
FAST FOURIER TRANSFORMS: A REVIEW

George Wolberg

Department of Computer Science
Columbia University

New York, NY 10027
wolberg@cs.columbia.edu

September 1988
Technical Report CUCS-388-88

ABSTRACT

The purpose of this paper is to provide a detailed review of the Fast Fourier Transform.
Some familiarity with the basic concepts of the Fourier Transform is assumed. The review
begins with a definition of the discrete Fourier Transform (DFT) in section 1. Directly evaluat

ing the DFT is demonstrated there to be an 0 (N 2
) process.

The efficient approach for evaluating the OFT is through the use of FFT algorithms. Their
existence became generally known in the mid-1960s, stemming from the work of J.W. Cooley
and l.W. Tukey. Although they pioneered new FFT algorithms, the original work was actually
discovered over 20 years earlier by Danielson and Lanczos. Their formulation, known as the
Danielson-Lanczos Lemma, is derived in section 2. Their recursive solution is shown to reduce

the computational complexity to 0 (N log2 N).

A modification of that method, the Cooley-Tukey algorithm, is given in section 3. Yet
another variation, the Cooley-Sande algorithm, is described in section 4. These last two tech

niques are also known in the literature as the decimation-in-time and decimation-in-frequency

algorithms. respectively. Finally, source code, written in C, is provided in the appendix.

- 2 -

1. DISCRETE FOURIER TRANSFORM

Consider an input function I (t) sampled at discrete time intervals. This yields a list of
numbers, It. where 0 ~ k ~ N -1. For generality, the input samples are taken to be complex
numbers, i.e., having real and imaginary components. The discrete Fourier Transform of I is

defined as

Fn = Nil Ik e-21tinkIN O~n ~N-l (la)
k=O
1 N-l

In = - L Fk e 21tir.kIN O~n~N-l (lb)
N,t:;Q

Equations (la) and (lb) define the forward and inverse OFfs, respectively. Since both OFfs
share the same cost of computation, we shall confine our discussion to the forward DFf, and

refer to it only as the OFf.

The DFf serves to map the N input samples of I into the N frequency terms in F. From Eq.

(la), we see that each of the N frequency terms are computed by a linear combination of the N
input samples. Therefore, the total computation requires N 2 complex multiplications and
N(N -1) complex additions. The srraightforward computation of the OFf thereby gives rise to
an 0 (N 2) process. This can be seen more readily if we rewrite Eq. (la) as

O~n~N-l (2)

where

W = e-21tilN = cos(-21tIN) + isin(-21tIN) (3)

For reasons described later, we assume that

where r is a positive integer. That is, N is a power of 2.

Equation (2) casts the DFf as a matrix multiplication between the input vector I and the
two-dimensional array composed of powers of W. The entries in the 2-D array, indexed by n and
k, represent the N equally spaced values along a sinusoid at each of the N frequencies. Since
srraightforward matrix multiplication is an 0 (N 2) process, the computational complexity of the
OFf is bounded from above by this limit.

In the next section, we show how the DFf may be computed in 0 (N log2 N) operations
with the Fast Fourier Transform (FFf), as originally derived over forty years ago. By properly
decomposing Eq. (la), the reduction in proportionality from N 2 to N log2 N multiply/add opera

tions represents a significant saving in computation effort, particularly when N is large.

- 3 -

2. DANIELSON-LANCZOS LEMMA

In 1942, Danielson and Lanczos derived a recursive solution for the OFf. They showed
that a OFf of length Nt can be rewritten as the sum of two DFfs, each of length N12, where N
is an integer power of 2. The flrst DFf makes use of the even-numbered points of the original
N; the second uses the odd-numbered points. The following proof is offered.

N-1
Fn = L ik e-21tinJr.IN (4)

k=O

(NJ2)-1 . (NI2)-1
= L 12k e-21t1n (2k)IN + L 12.k+1 e-'br.in(2k+l)IN (5)

k=O k=O

(NJ2)-l. (NI2)-1
= L 12k e-'br.IfI.k/(NJ2) + wn L 12k+l e-21tin.kl(N/2) (6)

k=O k=O

(7)

Equation (4) restates the original deflnition of the Off. The summation is expressed in Eq.

