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ABSTRACT

A new least squares algorithm is proposed and investigated for fast frequency and phase
acquisition of sinusoids in the presence of noise. This algorithm is a special case of more
general adaptive parameter estimation techniques. The advantages of the algorithms are
their conceptual simplicity, flexibility and applicability to general situations. For example,
the frequency to be acquired can be time varying, and the noise can be non-gaussian, non-
stationary and colored.

As the proposed algorithm can be made recursive in the number of observations, it is not
necessary to have a-priori knowledge of the received signal-to-noise ratio or to specify the
measurement time. This would be required for batch processing techniques, such as the
Fast Fourier Transform (FFT). The proposed algorithm improves the frequency estimate
on a recursive basis as more and more observations are obtained. When the algorithm is
applied in real time, it has the extra advantage that the observations need not be stored.
The algorithm also yields a real time confidence measure as to the accuracy of the
estimator.

1.   INTRODUCTION

The problem of estimating the parameters of a sinusoidal signal has received considerable
attention in the literature, see for example references (1-7) and their references. Such a
problem arises in diverse engineering situations such as carrier tracking for
communications systems, and the measurement of Doppler in position location,
navigation and radar systems.

A variety of techniques have been proposed in the literature to solve such problems
including, to mention a few, the application of the Fast Fourier Transform (FFT) as in
(1,2), one and two-dimensional Kalman filters based on a linearized model (5), a modified



extended Kalman filter that results in a phase locked loop (6), or a digital phase locked
loop derived on the basis of linear stochastic optimization (7).

The fact that there are so many different techniques to solve the problem indicates the
importance of the problem. This however, also implies that there is no single technique
superior to all others in all possible situations and/or with respect to different criteria such
as computational complexity, statistical efficiency etc.

In this paper we propose the application of the least squares parameter estimation
technique to the estimation of an unknown frequency. The least squares algorithm has
been extensively studied in the literature in terms of convergence, computational
requirements etc. (8,9), and has found varied applications in a wide variety of
communication and signal processing problems. This is due to the relative simplicity of
the least squares algorithm and its attractive convergence rates. In (9) for example, it has
been shown that the algorithm exhibits an initial factorial convergence rate followed by
exponential convergence. Such a convergence is very desirable in almost all estimation
situations including the one under consideration.

When the least squares (LS) algorithm is implemented via the fast algorithm of (10), the
computational requirements of the algorithm compare favorably to the FFT algorithm.
The least squares algorithm offers, in addition to the above discussed rapid initial
convergence, several other desirable features. First, the least squares algorithm provides
final estimates of frequency, whereas FFT estimation requires use of a secondary
algorithm to interpolate between frequencies. Secondly, using an exponentially weighted
least squares algorithm, it is possible to track a time varying frequency. We compare the
least squares algorithm to the FFT since the latter is “close” to the optimum in terms of
the statistical efficiency (1).

In Section 2 we present the signal model followed by the least squares algorithm in
Section 3. Section 4 analyzes the estimation error of the algorithm. In Sections 5 and 6 a
few examples of the application of the algorithm are presented. The last section of the
paper contains some concluding remarks.

2.   THE SIGNAL MODEL

Consider the problem of estimating an unknown frequency wd from the measurements
y , z  belowk  k

y  = A Sin(T t +N) + nk   d k   ik

; k = 1,2 .... (1)
z  = A Cos(T t +N + nk   d k   qk



Here (y ,z ) represent the samples of the in-phase and quadrature components of ak k

received signal s(t) obtained by demodulating s(t) by a carrier reference signal r(t) and its
90E phase shifted version respectively, i.e.,

s(t) = A (T t+N ) + n(t)Sin 0 0

r(t) = 2 (Tct+N )    ; N = N  - N , T  = T  -T (2)Sin c        0  c  d  o c

with n  and n  denoting the quadrature components of white noise n(t) with variance F .ik  qk
2

The algorithm can be easily extended to the case where n(t) is a colored noise.

