
AD-A2 7 2 687

DTIC
ELECTE
NOV 161993

$T..3

A,

Fast • FuirTansforms
for

Nonequispaced
Data

Alok Dutt

YALE1U/CSD/RR #981

August, 1993

Thie document has been approved
for public :elease and sale; its

distribution i! umhiiizedi

93-27990
.i. • 13 G•9 /l/lll~l~l~l j Iq •'-

93 I ==

Abstract
Fast Fourier Transforms for

Nonequispaced Data

Alok Dutt
Yale University

1993

Two groups of algorithms are presented generalizing the fast Fourier transform (FFT)
to the case of non-integer frequencies and nonequispaced nodes on the interval [-7r, 7r].

These schemes are based on combinations of certain analytical considerations with
the classical fast Fourier transform, and generalize both the forward and backward
FFTs. The number of arithmetic operations required by each of the algorithms is
proportional to N- log N + N- log(I/e), where 6 is the desired precision of compu-
tations and N is the number of nodes. Several related algorithms are also presented,
each of which utilizes a similar set of techniques from analysis and linear algebra.
These include an efficient version of the Fast Multipole Method in one dimension and
fast algorithms for the evaluation, integration and differentiation of Lagrange polyno-
mial interpolants. Several numerical examples are used to illustrate the efficiency of
the approach, and to compare the performances of the two sets of nonuniform FFT
algorithms.

The work of this author was supported in part by the Office of Naval Research under
Grant N00014-89-J-1527 and in part by the National Science Foundation under Grant
DMS9012751.
Approved for public release: distribution is unlimited.

Keywords: FFT, Trigonometric Series, Fourier Analysis, Interpolation, Fast Mul-
tipole Method, Approximation Theory

Fast Fourier Transforms for
Nonequispaced Data

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

S-v!S CT: A&

l • j..
by

Alok Dutt .
May, 1993

D¶IC QTTALITY ISPECTED a

To my family, my friends and my teachers.

© Copyright by Alok Dutt 1993
All Rights Reserved

Contents

List of Tables ii

List of Figures iii

1 Introduction 1
1.1 Outline of the Dissertation 3

2 Polynomial Interpolation and the FMM 5
2.1 Mathematical and Numerical Preliminaries 7

2.2 The Fast Multipole Method in One Dimension 15
2.2.1 General Strategy 17
2.2.2 Notation 20
2.2.3 Description of the Algorithm 22
2.2.4 A More Efficient Algorithm 23

2.3 The Adaptive FMM in One Dimension 27
2.3.1 Notation 29
2.3.2 Description of the Algorithm 29

2.4 FMM for Other Kernels 33
2.5 A Fast Algorithm for Polynomial Interpolation 34
2.6 Applications in Numerical Integration and Differentiation 35

3 Trigonometric Interpolation and FFTs 39
3.1 Mathematical and Numerical Preliminaries 40

3.1.1 Analytical Tools 40
3.1.2 Relevant Facts from Approximation Theory 46

3.2 Application of the FMM to Nonequispaced FFTs 57
3.2.1 FMM and Trigonometric Interpolation 57
3.2.2 Informal Descriptions of the Algorithms 58
3.2.3 Formal Descriptions of the Algorithms 60
3.2.4 FFTs for Complex Data Points 61

ii CONTENTS

4 Nonequispaced FFTs: An Alternative Approach 63

4.1 Mathematical and Numerical Preliminaries 64
4.1.1 Elementary Analytical Tools 64
4.1.2 Relevant Facts from Approximation Theory 65

4.2 Informal Descriptions of the Algorithms 70
4.3 Notation 71
4.4 Detailed Descriptions of the Algorithms 74
4.5 Numerical Estimates of Error Bounds 78

5 Implementation and Numerical Results 81

6 Conclusions and Generalizations 91

Bibliography 93

List of Tables

4.1 Error Bounds for Theorem 4.10 79

5.1 Example 1, Numerical Results for Algorithm 4.1 87
5.2 Example 2, Numerical Results for Algorithm 4.2 87
5.3 Example 3, Numerical Results for Algorithm 4.3 87
5.4 Example 4, Numerical Results for Algorithm 3.1 88
5.5 Example 5, Numerical Results for Algorithm 3.2 88
5.6 Example 6, Numerical Results for Algorithm 3.3 89
5.7 Example 7, Numerical Results for Algorithm 3.4 89

111.,

List of Figures

2.1 Well-separated intervals on the line 17
2.2 Hierarchy of subintervals 20
2.3 Hierarchy of subintervals for nonuniform distribution 28

V

Chapter 1

Introduction

Fourier techniques have been a popular analytical tool in physics and engineering for
more than two centuries. A reason for this popularity is that the trigonometric func-
tions eiWX are eigenfunctions of the differentiation operator and thus form a natural
basis for representing solutions of many classes of differential equations.

More recently, the arrival of digital computers and the development of the fast
Fourier transform (FFT) algorithm in the 1960s (see [81) have established Fourier
analysis as a powerful and practical numerical tool. The FFT, which computes dis-
crete Fourier transforms (DFTs), is now a central component in many scientific and
engineering applications, most notably in the areas of spectral analysis and signal
processing. Numerous applications, however, involve unevenly spaced data, whereas
the FFT requires input data to be tabulated on a uniform grid. In this dissertation,
a collection of algorithms is presented which overcome this limitation of the FFT
while preserving its computational efficiency. These algorithms are designed for the
efficient computation of certain generalizations of the DFT, namely the forward and

inverse transformations described by the equations

Nfh = crJ (1.1)
k=O

for j = 0,...,N, where fj E C, ak E C, wk E [-N/2, N/2] and xj E [-7r, r]. The
number of arithmetic operations required by each of the algorithms is proportional
to

N. logN+ N*log ()(1.2)
where c is the desired accuracy, compared with O(N 2) operations required for the
direct evaluation of (1.1) and O(N 3) for the direct inversion.

2 CHAPTER 1. INTRODUCTION

Remark 1.1 The DFT can be described by either of the two closely related formuiae

N-1

f= ak e2 7'ikj/N (1.3)
k=O

for] =0,...,N- 1, and
N/2-1

fj= E ak-e rkj/N (1.4)

k=-N/2

for j = -N/2,..., N/2 - 1. While the form (1.3) is normally used when the FFT is
discussed, the form (1.4) is usually preferred in applications of the DFT to analysis
(see, for example, [3], [12]).

Remark 1.2 The FFT algorithm reduces the number of operations for the DFT
from O(N 2) to O(N . log N) by a sequence of algebraic manipulations (for more
details on FFTs, see [5], [8], [9], [23], [24], [25]). In the more general case of (1.1),
the structure of the linear transformation can also be exploited via a combination of
certain analytical results with the FFT, and the algorithms of this thesis are based
on thi- fact.

Remark 1.3 All algorithms described in this thesis are approximate ones in the
sense that they compute a vector f such that

11-fl < (1.5)
Ilfil

where the vector f is the exact result of the calculation. We will derive error bounds
for all approximations used by the algorithms, thereby allowing us to perform numer-
ical computations to any specified accuracy E.

A somewhat extensive literature is devoted to the development, improvement and
implementation of classical FFT schemes, whereas the numerical analysis of general-
izations of the DFT appears to be relatively incomplete. The problem of interpolating
Fourier series from irregular to regular grids has arisen in numerous areas, computer
assisted tomography to mention just one. Traditional attempts to speed up com-
putations for problems of this type combined linear or other low-order polynomial
interpolation methods with filtering techniques. The effectiveness of this approach
is limited in part by the low accuracy of the interpolation scheme used (see, for
example, [6], [20], [211). Another generalization of the DFT, referred to as the Frac-
tional Fourier Transform, is addressed by Bailey and Swarztrauber [3] who describe
an algorithm for efficiently computing the numbers

N-1

fj= E ak - e21rikIjA/N (1.6)
k=O

1.1. OUTLINE OF THE DISSERTATION 3

for j = 0,..., N - 1, where A is any complex constant. However, this algorithm does
not permit unevenly spaced input data.

1.1 Outline of the Dissertation

The principal results of this thesis are two groups of efficient algorithms for computing
FFTs for nonuniformly spaced data to any specified precision. In addition the thesis
contains a number of secondary results upon which the ma-i algorithms are based.
Portions of this work have been published previously [10], [11].

One of the groups of nonuniform FFT algorithms views the problem as a form
of polynomial interpolation which can be solved efficiently utilizing a fast multipole-
type method in one dimension. Thesc algorithms require some preliminary results
which are presented in Chapter 2. In this chapter, the problem of evaluating the
Lagrange interpolating polynomial on the real line is discussed. An efficient Fast
Multipole Method (FMM) for one dimensional problems is first developed whose
computational cost is O(N) arithmetic operations. Following this is a description of
an adaptive version of this algorithm which requires O(N) operations independently
of the distribution of the points on the real line. The chapter ends by discussing
how these FMM algorithms can be used for the efficient evaluation, integration and
differentiation of Lagrange polynomial interpolants.

In Chapter 3 we describe a set of four algorithms for nonuniform FFTF which are
based on a combination of the classical FFT with a scheme for the rapid evaluation of
trigonometric interpolants. This interpolation scheme is based on the one dimensional
FMM of Chapter 2, and is used to interpolate from uniform to nonuniform grids and
back.

A second set of algorithms for nonuniform FFTs is presented in Chapter 4. This set
of algorithms also uses the classical FFT, but uses a different interpolation technique
based on the Fourier analysis of the Gaussian bell.

Each of the algorithms described in this thesis has been implemented and tested
for a variety of problem sizes and input data. Chapter 5 contains details of these
implementations and results of several numerical experiments to demonstrate the
performance of the two groups of nonuniform FFT algorithms.

Finally, Chapter 6 lists several generalizations and conclusions.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Polynomial Interpolation and the
FMM

Polynomials form the theoretical basis for many areas of applied mathematics. While
the mathematical properties of polynomials have been quite well understood for over
a century, attempts to use them in practical calculations have met with difficulties.
Typical problems accompanying the employment of classical schemes are those of
prohibitive computational cost and numerical instability. However, certain classes
of orthogonal polynomials do have stable, fast transforms associated with ther. ±, the
most popular being Chebyshev polynomials which can be manipulated in a stable
and efficient manner via the fast cosine transform or FFT.

In this chapter we present a group of three algorithms for the interpolation, in-
tegration and differentiation of functions tabulated at nodes other than Chebyshev.
The first of these algorithms takes as input a set of points, {IX,... , XN}, and a set of
function values, {fi,..., fN}, and evaluates the unique interpolating polynomial of
degree N - 1 at the points {Y1,... , YN} for a computational cost proportional to N.
The other two algorithms perform spectral integration and differentiation of this in-
terpolant. We will also describe three efficient versions of the Fast Multipole Method
(FMM) for one dimensional problems; these algorithms are used by the polynomial
interpolation algorithm of this chapter. Throughout the chapter we will be using the
well known Lagrange representation of interpolating polynomials which is defined by
the formula

N N

PN(X)Efj - H Xk (2.1)
j=I k=- l -

k54

6 CHAPTER 2. POLYNOMIAL INTERPOLATION AND THE FMM

A simple algebraic manipulation converts (2.1) to the form

I . 1 (2.2)
k=1 j=l X -Xj k= Xj - Xk

k~j

which can be evaluated at N points in

0o(N..ilog() (2.3)

arithmetic operations using the Fast Multipole Method (FMM) of [16] (C here is
the desired accuracy). In comparison, a direct evaluation of (2.2) requires O(N 2)
operations.

Remark 2.1 A somewhat different classical polynomial interpolation problem con-
sists of determining a set of parameters {al,..., aN} such that, for j = 1,..., N,

N
ak- = k- (2.4)

k=1

where {x 1 , ... , XN} is a given a set of points and {f,..,fN} is a given set of function
values. This problem is highly ill-posed for anything other than very small values of
N and this formulation is seldom used when actual calculations are being performed.

Remark 2.2 The Lagrange interpolation formula has traditionally been less favored
for practical calculations than other classical methods (see, for example, [23]). How-
ever, the algorithms of this chapter are numerically stable and very efficient, as
demonstrated by our numerical experiments, thus affording the Lagrange formula
a substantial advantage over other techniques for the manipulation of polynomials.

Following is a plan of the chapter. The first three sections are devoted to efficient
versions of the FMM which can be used to evaluate expressions of the form (2.2):
Section 2.1 contains a number of results from analysis which are used in the design
of these algorithms, in Section 2.2 we present the FMM algorithm itself, and in
Section 2.3 we present an adaptive version of this algorithm. A brief discussion of
versions of the FMM for other kernels is contained in Section 2.4. A Fast Polynomial
Interpolation algorithm utilizing the results of the previous sections is described in
Section 2.5, and finally, in Section 2.6 we describe how this algorithm can be used to
construct fast algorithms for high order numerical integration and differentiation.

2.1. MATHEMATICAL AND NUMERICAL PRELIMINARIES 7

2.1 Mathematical and Numerical Preliminaries

The algorithms of this chapter are based on several results from the Chebyshev ap-
proximation theory of the function 1/x. This analysis is presented in the Lemmas
and Theorems of this section, numbered 2.1-2.10. The main results of this section
fall into two categories. Theorems 2.5 and 2.7 describe how the function 11x can
be approximated on different regions of the real line using Chebyshev expansions,
and Theorems 2.8, 2.9 and 2.10 provide three ways of manipulating these expansions
which are needed by the fast algorithms of this chapter.

We begin with three classical definitions which can be found, for example, in [14],
[23].

Definition 2.1 The n-th degree Chebyshev polynomial Tn(x) is defined by the follow-
ing equivalent formulae:

T,(x) = cos(n arccos x), (2.5)

T-(X) = 2 1"((x+ -1). + (X _ v _)). (2.6)

Definition 2.2 The roots {t 1 ,... ,tn } of the n-th degree Chebyshev polynomial T, lie
in the interval [-1,1] and are defined by the formulae

tk =--cos (1 (2.7)

for k = 1,... ,n. They are referred to as Chebyshev nodes of order n.

Definition 2.3 We will define the polynomials u1,... ,u of order n - 1 by the for-
mulae

u (t) = tfj - tk (2.8)
kl td-- tk
k~i

for j = 1,...,n, where tk are defined by (2.7).

The order n - 1 Chebyshev approximation for a function f: [-1, 1] -* C is defined
as the unique polynomial of order n - 1 which agrees with f at the nodes ti, .. . , tn.
There exist several standard representations for this polynomial, and the one we will

use in this chapter is given by the expression

E f(tj) . uj(t). (2.9)
j=1

8 CHAPTER 2. POLYNOMIAL INTERPOLATION AND THE FMM

For the purposes of this :hapter, Chebyshev expansions for any function will be
characterized by values of this function tabulated at Chebyshev nodes.

Lemmas 2.1-2.3 provide estimates involving Chebyshev expansions which are used
in the remainder of this section. The proof of Lemma 2.1 is obvious from (2.5).

Lemma 2.1 Let T,,(x) be the Chebyshev polynomial of degree n. Then,

IT(X)I -< 1 (2.10)

for any x E [-1, 1].

Lemma 2.2 Let T,,(x) be the Chebyshev polynomial of degree n. Then,

I-XI>1 . 5x (2.11)
2 3

for any x such that Ixj > 3.

Proof. From Definition 2.1, we have
1 (X + VXi-- 1, -(-V -ln

IT-(x)j =

>- Ix + x2 - (x/3)2 In 1 _ Ix. (1 + V/89)1 (2.12)
2 2
1 . 5X I

>23

for any x such that IxI > 3. 0

Lemma 2.3 Let u,(x) be defined by (2.8) for j = 1,... ,n. Then, for any x E [-1, 1],

1uj (X) < I. (2.13)

Proo. It is obvious from (2.8) that uj(tj) = 1, and that uj(tk) = 0 when k 0 J. In
addition, some algebraic manipulation reveals that the expression

E Tk(tj). Tk(x) (2.14)n2 k=1

is also equal to 1 when x = tj and equal to 0 when x = tk for all other k. Since uj
and (2.14) are both polynomials of order n - 1, we have

u3(X) = - ZTk(t3) . Tk(x) (2.15)
n k=1

2.1. MATHEMATICAL AND NUMERICAL PRELIMINARIES 9

for j = 1,...,n. Furthermore, due to the combination of (2.15) and the triangle
inequality, we have

ni
luj(z)l n E Tk(tj)" Tk(x) n tx ITk(t 3)l - ITk(x)l < 1 (2.16)

k=1 k=1

for any x E [-1, 1]. 0

The following lemma provides an identity which is used in the proof of Theo-
rem 2.5.