(5) as two smaller summations consisting of the even- and odd-numbered terms, respectively. In
order to properly access the data, the index is changed from k to 2k and 2k+l, and the upper
limit becomes (N 12)-1. These changes to the indexing variable and its upper limit gives rise to
Eq. (6), where both sums are expressed in a form equivalent to a DFT of length N12. The nota
tion is simplifled further in Eq. (7). There, F~ denotes the nth component of the Fourier

Transform of length N 12 fonned from the even components of the original I, while F~ is the

corresponding transform derived from the odd components.

The expression given in Eq. (7) is the central idea of the Oanielson-Lanczos Lemma and

the decimation-in-time FFf algorithm described later. It presents a divide-and-conquer solution
to the problem. In this manner, solving a problem (F n) is reduced to solving two smaller sub

problems (F~ and F~). However, a closer look at the two sums, F~ and F~, illustrates a poten

tially troublesome deviation from the original definition of the DFf: N 12 points of I are used to
generate N points. (Recall that n in F~ and F~ is still made to vary from 0 to N -1). Since each

of the subproblems appears to be no smaller than the original problem, this would thereby seem
to be a wasteful approach. Fonunately, there exists symmetries which we exploit to reduce the
computational complexity.

The flrst simpliflcation is found by observing that F /I is periodic in the length of the
transform. That is, given a OFf oflength N, Fn+N = Fn. The proof is given below.

t This is also known as an N-point DFf.

- 4 -

N-}
Fn+N = L fk e-21Ci (n+N)kIN

k=O

= Nil fk e-2rcinkIN e-2rciNklN

k=O

N-}
= L fk e -2rcinktN

k=O

(8)

In the second line of Eq. (8), the last exponential term drops out because the exponent
-21tiNkIN is simply an integer multiple of 21t and e-2Ttik = 1. Relating this result to Eq. (7), we

note that F~ and F~ have period N 12. Thus,

o ~ n < NI2 (9)

0~n<NI2

This permits the N 12 values of F~ and F~ to trivially generate the N numbers needed for F n'

A similar simplification exists for the W n factor in Eq. (7). Since W has period N, the first

N 12 values can be used to trivially generate the remaining N 12 values by the following relation.

cos«21t1 N)(n +N 12)) = -cos(21tnl N)

sin«21t1 N)(n +N 12)) = -sin(21tnl N)

O~n <N12

O~n <N12

Therefore,

wn+Nl2 = _Wn o ~ n < NI2

Summarizing the above results, we have

0$ n < NI2

F = Fe - WnFo
n+N12 n n 0$n<NI2

where N is an integer power of 2.

(10)

(11)

(12)

- 5 -

2.1. Butterfly Flow Graph

Equation (12) can be represented by the butterfly flow graph of Fig. la, where the minus
sign in ±W" arises in the computation of Fn+NI2' The terms along the branches represent multi
plicative factors applied to the input nodes. The intersecting node denotes a summation. For
convenience, this flow graph is represented by the simplified diagram of Fig. lb. Note that a
butterfly performs only one complex multiplication (W"F~). This product is used in Eq. (12) to

yield F" and F,,+NI2'

(a) (b)

Figure 1: (a) Butterfly flow graph; (b) Simplified diagram

The expansion of a butterfly flow graph in terms of the computed real and imaginary teImS
is given below. For notational convenience, the real and imaginary components of a complex
number are denoted by the subscripts rand i, respectively. We define the following variables.

g - Fe
- "

h - FO
- "

Wr = cos(- 21tn / N)

w· I = sin(-21tnIN)

Expanding F", we have

F" = g + W"h (13)

= [gr + ig;] + [wr + iWj] [hr + ihd

The real and imaginary components of W"h are thus wrhr - wjh j and wrhj + wjhn respectively.
These terms are isolated in the computation so that they may be subtracted from gr and gj to

yield F ,,+NI2 without any additional transform evaluations.

- 6-

2.2. Putting It All Together

The recursive formulation of the Danielson-Lanczos Lemma is demonstrated in the follow
ing example. Consider list lof 8 complex numbers labeled 10 through 17 in Fig. 2. In order to
reassign the list entries with the Fourier coefficients F n' we must evaluate F~ and F~. As a
result, two new lists are created containing the even and odd components of I. The e and 0

labels along the branches denote the path of even and odd components, respectively. Applying
the same procedure to the newly created lists, successive halving is performed until the lowest
level is reached, leaving only one element per list. The result of this recursive subdivision is
shown in Fig. 2.