The measurement equations can be written in alternative forms as follows:

y  = A Sin(T t )CosN + A Cos(T t ) SinN + nk   d k    d k    ik

z  = A Cos(T t )CosN !A Cos(T t ) SinN + n (3)k   d k   d k    qk

or, with a power series expansion for the sine and cosine functions;

(4)

In the above approximation the terms of the order (T t ) /n! and smaller order have beend k
n

ignored. (Assuming here that T t  < n). With obvious definitions, the measurementd k

equation can be written in a form “linear in parameters.”

Z  = 2'x  + n (5)k  k  k

In the above, denotes transpose, Z'  = [y  z ], n'  = [n  n ], x'  denotes the observablek  k k  k  ik qk  k

state vector (1 t  t  ... t ] and 2' is the unknown parameter matrix. A standard leastk k   k
2  n-1

square algorithm can be applied to estimate the unknown parameter matrix 2' from the
sequence of noisy observations Z , k = 1,2...,N.k



3.   PARAMETER ESTIMATION VIA LEAST SQUARES

The parameter matrix 2' can be estimated by either a recursive or non-recursive form. We
consider in this paper the non-recursive form. The estimate of 2 on the basis of
measurement Z , k = 1,2...,N, denoted 2 , is given byk      N

^

(6)

where 0 < 8 # 1 is the exponential data weighting factor. One may refer to References
(8,11), for example, for an equivalent recursive update of 2 . From 2 , the estimates of A,^   ^

N   N

T  and N can be obtained.d

Computational Requirements

The algorithm (6) requires an inverse of a symmetric (nxn) matrix once, requiring order n2

computations. It may appear that the computation of each x x ' term requires nj j
2

computations. However, detailed examination shows that only 2n computations are
required. Thus, the total number of computations is equal to 6nN + 0(n ). In practice, the2

matrix inverse can be precomputed, thus reducing the data dependent computations to

only  

Fast Implementation of Least Squares Algorithm

The matrix                                             in (6) has a very special structure as can be

 easily seen by explicit computation of the term x x ' of the summand. Thus,j j

(7)



Each of the matrices x x ' and P  is a Hankel matrix. That is, all the elements of eachj j
-1

cross-diagonal are the same. The structure of a Hankel matrix is very similar to that of a
Toeplitz matrix wherein the elements along the various subdiagonals are equal. The fast
algorithm of Reference (10) for the solution of Toeplitz system of equations can be
slightly modified so as to become applicable to the present problem. Thus, (6) can be
solved in order n(log n)  computations, resulting in considerable reduction in the2

2

requirement for large values of n.

If the matrix inverse is precomputed, then with the algorithmic properties of (10), the
solution for 2  can be obtained in approximately 6nlog n operations. In the^

N      2

implementations above, it is sufficient to store only the first row and column of P or P-1

Baseband Sampling

In this case only the measurements {y } are available and the parameter matrix 2' is ofk

dimension nxl. In such an implementation, however, there may result an ambiguity of B
radians in the phase estimate if the sign of T  is also unknown.d

4.   ESTIMATION ERROR ANALYSIS

Assuming that the model (5) is exact (the dimension n of the parameter matrix in (4) is
sufficiently high), then the substitution of (5) in (6) yields,

(8)

A simple manipulation of (8) yields the estimation error                            as

(9)

As the state vector x  is deterministic, and n  is a zero mean process, 2̃   has its meanj    j      N

equal to zero. The error covariance matrix 2̃  can also be evaluated in a straight-forwardN

manner. Post multiplying (9) by the transpose of 2̃ , and taking expected values of bothN

sides,



(10)

Considering the case of 8 = 1 and recalling that {n } is a white noise sequence,j

(11)

Frequency Estimation Error

A simple approximate expression can also be obtained for the frequency estimation error
when the amplitude A is known and uniform sampling is used. The frequency estimate äd

can be obtained as

(12)

When the amplitude A is also unknown, it can be replaced by its estimate given by,

(13)

In the above expressions, 2̂  denotes the (i,j)th element of the parameter matrix 2 . Thei ,j
N          N

error variance of these elements of interest is given by

(14)

where K approaches a constant with the increase in the numbers of observations N.