Lemma 2.4 Suppose that n >_ 2, and that b > 0 and xo are real numbers with
Ixol > 3b. Then, for all x,

1 n - .x (2.17)1(x - Xo).E U b(2_.o1T7)/b

5=1 t- O b T(o)

Proof. Let Q(x) by the polynomial of degree n defined by the formula

- ~~~Q(x) =1-(x - E0) ý t - 0(218
j=1 b - b)

Using (2.8) we obtain

"n 1

Q(btk) 1- (btk-xo) - bt_ - oU,(tk)

1
1- (btk - xo) btk - xo =0, (2.19)

for k = 1,... , n. Clearly, then, Q(x) satisfies the conditions

Q(xo) = 1

Q(bt1) = 0

(2.20)

Q(bt,,) = 0.

It is clear that the function Tn(x/b)/Tn(To/b) is also a polynomial of degree n which
satisfies the n + 1 conditions (2.20). Therefore,

a (f Tan(x/b) (2.21)Q)=_Tn(xo/b) '

and (2.17) follows as an immediate consequence of (2.18) and (2.21). 1

10 CHAPTER 2. POLYNOMIAL INTERPOLATION AND THE FMM

Theorem 2.5 Suppose that n > 2, and that b > 0 and xo are real numbers with

Ixol > 3b. Then,
1- 1 , < 1 (2.22)

X - Xo j=bt o U\b) Tb*5"

for any x E [-b, b].

Proof. Due to Lemma 2.4, we have

1" 1- (x\ 1t ________ (2.23)

= x btX (\) Ix-xoi IT.(xo/b)l"

Also, due to Lemmas 2.1 and 2.2, we have

IZn(Xlb)l < 1 (2.24)

for any x E [-b, b], and

IT,(xo/b)l > . 3 > (2.25)

for any IxoI > 3b. It follows from the combination of (2.23), (2.24) and (2.25) that

1 n 1 1' 1 2 1 (2.26)
x xo j~lt- Xo -5n 5
X-X j=1)0bt*2b b bJ5n

for any x E [-b, b]. 0

The following lemma provides an identity which is used in the proof of Theo-
rem 2.7.

Lemma 2.6 Suppose that n > 2, and that b > 0 and x0 are real numbers with

Ixol < b. Then, for all ý,

n ti.__ 3b T.(~
(t3 3b TE(3b/x=) (2.27)S- (5 - Xo J=1 3b5- t3.xo "u()=xo T,(3b/zo)"

Proof. Let Q(ý) be the polynomial of degree n defined by the formula

n tj
Q(ý) = - (3b - exo) E 3b- t -xo uj(ý). (2.28)

j=1 b-tx

2.1. MATHEMATICAL AND NUMERICAL PRELIMINARIES 11

Using (2.8) we obtain

n t

Q(tk) = tk - (3b - tkxo) " Z 3b uj(tk)
3_ tjixo

tk tk = 0, (2.29)
S(3b--tkxo) 3b--tkXO

for k = 1,..., n. Clearly, then, Q(ý) satisfies the conditions

Q(3b/xo) = 3b/xo

Q(t1) = 0

"(2.30)
Q(t') = 0.

It is clear that the function
3b T,(ý) (2.31)
xo Tn(3b/xo)

is also a polynomial of degree n which satisfies the n + 1 conditions (2.30). Therefore,

- 3b Tn(ý) (2.32)

Xo T,(3b/xo)'

and (2.27) follows as an immediate consequence of (2.28) and (2.32). 0

Theorem 2.7 Suppose that n > 2, and that b > 0 and xo are real numbers with

IxoI < b. Then,
1Xn t "u (<) 3 (2.33)X -XO j=1 3b - tjxo b-. 5n

for any x such that Ixl > 3b.

Proof. Writing • = 3b/x, we have 1j1 < 1 whenever lxi > 3b, and

1 1 = (2.34)

x - xo 3b/ - xo- 3b - (xo3

Due to Lemma 2.6, we have

t____() = 1 3b ITn(C)I (2.35)

3b- .xo Jj 3b-tjxo 13b-Cxol Ixol ITn(3b/xo)l (

12 CHAPTER 2. POLYNOMITAL INTERPOLATION AND THE FMM

In addition, due to Lemmas 2.1 and 2.2 we have

3b. IT.(ý)I _< 3b (2.36)

for ý E [-1, 1], and

X0 5-3bIn 5n .bIxo T,(3blxo)l > L .-3b > b (2.37)

2 13X0 2

for Ixol < b. Substituting (2.36) and (2.37) into (2.35), we obtain

n tj 1 3b.2 3 3
3b - ýxo .= 3b - tjxo 2b 5"-b b-5- (2.38)

for ý E [-1, 1]. Now it follows from the combination of (2.34) and (2.38) that

1 n3b t "uj (3) < 3 (2.39)

X - XO ZTbtl x Vr b*

0

The following three theorems provide formulae for translating along the real axis
Chebyshev expansions of the type described in the previous two theorems. Theo-
rem 2.8 provides a formula for translating expansions described in Theorems 2.5,
Theorem 2.9 describes a mechanism of converting the expansion of Theorem 2.5 to
the expansion of Theorem 2.7, and Theorem 2.10 provides a way of translating the
expansion of Theorem 2.7. These theorems are one-dimensional counterparts of the
three theorems in [16] which provide translation operators for multipole expansions
in the complex plane.

Theorem 2.8 Suppose that n > 2 and let c, d be a pair of real numbers such that
[c - d,c+ d] C [-1,11. Then, for any set of complex numbers tIl,..., -',, and any
x E [c-d,c+d],

Sij . uj(x) = x: (ik " uj(c + dtk)) .u, . (2.40)
j=l k=1

Proof. To prove this theorem we first show that

uj(x) = uj(c + dtk) -u k (jd (2.41)
k=1

2.1. MATHEMATICAL AND NUMERICAL PRELIMINARIES 13

for x E [c - d,c + d]. Indeed, the right hand side of (2.41) is simply the (n - 1)-th
degree Lagrange interpolating polynomial for the function uj(x) at the nodes c +
dt1 ,. . ., c + dtn. However, uj (x) itself is a polynomial of degree n - 1, and is therefore
equal to its Lagrange interpolant of order n - 1.

The formula (2.40) then follows as an immediate consequence of (2.41). 0

Theorem 2.9 Suppose that n, N > 2 and let c, d be a pair of real numbers such that
Icl - d > 3. Let the function f : R --+ C be defined by the formula

N
f(27) = E(2.42)

k=- X - Xk

where xk E [-1,1] for k = 1,.. .,N, and a,,... , aN is a set of complex numbers.
Further, let t1 ,... ,t, be Chebyshev nodes defined by (2.7), let 1 ,, be a set of
complex numbers defined by the formula

'Ok = -(2.43)

for k = 1,..., n, and let Tj,..., TJ,, be a set of complex numbers defined by the formula

= ((2.44)

Then, for any x E [c - d, c + d],
n -• (•_) 3n +1 (.5

f (X7)- k - uj (xdCl< A •. -5 (245

k=1

where A = ENk=1Jkl-

Proof. Due to the triangle inequality,

f (_ - U X c S 1 S 2 ,(2 .4 6)
k=1

where

S, f(E) - f(c + dtk) . u d (2.47)

and

S2 = c+ dtk) - lk) - Uj d (2.48)

14 CHAPTER 2. POLYNOMIAL INTERPOLATION AND THE FMM

Combining Theorem 2.5 with the triangle inequality we obtain

S A < A (2.49)

and from the combination of Theorem 2.7, Lemma 2.3 and the triangle inequality, we
obtain S~()

S2<_ f(c+dtk)- •-' u 7 cu-'dt) b< (2.50)
k=l j=l t -

where A = l Iakd. Finally, substituting (2.49) and (2.50) into (2.46) we have

f(X) _ n u < A (2.51)
E= Tk -]j b. 5n

for any x E [c-d,c+d]. 0b

Theorem 2.10 Suppose that n, N > 2 and let c, d be a pair of real numbers such

that [c - d, c + d] D [-1, 1]. Let the function f : R --4 C be defined by the formula

N= ak (2.52)
k-i X -- Xk

where xk E [-1,1] for k = 1,...,N, end .l,... , aN is a set of complex numbers.
Further, let t1 ,... ,t, be Chebyshev nodes defined by (2.7), let 4,. .. ,. 4 be a set of
complex numbers defined by the formula

4k =f (3) (2.53)

for k = 1,..., n, and let •1,... , • be a set of complex numbers defined by the formula

n
Ek = 4(Di . uj tk (2.54)
j=1 3d + ctk "

Then, for any x such that Ix - ci > 3d,

f(x) - Z kU (3 d <A .3--,) (2.55)
w herk=e A

- c

I-

where A = _N=l 10kl.

2.2. THE FAST MULTIPOLE METHOD IN ONE DIMENSION 15

Proof. It follows from the triangle inequality that

f(x)- Zk.u.(Ž) _ X +S (2.56)

where

S= f(X) n (c + d ut () , (2.57)
k=1 lX

and

S2 ((c+ 1) - ik)uj 3d(2.58)

Combining Theorem 2.7 with the triangle inequality, we obtain

3A (2.59)
< b. 5-'

and from the combination of Theorem 2.7, Lemma 2.3 and the triangle inequality, we
obtain

,3d n If (c + d _ n tk 3An (2.60)

k=1 j=1

where A = =1 lakl. Finally, substituting (2.59) and (2.60) into (2.56) we have

f() _ . (3d\ < A +1) (2.61)

k=1 X-C
5n

for any x such that Ix - ci > 3d. 0

2.2 The Fast Multipole Method in One Dimen-
sion

In this section we consider the problem of computing the sums

N

f= ak (2.62)
k=1 Yj - xk

for j = 1,...,N, where {x 1,. .,XN} and {yi,. . . ,YN} are sets of real numbers, and
f..,.... ,aN} and {fl,..., fg} are sets of complex numbers. This problem can be
viewed as the special case of the N-body problem in physics where we wish to evaluate
the electrostatic field due to N charges which lie on a straight line at a set of points
on this line.

16 CHAPTER 2. POLYNOMIAL INTERPOLATION AND THE FMM

Remark 2.3 For the remainder of this chapter, we shall assume without loss of
generality that Xj, yi E [-1, 1] for i = N.

Remark 2.4 The fast multipole algorithm of Greengard and Rokhlin [16] computes
sums of a more general form than (2.62) in O(N) arithmetic operations. This more
general form is described by the formulae

N
k

N= E (2.63)
k=1) - Zk

for j = 1,...,N, where {Zi,.. . , ZN} and {w 1 ,.... ,wr} are sets of complex numbers.
From a physical viewpoint, this corresponds to the evaluation of the electrostatic
field due to N charges which lie in the plane. While the two and three dimensional
scenarios for the N-body problem have been discussed in some detail (see, for example,
[7], [16]), the analysis ane applications of one dimensional problems appear to have
been largely overlooked, with one exception of which we are aware: the application of
FMM techniques to various problems in numerical linear algebra, by Gu and Eisenstat
(see [17], [181).

In this section we present an O(N) algorithm for the one-dimensional problem
which is based on the two-dimensional FMM, but incorporates a number of modifi-
cations which accelerate the scheme significantly. We summarize these modifications
below, with the assumption that the reader is familiar with [16].

1. Replacement of all complex by complex multiplications with real by complex
multiplications.

2. Replacement of multipole expansions with Chebyshev expansions. Chebyshev
series are known to converge more rapidly than multipole expansions (which
are actually Taylor series).

3. Further compression of the Chebyshev expansions by a suitable change of basis
(see Section 2.2.4). Using this technique, the function 1/x can be accurately
represented by about a quarter of the number of coefficients which were required
by the original two-dimensional FMM.

4. In one dimension, each subinterval has 3 other subintervals in its interaction
list, whereas in two dimensions each box has 27 other boxes in its interaction
list.

5. In one dimension, each subinterval has 2 nearest neighbor subintervals, whereas
in two dimensions each box has 8 nearest neighbor boxes.

2.2. THE FAST MULTIPOLE METHOD IN ONE DIMENSION 17

> 2r

.IX2 ... XN Y1Y2 ... YM

Zo - r Xo +o r YO - r YO Yo + r

Figure 2.1: Well-separated intervals on the line.

This section is divided into four parts. Sections 2.2.1-2.2.3 are devoted to an
algorithm for the FMM in one dimension which uses Chebyshev expansions in place
of multipole expansions. In Section 2.2.4, we describe a more efficient algorithm which
is based on the algorithm of Section 2.2.3 but uses a Singular Value Decomposition
to further compress the Chebyshev expansions.

2.2.1 General Strategy

We will illustrate by means of a simple example how Chebyshev expansions can be
used to evaluate expressions of the form (2.62) more efficiently. We will also give
an informal description of how the method of this simple example is used in the
construction of a fast algorithm for the general case.

First we introduce a definition which formalizes the notion of well-separated in-
tervals on the real line. This is simply the one-dimensional analog of the definition
of well-separatedness in [16].

Definition 2.4 Let {fX,. . ., XN} and {yi,.. -, yMj be two sets of points in R. We
say that the sets {xi} and {y,} are well-separated if there exist points xo,yo E R and
a real r > 0 such that

xi -xol<r V i=I,...,N

Iy -yol< r V i= 1,...,M and (2.64)

1xo - Yo0 > 4r.

Suppose now that {Xl . , XN} and {Yi,... , YMI are well-separated sets of points
in R (see Figure 2.1), that {al,... , aNI} is a set of complex numbers, and that we
wish to compute the numbers f(yi),...,f(YM) where the function f : R -. C is
defined by the formula

N ak (2.65)

k=- X - Xk

A direct evaluation of (2.65) at the points {yi,..., YM} requires O(NM) arithmetic
operations. We will describe two different ways of speeding up this computation.

18 CHAPTER 2. POLYNOMIAL INTERPOLATION AND THE FMM

Following is the first of these approaches.
Let the function f : R --+ C be defined by the formula

N Pt (3r\
E E - X 0)) (2.66)

k=i j=-

where p is an integer and tl,. .. , t. and u1 ,. .. ,up are given by Definitions 2.2 and
2.3.

Observation 2.5 From the combination of (2.65), (2.66), Theorem 2.7 and the tri-
angle inequality, we see that

3FN

If(x) - i(x) < 3 k 10/c (2.67)r • 5P

for any x such that Ix - x0o > 3r.

Now let {(,..., 4Ip} be a set of complex numbers defined by the formulae

N tj

ý E a(2.68)

k=i 3r - tj(xk - X0)

forj=1,...,p. Then,

fi(x)= 4Iuj . -') " (2.69)
j=1 (X

Remark 2.6 The vector 4(D will be referred to as the far-field expansion for the in-
terval [x0 - r, xo + r].

Computation of the coefficients (Dj requires O(Np) operations, and a subsequent
evaluation of fi (yi),... , f (yM) is an O(Mp) procedure. The total computational cost
of approximating (2.65) to a relative precision 1/5P is then O(Np + Mp) operations.

An alternative way of speeding up this computation is described below.
Let the function f2 : R --+ C be defined by the formula

N p 1 X -y' (270f2(x) = E' ak " E .t -j x-- YO)*U r (2.70)

k=1 j=1 rt 3-- xk-Yo) rI

where p is an integer and ti,... , t and U1, up are given by Definitions 2.2 and
2.3.

2.2. THE FAST MULTIPOLE METHOD IN ONE DIMENSION 19

Observation 2.7 From the combination of (2.65), (2.70), Theorem 2.5 and the tri-
angle inequality, we see that

If(x) - f2(X)I < r5k C (2.71)

for any x such that Ix - yol < r.

Now let { *p,..., 'p} be a set of complex numbers defined by the formulae

N 1

:=i rtj - (Xk - x0) (2.72)

for j=1,...,p. Then,

A(X) = P j -~uj .X(2.73)
j=1 r

Remark 2.8 The vector IF will be referred to as the local expansion for the interval
[yo - r, yo + r].

Computation of the coefficients T. requires O(Np) operations, and a subsequent
evaluation of f2(Yl),...,.f2(yM) is an O(Mp) procedure. Again the total compu-
tational cost of approximating (2.65) to a relative precision 1/5P is O(Np + Mp)

operations.
Consider now the general case, where the points {X1,..., XNJ and {yj,...,YM}

are arbitrarily distributed on the interval [-1, 1] (see Remark 2.3). We use a hierar-
chy of grids to subdivide the computational domain [-1, 11 into progressively smaller
subintervals, and to subdivide the sets {xi} and {yi} according to subinterval (see
Figure 2.2). A tree structure is imposed on this hierarchy, so that the two subin-
tervals resulting from the bisection of a larger (parent) interval are referred to as
its children. Two Chebyshev expansions are associated with each subinterval: a far-
field expansion for the points within the subinterval, and a local expansion for the
points which are well-separated from the subinterval. Interactions between pairs of
well-separated subintervals can be computed via these Chebyshev expansions in the
manner described above, and all other interactions at the finest level can be computed
directly. Once the precision has been fixed, the computational cost of the entire pro-
cedure is O(N) operations (for a detailed description and complexity analysis, see
Section 2.2.3).

20 CHAPTER 2. POLYNOMIAL INTERPOLATION AND THE FMM

level

0 I
1 It

2 I I tII

3 I III I I I I

Figure 2.2: Hierarchy of subintervals.

2.2.2 Notation

In this section we introduce the notation to be used in the description of the algorithm
below.

"* p will be an integer denoting the size of Chebyshev expansions used by the
algorithm. Normally, p = [- log 5(e)], where e is the desired precision of com-
putations.

"* ti,.. ., tp will denote Chebyshev nodes of order p on the interval (-1, 1j], defined
by the formulae

tj = cos (-1 2) (2.74)

for i=1,...,p.

"* ul(t),..., up(t) will denote the set of polynomials defined by the formulae

uj(t) = t (2.75)
k=1 l t

k96j

forj = 1,...,p.

"* s will be an integer denoting the number of points in each subinterval at the
finest level of subdivision. Normally, s z 2p (see Remark 2.9).

"• nlevs = [log2 (N/s)] will denote the level of finest subdivision of the interval
(-1, 11.

"* 4D,i will be a p-vector denoting the far-field expansion for the subinterval i at
level 1.

2.2. THE FAST MULTIPOLE METHOD IN ONE DIMENSION 21

9 P,i will be a p-vector denoting the local expansion for the subinterval i at level
1.