10 II 12 h 14 f5 16 17

~~
10 12 14 16 II h 15 h

/~ /~
10 14 12 16 II f5 h h

t/\l i~ i~ ~~
10 14 12 16 11 f5 h h

eee eeo eoe eoo oee oeo ooe 000

Figure 2: Recursive subdivision into even- and odd-indexed lists.

At this point. we may begin working our way back up the tree, building up the coefficients
using the Oanielson-Lanczos Lemma given in Eq. (12). Figure 3 depicts this process using but
terfly flow graphs to specify the necessary complex additions and multiplications. Note that
bold lines are used to delimit lists in the figure. Beginning with the I-element lists, the I-point
DFTs are evaluated first. Since a I-point OFT is simply an identity operation that copies its one
input number into its one output slot, the I-element lists remain the same.

The 2-point transforms now make use of the I-point transform results. Next, the 4-point
transforms build upon the 2-point results. In this case, N is 4, and the exponent of W is made to

vary from 0 to (N /2)-1, or 1. In Fig. 3, all butterfly flow graphs assume an N of 8 for the W fac
tor. Therefore, the listed numbers are normalized accordingly. For the 4-point transform, the

- 7 -

exponents of 0 and 1 (assuming an N of 4) become 0 and 2 to compensate for the implied N
value of 8. Finally, the last step is the evaluation of an 8-point transform. In general, we com
bine adjacent pairs of I-point transforms to get 2-point transforms, then combine adjacent pairs
of pairs to get 4-point transforms, and so on, until the first and second halves of the whole data

set are combined into the final transform.

10 Is

o

o o o o

2

o 2 3 o 2 3

3

Fo Fs

Figure 3: Application of the Danielson-Lanczos Lemma.

- 8 -

2.3. Recursive FIT Algorithm

The Danielson-Lanczos Lemma provides an easily programmable method for the DFf
computation. It is encapsulated in Eq. (12) and presented in the FFf procedure given below.

Procedure FFT(N,f)
1. If N equals 2, then do

Begin
2. Replace 10 by 10 + 11 and 11 by 10 - 11'
3. Return

End
4. Else do:

Begin
5. Define g as a list consisting of all points of I which have an even index

and h as a list containing the remaining odd points.
6. Call FFf(N/2, g)

7. Call FFf(N/2, h)

8. Replace In by gn + Wn hn for n=O to N -1.
End

End

The above procedure is invoked with two arguments: N and I. N is the number of points
being passed in array f. As long as N is greater than 2, I is split into two halves g and h. Array g
stores those points of I having an even index, while h stores the odd-indexed points. The Fourier
Transforms of these two lists are then computed by invoking the FFf procedure on g and h with
length N 12. The FFf program will overwrite the contents of the lists with their DFf results.
They are then combined in line 8 according to Eq. (7).

The successive halving proceeds until N is equal to 2. At that point, as observed in Fig. 3,
the exponent of W is fixed at O. Since WO is 1, there is no need to perform the multiplication and
the results may be detennined directly (line 2).

Returning to line 8, the timesavings there arises from using the N 12 available elements in g
and h to generate the N numbers required. This is a realization of Eq. (12), with the real and
imaginary terms given in Eq. (13). The following segment of C code implements line 8 in the
above algorithm. Note that all variables are of type double.

ang = 0;
inc = -6.2831853 , N:

N2 = N '2;
for(n=O; n<N2; n++) {

Wr = cos(ang):
wi = sin(ang);
ang += inc;

- 9-

r initialize angle *'
r angle increment: 21tIN *'

r real part of wn *'
r imaginary part of W n *'
r next angle in Wn *'

a = wr *hr[n) - wn *hn[n): r real part of Wnh (Eq. 13) *'
f,[n) = gr[n) + a; r Danielson-Lanczos Lemma (Eq. 12) *'
fr[n+N2) = gr[n) - a;

a = wi*hr[n) + w,*hi[n);

fi[n) = gdn) + a;

fi[n+N2) = gdn) - a;

2.4. Cost of Computation

r imaginary part of Wnh (Eq. 13) *'
r Danielson-Lanczos Lemma (Eq. 12) *j

The Danielson-Lanczos Lemma, as given in Eq. (12), can be used to calculate the cost of

the computation. Let C (N) be the cost for evaluating the transform of N points. Combining the

transforms of N points in Eq. (12) requires effort proportional to N because of the multiplication

of the terms by Wn and the subsequent addition. If c is a constant reflecting the cost of such
operations, then we have the following result for C (N).