For relatively small errors, the frequency estimation error T̃  = T - T̃  N has varianced,N  d  d,N

approximately                             . For the case of uniform sampling t  = jT  where T  j  s  s

the sampling period. Substituting for t  and letting T = N T  denote the observation periodj      s

(15)

In terms of the unsampled system, if the additive noise process has one-sided noise
spectral density N , then F  = 2N /T . Thus,o     o s

2

(16)

where P = A /2 is the received signal power and K has value approximately equal to 4 for2

low values of n. This is the same mean square error as for Maximum Likelihood
estimation in References (1; 12 Equation 8.116).

We note here that in the derivation of (16), the approximation error in (5) has been
ignored. It is difficult to estimate the error due to such finite approximation. However,
from a few computer simulations, it appears that for n > T T = (T T )N, such error isd   d s

small.

5. EXAMPLES OF APPLICATION TO THE DEEP SPACE NETWORK (DSN)
RECEIVER

To keep the dimension n of the parameter matrix small, the following estimation method is
proposed. Dividing both sides of equation (16) by S , where S denotes the maximum2

possible value of T , and substituting T = n/S, one obtainsd

(17)

Selecting a value of 1/36 for the left hand side of the above equations allows one to
express the maximum frequency uncertainty that can be resolved by the algorithm as a
function of n. Thus

(18)



The rationale for selecting the value of 1/36 for                  , is as follows. Since the

additive noise has Gaussian distribution, one may assume that the frequency estimation
error has Gaussian distribution with its standard deviation denoted by         . The above
selection thus ensures that 3           < S/2

Example 1

For reception of Voyager II signals at Deep Space Station (DSS 13), a typical carrier
power-to-noise spectral density ratio is 24.4 dB-Hz. Let n=8, and S = 652 rad/s. After an
initial estimation period of T = nS , the receiver NCO frequency is adjusted by ä . Thus,-1

d

with an initial adjustment after T = 12.2 ms the frequency offset is reduced to T̃  withd

F = 108.6 rad/s (17.4 Hz). Application of the algorithm for a subsequent period of
24.4 ms reduces the standard deviation to 6 Hz. In this manner, four applications of the
algorithm bring down the standard deviation of the frequency offset to less than 0.7 Hz in
a total time of 183 ms, from an initial frequency offset of 104 Hz.

Example 2

If the initial uncertainty is only 20 Hz, then with a lower value of n equal to 5, after an
estimation period of T = 40 ms,           = 18.4 rad/s (2.94 Hz). A frequency correction at 

the end of this period and an estimation of the residual frequency offset for a period of
160 ms reduces a            to 0.36 Hz                        . Thus with n = 5, the frequency

uncertainty is reduced to            = 0.36 Hz in a total estimation period of 0.2 s.

In an alternative approach to keep the value of n fixed and small with an increase in the
total observation period, instead of resetting the frequency reference (making correction in
the NCO frequency), the time reference is reset to zero. Subsequent observations in (1)
are now with respect to a different phase-reference, say N) . The application of the least
squares algorithm to this set of observations then provides an estimate for N)  denoted N)  T^

this stage the observations in the second Ts interval are processed to have a phase
reference N and are then combined with the first set of observations. Equivalently, it is^

required to post multiply the second sum on the right hand side of (6), obtained for the
second subinterval of Ts, b the following matrix



and add the result to the corresponding sum for the first Ts interval. The first sum on the
right hand side of (6) is simply multiplied by a factor of 2. This procedure is extended in
an appropriate manner to subsequent intervals, so as to obtain a final estimate for T , andd

N based on the complete set of observations.

6.   SIMULATIONS

Figures 1 through 4 present the frequency estimates obtained by the least squares
algorithm. To avoid singularity of the matrix P , it was modified by the addition of a-1

diagonal matrix ,I with , = .001. For convenience, the unknown frequency T  is taken tod

be 1 rad/s. From the simulations it is apparent that the frequency estimate comes close to
the true frequency in a time equal to a fraction of the time period of the unknown
frequency. To keep the computational burden of the simulations to a minimum, the
dimension n was restricted to a small value and the observation period was also restricted
to small value.