* ML and MR will be p x p matrices for obtaining far-field expansions for subinter-
vals in terms of the far-field expansions of their children. These will be defined
by the formulae

ML(i,j) = uj ,

MR(i,j) = u. , (2.76)

which are obtained from the formula (2.54) of Theorem 2.10 applied to the cases
c= -1,d= 2 and c = 1,d = 2.

e SL and SR will be p x p matrices for obtaining local expansions for subintervals
in terms of the local expansions of their parent. These will be defined by the
formulae

SL (i, j) = tLj (ti 2 1)

SR(i,j) = Uj(t, +2). (2.77)

which are obtained from the formula (2.40) of Theorem 2.8 applied to the cases
= 12 and c = ,d_

* T1 , T2 , T3 and T4 will be p x p matrices for obtaining local expansions from
far-field expansions. These will be defined by the formulae

Ti (Zij) = U

T2(i,j) = uj

T3(i,j) = uj (i-1) (2.78)

T4 (i,j) = uj

which are obtained from the formula (2.44) of Theorem 2.9 applied to the cases
c = -6, d = 1, c = -4,d = 1, c = 4, d = 1 and c = 6,d = 1.

22 CHAPTER 2. POLYNOMIAL INTERPOLATION AND THE FMM

2.2.3 Description of the Algorithm

Following is a formal description of an algorithm for the efficient evaluation of ex-
pressions of the form (2.62).

Algorithm 2.1
Step Complexity Description
1 0(1) Comment [Input problem size, N, and a real number - > 0.]

Set size of Chebyshev expansions p = r- log5(E)], choose s and set
level of refinement nlevs =log2(N/b)1.

2 O(Np) Comment [Determine far-field expansions for subintervals at finest
level.]

do i = 1,..., 2 nevs

Compute p-term far-field expansion , due to the subset of {xj}
which lie in subinterval i at level nlevs.

enddo

3 0(2Np2/s) Comment [Determine p-term far-field expansions for each subinter-
val at every level by shifting and adding far-field expansions of the
subinterval's children.]

do l = nlevs-1,...,1
doi= 1,...,2'

1•l,i = ML • 1+1,2i-1 + MR • t1+1,2i
enddo

enddo

4 0(8Np2/s) Comment [Determine p-term local expansions for each subinterval
at every level by first shifting local expansion of the subinterval's
parent, and then adding the interactions with the three subintervals
which are well-separated from the subinterval, but which have not
been accounted for at the parent's level.]

dol= 1...,nlevs-1
do i -= 1,. .. , 2'

1IJ+.,2i-1 = SL"- 'Fl,i + T1 •-t1+1,2i-3 + T3. 't+1,2i+1 + T4 - 4t+1,2i+2

'I+1,2i = SR - TJ,i + T1 • 4'+1,2i-3 + T2 • P1+1,2i-2 + -T ý+1,2i+2
enddo

enddo

2.2. THE FAST MULTIPOLE METHOD IN ONE DIMENSION 23

5 O(Np) Comment [Evaluate local expansions for subintervals at finest level.)

do i = ,..., 2 nievs

Evaluate p-term local expansions ,n•tevs,i at the subset of {fy} which lie
in subinterval i at level nlevs.

enddo

6 O(3Ns) Comment [Add nearest neighbour interactions which have not yet
been accounted for via expansions.]

do i = 1 ,..., 2 nievs

For each Ak in subinterval i at level nWevs, compute interactions with all
xj in subintervals i - 1, i, i + 1, and add to well-separated values.

enddo

Total O(N (2p + l0p2/s + 3s))

Remark 2.9 The number s can be chosen to minimize the total operation count of
the algorithm, which yields s • 2p. The above algorithm then requires order

13- Ng p (2.79)

arithmetic operations.

Remark 2.10 The operation count for Step 6 assumes that the points {x1,..., XN}
are reasonably uniformly distributed. Highly nonuniform distributions are discussed
in Section 2.3.

2.2.4 A More Efficient Algorithm

Chebyshev expansions are not the most efficient means of representing interactions
between well-separated intervals. All the matrix operators of the algorithm are nu-
merically rank-deficient, and can be further compressed by a suitable change of basis.
The orthogonal matrices required for this basis change are obtained via singular value
decompositions (SVDs) of appropriate matrices.

In this subsection we describe a more efficient version of the one dimensional FMM
which is based upon this observation. The algorithm is very similar to Algorithm 2.1
with one important modification: separate changes of basis are needed for interactions
from the left and interactions from the right, so for every subinterval we maintain
two sets of expansions, leftward expansions and rightward expansions.

We will require some additional notation for the algorithm description of this
section. The following denotations use the notation of Section 2.2.2.

24 CHAPTER 2. POLYNOMIAL INTERPOLATION AND THE FMM

P5 will be an integer denoting the numerical rank of the operators to be com-
pressed.

* tf will denote the j-th Chebyshev node of order p on the interval [0, 1], and tj

will denote the j-th Chebyshev node of order p on the interval [-1, 0].

* UL and Vz will denote p x P matrices, each of whose columns forms an orthonor-
mal set, and E will denote a 15 x p diagonal matrix such that

IIULF2V/ - MLII < €-IIMLII, (2.80)

where 1
MA4L(i,j) = 3/tL - (2.81)

for i,j = 1,...,p. UL and VL are used to compress leftward expansions, and
ULEV2T is effectively the numerical SVD of ML.

"* UR and VR will denote p x p matrices, each of whose columns forms an orthonor-
mal set, such that

1URnEVRT - MRII < II-MRII, (2.82)

where
1wMR(i,j) = 1 _

(2.83)

for ij = 1,... ,p. An examination of the matrices ML and MR reveals that
UR and UL are closely related, and VR and VL are closely related. UR and VR are
used to compress rightward expansions, and UREVT is effectively the numerical
SVD of MR.

* 1i and 'ii will be 5-vectors denoting respectively the left and right far-field
expansions for subinterval i at level I. These will be defined by the formulae:

1'nli UL • ¢• li,

= U (2.84)

* 1'i and 1,i will be p-vectors denoting respectively the left and right local
expansions for subinterval i at level 1. These will be defined by the formulae:

jpL =

='i VR. , (2.85)

2.2. THE FAST MULTIPOLE METHOD IN ONE DIMENSION 25

"* MLL, ML, MR and MR will be p x P matrices for obtaining left and right far-field
expansions for subintervals in terms of the left and right far-field expansions of
their children. These will be defined by the formulae

MLL = UT .ML . UL,

ML = UT .MR .UL,

MR = UT'.ML("UR, (2.86)

U .MR UR-.

"* SLL, SL, SLR and SR will be P x matrices for obtaining left and right local
expansions for subintervals in terms of the left and right local expansions of
their parent. These will be defined by the formulae

sL = VJ. SL.. VL,

S = V. SR. VL,

S = VR.SL. VR, (2.87)
,= y. SR.VR.

* TL and TL will be p x p matrices for obtaining left local expansions from right
far-field expansions. These will be defined by the formulae

TL = VT.T 3 .UL,

TL = V/T.T 4 "UL. (2.88)

" TIR and T2R will be p x p matrices denoting for obtaining right local expansions
from left far-field expansions. These will be defined by the form lae

TIR = V. T2•.UR,

T2 = v'.T1 .UR. (2.89)

Following is a step-by-step description of a modified version of Algorithm 2.1.

Algorithm 2.2
Step Complexity Description
1 0(1) Comment [Input problem size, N, and a real number E > 0.]

Set size of Chebyshev expansions p = [- log 5(E)1, choose p, choose s
and set level of refinement nlevs = [log2(N/s)].

26 CHAPTER 2. POLYNOMIAL INTERPOLATION AND THE FMM

2 O(2NP) do i = 1,...,2nis
Form a kterm left far-field expansion bL

Form a i-term right far-field expansion •nlevs,C"
enddo

3 O(4Np 2 /s) do I = nievs - 1,..., 1

do i = 1,...,2'

1+1.,2i-1 + MR 1+1,2i

1, ML 1+1,2i-1 + M +,2
enddo

enddo

4 O(10Np2/s) do l=1,...,nlevs - 1

do i = 1,., 2
R - cR 0 R.,L TR j~L

Evaluate- an add left an righ 1-terlocl expasion 2ie+2 +~ij

,R SR R'I R L

16,2 R(N) d 1,. + R)

pL _SL -,L + R

Feh1+1,2int inL subi " T level , compute2i-3S L -IL', TL _,R L R

interaction wit alohe1pinsin2 suitevl i2 11,2i-3 +1

enddo
enddo

T O(2NN) do i = 1,...,2n+e3s

Evaluate and add left and right or nterm local expansions %,s,. + qr .
enddo

6 O(3Ns) do i . 1,...,2n~evs

For each point in subinterval i at level nlevs, compute

interactions with all other points in subintervals i - 1, f, i + 1,
and add to far-field values.

enddo

Total O(N.- (4p3 + 14p•2/s + 3s))

Remark 2.11 We can choose s to minimize the total operation count of the algo-
rithm, which yields s _- 2p5. The above algorithm then requires order

17 -N-/ (2.90)

arithmetic operations.

Remark 2.12 The results of our numerical experiments indicate that, for a fixed
precision E and corresponding p, p5 (the numerical rank of the matrix operators to

2.3. THE ADAPTIVE FMM IN ONE DIMENSION 27

be compressed) is approximately p/2. This condition together with (2.79) and (2.90)
leads us to expect that Algorithm 2.2 will require about two-thirds of the number of
arithmetic operations needed by Algorithm 2.1.

Remark 2.13 The operation count for Step 5 assumes that the points f..,... , XN}

are reasonably uniformly distributed. An adaptive version of this algorithm is de-
scribed in Section 2.3, and is capable of handling highly nonuniform distributions
while preserving computational efficiency and accuracy.

2.3 The Adaptive FMM in One Dimension

The algorithms of the previous section have one drawback: their operation count is
quite sensitive to the distribution of points, and they become inefficient for highly
nonuniform distributions. We now describe an adaptive version of Algorithm 2.2
which overcomes this deficiency, its complexity being O(N) independently of the
spacing of the nodes. This versatility is achieved by using different levels of subdivision
for different parts of the computational domain. An integer s is fixed, and at each
level of refinement, we subdivide only those intervals which contain more than s
points. At each level, then, a list of non-empty subintervals is maintained whose
members are the result of the selective subdivision of intervals at the previous level.
This policy eliminates the inefficiency of the non-adaptive version, where, at the finest
level of subdivision, we may encounter intervals with very few or very many points.
In the non-adaptive version, each interval has two nearest neighbors of the same size,
whereas in the adaptive version, intervals are permitted to have neighbors of differing
size. Figure 2.3 depicts a subdivision of the computational domain for a nonuniform
distribution of points.

Remark 2.14 The idea of selectively subdividing the computational domain is taken
from the two dimensional adaptive FMM of [7]. This algorithm requires a somewhat
more elaborate data structure than its non-adaptive counterpart to account for in-
teractions between all the different sized boxes. The adaptive algorithm for problems
in one dimension also needs additional bookkeeping to keep track of interactions be-
tween all the different sized subintervals. However, the simplified geometry of the real
line suggests the use of a somewhat more efficient data structure than that of the two
dimensional case (see Figure 2.3).

Remark 2.15 It is clear that for a fixed machine precision, e, only certain distribu-
tions of points will yield meaningful results. For example, the points x, and X2 are
indistinguishable if 1X2 - X I < I - IXI + X2 1. To avoid such cases we will impose that
the minimum distance between two points must be greater than e. (b - a) where [a, b]

28 CHAPTER 2. POLYNOMIAL INTERPOLATION AND THE FMM

Level Subinterval Number

0 I

1 1 i 2

2 I I I 6

3 7 8 9 10 jl11 12

4 P d44

Interval Neighbor Child
Left Right Left Right

1 2 3 4
2 1 5 6

3 4 7 8
4 3 5
5 4 6 9 10

6 5 - 11 12
7 8
8 7 4 13 14
9 4 10 - -

10 9 11

11 10 12

12 11 -

13 7 14
14 13 4

Figure 2.3: Hierarchy of subintervals for nonuniform distribution.

2.3. THE ADAPTIVE FMM IN ONE DIMENSION 29

is the computational domain. Under this condition, the highest level of refinement of
the computational domain is bounded above by I log2(6)1.

2.3.1 Notation

We require some additional notation for the description of the adaptive algorithm to
supplement that of Sections 2.2.2 and 2.2.4.

* nlevs will denote the level of finest subdivision of any part of the interval [-1, 1].

* For a fixed precision, e, m = 1 log2(6)1 will denote the maximum level of refine-
ment of the interval [-1, 1] (see Remark 2.15).

* Ii will denote the set of non-empty subintervals at level 1, i.e. the set of subin-
tervals at level 1 resulting from the bisection of a larger interval at level 1 - 1.

* If subinterval isub contains more than s points, it is called a parent subinterval,
and ilchild(isub) and irchild(isub) will denote its left child and its right child
which are the subintervals resulting from its bisection. Otherwise, isub is a
called a childless subinterval and ilchild(isub) and irchild(isub) are set to 0.

ilnbr(isub) and irnbr(isub) will denote the left and right neighbors for subin-
terval isub, which are the smallest adjacent subintervals at the same level of
refinement or a coarser one.

S•L and e$' will be P-vectors denoting respectively the left and right far-field
expansions for subinterval i.

* 'L and 10in will be p-vectors denoting respectively the left and right local ex-
pansions for subinterval i.

2.3.2 Description of the Algorithm

This section contains a detailed description and a complexity analysis of an adaptive
version of Algorithm 2.2.

Algorithm 2.3
Initialization Step
Comment [Geometrical preprocessing]
Comment [Input problem size, N, and a real number E > 0.1

Set size of Chebyshev expansions p = F-log,(E)1, choose P, choose s and set maximum
level of refinement m = [log2(N/s)1.

30 CHAPTER 2. POLYNOMIAL INTERPOLATION AND THE FMM

I, = 1[-l,0I40,l1}
do I = 1,..m while 11 is non-empty

do isub E 11
if isub contains more than s points then

Add iichild(isub) and irchild(isub) to 11+1.
else

ilchild(isub) =0

irchild(isub) =0

endif

enddo

enddo

nlevs = I

do I=l1,...,nlevs
do isub E Ii

if isub is not childless then
zinbr(irchild(isub)) = ilchild(isub)
irrnbr(iichild(isub)) = irchild(isub)
if iinbr(isub) is not childless then

iinbr(ilchild(isub)) = irchild(iinbr(isub))
else

ilnbr(ilchild(isub)) = iinbr(isub)
endif

if irnbr(isub) is not childless then
irnbr(irchild(isub)) = ilchild(irnbr(isub))

else

iirnbr(irchild(isub)) = irnbr(isub)
endif

endif

enddo

enddo

Step 1

Comment [Upward Pass]

dotI = nlevs,...,l1
do isub E Ii

if isub is a childless subinterval then
Form a p-term far-field expansion '4:su

Form a p-term far-field expansion ~isub'
else

issb =ML ' Dilchiid(isub) + ýirchild(isub)

isub = LR ilchild(isub) +MR ' rchild(isub)
endif

2.3. THE ADAPTIVE FMM IN ONE DIMENSION 31

enddo
enddo

Step 2
Comment [Downward Pass]

do 1 = 1..., nlevs
do isub E It

if isub is a childless subinterval then
Evaluate and add pterm local expansions 1QP +eP~b"

else q, L R j
itLchild(isub) - L • •isub

12 L

irchild(isub) S R 'k sub
"ilchild(isub) = SL tsRqL isub

irchild(isub) =R i"ub
if ilnbr(isub) is a childless subinterval then

Add contribution of hid(i•,b) to each point in ilnbr(tsub)
Add contribution of each point in ilnbr(isub) to @)trchuld(isub)

else
L + TL.
itkhild(isub) ilch~id(isub) 1 T IL child(ilnbr(isub))pL qfL _ L T2 .p

irchild(isub) irchild(isub) + Tf1 "Orchild(ilnbr(isub)) + ilchild(ilnbr(isub))
endif
if irnbr(isub) is a childless subinterval then

Add contribution of to each point in i,'nbr(isub)

Add contribution of each point in irnbr(isub) to Lhitd(isub)

else
ilcil~iu= qllilJiub +TR.$ R + T~isb)) irchiid(irnbr(isub))
R R + R R

ch-ld(sub) 1 ir child(irnbr(isub))

endif
endif

enddo
enddo

Step 3
Comment (Direct Interactions]

do isub = 1,...,nsub
if isub is childless then

For each point in subinterval isub, compute interactions with
all other points in this subinterval and in adjacent childless
subintervals, and add to far-field values.

endif
enddo

32 CHAPTER 2. POLYNOMIAL INTERPOLATION AND THE FMM

Following is a complexity analysis of Algorithm 2.3. Before presenting a step-by-