C (N) = 2C (~) + eN (14)

This yields a recurrence relation which is known to result into an 0 (N log N) process. Viewed

another way, since there are log2 N levels to the recursion, and cost 0 (N) at each level, the total

cost is 0 (N log2 N).

- 10 -

3. COOLEY-TUKEY ALGORITHM

The Danielson-Lanczos Lemma presented a recursive solution to computing the Fourier
Transform. The role of the recursion is to subdivide the original input into smaller lists which
are eventually combined according to the lemma. The starting point of the computation thus
begins with the adjacent pairing of I-point DFTs. In the preceding discussion, their order was
determined by the recursive subdivision. An alternate method is available to determine their
order directly, without the need for the recursive algorithm given above. This result is known as
the Cooiey-Tukey, or decimation-in-time algorithm.

To describe the method, we define the following notation. Let Fee be the list of even
indexed terms taken from Fe. Similarly, F eo is the list of odd-indexed terms taken from Fe. In
general, the string of symbols in the superscript specifies the path traversed in the tree represent
ing the recursive subdivision of the input data (Fig. 2). Note that the height of the tree is log2 N

and that all leaves denote I-point DFTs which are actually elements from the input numbers.

Thus, for every pattern of e's and o's, numbering 10g2 N in all,

Feoeeoeo ... oee = In for some n (14)

The problem is now to directly find which value of n corresponds to which pattern of e's
and o's in Eq. (14). The solution is surprisingly simple: reverse the pattern of e's and o's, then
let e = 0 and 0 = I, and the resulting binary string denotes the value of n. This works because
the successive subdivisions of the data into even and odd are tests of successive low-order (least
significant) bits of n. Examining Fig. 2, we observe that traversing successive levels of the tree
along the e and 0 branches corresponds to successively scanning the binary value of index n

from the least significant to the most significant bit. The strings appearing under the bottom row
designates the traversed path.

The procedure is summarized in Table I for N = 8. There we see the binary indices listed
next to the corresponding array elements. The first subdivision of the data into even- and odd

indexed elements amounts to testing the least significant (rightmost) bit. If that bit is 0, an even

index is implied; a 1 bit designates an odd index. Subsequent subdivisions apply the same bit
tests to successive index bits of higher significance. Observe that in Fig. 2, even-indexed lists

move down the left branches of the tree. Therefore, the order in which the leaves appear from

left to right indicate the sequence of Is and Os seen in the index while scanning in reverse order,
from least to most significant bits.

- 11 -

Original Index Original Array Bit-reversed Index Reordered Array

000 10 000 10
001 11 100 14
010 12 010 12
all 13 1 1 a 16
100 14 001 11
101 15 101 15
110 16 a 1 1 h
111 17 111 17

Table 1: Bit-reversal and array reordering for input into FFT algorithm.

The distinction between the Cooley-Tukey algorithm and the Danielson-Lanczos Lemma is
subtle. In the latter, a recursive procedure is introduced in which to compute the DFf. This pro
cedure is responsible for decimating the input signal into a sequence which is then combined,
during the traversal back up the tree, to yield the transform output. In the Cooley-Tukey algo
rithm, though, the recursion is unnecessary since a clever bit-reversal trick is introduced to
achieve the same disordered input. Furthermore, directly reordering the input in this way simpli
fies the bookkeeping necessary in recombining terms. Source code for the Cooley-Tukey FFT
algorithm. written in C, is provided in the appendix.

