.2426

120 2.3545 2.5097 2.5117 2.6682 2.6728

80 24.8324 25.2213 25.2243 25.6099 25.6168

90 18.3207 18.7471 18.7510 19.1694 19.1779

50% 100 13.1811 13.6182 13.6239 14.0508 14.0628

110 9.2300 9.6476 9.6530 10.0610 10.0721

120 6.3615 6.7363 6.7412 7.1104 7.1209

Table 2: Price of Asian option with Fat-tails distributions. σ stands

for the volatility, K for the strike, df for degrees of freedom
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Figure 5: Evolution of the delta with time to maturity under different distributions: (lognormal and

Student).

4.3.2 Delta hedging

The motivation for our numerical method is to examine the impact of fat-tailed distributions on the delta.

In the case of the discrete Asian options, the delta jumps every time we cross a fixing date.

The comparative study of the delta evolution with lognormal density and the Student density shows

that a fat-tailed distributions lead to higher jumps in the delta, a logical consequence of the fact that

fat-tailed distributions imply more expensive prices and therefore larger drop of the price with the downfall

of a fixing date. The difference in the delta is quite significant as shown by figure 5 and 6. The figure 5

show the evolution of the delta for a weekly Asian option far from the maturity of the option. The Student

density taken here is the one with 22 degrees of freedom.

In figure 5 and 6, the sharp drops at integer number is the delta jump at fixing dates. Maturities in the

two figures 5 and 6 are in portions of weeks (therefore a maturity of 50 means a 50 weeks maturity).

There is no rule concerning the difference between the delta for lognormal densities and for Student

densities. In the figure 5, the option is 50 to 44 weeks before the expiration. In this particular case, the delta

implied by the Student density is on overall more expensive. This is not the case when the option is close

to the maturity as shown by figure 6 where there are only 10 to 1 week before the maturity of the option.

However, it is worth noting that on the average the delta is almost the same for the two densities. This

suggests that for a long-run delta hedging, assuming normal returns is not too much inaccurate. However,

for short run delta hedging, the assumptions on the return densities lead to very different hedging strategies.

It is worth noting that the difference of delta for the two distribution depends on the maturity. For

maturities between 50 to 45 weeks, the delta given by the student distribution is higher than the one of

the lognormal distribution while it is lower for maturities of less than 5 weeks.
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Figure 6: Evolution of the delta with time to maturity under different distributions when closed to the

expiry.

5 Conclusion

In this paper, we have seen that Fast Fourier Transform is an efficient way for pricing discrete Asian options

with non-lognormal densities. The systematic recentering of intermediate densities enables to reduce the

size of the grid so as to speed up the convergence. We show that the price of the Asian option should

be more expensive with fat-tailed distributions. This indicates that approximation methods overpricing

the Asian option incorporate, in a way, fat-tailed distribution. However, as far as the delta is concerned,

fat-tailed distributions lead to very different hedging strategies, especially on the short run.

Our methodology raises many remarks. First, the Fast Fourier Transform technique enables to take

into account volatility smile since, as an input, we can take returns’distribution derived by market data

incorporating the smile effect. Second, the same approach can be applied with minor changes to basket

and multi-asset options. Third, this methodology raises the issue of the way of deriving the density from

market data properly.

6 Appendix: Inverse of the cumulative distribution of the stu-

dent density

The general algorithm for computing the inverse tp of the cumulative distribution of the Student density,

with n degree of freedom is given below with 0 < p < 1 and with xp the inverse of the cumulative distribution

of the normal density N (0, 1):

tp = xp +
g1 (xp)

n
+

g2 (xp)
n2

+
g3 (xp)
n3

+
g4 (xp)
n4

g1 (x) =
1
4

(
x3 + x

)

g2 (x) =
1
96

(
5x5 + 16x3 + 3x

)

g3 (x) =
1

384
(
3x7 + 19x5 + 17x3 − 15x

)

g4 (x) =
1

92160
(
79x9 + 776x7 + 1482x5 − 1920x3 − 945x

)
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