step breakdown of the operation counts, we need two lemmas. These lemmas provide
upper bounds on the numbers of subintervals which can be created by the process of
selective subdivision.

Lemma 2.11 For any subdivision of the computational domain produced by Algo-
rithm 2.3, the number of childless intervals is bounded by

2.l109 2 (1) .hN (2.91)

Proof. Each parent interval at level I contains more than s points (otherwise it would
not be further subdivided). Therefore, the total number of parent intervals at level
1 is bounded above by N/s. Each parent interval has two children by definition, so
the number of childless boxes at any level I is bounded above by 2N/s. The bound
(2.91) follows from the fact that the number of levels of subdivision is bounded above
by log2(1/0) (see Remark 2.15). 0

Lemma 2.12 For any subdivision of the computational domain produced by Algo-
rithm 2.3, the total number of intervals is bounded by

3.l10g 2 (1) . N (2.92)E _
Proof. The number of parent intervals at level I is bounded above by N/s. Each of
these parent intervals has two children, so the number of childless boxes at any level 1
is bounded above by 2N/s. Thus, the total number of intervals at all levels (childless
and parent) is bounded by log2(1/0-) (N/s + 2N/s). 0

Following is a step-by-step breakdown of the operation counts of Algorithm 2.3.

Step Complexity Description
1 O(2pN)+ Each point contributes to the left and right p-term far-field

expansions of the childless subinterval in which it lies.

O(4p'2mN/s) For each parent subinterval (there are at most mN/s) we
perform 4 P x P matrix-vector products.

2 O(2pN)+ We evaluate and add the left and right p-term local expan-
sions for each of the N points.

2.4. FMM FOR OTHER KERNELS 33

O(4p9mN/s)± For each parent subinterval (there are at most mN/s) we
perform 4 P x) matrix-vector products.

O(6p 2mN/s)+ For each parent subinterval (there are at most mN/s) we
perform at most 6 P x P matrix-vector products.

O(4pmN) For each parent subinterval (there are at most mN/s) we
perform at most 4 P x s matrix-vector products.

3 O(3Ns) Each of the yj interacts directly with those xk which lie in
its own subinterval and the two nearest neighbors. There
are at most 3s of these points xk.

Total O(14p32mN/s + 4pmN + 4PN + 3Ns)

Remark 2.16 We choose s - 2P, as in Algorithm 2.2 (see Remark 2.12). The above
algorithm then requires order

N. (l1pm + 10p) (2.93)

arithmetic operations.

2.4 FMM for Other Kernels

The algorithms described in Sections 2.2 and 2.3 are all designed for evaluating sums
of the form

N
fX) = 1 . (2.94)

k-I X - Xk

However, these algorithms are only mildly dependent on the choice of kernel, i.e. they
can be modified to evaluate expressions of a more general form, given by the formula

N

f(x) = C r - xk), (2.95)
k=1

where € is singular at 0 but smooth everywhere else. Examples of two closely related
functions with this property are O(x) = log(x) and O(x) = 11x 2 , which are readily
obtained by integrating and differentiating the expression (2.94). Another example
of interest is O(x) = 1/tan(x) on the interval [-2,1]. This case is discussed in
more detail in Chapter 3, where it arises in the formulation of the trigonometric
interpolation problem.

34 CHAPTER 2. POLYNOMIAL INTERPOLATION AND THE FMM

Remark 2.17 While the algorithmic procedures for different kernels 0 are virtually
identical, different sets of formulae are needed for the creation and manipulation of
the Chebyshev far-field and local expansions which are required by the algorithms.
These formulae can be obtained by constructing analogs of Theorems 2.5, 2.7, 2.8,
2.9 and 2.10 for the particular function €.

2.5 A Fast Algorithm for Polynomial Interpola-
tion

In this section we return to the original problem of this chapter: given a set of points
{xI,.. . , XN} and function values {fi,... , fNI}, evaluate the unique interpolating poly-
nomial at the points {yI,... , YN}. Recall from (2.2) that the Lagrange interpolating
polynomial defined by the formula

N N

pN(X)=Ef 3.. l Xk (2.96)
j=1 k=1 X- Xk

can be rewritten in the form
N N f N

PN(x) = ll(x- xk) - F, N 11 (2.97)
k=1 j=1 x-- xJ j=1 xj -Xk

kq~j

Furthermore,

PN(y,) = rl" - (2.98)
j=1 YI - xj

for I = 1,..., n, where r, and si are defined by the formulae
N

r = JJ(Y - xk) = e-k=1Ii(y'-k) (2.99)
k=1

and,
N 1 _ eZk=I,k# ln(xXk) (2.100)

Si = Hi - =e-~~ki 210
k=1 Xj - Xk
;-,j

Observation 2.18 Sums of the form Eln(x - xk) can also be evaluated using the
algorithms of this chapter (see Section 2.4). The numbers {ri} and {sj} can therefore
be computed in O(N log(!)) operations according to (2.99) and (2.100).

Following is a description of an algorithm for the efficient evaluation of expressions
of the form (2.98).

2.6. APPLICATIONS IN NUMERICAL INTEGRATION AND DIFFERENTIATION35

Algorithm 2.4
Step Complexity Description
Init O(Nlog(!)) Compute the numbers {rl} and {sj}.
1 O(N) do j = 1,n

gj = fj -Sj

end do
2 O(Nlog(l)) Compute -=' I gi/(Y= - xj) using Algorithm 2.3 (or Algorithm 2.2).
3 O(N) do I= 1,n

P1 = Pi " rl

end do
Total O(Nlog(l))

Remark 2.19 It is well known that the polynomial interpolant of a function is spec-
trally accurate when the function is tabulated at Chebyshev or Legendre nodes (which
are clustered near the interval ends), whereas the interpolation errors can be arbi-
trarily large when the function is tabulated at general distributions of points (see, for
example, [91, [23]). It is expected that many practical applications of Algorithm 2.4
will assume nonuniformly spaced nodes which are clustered near the extremities of
the interval.

2.6 Applications in Numerical Integration and Dif-
ferentiation

The fast polynomial interpolation algorithm of this chapter can be applied to a variety
of problems. One such example is discussed in this section. Here we will consider the
folowing problem: given a set of points {xI,... , x1r} and function values {fl,..., M,
evaluate the integrals and derivatives of the interpolating polynomial at the points
{xA}. In other words, we wish to compute

SPN (x)dx and P k(Xk) (2.101)

for k = 1,... , N, where PN is the interpolating polynomial for the function values
{fk} at the points {Xk}, defined by the Lagrange formula

N N
PN(z) = I f" X- Xk (2.102)

j=1 k=- X- Xk
k:Aj

We will make use of the following lemma, which may be found in the appendix
to [13]. This lemma describes formulae for the integration and differentiation of
Chebyshev expansions.

36 CHAPTER 2. POLYNOMIAL INTERPOLATION AND THE FMM

Lemma 2.13 Let PN be a polynomial given by a Chebyshev series

N-1

PN(x) = 1 ak. Tk(X). (2.103)
k=O

Then, the integral of PN has a series expansion of the form

N
] PN(t)dt = b Tk(x), (2.104)

a-l k=O

where
__1

bk =- 2k *(ak-1 - ak+1) for 2 < k < N,

1
b -= -(2ao - a2), (2.105)

N

b0 =
j=l

and the derivative of PN has a series expansion of the form

d N-2

-PN(x) = j dk. Tk(x), (2.106)
k=O

where
N

dk = 1 j.a 3 , for l<k<N-2,
j=k+l

a+k odd

1 N
do 2= . •ja. (2.107)

j=l

j odd

Remark 2.20 It can be shown that the process of numerical differentiation via
Chebyshev series has a condition number proportional to N2 , whereas the process
of numerical integration via Chebyshev series has a condition number bounded by 2.
Thus, numerical differentiation of this type is not usually favored when large scale
calculations are being performed. On the other hand, numerical integration is vir-
tually insensitive to problem size, and is a powerful tool in the solution of certain
classes of differential equations, for example (for a more detailed discussion, see [15]).

The two algorithms described below perform the spectral integration and differ-
entiation of the Lagrange polynomial interpolant of a function which is tabulated at
nodes other than Chebyshev. In these descriptions we will assume that Xk E [-1, 1]
for k = 1,... ,N, and that ti,... ,tN are Chebyshev nodes of order N on the interval
[-1,1].

2.6. APPLICATIONS IN NUMERICAL INTEGRATION AND DIFFERENTIATION37

Algorithm 2.5
Step Complexity Description
1 O(N log(.)) Interpolate from {Xk} to {tk} using Algorithm 2.4.
2 O(N log N) Compute Chebyshev coefficients using fast cosine transform.
3 O(N) Integrate Chebyshev series using (2.105).
4 O(N log N) Evaluate new series at Chebyshev nodes using fast cosine transform.
5 O(Nlog(!)) Interpolate from {tk} to {xk} using Algorithm 2.4.
Total O(N .log N + N- log(.))

Algorithm 2.6
Step Complexity Description
1 O(Nlog(.)) Interpolate from {zk} to {tk} using Algorithm 2.4.
2 O(N log N) Compute Chebyshev coefficients using fast cosine transform.
3 O(N) Differentiate Chebyshev series using (2.107).
4 O(N log N) Evaluate new series at Chebyshev nodes using fast cosine transform.
5 0(Nlog(!)) Interpolate from {tk} to {Xk} using Algorithm 2.4.
Total O(N *logN+ N .log(.))

38 CHAPTER 2. POLYNOMIAL INTERPOLATION AND THE FMM

Chapter 3

Trigonometric Interpolation and
FFTs

In this chapter we will consider the transformation F : CN + CN defined by the
formulae

N/2-1F ~ ~ = fj 1:= ek_ (3.1)
k=-N/2

for j = I,.. ,N, where x = {IX,... , XN} is a sequence of real numbers in I-7r, irl and
Ct= {(-N/2, - -, CN/2-1} and f = Ifi,, - ., fN} are sequences of complex numbers.

We are interested in the efficient application and inversion of the transformation F
and its transpose. More precisely, we will consider the following four problems:

"* Problem 3.1: Given a, find f = F(a).

"* Problem 3.2: Given a, find f = FT(a).

"* Problem 3.3: Given f, find a = F-(f).

"* Problem 3.4: Given f, find a = (FT)-I(f).

In this chapter we will describe a group of four efficient algorithms for Prob-
lems 3.1-3.4. These algorithms utilize the fact that a Fourier series is a trigonometric
polynomial; when dealing with the values of this polynomial at equispaced nodes on
the unit circle, the FFT can be applied. However, we are interested in the values at
nonuniformly spaced nodes, which are values of the polynomial which interpolates the
equispaced values. The algorithms we will describe rely for their efficiency on a com-
bination of the FFT with a fast algorithm for evaluating trigonometric polynomial
interpolants which uses a version of the Fast Multipole Method (FMM) specifically

39

40 CHAPTER 3. TRIGONOMETRIC INTERPOLATION AND FFTS

designed for the geometry of the circle. This interpolation algorithm is closely re-
lated to Algorithm 2.4 described in Chapter 2 for the interpolation of polynomials
tabulated on the line.

Remark 3.1 Throughout this chapter we will be using the well known Lagrange
representation of polynomial interpolants. For a function f : C -+ C tabulated at
nodes z1 , ... ,ZN, this is defined by the formula

N N k

PN(Z) = f(zj) . z Zk (3.2)
-=1 k=i-

This chapter is divided into two sections. Section 3.1 contains a number of results
from analysis and approximation theory, and in Section 3.2 we describe both formally
and informally how these results are used, together with the FMM, in the construction
of the fast algorithms of this chapter.

Remark 3.2 An alternative approach to the problems of this chapter is presented
in Chapter 4, where an interpolation scheme based on the Fourier analysis of the
Gaussian bell is used in place of the FMM-based interpolation scheme of this chapter.
The two approaches are compared in Chapter 6.

3.1 Mathematical and Numerical Preliminaries

This section is divided into two parts. In Subsection 3.1.1 we present several identities
which are employed in the development of the fast algorithms of this chapter. Subsec-
tion 3.1.2 contains a collection of error bounds which allow us to perform calculations
to any prescribed accuracy.

3.1.1 Analytical Tools

The main results of this subsection are Theorems 3.3 and 3.4 which describe linear
transformations connecting the values of a Fourier series at two distinct sets of points.
Lemmas 3.1 and 3.2 provide intermediate results which are used in the proofs of these
theorems.

Lemma 3.1 Let {xI,.. .,XN} and {Y1,.. . ,YN} be sequences of real numbers on the
interval [-ir, ir], and let {w 1,. . . , WN} and {Zl,..., ZN} be sequences of complex num-
bers defined by the formulae

w -= ei• (3.3)

zj = e- (3.4)

3.1. MATHEMATICAL AND NUMERICAL PRELIMINARIES 41

for j =1,...,N. Then,

N N

H(wI - zk) = -wN1) 2" fi .12" 2i- sin((xi - yk)/ 2) (3.5)
k=1 k=1k:•. k¢:j

for l=1,...,N, and

N N_(N-1)12 1/
(zj - zk) = zj •i 2 .2i . sin((yj-yk)/2) (3.6)

k=1 k=1
k#j k9j

forj=1,...,N.

Proof. A sequence of simple algebraic manipulations and trigonometric identities
yields

NN

l(WI -Zk) = N(e'x'--e'yk)

k=1 k=1k96j k~j

N
=- r e i(x+yk)12 " (ei(xi-Yk)/2 -- e-i(XI-Yk)/2)

k=1
k~j

N

- ei(N-1)xa/ 2 " ei'k/ 2 -2i - sin((xt - yk)/2) (3.7)
k=1
k~j

N

= wI g)/2" . 2i. sin((xi - yk)/ 2).
k=1k96j

Substituting z3 for w, and yj for x, in (3.7), we also obtain

N N
_ (N - z) /2 . /

l"(zj Z) = ZN " J" 4/2'2i sin((y3 - Yk)/ 2)• (3.8)
k=1 k=1
k96j k96j

0

The following lemma describes an alternative representation of the well known
Lagrange interpolation formula for polynomials in the case when the interpolation
points lie on the circle.

42 CHAPTER 3. TRIGONOMETRIC INTERPOLATION AND FFTS

Lemma 3.2 Let {x1,... , XN} and {Y1,... , YNI} be sequences of real numbers in the
interval [-w,7r], and let {fi,...,fN} be a sequence of complex numbers. Further,
let {w 1,...,WN} and {z 1,...,ZN} be sequtuces of complex numbers defined by the
formulae

WI = eisX (3.9)

zj = e-y, (3.10)

forj = 1, ... , N. Then,

NN N/ 1
EfJ" H W--Zk = N/2.CI.~fj.z-N12.d - 3.11)Zf= l WL=1Zj k = W1 / cu=f z,' d, (tan((xi - y,)f2) zj=1 kIl Z3 -- Zk l

k#j

where {ci} and {dj} are 4-fined by the formulae

N

cL = j sin((xj- yk)/ 2), (3.12)
k=1

N1
dj =(3.13)d = sin((yj yk)/2)

k96j

for j= 1,... N.

Proof. Dividing (3.5) by (3.6) we obtain

N (N-1)/2 N Z12 2i sin((x- yk)/ 2)
Wl -- Zk •W1 •__2________ -____

k.IIZ~ -= (N-1)/2 Ii 1/2
k=1 zj -_Zk Zj k=_ z

2 22i" sin((yj - Yk)/2)
k~j k96j

e-(-/ wN/ INk=1 sin((xj - yk)/2) (.4
sin((xi - yj)/2) zN1 2 l'#, sin((y3 - yk)/ 2)

and the combination of (3.14) with the fact that

e-i(x_-y_))2 cos((xi- yj)/2) + i sin((xi - yj)/2)

sin((x, - yj)/2) sin((xi- yj)/2)
1

- i, (3.15)
tan((xj - yj)/2)

gives us

N N I d (1 2

j=1 k-iwtj - Zk . j1 ztan((xL y,)/2)i)(.16)
k~j

3.1. MATHEMATICAL AND NUMERICAL PRELIMINARIES 43

where {c,} and {dj} are defined by (3.12) and (3.13). 0

The following theorem provides a formula for determining the values of a Fourier
series at a set of points in terms of the values of this series at another set of points.

Theorem 3.3 Let {x 1 ,. . . ,XN} and {Yi, .. . ,YNI be sequences of real numbers in
the interval [-r, r], and let {a-N/2,... , aN/2-1} be a sequence of complex numbers.
Further, let {w1,...,WN}, {zl,..., ZN}, {f,,.-.,fN} and {gi,.. gN} be sequences
of complex numbers defined by the formulae

wj = eiXJ (3.17)

zj = eIli (3.18)
N/2-1

f = z ak'e ik' (3.19)
k=-N/2

N/2-1

9j = E ak" e ikx (3.20)
k=-N/2

forj =,...,N. Then,

N (1
91V2)E j d - (3.21)
g =cI••f'j (tan((xl -yj)/2)

where {cl} are defined by (3.12) and {dj} are defined by (3.13).

Proof. Let the polynomial P,, be defined by the formula

N-1

P.(z) = E ak-N/2 . zk. (3.22)
k=O

The Lagrange interpolation formula relates the values of P,' at the points {wi} to the
values at the points {zk} via the expressions

N N - zk

P,.(wI) = pP (zj) . 1 j (3.23)
J=1 k=i Z1 -

k96j

for I = 1,-, N, and applying Lemma 3.2 to (3.23) we obtain

Pc.(W1) = NW1 Zl- P,,(zj) zN/ dj -1 (34
~j= tan((xj - yj)/2) -i " (.4

44 CHAPTER 3. TRIGONOMETRIC INTERPOLATION AND FFTS

From the combination of (3.22) and (3.17)-(3.20) we see that

N12-1N/2-zN1

(zj) ak . Z= /2 fj (3.25)
k=- N/2

and
N/2-1

,wL)wN1 2 . Qkw = N g1 , (3.26)
k=-N/2

and finally substituting (3.25) and (3.26) into (3.24) we obtain

N ' 1