3.1. Computational Cost

The computation effon for evaluating the FFT is easily determined from this formulation.
First, we observe that there are log2 N levels of recursion necessary in computing F fl' At each
level, there are NI2 butterflies to compute the F~ and F~ terms (see Fig. 3). Since each butterfly
requires one complex multiplication and two complex additions, the total number of multiplica
tions and additions is (N 12) log2 N and N log2 N, respectively. This 0 (N log2 N) process
represents a considerable saving in computation over the 0 (N 2) approach of direct evaluation.
For example if N ~ 512, the number of multiplications is reduced to a fraction of 1 percent of
that required by direct evaluation.

- 12 -

4. COOLEY·SANDE ALGORITHM

In the Cooley-Tukey algorithm, the given data sequence is reordered according to a bit
reversal scheme before it is recombined to yield the transform output. The reordering is a conse

quence of the Danielson-Lanczos Lemma that calls for a recursive subdivision into a sequence of

even- and odd-indexed elements.

The Cooley-Sande FFf algorithm, also known as the decimation-in-frequency algorithm,
calls for recursively splitting the given sequence about its midpoint, N 12.

N-l
F" = L fk e-2ninJclN (15)

1r.=O

(NI2'r-l . N-l
= L fir. e-2ninJclN + L fir. e-2ninJclN

k=O k=N12

(NI2'r-l (NI2'r-l .
= L fk e-2ninJclN + L flr.+NI2 e-2n.m (k+NI2)IN

k=O 1r.=0

(NI2'r-l [.] . = L fk + fk+NI2 e-
1tlfl

e-
2nmklN

k=O

Noticing that the e -ni" factor reduces to + 1 and -1 for even and odd values of n, respectively, we

isolate the even and odd terms by changing n to 2n and 2n + 1.

(NI2'r-l [] e -21ti (2n)kIN
F2n = L fk + fk+N12 o ~ n < NI2

k=O

(NI2'r-l [] e -21tinkl(NI2) = L fk + fk+N12
k=O

(NI2'r-l [] e -21ti (2n + 1)kl N
F2n+l = L fk - fk+Nl2 O~n <N12

k=O

(NI2'r-l [] e-21tikIN e-2ninJcl (NI2) = L fk - fk+N12
Jr.=O

Thus. the even- and odd-indexed values of F are given by the DFfs of.li and fl. where

.Ii = fir. + flr.+N/2

fl. = [fk - ik+NI2] W
k

(16)

(17)

(18)

(19)

The same procedure can now be applied to.li and ft.. This sequence is depicted in Fig. 4. The

top row represents input list f containing 8 elements. Again. note that lists are delimited by bold

lines. Regarding the buttert1y notation, the lower left branches denote Eq. (18) and the lower

right branches denote Eq. (19).

- 13 -

Since all the even-indexed values of F need.fk, a new list is created for that purpose. This
is shown as the left list of the second row. Similarly, the fl list is generated, appearing as the
second list on that row. Of course, the list sizes diminish by a factor of two with each level since

generating them makes use of ik and ik+Nl2 to yield one element in the new list. This process of
computing Eqs. (18) and (19) to generate new lists terminates when N = 1, leaving us F. the

transform output, in the last row.

In contrast to the decimation-in-time FFf algorithm, in which the input is disordered but

the output is ordered, the opposite is true of the decimation-in-frequency FFf algorithm. How
ever, reordering can be easily accomplished by reversing the binary representation of the loca
tion index at the end of computation. The advantage of this algorithm is that the values of I are
entered in the input array sequentially.

10

3

o 2 3 o 2 3

2

o o o o

o

Fo Fs

Figure 4: Decimation-in-frequency FFf algorithm.

- 14 -

5. APPENDIX

This appendix provides source code for the recursive FFT procedure given in section 2, as
well as code for the Cooley-Tukey algorithm described in section 3. The programs are written in
C and make use of IMPROC library routines [Wolberg 88]. The following brief remarks should
clarify some of the IMPROC library functions.

The data is passed to the functions in quads. A quad is an image control block, containing
information about the image. Such data includes the image dimensions (height and width),
pointers to the uninterleaved image channels (buf [0] ... buf [15]), and other necessary infonna
tion. Since the complex numbers have real and imaginary components, they occupy 2 channels
in the input and output quads (channels 0 and 1). A brief description of the library routines
included in the listing is given below.

1) cpqd(q 1,q2) simply copies quad q 1 into q2.

2) cpqdinfo (q 1, q 2) copies the header information of q 1 into q 2.