For frequencies much higher than one, the least squares algorithm (6) was slightly
modified. Thus, as S denotes an upper bound on the magnitude of unknown frequency,
we define a normalized parameter matrix 2 by 2  = 2 /S  ; i = 1,...,n; j = 1,2. Defining a)   ) i,j  i.j (i-1)

corresponding state vector x)  byk

(19)

the measurement equation (3) may be rewritten as

Z  = 2'x  + n (20)k  k  k
) )

and the least squares algorithm can now be applied to estimate 2. The estimates of the)

elements of 2̂ are then obtained as 2̂  =  S %  . Such a transformation leaves thei,j   (i-1) ˆ i,j
2

previous error analysis invariant. However, for finite dimensional approximation
considered here, this makes the algorithm numerically more robust. The simulations for



T   = 10 and T  = 100 are precisely the same as in Figures 1 through 4 with appropriated     d

changes in scaling and are not presented separately.

In Figures 1 through 4, R and > represent the first and second row of the parameter matrix
respectively. Thus in baseband sampling only the R vector is estimated while in
quadrature sampling, the estimates of both R and > parameter vectors are available. From
the figures it is apparent that the dimension n of the state vector  in the model (5) isxk

approximately equal to T T where T is the observation interval. Due to overd

parameterization involved in the problem, there is considerable amount of flexibility in the
estimation of A, T , N from the estimates of the elements of 2. Thus, whereas in Figures 1d

and 2, the amplitude A is assumed known, Figures 3 and 4 involve unknown A. Different
order of computation can provide estimate of A when baseband sampling is used. Here,
we have reported results only for the frequency estimates, the phase estimates also
converge at a fast convergence rate.

7.   COMPARISON WITH FFT TECHNIQUES

An alternative technique for the fast frequency acquisition is via fast Fourier transform of
sampled data. We observe that for the case of infinite observation time, both procedures
are optimum and thus are equivalent. However, for finite observation period T, the FFT
has the limitation that the frequency estimates are quantized to intervals of 1/T Hz. In the
finite dimensional approximation of the LS algorithm this is not the case and sufficiently
accurate estimates can be obtained by choosing n sufficiently large (finer sampling) even
for low values of T.

The price for such an improvement is increased computational requirements which is of
order nlog n (though higher than for FFT) if the matrix P is precomputed and is of order2

n logn logn if P must be computed on line. With the application of fast algorithms, the
storage requirement of P is only 2n (not n /2).2

Also, note that the computational requirements here are dominantly decided by T T andd

not by the number of samples as is the case with FFT.

It may also be mentioned that with the FFT algorithm there also exists a finite probability
of the occurrence of an outlier (1) and this causes a component of the frequency
estimation error with a uniform probability density function over the complete frequency
range of the FFT algorithm. As against this, the frequency estimation error with LS
algorithm has a Gaussian distribution.



8.   CONCLUSION

The paper has presented a fast algorithm based on the least squares parameter estimation
technique. In (9) it is shown that the least square algorithm exhibits a convergence phase
wherein the convergence rate is factorial (the estimation error goes to 0 as 1/k! where k is
the number of observations) followed by an exponential convergence rate. Our
simulations also exhibit the same rapid initial convergence rates. Here of course, the
estimation error does not approach zero because of a finite and low dimensional
truncation of the model. From another viewpoint the algorithm may be perceived as a time
domain dual of the FFT algorithm. Whereas the FFT algorithm transforms the data into
frequency domain for the estimation/detection purpose, here the estimation is done
directly in the time domain. This latter approach has several advantages. First by choosing
8 < 1, it is possible to track time varying frequency by recursive update techniques (8).
Moreover unlike the case of FFT algorithm, the frequency estimates are not quantized to
intervals of 1/T Hz, which could be large for small observation interval T. The price for
these desirable features is in terms of increased computational requirement which in fast
implementation of the algorithm could be of order nlogn or n log n log n (depending upon
the specific implementations), where n is approximately equal to T T, the product of thed

frequency uncertainty and the observation period.
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Figure 1. Least squares algorithm- noise free
case and baseband sampling, n=6



Figure 2. Least squares algorithm- noise free
case and baseband sampling, n=4



Figure 3. Least squares algorithm- noise free
case and quadrature sampling



Figure 4. Least squares algorithm and
quadrature sampling