g1 = cl. 1, fj dj (tan((xi - yj)/ 2) (3.27)
j=l

for l=1,...,N. 0

In the case when the points {yj} are equispaced in [-7r, 7r], the interpolation for-
mula of Theorem 3.3 has a simpler form, which is described in the following theorem.
The result of this theorem can be found in a slightly different form in [12].

Theorem 3.4 Let {zi,... , xi} be a sequence of real numbers on the interval f-r, 7r]
and let {a-N/2,... , aN/2-11 be a sequence of complex numbers. Further, let {jY,..., YN}
be a sequence of real numbers defined by the formulae

yj = (j - 1 - N/2)7r/N (3.28)

forj = 1,...,N, and let {w 1 , ... ,WN}}, {Z,...,zN}. {f,.. .,fN} and {g,.. .,gN}
be sequences of complex numbers defined by the formulae

W3 = et X' (3.29)

zi = es'. (3.30)
N/2-1

fj = E ak'eiky' (3.31)
k=-N/2

N/2-1

9j = E Z k e eikz (3.32)
k=-N/2

for j =1,...,N. Then,

W2) - (3.33)
a sin 2 "-fj" . N tan((x - y,)/2) "

j=l

3.1. MATHEMATICAL AND NUMERICAL PRELIMINARIES 45

Proof. From the combination of equations (3.28) and (3.31), we see that the sequence
{10-N/2,. . . , QN/2-1} is the discrete Fourier transform of the sequence f, , f] }. in
other words,

1 N

ak = N Zfj. e- (3.34)
j=l

for k = -N/2,..., ,N/2 - 1. Let us now define the function f :[-r,r] -r* C by the
formula

N/2-1

f(x)= _ a"ekx. (335)
k=-N/2

Substituting (3.34) into (3.35) and changing the order of summation, we obtain

N12-1 N

f (x) = E fj " e-iky, 1
k=-N/2 Nj=l

N 1 N/2-1

= Ef.- Z eik(z•-;). (3.36)
j=l Nk=-N/2

Observing that the second sum in the expression (3.36) is a geometric series we have

N/2-1 e-iN(x-y,)/2 _ eiN(x-y-)/2
Z eik(z-y2) =

E 1 - ei(z-v,3)k=-N12

sin(N(x - yj)/2) (3.37)
Ssin((x - y,)/2)

(sin(N(x - yj)/2)) . (cot((x - yj)/ 2) - i)

for any x E [-wr, r]. The definition of (yj} now yields

sin(N(x- yj)/2) = sin(Nx/2)cos(Nyj/2) - cos(Nx/2)sin(Ny3 /2)

= sin(Nx/2) . (-1)j, (3.38)

and finally, using the fact that gt = f(xi) and combining (3.36), (3.37) and (3.38) we
obtain

g1:=sin .V'.Ef). (-1)j1- . (3.39)
si 2 = N (tan((xi - yj)/2)

0

46 CHAPTER 3. TRIGONOMETRIC INTERPOLATION AND FFTS

3.1.2 Relevant Facts from Approximation Theory

The algorithms of this chapter are based on several results from the Chebyshev ap-
proximation theory of the function 1/tan(x). These results are contained in the
lemmas and theorems of this subsection, numbered 3.8-3.' 1. Analogs of these results
for the function 1/x can be found in Section 2.1.

The main results of this section fall into two categories. Theorems 3.11 and 3.14
describe how the function 1/ tan(x) can be approximated on different regions of the
interval [-', M] using Chebyshev expansions. Theorems 3.15, 3.J6 and 3.17 provide
three ways of manipulating these expansions which are needed by the fast algorithms
of this chapter.

We begin with three classical definitions which can be found, for example, in [14],
[23].

Definition 3.1 The n-th degree Chebyshev polynomial T,(x) is defined by the follow-
ing equivalent formulae:

T, (x) = cos(n arccos x) (3.40)

Tn(x) = -T. ((x_ +i1-)n+(x - •-)n). (3.41)

Definition 3.2 The roots tl,. .,tn of the n-th degree Chebyshev polynomial T, lie
in the interval [-1, 1] and are defined by the formulae

k= cos - •. 2) (3.42)

for k = 1,..., n. They are referred to as Chebyshev nodes of order n.

Definition 3.3 We will define the polynomials ul,. , un of order n - 1 by the for-
mulae SIttJ-

uj(t) i= -tk (3.43)
k-i -j tk
k9j

for j = 1. n, where t k are defined by (3.42).

The order n- 1 Chebyshev approximation for a function f: [-1, 1] j- C is defined
as the unique polynomial of order n - 1 which agrees with f at the nodes tl,..., t,•.
There exist several standard representations for this polynomial, and the one we will
use in this chaptei is given by the expression

n

Z: f(tj) . u3 (t) (3.44)
j=1

3.1. MATHEMATICAL AND NUMERICAL PRELIMINARIES 47

For the purposes of this chapter, Chebyshev expansions for any function will be
characterized by values of this function tabulated at Chebyshev nodes.

Lemmas 3.5-3.7 provide estimates involving Chebyshev expansions which are used
in the remainder of this section. The proof of Lemma 3.5 is obvious from (3.40).

Lemma 3.5 Let T,,(x) be the Chebyshev polynomial of degree n. Then,

IT,(x) < 1 (3.45)

for any x E [-1, 1].

Lemma 3.6 Let Tn(x) be the Chebyshev polynomial of degree n. Then,

ITW(x)l > -1 (3.46)

for any x such that Ixl > 3.

Proof. From Definition 3.1, we have

1 . I(X + V'-IX)'• + (2 -IT-Wzl = ~ X VI2_1n

> .Ix + V/X2 - (x13)21n IX- (1 + F8/)ln (3.47)

1 15x I

for any x such that Ixl > 3. 0

Lemma 3.7 Let uj(x) be defined by (3.43). Then, for any x E [-1, 1],

1uj(x)l _• 1. (3.48)

Proof. It is obvious from (3.43) that uj(tj) = 1, and that uj(tk) = 0 when k 5 j. In
addition, the expression

in

E Tk(tj) .Tk(X) (3.49)
n k=1

is also equal to 1 at tj and equal to 0 at all other tk. Since both u, and (3.49) are
polynomials of order n - 1, we have

1 n

uj7)= - E Tk(t3) . Tk(X) (3.50)
n k=1

48 CHAPTER 3. TRIGONOMETRIC INTERPOLATION AND FFTS

for j = 1,...,n. Furthermore, due to the combination of (3.50) and the triangle
inequality, we obtain

ni
Iu.(x)I = E Tk(tj) Tk(X) = - ITk(t) I(" ITk(x) _< 1 (3.51)

k=1 kiI

for any x E [-1, 11. 1

The next lemma is obvious.

Lemma 3.8 For any a E [0, V],

tan 3a > 3 tan a. (3.52)

The following two lemmas provide preliminary results which are used in the proof
of Theorem 3.11.

Lemma 3.9 Suppose that n > 2, and that b > 0 and xo are real numbers with
Ixol >_ 3b. Then, for any x,

n .. =1 + o) Tn(xo/b)
j=l btj - x0o .(ob

Proof. Let Q(x) by the polynomial of degree n defined by the formula

Q(x) =1+ XXo - (x - xo). -1 + btjxo . (3.54)
j btj - xo b

It follows from the combination of (3.43) and (3.54) that

Q(btk) = l + btkxo - (btk - xo) ._ E + btjX- . uj(tk)j=1 btj - xo

= 1 + btkxo - (btk - Xo) 1 + btkxo _ 0, (3.55)btk -- Xo

for k = 1,..., n. Clearly, then, Q(x) satisfies the conditions

Q(xo) = 1 + X0

Q(bt1) = 0

(3.56)
Q(btn) = 0.

3.1. MATHEMATICAL AND NUMERICAL PRELIMINARIES 49

It is clear that the function
2) T.(x/b)(T(x/b) (3.57)(1+ x') T7,(xo/b)

is also a polynomial of degree n which satisfies the n + 1 conditions (3.56). Therefore,

Q(x) (1 + X2) r,(x/b) (3.58)0T.(xo/b) '

and (3.53) follows as an immediate consequence of (3.54) and (3.58). 0

Lemma 3.10 Suppose that n > 2, and that b > 0 and xo are real numbers with

IxoI > 3b. Then,

l+xxo 1 +btjxo . 1+9b2
• U.'- <(3.59)

X-Xo -X l btj-xo -kb b. 5"

for any x E [-b, b].

Proof. Dividing (3.53) by (x - xo) and taking absolute values, we obtain

1 + xxo 1 +bt- x '¶ 1 1+ x IT.(x/b)I 3.0
X- XO _=1 bt- xo =kb IX- X1 ITn(xo/b)l

Due to Lemmas 3.5 and 3.6 we have

jTn(x/b)l < 1 (3.61)

for any x E [-b, b], and

1-+- 2o 3b" 2

T o(xo/b) <(1 + x.2- -5X - (1 + (3b)2) (3.62)

for any Ixol > 3b. Finally, substituting (3.61) and (3.62) into (3.60), we obtain

X+xxo 1-•+bt,xo _b) _+9b

•+__ n 1 1+ 9b 2 (3.63)
X - XO = btj - Xo b. 5n

for any x E [-b, b]. 0

50 CHAPTER 3. TRIGONOMETRIC INTERPOLATION AND FFTS

Theorem 3.11 Suppose that n > 2, and that a and 0o are real numbers with 0 <

a<_ and 3a <_ 0ol <I!. Then,

n 1 +tjtanatanOo (tanO0 1 + 9tan2 a (3.)
tan(0-- Oo) j tjta -ta-tan0o -u tana] < tana5.

for any 0 E [-a, a].

Proof. Let 0 E [-a, a]. Then, defining the real numbers b, x, and x0 by the formulae
b = tan a, x = tan0 and x0 = tan 00, we observe that IxI _< b, and, due to Lemma 3.S,

Ix0I > tan 3a > 3b. We also observe that

1 1 + tan 0 tan 0o 1 + xxo (3.65)

tan(0 - Oo) tan 0 - tan 0o x - xo

and
1+tj tan a tan Oo tan0 n1 + t-bxo .

j=1 tjtana-tano00 * \tana) j= tjb-xo \(6

It follows from the combination of equations (3.65) and (3.66) and Lemma 3.10 that

1 _E1+tjtanatan0o (tanOG
tan(O-- 00) =tjtana - tan-0 0 u tana

1 1+.XXo n-1l+ tjbXo . u((3.67)

x- E tjb - x0 b

1 +9b 2 1 +9tan a

b. 5n tan a - 5n

for any 0 E [-a, a]. 0

The following two lemmas provide preliminary results which are used in the proof
of Theorem 3.14.

Lemma 3.12 Suppose that n > 2, and that b > 0 and x0 are real numbers with

Ixol < b. Then, for any x,

x + 3bxo - (3b -t 3b°x (3b T(x) (3.68)
= 3b- tjxo +o Tn(3b/xo) (

3.1. MATHEMATICAL AND NUMERICAL PRELIMINARIES 51

Proof. Let Q(x) be the poly- omial of degree n defined by the formula

ti+ 3bxo
Q(x) = x + 3bxo - (3b - xxo). - . uj(x). (3.69)

j=1 3b - tjxo

It follows from the combination of (3.43) and (3.69) that

Q(tk) = tk + 3bxo - (3b - tkxo) n tj + 3 bxo U 3(tk)
j=1 3b - tjxo

= tk + 3bxo - (3b - tkXo) tk + 3bxo _ 0, (3.70)
3b - tkXO

for k = 1,..., n. Clearly, then, Q(x) satisfies the conditions

Q(3b/xo) = 3b/xo + 3bxo
Q(t1) = 0

(3.71)
Q(tn) = 0.

It is clear that the function

3 -+3bxO Tn(X) (3.72)
x o Tn(3b/xo)

is also a polynomial of degree n which satisfies the n + 1 conditions (3.71). Therefore,

(3b)TQ(x) (3.73)

Q(x) ()o±3bxo Tn(3b/xo)'

and (3.68) follows as an immediate consequence of (3.69) and (3.73). 0

Lemma 3.13 Suppose that n > 2, and that b > 0 and Xo are real numbers with

IxoI < b. Then,

"x + 3bxo nt +3bxO 3(1 + b2)~~U tW +<bo_ (3.74)

3b-xxO j=b - 0txo b 5n

for any x E [-1,1].

52 CHAPTER 3. TRIGONOMETRIC INTERPOLATION AND FFTS

Proof. Dividing (3.68) by (3b - xxo) and taking absolute values, we obtain

x + 3bxo n +3bo 1 33b ,Tn(x),3b-xx _ u3 (xo) =J oD • + 3bxo . (3.75)3b-XOj=1 3b - tjxo 13b-- xxol xo ITn(ab/xo)l

In addition, due to Lemmas 3.5 and 3.6 we have

IT (x)I _ 1 (3.76)

for any x E [-1, 1], and

3b/zo + 3bxo 3Xo " 6b.(11b+b)

T<(3b/xo) <3b.(1/xo+xo).2 b < (3.77)

for Ixol < b. Substituting (3.76) and (3.77) into (3.75), we obtain

x +3bXo t + 3bx0 1 6b 3(l__b_2
3b - b- -I u(x) -<.--n '(11/b+b)- n.l5b (3.78)

3bx0 4b-~xo 2b5n b -5~

for any x E [-1,11. 0

Theorem 3.14 Suppose that n > 2, and that a and 00 are real numbers with 0 <
a 8 1 and I0ol < a. Then,

1 -tj+3tanatanOo (3tana"[6

tan(0-0o) , t.. ' - 'tt-n o Uj 3 tan0 a < sin2a5" (3.79)

for any 0 such that 3a < 101 < •.

Proof. Let 0 be any real number such that 3a < 101 < 2" Then, defining the real
numbers b, x and x0 by the formulae b = tan a, x = 3 tan a/tan 0 and x0 = tan 00, we
observe that Ixol <b, and, due to Lemma 3.8, lxi < 1. We also observe that

1 1+ tan 0 tan 0o I + 3bxo/x _ + 3bxo_ _- (3.80)
tan(0 - Oo) tan 0 - tan 0o 3b/x - xo 3b - xxo

and
n tj + 3tan a tanOo ana tj+ 3bxo

~~,-1 3tnatta j U 3 tanO a) 3 btx u3xW. (3.81)3 ta a tj a-no -tn 03b - tjxo

3.1. MATHEMATICAL AND NUMERICAL PRELIMINARIES 53

It follows from the combination of equations (3.80) and (3.80) and Lemma 3.12 that

1 -- tj + 3tanatanOo (30tan
tan(0 -Bo) 0 3tan'a--t, tan Oo " u tanO 0

x + 3bxo tj +3bxo. uj(x) (3.82)

3b - xxO j=L 3b - tjxou(

1 + b2 3 sec2 a 6

T 5n tana.5n - sin2a.5n (3.83)

for any 0 such that 3a < 101 < S 0

The following three theorems provide formulae for translating along the inter-

val [-Z, Z] Chebyshev expansions of the type described in the previous two the-
orems. Theorem 3.15 provides a formula for translating expansions described in

Theorems 3.11, Theorem 3.16 describes a mechanism of converting the expansion of
Theorem 3.14 to the expansion of Theorem 3.11, and Theorem 3.17 provides a way

of translating the expansion of Theorem 3.14.

Theorem 3.15 Suppose that n,N > 2, and let a,c,d be real numbers such that

0< a < 7r/8 and [c-d,c+d] C [-a,a]. Let the function f: [-!, --+ C be defined
by the formula

N

f(O) tan(- Ok) (3.84)

where 3a < IOkI 1E _ fork= 1, N, and al, •a.N is a set of complex numbers.
Further, let T1s,. . . , Tn,, be a set of complex numbers defined by the formula

TAk = f(arctan(tk tan a)) (3.85)

fork = 1,... , n, and let 'Ji,..., ',, be a set of complex numbers defined by the formula

4k => j' " j (tan (c + arctan(tk tanId)) (3.86)
j=l tan a

for k = 1,...,n. Then, for any 0 E [c - d, c + d],

fO _ n(,tan(o c)) <a(n+l1)(1a+ 9tan 2a)

E k .uj tand tana . 5n (3.87)
k=l

where A = F'k=1 Jakl.

54 CHAPTER 3. TRIGONOMETRIC INTERPOLATION AND FFTS

Proof. It follows from the triangle inequality that

f()) - < + S2 (3.88)
k=l

where

Sff()- f(c + arctan(tk tan d)) uj ta n d c(3 89)
k=l

and

F2= (f(c +arctan(tk tan d))- k).uj (390)
k=1 +ar~a~k d) ~ ' tand

Combining Theorem 3.11 with Lemma 3.7 and the triangle inequality, we have

1 + 9 tan2 a
tana.5n ' (3.91)

and

S2 n_ If(c +arctan(tk tan d)) - T'I'3 u3 a~ + arctan(tk tan d))

1tan a+

< An. 1+ 9 tana (3.92)

tana.5n

where A = aI lkI. Finally, substituting (3.91) and (3.92) into (3.88) we obtain

f(O) t ntan(O-c) < (n+ 5a

Ek ' tand <A 1) l+9tan a (393)k=l t/

for any 0 E [c-d,c+d]. o

Theorem 3.16 Suppose that n, N > 2. and let a, c, d be real numbers such that
0 < a < ir/8 and Ic - d > 3a. Let the function f [-!, !] -- C be defined by the
formula

N

f(=k (3.94)
k== tan(O - Ok)

where Ok E [-a,al for k = 1,... IN, and al,. .. . ,N is a set of complex numbers.
Further, let)1... , 4,n be a set of complex numbers defined by the formula

4)k = f(arctan(3tan(a)/tk)) (3.95)

3.1. MATHEMATICAL AND NUMERICAL PRELIMINARIES 55

fork = 1,... ,n, and let '1, . . . , 'I, be a set of complex numbers defined by the formula

T 40 i3 tan a (3.96)
== •. tan(c + arctan(tk tan d))

for k = 1,...,n. Then, for any 0 E [c - d, c + d],

f(O)_- n ._u tan(0- c) < A 3nsec2 a+1+9tan 2 a (3.97)
kl tand tan a •5

where A = 1 j, I_.

Proof. It follows from the triangle inequality that

n (tan(9 -C)\
Ef(O) - uj \tntan da S1)+ S2 (3.98)
k=1

where

f(c + arctan(tk tand)) tan d (9
k=1

and

S2 = (f(c + arctan(tk tan d)) - Tk)" uj tan(-

k=1 +atatk- tan d(310
Combining Theorem 3.11 with the triangle inequality gives us

1 + 9tan2 a
tana•5' (3.101)

and from the combination of Theorem 3.14, Lemma 3.7 and the triangle inequality,
we have

S 2 E f(c + arctan(tk tan d)) - Etj. u(+ tana

k=1 j=1 tan(c + arctan(tk tan d))

An. 3 sec 2 a (3.102)

tan a 5-'

where A = k =1Jkj. Finally, substituting (3.101) and (3.102) into (3.98) we obtain

f(O) - Tk('uJ tan(-C) < A 3nsec2 a+19tan2 a (3.103)

for ay 0 tan a d 5n

for any O E [c -d, c+ d].
0

56 CHAPTER 3. TRIGONOMETRIC INTERPOLATION AND FFTS

Theorem 3.17 Suppose that n, N > 2, and let a, c, d be real numbers such that
0 < a < ir/8 and [c- d,c + d] D [-a,a]. Let the function f: [-1, 1] - C be defined
by the formula

N

k=1 tan(O - Ok) (3.104)

where Ok E [-a,a] for k = 1,...,N, and ah,..., aN is a set of complex numbers.
Further, let 01,. . . , 1,, be a set of complex numbers defined by the formula

0k = f(arctan(3tan(a)/tk)) (3.105)

fork = 1,..., n, and let 1,. . . , in be a set of complex numbers defined by the formula

n 3 tan a
4k = Z3jU. tan(c + arctan(3tan(d)/tk)) (3.106)

j=l

for k = 1,...,n. Then, for any 0 such that I0 - c >_ 3d,

f(0) _(3 tan d A3(n +1) seC2a
f(O)-E k.u. - tan(O -c) < tana5n (3.107)

where A = jakl.

Proof. It follows from the triangle inequality that

] • \a~l -")I' 3tandn ,. 3k ta U _< S, + S 2 (3.108)
E= ~ tan(O - C

where

S1 = f(O) - ,., f(c + arctan(3 tan(d)/tk)) . uj (3nnd)) , (3.109)
k=1

and

Sý = ntn -cJ3tand '

E2 = (f(c+ arctan(3tan(d)/tk)) - U, (- 3n)) .- c (3.110)

Combining Theorem 3.14 with Lemma 3.7 and the triangle inequality, we have

3 sec
2 a

tana"5n, (3.111)

3.2. APPLICATION OF THE FMM TO NONEQUISPACED FFTS 57

and

S 2 < I f(c + arctan(3 tan(d)/tk)) - n uj 3 tan a

k= j=tanc+arctan(3tanlfltk))

< An. 3 sec2 a (3.112)
tan a. 5"'

where A = 1= IakI. Finally, substituting (3.111) and (3.112) into (3.108) we obtain

f(O)- n u \tan(OdAc)J 3(n A" 1 (3.113)

E a=, C tan a.• 5n

for any 0 such that 10 -cl > 3d. 0

3.2 Application of the FMM to Nonequispaced
FFTs

This section consists of four parts. In Subsection 3.2.1 we describe briefly how the one
dimensional Fast Multipole algorithm of Chapter 2 can be applied to the problems of
this chapter, in Subsection 3.2.2 we outline a set of four algorithms for these problems,
Subsection 3.2.3 contains more formal descriptions of these algorithms, and finally in