3) NEWQD allocates a quad header. The image memory is allocated later when the dimen
sions are known.

4) getqd (h, w,type) returns a quad containing sufficient memory for an image with dimensions
h x w and channel datatypes type. Note that FFT_TYPE is defined as 2 channels of type
float.

5) freeqd (q) frees quad q, leaving it available for any subsequent getqd call.

6) divconst (q 1 ,nwn,q 2) divides the data in q 1 by nwn and puts the result in q 2. Note that
nwn is an array of numbers used to divide the corresponding channels in q 1.

7) Finally, PI2 is defined to be 21t, or 6.28318531.

- 15 -

5.1. Recursive FFT Algorithm

fft10(q1.dir,q2)
int dir:

r Fast Fourier Transform (1 D) *f

r dir=O: forward; dir=1: inverse *f

qdP q1, q2;
{

int i, N, N2;
float °r1, *i1, *r2, *i2. ora, *ia, *rb, *ib;
double FCTR, fctr, a, b, c, s, num[2];
qdPqa, qb;

cpqdinfo(q1, q2):
N = q1->width:
r1 = (float *) q1->buf[O];
i1 = (float 0) q1->buf[1];
r2 = (float *) q2->buf[O]:
i2 = (float *) q2->buf[1];

if(N == 2) { r F(0)=f(0)+f(1); F(1)=f(0)-f(1) *'
a = r1 [0] + r1 [1]; r a,b needed when r1 =r2 *'
b = i1[0] + i1[1];
r2[1] = r1[0]- r1[1];
i2[1] = i1[0] - i1[1];
r2[0) = a;
i2[0] = b:

} else (

N2 = N '2;
qa = getqd(1, N2, FFT_ TYPE):
qb = getqd(1, N2, FFT_TYPE);
ra = (float *) qa->buf[O]; ia = (float *) qa->buf[1);
rb = (float *) qb->buf[O); ib = (float *) qb->buf[1]:

r split list into 2 halves: even and odd 0'
for(i=O; kN2; i++) (

ra[ij = *r1 ++;
rb[i] = *r1 ++;

ia[i) = *i1++;
ib[i] = *i1++;

r compute fft on both lists "'
fft1 O(qa, dir, qa);
fft1 O(qb, dir, qb);

r build up coefficients *'

if(!dir) r forward "'
FCTR = -PI2' N;

else FCTR = P12/ N;

}

- 16 -

for(fctr=i=O; kN2; i++.fctr+=FCTR) (

C = cos(fctr);

s = sin(fctr);
a = c*rb[i] - s*ib[i]:
r2[i] = ra[i] + a;
r2[i+N2] = ra[i] - a;

a = s*rb[i] + c*ib[i];
i2[i] = ia[i] + a;
i2[i+N2] = ia[i] - a;

freeqd(qa);
freeqd(qb);

if(dir) (/* inverse: divide by log N *'
num[O] = num[1] = 2;

divconst(q2. num. q2);

- 17 -

5.2. Cooley-Tukey FFT Algorithm

Ht1 D(q1, dir, q2) r Fast Fourier Transform (1 D) *'
int dir; r dir=1: forward; dir= -1: inverse *'
qdP q1, q2; r Uses bit reversal to avoid recursion *'
{ r and trig recurrence lor sin and cos *'

int i, j, 10gN, N, N1, NN, NN2, itr, oftst:
unsigned int a, b, msb;
float "r1, *r2, °i1, *i2;
double wr, wi, wpr, wpi, wtemp, theta, tempr, tempi, num(2);
qdP qsrc;

if(q1 == q2) {
qsrc = NEWQD;
cpqd(q1, qsrc);

} else qsrc = q1 ;

cpqdinfo(q1, q2);
r1 = (float *) qsrc->buf[O);
i1 = (float *) qsrc->buf(1):
r2 = (float *) q2->buf[O);
i2 = (float ") q2->buf(1);

N = q1->width:
N1 = N - 1;

for(logN=0,i=N'2; i; logN++,iI=2): r # of bits sig digits in N *'
msb = LSB « (logN-1);
for(i=1; i<N1; i++) (r swap all nums; ends remain fixed 0'

a = i;

b = 0;
for(j=O; a && j<logN; j++) {

if(a & LSB) b 1= (msb»j);

a »= 1:

r swap complex numbers: [i) <--> [bl"'
r2[ij = r1 [b); i2[ij = i1 [bl;
r2[b) = r1[i); i2[b) = i1[i];

r copy elements 0 and N1 since they don't swap .,
r2[0] = r1 [01; i2[O] = i1 [0];
r2[N1] = r1[N1); i2[N1] = i1[N1];

r NN denotes the number of points in the transform.