Subsection 3.2.4 we discuss a generalization of Problems 3.1-3.4.

3.2.1 FMM and Trigonometric Interpolation

There exist a number of different formulations of the trigonometric interpolation
problem (see [231). The version we will use for the purposes of this chapter is described
as follows: given a set of points {y,-. •., YN} and function values {f.,..., fN}, evaluate
the interpolating Fourier series at the points {X,... , XN }. According to Theorem 3.3,
these values are given by the formulae

= -ci' f 'd" (tan((xi - y,)/ 2)/- (3.114)

for 1 - 1,... ,N, where {ct} and {d, } are defined by the formulae
N

ci =]j sin((xi - yk)/ 2) = e =l(Sif((X'-yk)/
2

)) (3.115)
k=1

58 CHAPTER 3. TRIGONOMETRIC INTERPOLATION AND FFTS

for 1= 1,... N, and

d3 1JI = e-Efi., (•(r-,1) (3.116)
di k-i- sin((yj - yk)/2)

k~j

for j=1,...,N.

Remark 3.3 The FMM algorithms of Chapter 2 are designed to evaluate expressions
of the form

N ak
(3.117)

k=1 X - Xk

in 0 (N log (f)) arithmetic operations, where - is the desired accuracy. With a few
minor modifications they can also be used to evaluate expressions of the form

N ak (3.118)
k tan(x - Xk)k=1

and
N

Z" ln(sin(z - Xk)), (3.119)
k=1

and hence expressions of the form (3.114) for the same computational cost. Moreover,
the algorithmic procedure for the kernel 1/tan x is virtually identical to that for l/x,
and the various expansions required by the algorithms are manipulated via Theo-
rems 3.15, 3.16 and 3.17 (see Chapter 2 for detailed descriptions of these algorithms).

3.2.2 Informal Descriptions of the Algorithms

In this subsection we outline how a fast trigonometric interpolation scheme can be
used to construct efficient algorithms for Problems 3.1-3.4 of this chapter.

We begin with some notation.
.F : CN --+ CN will dei.3te the matrix which maps a sequence of N complex

numbers to its discrete Fourier transform. F is defined by the formulae

•'k-- 2ri-(j-NI2-1)'(k-N/2-1)/N(310

jFk = e(3.120)

for j, k = 1,..., N, and it is well known that yT = F, and that F-1 =-'.

Remark 3.4 F and "-I can each be applied in O(N log N) operations via the FFT.

3.2. APPLICATION OF THE FMM TO NONEQUISPACED FFTS 59

p : CN -+ CN will denote the matrix which maps the values of ai N-term Fourier
series at N equispaced points {Iy,... , YN} on [-ir, ir] to the values of this series at
the arbitrarily spaced points {xi,... ,XN}. According to Theorem 3.4, P is defined
by the formulae

Pjk = sin (Nx2* (-W~: (3.121)2 N "tan((x3- yk)/2)--(.11

for j, k = 1. N. It follows directly from (3.121) that

• N sin (Nk) . ((('3.122)

for j, k = 1,..., N. The inverse of the mapping P converts the values of an N-term
Fourier series at the points {fX,... , XN} to the values of this series at the equispaced
points {yI,.- .,YN}. P-1 is therefore given analytically, and according to Theorem 3.4
it is defined by the formulae

P-' = cj .dk. tan((yj Xk) - (3.123)

for j, k = 1,...,N, where C,- . ,cN and dl,...,dN are sequences of real numbers
defined by the formulae (3.115) and (3.116). It follows directly from (3.123) that,P) 1

(.pT)-i = dj (ck tan((Yk - xj)/2) - (3.124)

for j, k= 1,..., N.

Remark 3.5 p), pT, P- 1 and (pT)-i are all of the same form, and each can be
applied with a relative precision e in 0 (Nlog (i)) operations via the FMM (see

Section 3.2.1).

Observation 3.6 From the combination of (3.1), Theorems 3.3 and 3.4, and several
elementary matrix identities, we see that

F = P -.F

FT = T.,pT

F-1 = 7-1 . P-1 (3.125)
(FT)-1 = (pT)-. -1.

Furthermore, due to Remarks 3.4 and 3.5, F, FT. F- 1 and (FT)-1 can each be applied
in 0 (N log) arithmetic operations.

60 CHAPTER 3. TRIGONOMETRIC INTERPOLATION AND FFTS

3.2.3 Formal Descriptions of the Algorithms

Following are detailed descriptions of the four algorithms of this chapter.

Algorithm 3.1
Step Complexity Description
1 O(N log N) Comment [Evaluate Fourier series at equispaced points using FFT.]

Compute gj k=-N/2 0 k * eikyj for j = 1..., N.

2 O(N log(!)) Comment [Interpolate in space domain.]
do j = 1,N

gj = g. -(-1)2 /N
end do
Compute fj = EN=I gj/ tan((xt - y,)/2) for I = 1,..., N using FMM.
dot = 1,N

ft = ft-i. Ejgj
end do
do I= 1,N

fi = ft" sin(Nxt/2)
end do

Total O(N -log N + N-log(l))

Algorithm 3.2
Step Complexity Description
1 O(N log(!)) Comment [Interpolate in frequency domain.]

do j = 1,N
a3 = aj • sin(Nxj/2)

end do
Compute at = - ENL aj/ tan((yt - xj)/2) forl 1,..., N using FMM.
do 1= 1,N

al= at - "z- = aS
end do
do l= 1,N

at = at (-1)t/N
end do

2 O(N log N) Comment [Evaluate Fourier series at equispaced points using FFT.]
N/2- 1Compute fj = Ek=-N/2 ak • eiku for j = 1,...,N.

Total O(N .log N + N.log(!))

3.2. APPLICATION OF THE FMM TO NONEQUISPACED FFTS 61

Algorithm 3.3
Step Complexity Description
1 O(N log(!)) Comment [Interpolate in space domain.]

do j = 1,N
f3=f,

end do
Compute at = EN I fj/ tan((yj - xj)/2) for l = 1,..., N using FMM.
do I= 1,N

at = a, - i. h~I 11
end do
do I= 1,N

at = at .el

end do

2 O(N log N) Comment [Obtain Fourier coeffients using FFT.]
Compute aj = _ . EN=I ak e-iky_ for j = -N/2,..., N/2 - 1.

Total O(N-logN + N .log(1))

Algorithm 3.4
Step Complexity Description
1 O(N log N) Comment [Obtain Fourier coeffients using FFT.]

Compute a1 = _. FN=I fk e-ikVj for j = 1,....N.

2 O(Nlog(.)) Comment [Interpolate in frequency domain.]
do j = 1,N

aj = aj .cj

end do
Compute at = - Zr-i aj/ tan((xi - yj)/2) for l=1,..., N using FMM.
do 1= 1,N

at = at - i aj
end do
do 1= 1,N

at = a, .di

end do

Total O(N -log N + N .log(.))

3.2.4 FFTs for Complex Data Points

Various generalizations of the problems addressed in this chapter are mentioned briefly
in Section 6. One of the generalizations of Problems 3.1-3.4 merits special attention,

62 CHAPTER 3. TRIGONOMETRIC INTERPOLATION AND FFTS

and is discussed in this section: this is the case when the points {xj} are complex,
and lie slightly off the real axis.

We are interested here in the transformations described by the formulae

N/2-1

fj = ri.e-k*, (3.126)
k=-N12

for j = 1,..., N, which is a generalization of (3.1) with

X, = r. + isj. (3.127)

Algorithms 3.1-3.4 can be modified to evaluate expressions of the form (3.126), pro-
vided that the sj are small (on the order of)

Problems of this type are frequently encountered in signal analysis, computational
complex analysis and several other areas.

Chapter 4

Nonequispaced FFTs: An
Alternative Approach

In this chapter, we present another set of algorithms for evaluating series of the form
(1.1). This approach uses an interpolation scheme based on the Fourier analysis of
Gaussian bells in place of the FMM-based interpolation scheme of Chapter 3. The
two approaches are compared in Chapter 6.

For the remainder of the chapter we will operate under the following assumptions:

1. W = {wo,... ,WN} and x = {X0,. ., ,N} are finite sequences of real numbers.

2. wk E [-N/2, N/21 for k =0,..., N.

3. xi E [-r,7 r] for j = 0,..., N.

4. O- {0o,..., CN},f = {f-N/2,...,fN2}, 3 -= L 3-N/2,..., N/2},g--= {gO,f-,gN},

-Y = {0o,..., yN} and h = {h.,..., hN} are finite sequences of complex numbers.

We will consider the problems of applying the Fourier matrix and its transpose, i.e.
we are interested in the transformations F, G : CN+1 . CN+' defined by the formulae

N

fj = F()j E Z ak . ei"k2,/N (4.1)
k=O

for j = -N,'2,...,N/2, and

N/2

gj= = G(Oei. :Okx (4.2)
k=-N/2

for j = 0,..., N.

63

64 CHAPTER 4. NONEQUISPACED FFTS: AN ALTERNATIVE APPROACH

Remark 4.1 If Xk = -Wk . 27r/N for k = 0,... N, then (4.1) can be rewritten as

N

fe= - e (4.3)
k=0

or alternatively as F = G*.

We will also consider the more general transformation H: CN+1 CN+1 defined
by the formula

N

hj = H(-y)j = E Yk " eiwkxz. (4.4)
k=O

More formally, we consider the following problems

"* Problem 4.1: Given a, find f = F(ce).

"* Problem 4.2: Given 3, find g = G(O9).

"* Problem 4.3: Given -, find h = H(-y).

The plan of this chapter is as follows. We start in Section 4.1 with some results
from analysis and approximation theory which are used in the design of the algo-
rithms. This is followed by an informal description of the algorithms in Section 4.2.
In Section 4.3 we introduce some notation which is used in a set of more detailed
algorithm descriptions in Section 4.4.

4.1 Mathematical and Numerical Preliminaries

4.1.1 Elementary Analytical Tools

In this subsection we summarize some well-known results to be used in the remainder
of this chapter. Lemmas 4.1 and 4.2 are obvious, and Lemmas 4.3 and 4.4 can be
found, for example, in [14].

Lemma 4.1 For any real c,

r, 2
e'cxdx = - sin(c7r). (4.5)

-C

Lemma 4.2 For any integer k,

1 7 ir dx = 1 ifk=O (4.6)
27] 0 otherwise

4.1. MATHEMATICAL AND NUMERICAL PRELIMINARIES 65

Lemma 4.3 For any real b > 0 and complex z,

e e dx = • ez2 /4b. (4.7)

Lemma 4.4 For any real b > 0 and a > 0,

0 e- 2 dX e-b 2 (4.8)

Proof.

e-e dx = - e-b(+a)2dx < e-ba2 j e- 2badx = e-b2 (4.9)

4.1.2 Relevant Facts from Approximation Theory

The principal tool of this chapter is a somewhat detailed analysis of Fourier series of
functions 0 : [-7r, 7r] -+ C given by the formula

O(x) = eb . e'= (4.10)

where b > ½ and c are real numbers. We present this analysis in the lemmas and
theorems of this subsection, numbered 4.5-4.10.

Lemmas 4.5 and 4.6 provide two inequalities which are used in Theorem 4.7,
and Theorems 4.7-4.9 are intermediate results leading to Theorem 4.10. This final
theorem explains how to approximate functions of the form el= using a small number
of terms, and the algorithms of this chapter are based upon this result. We derive error
bounds for all approximations which allow us to perform numerical computations to
any specified accuracy.

Lemma 4.5 For any real b > ., c and any integer k,

12f e-b 2 cos((c - k)x)dx + e-b'r2 e.e(c-k)xdx I b< 27e-b 2 • (1+ . (4.11)

Proof. Using the triangle inequality and Lemma 4.4 we have

12j1 e -b.
2

. cos((c - k)x)dx + e-br 2
. ' e?(c-k)xdx

_ 21' e-b 2 dx +27re -br2 <2're-b.r2 -• +1) (4.12)

< 27re-'". (I+ 1+

0

66 CHAPTER 4. NONEQUISPACED FFTS: AN ALTERNATIVE APPROACH

Lemma 4.6 For any real b > 1, c and any integer k,

bX bj2 7 8bre- 6W2 1

12L1 e- 2 cos((c - k)x)dx + e-' e i(c-k)dxl .- b(c ek) + T2 (4.13)

Proof. Integrating by parts we have

2 e-b cos((c - k)x)dx
2- 2 -bz2 sin((c - k)x)] oo + f - e -6,

2 sin((c - k)x)dx (4.14)

4b - ke' 7rn(c - k Idx
2__ sin((c - k)r) + - e

c- k c k

After rearranging the terms in (4.14) and integrating by parts again we obtain

ý2[e-bx2 cos((c - k)x)dx + 2esb2 in((c - k)ir)

c-k

4b ~()2 ([Xe-b_ 2 cos((c- 00x) - f0i (1 2bX2)e bX2 cos((c- k)xr)4A*)I)

" ý 6) (,,_el2 + ebX
2 dx + 0j x -2bxe-bx2dxr)

4b 1[2e~ bax2 + ±1

" 4b (C lire-b'r2 + - -e-bW dx + .xe-bx2
P0 + 0bb2 dx) .

(c -k) 2
L.JI L i~r

Finally, due to (4.15) and Lemmas 4.1 and 4.4 we have
0 W(c-2ir4be-b~k)2 • 2 +-)

2 b•e- cos((c- k)x)dx + e-.T ei(c-k)xdx Ib<ek 2

8bire-bir2 . 1(+1 4.16)

(c- k) 2

0

The following theorem provides an explicit expression for the coefficients of a
Fourier series which approximates functions of the form (4.10).

Theorem 4.7 Let O•(x) = e-bx2eic for any real b > 1, c. Then, for anyxE(-7r,7r),

O(X) - pke'kx < e7 2 4b+ 70), (4.17)

4.1. MATHEMATICAL AND NUMERICAL PRELIMINARIES 67

where whereePk(c-k)2 /4b
(4.18)

2v/W
for k =-oo,...,oo.

Proof. We denote by ak the k-th Fourier coefficient for 4, so that for x E (-7r, r),

00

OW)= E• arcei, (4.19)

k=-00

and due to Lemma 4.3 and equation (4.18) we have

Oak -" ir -i

27 Ow~xe kdx
e1b 2e-W eicxe-ikxdx - e.b,2 eicxe-ikxdz

-
00 e-bx2 eic e-ikxdx)27r f .1 _.

e-((-k)2 /4b +"I e-bz2 -iCX+ikxdx - _ ebx2+icx-ikxdx (4.20\27r)17

- 1- e-2 cos((c - k)x)dx.

Rearranging equation (4.20) and applying Lemmas 4.5 and 4.6 we obtain the inequal-
ities

ak - Pk - eb 2 ji eice-ikxdx < e- 2 1 + (4.21)

-Pk - eeb2i J < (ic k 4be-b(P + ;1+)' (4.22)

and it now follows from the combination of (4.19), (4.21) and (4.22) that, for any
x E (-7r, 7r),

_ ikx e- br2 x

OWZ) Pke4• e - .ee
k=oo [-br * [

-00 eikz (O'k -Pk e-b 2 7r eize-ikxdx)
/ -- h-w_,2)k4=-00 \ 2

< EI +2 + e- (1 +.- (4.23)
_~ck? "(c -)27 k,lc-kl<3 72

< b~2 9 2 1 -h6ebi2 10
< 4bek 2 9+

k=3

68 CHAPTER 4. NONEQUISPACED FFTS: AN ALTERNATIVE APPROACH

Some elementary analysis yields

00 1 _x 1 1 4
j2i2 < 9 + 13 ; + - - (4.24)

k€=3 99 3 9

and substituting (4.24) into (4.23) we have

OWx - E Pke ikx - e-blr• e iC < e- W .•(4b + '0. (4.25)
1 =00 9~l

k----o

To complete the proof we make use of the triangle inequality and (4.25) to obtain

Ok(X) - Pke OW(x - FPke - ebf e~ + I eb etX
k=-oo k=-ooI

<e -- 2- 4b + 70). (4.26)

Remark 4.2 According to Theorem 4.7, functions of the form e -b,2e" can be ap-
proximated by a Fourier series whose coefficients are given analytically, and the error
of the approximation decreases exponentially as b increases.

Remark 4.3 The coefficients Pk as defined by (4.18) have a peak at k = [c], the
nearest integer to c, and decay exponentially as k --* ±00. We keep only the q + 1
largest coefficients, where the integer q is chosen such that

q > 4bir, (4.27)

so as to satisfy the inequality

e- (/2)2/4b < eb6r
2 . (4.28)

The following theorem estimates the truncation error under the conditions of
Remark 4.3 and thus provides a way of approximating functions of the form (4.10)
by a (q + 1)-term series.

Theorem 4.8 Let O(x) = e-bz2 eicz for any real b > 1, c, and let q be an even integer
such that q >_ 4b'r. Then, for any x E (-7r, 7r),

[c] +q/2W(x) - E pkeikx < e-bÈ2 . (4b + 9), (4.29)
k=[cl-q/2

where {pk,} are defined by (4.18).

4.1. MATHEMATICAL AND NUMERICAL PRELIMINARIES 69

Proof. For any x E (-7r, r),

[c]+q/2

OW- E leike

Ik =[cj-q/2 - Iek1
+Iek-1.0

< OW - E ike + I _F Pk< Pk (4.30)
k=-oo k>[cJ+q/2 k[c]-9/2

Due to (4.18) and the triangle inequality we have the inequalities

S 1 0-) 4- (4 -k e -l/)2/4b 00 ,-k2 /4b

Ok pe EI eVýi < e- 2 (4.31)
k>[cJ+q/2 kfc]+9/2+1 k=q/2

pke (c]-q/2-1 e-(c-k) 2 /4b 00e -k
2/4b

lk<~cJ-q/2 k____ 2V6;: k=9/2 vr- (432

Some elementary analysis and an application of Lemma 4.4 yields

00e 24 < +- (/2/4 (0
2/4b d < e-~(q/2)2/4b I~ + 4b (4-33)

Eq/+ Jq/2 e 2q/2j

and it follows from the combination of (4.27), (4.28) and (4.33) that

kZI e-k2 4b < e- I +) (4.34)
k=ql2

7

Substituting (4.34) into (4.31) and (4.32) we have

i ik k 2e-b7r2 1 < b er 2 10

k>[c]+q/2 k<[cJ-q/2 7r+ 9 '

and finally, substituting (4.26) and (4.35) into (4.30), we obtain

[c]+q/2 k W . (74b<lke
<c • (4b ++-< 9). (4.36)

k=[c]-q/2 I

0

The following corollary describes a formula for approximating ei= using a series
of q + 1 terms.

70 CHAPTER 4. NONEQUISPACED FFTS: AN ALTERNATIVE APPROACH

Corollary 4.9 Suppose that m, > 2 is an integer and that the conditions of Theo-
rem 4.8 are satisfied. Then, multiplying both sides of (4.29) by e' , we obtain

[c]+q/2

eicx e eb2 • , pkeikX < e w2 .e-b,2 . (4b + 9)
k=[c]-q/2

< ebr/m2 . -br2 . (4b + 9) (4.37)

for anyzE x --• E].

Finally, Theorem 4.10 makes use of a siriple linear scaling to generalize the in-
equality (4.37) from [--, 1] to any interval [-d, d]. This is the principal result of
the section.

Theorem 4.10 Let b > 1,c,d > 0 be real numbers, and let m > 2,q Ž 4bir be
integers. Then, for any x E [-d, d],

[,.d/-]+q/2

eicx - eb(xlr'/d)2
. E pke ikxr/md < e -br2(1-1/m2) . (4b + 9) (4.38)

k=[cmd/7l]-q/2

where {Pk} are defined by (4.18).

Remark 4.4 The error bounds obtained in the above theorems are rather pes-
simistic. Numerical estimates for the actual errors can be found in Section 4.5.

4.2 Informal Descriptions of the Algorithms

In this section we give informal outlines of algorithms for Problems 4.1-4.3 of this
chapter. More formal descriptions of these algorithms are presented in Section 4.4.

The algorithms for these problems are based on the following principal observation.

Observation 4.5 According to Theorem 4.10, any function of the form e" can be
accurately represented on any finite interval on the real line using a small number of
terms of the form ebz2 e kx, and this number of terms, q, is independent of the value
of c.

The FFT algorithm applies the Fourier matrix to arbitrary complex vectors in
O(N log N) operations when {wk } are integers and {xj} are equally spaced in [-7r, 7r].
For the efficient application of the transformations described by (4.1), (4.2) and (4.4),
we relate these more general cases to the equispaced case of the FFT. Observation 4.5
is used in two ways to achieve this:

4.3. NOTATION 71

"* To approximate each eikz in terms of a q-term Fourier series.

"* To approximate the value of a Fourier series at each x, in terms of values at the
nearest q equispaced nodes.

This interpolation between equispaced and nonequispaced sets of points can thus
be performed in O(Nq) operations.

Observation 4.6 The overall complexity of each such algorithm which couples the
FFT with the interpolation scheme will be O(N log N + Nq) operations.

4.3 Notation

In this section we introduce the notation to be used in the next section for the detailed
algorithm descriptions.

For an integer m > 2 and a real number b > 0, we will define a real number E > 0
by

S= e-blr2 (1-1/M2) . (4b + 9), (4.39)

and we will denote by q the smallest even natural number such that

q _> 4b~r. (4.40)

For an integer m and a set of real numbers {wk} we will denote by pk the nearest
integer to mwk for k = 0,..., N, and by {Pjk} a set of real numbers defined by the
formula

Pik = •V' e-(mk(J'k+i))2 /4b (4.41)

for k = 0,...,N and j = -q/2,...,q/2.

Observation 4.7 Setting d = ir in Theorem 4.10 we see that

q/2

e iwkx _ e b(xlm)2
.z Pik - e i(A~k+j)Xm < 6 (4.42)

for any k = 0,..., N and any x E [-r., r], where - is defined by (4.39).

For a given set of complex numbers {frk}, we will denote by {rj} the unique set
of complex coefficients such that

N q/2 mN/2-1

ak Pik = e/m,' (4.43)
k=1 j=-q/2 j=-roN/2

72 CHAPTER 4. NONEQUISPACED FFTS: AN ALTERNATIVE APPROACH

so that
7 : Q•-. Pik. (4.44)

We will denote by {Tj} a set of complex numbers defined by the formula

mN/2-1

Tj E 7k = e21ikj/mN (4.45)
k=-mN/2

for j = -mN/2,...,mN/2- 1.
Further, we will denote by {.•} another set of complex numbers defined by the

formula
Ij = eb(-7j/nN)2• Tj (4.46)

f. r j = -N/2,...,N/2.

Observation 4.8 Combining (4.42) - (4.46) with the triangle irequality, we see that

N
If -fjl E j" akj (4.47)

k=O

for j = -N/2,...,N/2, where {fj = F(a)j} are defined by (4.1).

For an integer rn and a set of real numbers {xj} we will denote by Vj the nearest
integer to xjmN/21r for j = 0,..., N, and by {Qjk} a set of real numbers defined by
the formula

Q l 1 e-(xjrnN/2,r-(ii+k))2 /4b (4.48)Qjk j (448

forj 0,...,N and k = -q/2,...,q/2.

Observation 4.9 Setting d = N/2 in Theorem 4.10 we see that

q/2

eik -- eb(27rk/mN) 2
. . i 1 < • (4.49)

L=-q/2

for any j = 0,..., N and any k E [-N/2, N/2], where e is defined by (4.39).

For a given set of complex numbers {#k}, we will denote by {Uk} a set of complex
numbers defined by the formula

Uk - /3 " eb(27rk/mN) 2 (4.50)

4.3. NOTATION 73

for k = -N/2,..., N/2, and by {U1} a set of complex numbers defined by the formula

N/2

U, = U u- e 7i/m] (4.51)
k=-N/2

for = -mN/2,...,mN/2- 1.
Further, we will denote by {9, } another set of complex numbers defined by the

formula
q/2

1:= Z QjI .'+1 (4.52)
1=-q/2

for j = 0, ... , N.

Observation 4.10 Combining (4.49) - (4.52) with the triangle inequality, we see
that

N
jgj - ýjIl < F, 10k 1 ~ (4.53)

k=O

for J = 0,... ,N, where {gj = G(O3),} are defined by (4.2).

For a set of real numbers {xj} we will denote by 77j the nearest integer to xjN/2r
for j = 0,..., N, and by {Rjk} a set of real numbers defined by the formula

1 • -(z jNI2 -- (,7j+k))'14b (. 4
Rjk = - e (4.54)

for j = 0,...,N and k = -q/2,...,q/2.

Observation 4.11 Setting d = N/2 in Theorem 4.10 we see that

q12

e ikxu/m - e.b(2irk/mN)2
. Ey j . ~i(77,+1)21rk/mN < E (4.55)
l=-q/2

for any j = 0,... N and any k E [-N/2, N/2) where e is defined by (4.39).

For a given set of complex numbers {-k}, we will denote by {vj} the unique set
of complex coefficients such that

N q/2 mN/2

7Yk P i +)k E Z vj e2j/m, (4.56)
k=O 3=-ql2 j=-mNf2

so that
V = 'k" Pik. (4.57)

),k,77k +2
1

74 CHAPTER 4. NONEQUISPACED FFTS: AN ALTERNATIVE APPROACH

We denote by { V1 } a set of complex numbers defined by the formula

mN/2

V1 = E Vk - eb(27rk/m2N)2 . e27rikj/M2N (4.58)
k=-mN/2

for I = -m 2N/2,... , m 2N/2 - 1.
Further, we will denote by {hi} another set of complex numbers defined by the

formula
q/2

h, = e, RjZ - Vn,+, (4.59)
1=-q/2

for 0,..., N.

Observation 4.12 Combining (4.42) and (4.55) - (4.59) with the triangle inequality,
we see that

N
Ihj - hjj < - E t1kI (4.60)

k=O

for ' = 0,... ,N, where {h3 = H(-)j} are defined by (4.4), and

S= 2e-b7i 2(1-2/mn2) . (4b + 9). (4.61)

4.4 Detailed Descriptions of the Algorithms

This section contains descriptions of algorithms for Problems 4.1-4.3 of this chapter.
In the tables below we will make use of the facts that q ,- log(!) and m 2 < N.

Remark 4.13 Results of our extensive numerical experiments indicate that m = 2 is
an optimal choice for both efficiency and accuracy. Each of Algorithms 4.1-4.3 then
requires

0 (N.- log N + N -log (!)(4.62)
arithmetic operations.

Remark 4.14 The storage requirements of an algorithm are also an important char-
acteristic. From the descriptions of the initialization steps the asymptotic storage
requirements for each of Algorithms 4.1-4.3 are of the form

A- N q (4.63)

where the coefficient A is software- and hardware-dependent.

4.4. DETAILED DESCRIPTIONS OF THE ALGORITHMS 75

Algorithm 4.1
Step Complexity Description
Init O(Nq) Comment [Input parameter is the vector {wO,... ,WN}-]

Choose precision e to be achieved, set b z log(l/E) and q = r4brl.
do k = 0,N

Determine Ilk, the nearest integer to mwk
do j = -q/2, q/2

Compute Pik according to (4.41)
end do

end do
do j = -N/2, N/2

Compute eb(2•j/mN)
2

end do

1 O(Nq) Comment [Input parameter is the vector {of0 , aN.]

Comment [Compute Fourier coefficients rj.]

do k = O,N
do j = -q/2, q/2

7 Tk+j '-- rk+j + Pik * ak

end do
end do

2 0(mNlogN) Comment [Evaluate this Fourier Series at equispaced points in

[-m7r, mlr] using inverse FFT of size inN.]
mN12-1 21rikj/mN for j -a/,.rN21

Compute T, = k=-mN/2 k = -mN/2,..., mN/2 - 1.

3 O(N) Comment [Scale the values at those points which lie in [- r, r].]

do j = -N/2, N/2
L j b(27rj/my)2

fj = Tj -
end do

Total O(N .log(!) + mN .logN)

76 CHAPTER 4. NONEQUISPACED FFTS: A.v ALTERNATIVE APPROACH

Algorithm 4.2
Step Complexity Description
Init O(Nq) Comment [Input parameter is the vector {zfO, XN}.]

Choose precision e to be achieved, set b : log(I/e) and q = [4br].
do j = 0,N

Determine vi, the nearest integer to xjmN/21r
do k = -q/2,q/2

Compute Qjk according to (4.48)
end do

end do
do k = -N/2, N/2

Compute eb(27rk/mN)
2

end do

1 O(N) Comment [Input parameter is the complex vector
10-N12, - " "-, PN/2} -1

Comment [Compute new, scaled Fourier coefficients.]

do k = -N/2, N/2

Uk = Ok "eb(2rk/mN)
2

end do

2 0(mN log N) Comment [Evaluate this Fourier Series at equispaced points in
[-7r, ir] using inverse FFT of size mN.]

v'N12 e21rikj/[mN

Compute Uj = .k=-N/2 Uk e u for j = -mN/2,..., mN/2 - 1.

3 O(Nq) Comment [Compute approximate values at desired points in terms

of the values at equispaced points.]

do j = 0,N

do k = -q/2, q/2

k -- ýj + Qjk . V,,,+k

end do
end do

Total O(mN .logN + N -log(!))

4.4. DETAILED DESCRIPTIONS OF THE ALGORITHMS 77

Algorithm 4.3

Step Complexity Description

init O(Nq) Comment [Input parameters are the vectors fwo, WN} and
{ XO,. ., XN}.]

Choose precision E to be achieved, set b 2 log(1/E) and q = [4bw1.
do k = 0,N

Determine Pk, the nearest integer to rnwk

do j = -q/2, q/2

Compute Pjk according to (4.41)
end do

end do

do k = -mN/2, mN/2

Compute eb(27rk/m 2 N)2

end do
,do j = 0,N

Determine %/, the nearest integer to xN/27r
do k = -q/2,q/2

Compute Rik according to (4.54)
end do

end do
do j = 0,N

Compute eb(zj/m)2

end do

O(Nq) Comment [Input parameter is the vector .0...,
Comment [Compute Fourier coefficients vj.]

do k = O,N
do j = -q/2,q/2

V uk+j , Vol+j + Pik " 7k

end do
end do

2 O(mN) Comment [Scale the coefficients.]
do k = -mN/2, mN/2

Vk - Vk" eb(21rk/m
2 N) 2

end do

3 O(m 2 N log N) Comment [Evaluate this Fourier Series at equispaced points in
[-mir, mlr] using inverse FFT of size m 2N.]

Compute V, = V-N/2 vk . e2ik3/m2 N for j = -m 2 N/2,..., m2N/2 - 1.

78 CHAPTER 4. NONEQUISPACED FFTS: AN ALTERNATIVE APPROACH

4 O(Nq) Comment [Compute approximate values at desired points in
terms of the values at equispaced points.]
do j = 0,N

do k = -q/2, q/2
,- - hj + R.,

end do
end do

5 O(N) Comment [Scale the values.]
do j = 0,N

hi +-h • eb(xu//m)
2

end do

Total 0(m2 N .logN + N -log(!))

4.5 Numerical Estimates of Error Bounds

In this section we present numerical estimates of error bounds for Theorem 4.10 of
Section 4.1.2. For our experiments we chose c = 0 and d = 7r, and chose two different
sets of values of m, b and q. The expression

q/2

r(x) = eb 2 e . Pk"e, (4.64)
k=-q/2

where Pk is defined by (4.18), was evaluated at n = 1000 equally spaced nodes {xk}

in the interval [-1, 1], and the following three quantities were computed:

"* the maximum absolute error E., defined by the formula

= max Ir(xk)I, (4.65)
i<k<n

"* the relative L2 error E2 , defined by the formula

E= k=1 r(xk) (4.66)

"* the error bound EB of Theorem 4.10, defined by the formula

EB = e-b 2 (j1/m 2) . (4b + 9). (4.67)

4.5. NUMERICAL ESTIMATES OF ERROR BOUNDS 79

m b q E2 EB

2 0.5993 10 0.825 E-05 0.176 E-05 0.135 E-00
"2 1.5629 28 0.400 E-13 0.580 E-14 0.163 E-03

Table 4.1: Error Bounds for Theorem 4.10.

The results of this experiment are presented in Table 4.1.
We observe from Table 4.1 that the theoretical error bound EB of Theorem 4.10

is very weak compared with the experimentally obtained bound. Indeed, the require-
ment that EB be appropriately small would impose much larger values of b and q
than are actually needed for Algorithms 4.1-4.3.

80 CHAPTER 4. NONEQUISPACED FFTS: AN ALTERNATIVE APPROACH

Chapter 5

Implementation and Numerical
Results

We have written FORTRAN implementations of the algorithms of this thesis us-
ing double precision arithmetic, and have applied these programs to a variety of
situations. In this chapter we will restrict our attention to the implementations of
Algorithms 3.1-3.4 and Algorithms 4.1-4.3, and will demonstrate the performance of
these algorithms with numerical examples.

Several technical details of our implementations appear to be worth mentioning
here:

1. Each implementation consists of two main subroutines: the first is an initial-
ization stage in which the matrix operators of the algorithm are precomputed
and stored, and the second is an evaluation stage in which these operators are
applied. Successive application of the linear transformations to multiple vectors
requires the initialization to be performed only once.

2. The parameters for each algorithm were chosen to retain maximum precision.
For Algorithms 4.1-4.3 we chose m = 2, b = 1.5629 and q = 28, and for the
FMM algorithms of Chapter 2 used by Algorithms 3.1-3.4 we chose p = 22,
P = 10, s = 16 and nlevs = log12(n/s).

3. Algorithms 3.1-3.4 and 4.1-4.3 all require the evaluation of sums of the form
N/2-1

h = E Ok " e2(5.1)

k=-N/2

forj = -N/2,..., N/2 - 1, whereas most FFT software computes sums of the
form

N-i

f= Ok " e21rikj/N (5.2)
k8O

81

82 CHAPTER 5. IMPLEMENTATION AND NUMERICAL RESULTS

for j = 0,..., N- 1. We used a standard FFT to evaluate sums of the form (5.1)
by defining &k =ak for k = 0,...,N/2- 1, &k = ak-N for k = N/2,...,N- 1,
jS = fj forj =0,...,N/2-1 and fj = fk-N forj = N/2,...,N-1. This
substitution converts the form (5.1) to the form (5.2).

4. The algorithms of this thesis which require an FFT of size proportional to N
will perform efficiently whenever the FFT does. This restriction on problem
size can be removed by extending the input vector to length 2R1O9 2 NJ (i.e. the
smallest power of 2 which is greater than N) and padding it with zeroes. This
ensures that the algorithms will perform efficiently for any choice of N. In our
implementations, these changes were made.

Our implementations of the algorithms of this thesis have been tested on the the
Sun SPARCstation 1 for a variety of input data. Seven experiments are described in
this chapter, and their results are summarized in Tables 5.1-5.7. These tables contain
error estimates and CPU timings for the algorithms, with all computations performed
in double precision arithmetic.

The table entries are described below.

"* The first column in each table contains the problem size N.

"* The second column in each table contains the relative oo-norm error defined by
the formula

E. = max lfj .- fj I/ max Jfj I (5.3)
I<_j<N]I<j<_N

where the vector f is the algorithm output and the vector f is the result of a
direct calculation.

"* The third column in each table contains the relative 2-norm error defined by
the formula

E -Ell_ - f_12 _ _ f__ , (5.4)

where the vector f is the algorithm output and the vector f is the result of a
direct calculation.

" The fourth and fifth columns in each table contain CPU timings for the initial-
ization and evaluation stages of the algorithm.

" The sixth column in each table contains CPU timings for the corresponding
direct calculation.

83

9 The last column in each table contains CPU timings for an FFT of the same
size.

Remark 5.1 Our implementations of the direct methods for Examples 1, 2, 4 and
5 were optimized by using the fact that eikx = (eix,)k to reduce the number of com-
plex exponential computations. In Example 3 however, N2 exponentials are required
for the direct method, and for larger N, the available memory on the machine is
insufficient for the precomputation and storage of these numbers. The direct imple-
mentation we used for this problem computes each exponential when it is needed.

Remark 5.2 Standard LINPACK Gaussian Elimination subroutines were used as
the direct methods for comparing timings in Examples 6 and 7. Estimated timings
are presented for larger N, where this computation became impractical.

Following are the descriptions of the experiments, and the tables of numerical
results.
Example 1.
Here we consider the transformation F : CN+I --_ CN+I of Problem 4.1, defined by
the formula

N

F(=)j = . e (5.5)
k=O

for j = -N/2,..., N/2. In this example, {wO, WN} were randomly distributed on
the interval [-N/2, N/2] and , cN} were complex numbers randomly chosen
from the unit square

0 < Re(z) _< 1, 0 < Im(z) _• 1. (5.6)

The results of applying Algorithm 4.1 to this problem are presented in Table 5.1.

Example 2.
Here we consider the transformation G : CN+I --. Cg+1 of Problem 4.2, defined by
the formula

N/2

E() = 1 ekxj (5.7)
k=-N/2

for j = 0,.. . , N. In this example, {xO,. .. ,x} were randomly distributed on the
interval [-7r, 7r] and {1-N/2,..., N/N} were complex numbers randomly chosen from
the unit square

0 < Re(z) < 1, 0 < Im(z) e 1. (5.8)

The results of applying Algorithm 4.2 to this problem are presented in Table 5.2.

84 CHAPTER 5. IMPLEMENTATION AND NUMERICAL RESULTS

Example 3.
Here we consider the transformation H : CN+i -* CN+1 of Problem 4.3, defined by
the formula

N

H()j = E 11k" e iklj (5.9)
k=O

for j = 0,... , N. In this example, {Wo,. . . , WN} were randomly distributed on the
interval [-N/2, N/2], {Xo,. .. , XN were randomly distributed on the interval [-r, 7r]