It grows by a power of 2 wi1h each iteration.

NN2 denotes NNJ2 which is used to trivially generate
NN points from NN2 complex numbers.

- 18 -

Computation of the sines and cosines of multiple

angles is made through recurrence relations.
wr is the cosine for the real terms: wi is sine for
the imaginary terms.

0'
NN = 1;
for(itr=O; itr<logN; itr++) {

NN2 = NN;

}

NN «= 1: r NN *= 2 of

theta = -P12 , NN * dir;

w1emp = sin(.S*theta);
wpr = -2 * w1emp ° w1emp;

wpi = sin(theta);
wr = 1.;
wi = 0.;

for(offst=O; offskNN2; offst++) {
for(i=offst; kN; i+=NN) {

j = i + NN2;
tempr = wr°r2[j) - wi*i2[j];

tempi = wi*r2Ul + wr*i20];

r20] = r2[i] - tempr;

r2[i] = r2[i] + tempr;
i2[j) = i2[i] - tempi;

i2[i] = i2[ij + tempi;

r trigonometric recurrence 0'
wr = (w1emp=wr) *wpr - wi*wpi + wr;
wi = wi*wpr + w1emp*wpi + wi;

if(dir == -1) { r inverse transform: divide by N°'
num[O] = num[1] = N;

divconst(q2. num. q2);

if(qsrc != q1) freeqd(qsrc);

- 19 -

1. REFERENCES AND SUGGESTED READING

[Antoniou 79] Antoniou, Andreas, Digital Filters: Analysis and Design, McGraw-Hill, New
York, 1979.

[Bergland 69] Bergland, G.D., "A Guided Tour of the Fast Fourier Transfoml, " IEEE Spec
trum, vol. 6, pp. 41-52, luly 1969.

[Brighanl 74] Brighanl, E. Oran, The Fast Fourier Transform, Prentice-Hall, Englewood
Cliffs, NI, 1974.

[Cochran 67] Cochran, W.T., Cooley, I.W., et aI., "What is the Fast Fourier Transform?,"
IEEE Trans. Audio and Electroacoustics, vol. AU-15, no. 2, pp. 45-55, 1967.

[Cooley 65] Cooley, I.W., and Tukey, I.W., "An Algorithm for the Machine Calculation of
Complex Fourier Series," Math. Comp., vol. 19, pp. 297-301, April 1965.

[Cooley 67a] Cooley, I.W., Lewis, P.A.W., and Welch P.D., "Historical Notes on the Fast
Fourier Transform," IEEE Trans. Audio and Electroacoustics, vol. AU-15, no.
2, pp. 76-79, 1967.

[Cooley 67bJ Cooley, I.W., Lewis, P.A.W., and Welch P.D., "Application of the Fast
Fourier Transform to Computation of Fourier Integrals," IEEE Trans. Audio
and Electroacoustics, vol. AU-15, no. 2, pp. 79-84, 1967.

[Cooley 69] Cooley, I.W., Lewis, P.A.W., and Welch P.D., "The Fast Fourier Transform
and Its Applications," IEEE Trans. Educ., vol. E-12, no. I, pp. 27-34, 1969.

[Danielson 42] Danielson, G.C. and Lanczos, C., "Some Improvements In Practical Fourier
Analysis and Their Application to X-Ray Scattering from Liquids," J. Frank
lin Institute, vol. 233, pp. 365-380 and 435-452, 1942.

[Pavlidis 82J Pavlidis, Theo, Algorithms for Graphics and Image Processing, Springer-
Verlag, Berlin, 1982.

[Press 88] Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical
Recipes in C, Cambridge University Press, Cambridge, 1988.

[Wolberg 88] Wolberg, G., "IMPROC: An Interactive Image Processing Software Package,"
Columbia University Computer Science Technical Report 330-88, April 1988.