and 1Yo,. ... YN} were complex numbers randomly chosen from the unit square

0 < Re(z) _• 1, 0 < Im(z) < 1. (5.10)

The results of applying Algorithm 4.3 to this problem are presented in Table 5.3.

Example 4.
Here we consider the transformation F : CN --- CN of Problem 3.1, defined by the
formula

N/2-1

F(a)j = Z ak . ek• (5.11)
k=-N/2

for j = 1,...,N. In this example, {x1,... ,XN} were randomly distributed on the in-
terval [-7r, ir] and {a-N/2,... , aN/2-1 } were complex numbers randomly chosen from
the unit square

0 < Re(z) < 1, 0 < Im(z) < 1. (5.12)

The results of applying Algorithm 3.1 to this problem are presented in Table 5.4.

Example 5.

Here we consider the transformation FT : CN __. CN of Problem 3.2, defined by the
formula

N

FT(a)j = ,ak" eix" (5.13)
k=1

for j = -N/2,..., N/2 - 1. In this example, {Xl,..., XN} were randomly distributed
on the interval [-7r, r] and {af,. .. ,aN were complex numbers randomly chosen
from the unit square

0 < Re(z) _• 1, 0 < Im(z) < 1. (5.14)

The results of applying Algorithm 3.2 to this problem are presented in Table 5.5.

Example 6.

Here we consider the transformation F-1 : CN _ CN of Problem 3.3 where F is

85

defined by the formula
N/2-I

F(c)= Z k. eikx, (5.15)
k=-N/2

for j = 1,..., N. In this example, fX,,... , XN} were defined by the formulae

xj = -jr + 27r J + 0.5+6 3 (5.16)
N

for j = 1,..., N, where 6j were randomly distributed on the interval [-0.1, 0.1]. In
addition, {a-N/2,..., aN/2-1} were complex numbers randomly chosen from the unit
square

0 < Re(z) _< 1, 0 < Im(z) _• 1, (5.17)

and the numbers {fl,. . . , fN} were computed directly in double precision arithmetic
according to the formula fj = F(a)j. The vector f was then used as input for Algo-
rithm 3.3. Results of this experiment are presented in Table 5.6.

Example 7.
Here we consider the transformation (FT)-1 : CN --. CN of Problem 3.4 where FT is
defined by the formula

N

FT(a)j = ak eijx; (5.18)
k=1

forj = -N/2,..., N/2-1. In this example, {x 1 ,. .. , XN} were defined by the formulae

Xj = -7r + 27r .J + 0.5 + bj (5.19)
N

for j = 1,..., N, where ij were randomly distributed on the interval [-0.1,0.11. In
addition, {lC1,..., CfN} were complex numbers randomly chosen from the unit square

0 < Re(z) _< 1, 0 < Im(z) < 1, (5.20)

and the numbers {f-N/2,. . . , fN12-1} were computed directly in double precision
arithmetic according to the formula fj = FT(a)j. The vector f was then used as
input for Algorithm 3.4. Results of this experiment are presented in Table 5.7.

The following observations can be made from Tables 5.1-5.7, and are in agree-
ment with results of our more extensive experiments for this particular architecture,
implementation and range of N.

1. All of the algorithms permit high accuracy to be attained, and the observed
errors are in accordance with the theoretically obtained error bounds.

86 CHAPTER 5. IMPLEMENTATION AND NUMERICAL RESULTS

2. As expected, the CPU timings for all the algorithms grow slightly faster than
linearly with the problem size, N.

3. The timings for Algorithms 4.1 and 4.2 are similar, which is to be expected
since Problem 4.2 is the adjoint of Problem 4.1. Algorithm 4.3 is about twice as
costly, which is in agreement with the fact that it is a synthesis of Algorithms 4.1
and 4.2.

4. The timings for Algorithms 3.1-3.4 are similar, which is to be expected since
these four algorithms are so closely related.

5. The initialization times for Algorithms 3.1 and 3.2 are considerably less than
those for Algorithms 3.3 and 3.4. This is because the former pair does not
require the additional computation of the numbers {ck} and {dk}.

6. Algorithms 4.1 and 4.2 are about 5 times as costly as an FFT of the same size,
and for Algorithms 3.1-3.4, this ratio is about 15.

7. Break-even points for Algorithms 4.1 and 4.2 with the direct method are at
N = 128 if the initialization time is included, and at N = 16 if it is ignored.
Algorithm 4.3 becomes faster than the direct calculation at N = 32, even when
the initialization time is included.

8. Algorithms 3.1 and 3.2 can compete with the direct method at about N =

32 ignoring initialization time, and at N = 1024 including the initialization.
Algorithms 3.3 and 3.4 are always dramatically faster than the direct calculation
(15000 times faster at N = 2048) if we ignore initialization time, and break even
with it at N = 64 if we include the initialization.

9. The initialization stage is much more costly than the evaluation stage for all of
the algorithms. Implementing the algorithms in two stages thus gives consider-
able time savings whenever the same linear transformation is to be applied to
multiple vectors.

87

N Errors Timings (sec.)
E. E2 Alg. Init. Alg. Eval. Direct FFT

64 0.602 E-14 0.638 E-14 0.036 0.008 0.02 0.001

128 0.356 E-14 0.715 E- 14 0.075 0.016 0.08 0.002
256 0.437 E- 14 0.946 E- 14 0.148 0.034 0.31 0.005

512 0.519 E-14 0.160 E- 13 0.297 0.075 1.20 0.012
1024 0.518 E-14 0.314 E- 13 0.600 0.155 4.76 0.026

L 2048 0.755 E- 14 1 0.631 E- 13 1.204 0.322 18-93 1 0.059

Table 5.1: Example 1, Numerical Results for Algorithm 4.1.

N Errors Timings (sec.)
E. E2 Alg. Init. Alg. Eval. Direct FFT

64 0.249 E- 14 0.814 E- 14 0.038 0.005 0.02 0.001

128 0.501 E-14 0.746 E- 14 0.075 0.012 0.09 0.002
256 0.418 E-14 0.623 E-14 0.148 0.028 0.33 0.005

512 0.356 E-14 0.831 E- 14 LO.297 0.060 1.24 0.012
1024 0.793 E-14 0.192 E-13 0.596 0.126 4.93 0.026

2048 1 0.138 E-13 0.405 E- 13 1.188 1 0.264 19.62 0.059

Table 5.2: Example 2, Numerical Results for Algorithm 4.2.

N Errors Timings (sec.)
E. E2 Alg. Init. Alg. Eval. Direct FFT

64 0.166 E-13 0.ý26 E-13 0.074 0.015 0.20 0.001

128 0.252 E-13 0.216 E- 13 0.153 0.034 0.79 0.002
256 0.318 E- 13 0.315 E- 13 0.302 0.069 3.18 0.005

512 0.131 E- 13 0.289 E- 13 0.601 0.146 12.76 0.012
1024 0.203 E- 13 0.425 E- 13 1.210 0.297 51.12 0.026

2048 0.324 E- 13 0.801 E- 13 2.403 0.643 205.17 0.059

Table 5.3: Example 3, Numerical Results for Algorithm 4.3.

88 CHAPTER 5. IMPLEMENTATION AND NUMERICAL RESULTS

N Errors Timings (sec.)
E_ _ E2 Alg. Init. Alg. Eval. Direct FFT

128 0.379 E-14 0.704 E-14 1.04 0.030 0.09 0.002
256 0.398 E-14 0.116 E-13 2.03 0.081 0.33 0.005
512 0.499 E-14 0.195 E-13 3.26 0.171 1.24 0.012
1024 0.318 E-13 0.625 E-13 4.97 0.408 4.93 0.026
2048 0.763 E-13 0.204 E-12 8.07 0.822 19.62 0.059

Table 5.4: Example 4, Numerical Results for Algorithm 3.1.

N Errors Timings (sec.)
E. E2 Alg. Init. Alg. Eval. Direct FFT

128 0.206 E-14 0.800 E-14 1.03 0.033 0.08 0.002
256 0.323 E-14 0.136 E-13 2.05 0.081 0.31 0.005
512 0.153 E-13 0.343 E-13 3.21 0.174 1.20 0.012
1024 0.180 E-13 0.654 E-13 5.11 0.409 4.76 0.026
2048 0.470 E-13 0.221 E-12 8.16 0.823 18.93 0.059

Table 5.5: Example 5, Numerical Results for Algorithm 3.2.

89

N Errors Timings (sec.)
E_____ AEg. Init. Alg. Eval. Direct FFT

128 0.117 E-13 0.800 E-14 1.28 0.034 2.96 0.002
256 0.196 E-13 0.137 E-13 2.51 0.082 23.6 0.005
512 0.344 E-13 0.230 E-13 4.33 0.175 189 0.012
1024 0.107 E-12 0.757 E-13 7.45 0.409 1512 (est.) 0.026
2048 0.357 E-12 0.247 E-12 12.97 0.819 12096 (est.) 0.059

Table 5.6: Example 6, Numerical Results for Algorithm 3.3.

N Errors Timings (sec.)
E._ E2 Alg. Init. Alg. Eval. Direct FFT

128 0.134 E-13 0.806 E-14 1.26 0.033 2.96 0.002
256 0.511 E-13 0.179 E-13 2.47 0.080 23.6 0.005
512 0.870 E-13 0.373 E-13 4.24 0.173 189 0.012
1024 0.178 E-12 0.811 E-13 7.29 0.407 1512 (est.) 0.026
2048 0.942 E-12 0.369 E-12 12.80 0.820 12096 (est.) 0.059

Table 5.7: Example 7, Numerical Results for Algorithm 3.4.

90 CHAPTER 5. IMPLEMENTATION AND NUMERICAL RESULTS

Chapter 6

Conclusions and Generalizations

The principal results of this thesis are two groups of efficient algorithms for computing
FFTs for nonequispaced data to any specified precision. Similarities and differences
between the two approaches are summarized below.

1. Both sets of algorithms use a standard FFT.

2. Both sets of algorithms use interpolation formulae to transform function values
from equispaced to nonequispaced points and vice-versa. Algorithms 3.1-3.4
use an interpolation scheme based on the FMM, while Algorithms 4.1-4.3 use
an interpolation scheme based on the Fourier analysis of Gaussian bells.

3. For the application of the linear tranformations being considered, the algorithms
of Chapter 4 are more efficient than the algorithms of Chapter 3.

4. For the inversion of these linear transformations, the schemes of Chapter 4 can
be applied iteratively, however the direct approach of Chapter 3 is generally
more efficient.

5. Algorithms 3.1-3.4 comprise a set of closely related forward and inverse algo-
rithms which can be generalized to complex data points.

In conclusion, two groups of algorithms have been presented for the rapid applica-
tion and inversion of matrices of the Fourier kernel. These problems can be viewed as
generalizations of the discrete Fourier transform, and the algorithms, while making
use of certain simple results from analysis, are very versatile, and have a broad range
of applications in many branches of mathematics, science and engineering. Several
related algorithms have also been presented which utilize the analytical tools of this
thesis. These include:

1. an efficient version of the Fast Multipole Method in one dimension,

91

92 CHAPTER 6. CONCLUSIONS AND GENERALIZATIONS

2. a fast algorithm for polynomial interpolation on the real line,

3. fast algorithms for spectral integration and differentiation of functions tabulated
at nodes other than Chebyshev, and,

4. FFT for complex data points.

The results of this thesis are currently being applied to problems in a diversity of areas.
Examples include problems in the numerical solution of parabolic partial differential
equations, the analysis of seismic data, the modelling of semiconductors, weather
prediction and the numerical simulation of fluid behavior.

Several straightforward generalizations of the results of this thesis are discussed
below.

1. Problems 3.1, 3.2, 4.1, 4.2 and 4.3 all involve the evaluation of an N-term series
at N points. Minor modifications to Algorithms 3.1, 3.2, 4.1, 4.2 and 4.3 will
allow the efficient evaluation of these N-term series at M points, where M # N.
These changes have been implemented.

2. The algorithms of this thesis also assume that wk E [-N/2, N121 and xi E
[-ir, 7r]. Other distributions of w and x can be handled by appropriately parti-
tioning these vectors, treating each partition separately and finally combining
the results. The following observation describes translation operators which can
be used for each partition, in combination with one of Algorithms 4.1-4.3, or
with one of Algorithms 3.1-3.2.

Observation 6.1 Let a, b > 0, c, d > 0 be a set of real numbers and suppose
thatwk E [a-b,a+b] fork =0,...,N and x. E [c-d,c+d] for =O,...,M.

Then we can write

N N

_ak • e iwkxj = eiax, E Z ak . ei(-k-a)c . iLa' -a)(.-c)

k=O k=O
N

= ea•.' a/ eiwX, (6.1)
k=O

where

O•€ -" Ok " i(wk-a)c,

k= (wk - a)d/7r, (6.2)

x = (xj-c)rl/dE[-7r, r].

93

Remark 6.2 An algorithm of this type will perform efficiently when the points
within a partition are close together and there are very few partitions, and not
so efficiently if the points are widely separated and there are many partitions.

3. The algorithms of this thesis are based on a special case of a more general idea,
namely the adaptive use of interpolation techniques to speed up large scale
computations. Other examples of this approach include the use of wavelets for
the construction of fast numerical algorithms (see, for example, [1], [4)), and the
use of multipole or Chebyshev expansions for the compression of certain classes
of linear operators (see, for example, [21, [71, [22]).

4. One of the more far-reaching extensions of the results of this thesis is a set
of algorithms for discrete Fourier transforms in several dimensions. In two
dimensions, for example, we may wish to evaluate the sums

N

fm,n = k O•i " etMzk+in'k (6.3)
k=1

for each integer pair (m, n), where the points (Xk., yk) are generally distributed
in the plane. A straightforward application of the techniques of this thesis yields
an order

anodrN log N + N -log 2 G)(6.4)
algorithm for this problem. Special-purpose algorithms can also be designed for
increased efficiency in cases when the points (Xk, yk) lie on a curve. Detailed
investigations into higher dimensional problems of this type are currently in
progress and will be reported at a later date.

94 CHAPTER 6. CONCLUSIONS AND GENERALIZATIONS

Bibliography

[1] B. ALPERT, G. BEYLKIN, R. COIFMAN AND V. ROKHLIN, Wavelets for the
Fast Solution of Second-Kind Integral Equations, SIAM J. Sci. Stat. Comp., 14
(1993).

[2] B. ALPERT AND V. ROKHLIN, A Fast Algorithm for the Evaluation of Legendre
Expansions, Technical Report 671, Yale Computer Science Department, 1988.

[3] D. H. BAILEY AND P. N. SWARZTRAUBER, The fractional Fourier transform
and applications, SIAM Review, 33 (1991), pp. 389-404.

[4] G. BEYLKIN, R. COIFMAN AND V. ROKHLIN, Fast Wavelet Transforms and
Numerical Algorithms 1, Comm. on Pure and Applied Mathematics, 44 (1991),
pp. 141-183.

[51 E. ORAN BRIGHAM, The Fast Fourier Transform and its Applications, Prentice
Hall Inc., Englewood Cliffs, N.J., 1988.

[6] R. A. BROOKS AND G. Di CHIRO, Principles of Computer Assisted Tomography
(CAT) in Radiographic and Radioisotopic Imaging, Phys. Med. Biol., 21 (1976),
pp. 689-732.

[7] J. CARRIER, L. GREENGARD AND V. ROKHLIN, A Fast Adaptive Multipole
Algorithm for Particle Simulations, SIAM J. Sci. Stat. Comp., 9 (1988), pp. 669-
686.

[8] J. W. COOLEY AND J. W. TUKEY, An algorithm for the machine computation
of complex Fourier series, Math. Comp., 19 (1965), pp. 297-301.

[9] G. DAHLQUIST AND A. BJORCK, Numerical Methods, Prentice Hall Inc., Engle-
wood Cliffs, N.J., 1974.

[10] A. DUTT AND V. ROKHLIN, On the Rapid Evaluation of Trigonometric Series,

Technical Report 893, Yale Computer Science Dept, 1991.

95

96 BIBLIOGRAPHY

[11] A. DUTT AND V. ROKHLIN, Fast Fourier Transforms for Nonequispaced Data,
SIAM J. Sci. Stat. Comp., to appear, 1993.

[12] D. GOTTLIEB, M. Y. HUSSAINI AND S. ORSZAG, in Spectral Methods for
Partial Differential Equations, edited by R. G. Voigt, D. Gottlieb and M. Y.
Hussaini, SIAM, Philadelphia PA, 1984, p.1 .

[13] D. GOTTLIEB AND S. ORSZAG, Numerical Analysis of Spectral Methods, SIAM.
Philadelphia PA, 1977.

[14] I. S. GRADSHTEYN AND I. M. RYZHIK, Table of Integrals, Series and Products,
Academic Press Inc., 1980.

[15] L. GREENGARD, Spectral Integration and Two-Point Boundary Value Problems,
Technical Report 646, Yale Computer Science Department, 1988.

[16] L. GREENGARD AND V. ROKHLIN, A Fast Algorithm for Particle Simulations,
J. Comp. Phys., 73 (1987), pp. 325-348.

[17] M. GU AND S. C. EISENSTAT, A Divide-And-Conquer Algorithm for the Sym-
metric Tridiagonal Eigenproblem, Technical Report 932, Yale Computer Science
Department, 1992.

[18] M. GU AND S. C. EISENSTAT, A Divide-And-Conquer Algorithm for the Bidi-
agonal SVD, Technical Report 933, Yale Computer Science Department, 1992.

[19] M. Gu AND V. ROKHLIN, personal communication.

[20] E. L. HALL, Computer Image Processing and Recognition, Academic Press, New
York, 1979.

[21] G. T. HERMAN, Image Reconstruction from Projections: Implementation and
Applications, Springer Verlag, New York, 1979.

[22] V. ROKHLIN, A Fast Algorithm for the Discrete Laplace Transformation, Journal
of Complexity, 4 (1988)., pp. 12-32.

[23] J. STOER AND R. BULIRSCH, Introduction to Numerical Analysis, Springer
Verlag, New York, 1980.

[24] C. VAN LOAN, Computational Frameworks for the Fast Fourier Transform,
SIAM, Philadelphia, 1992.

[25] H. JOSEPH WEAVER, Theory of Discrete and Continuous Fourier Analysis, Wi-
ley, 1989.

