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Abstract

Motivation: Pairwise alignment of sequences is a fundamental method in modern molecular biology, implemented
within multiple bioinformatics tools and libraries. Current advances in sequencing technologies press for the devel-
opment of faster pairwise alignment algorithms that can scale with increasing read lengths and production yields.

Results: In this article, we present the wavefront alignment algorithm (WFA), an exact gap-affine algorithm that takes
advantage of homologous regions between the sequences to accelerate the alignment process. As opposed to trad-
itional dynamic programming algorithms that run in quadratic time, the WFA runs in time O(ns), proportional to the
read length n and the alignment score s, using Oðs2Þ memory. Furthermore, our algorithm exhibits simple data
dependencies that can be easily vectorized, even by the automatic features of modern compilers, for different archi-
tectures, without the need to adapt the code. We evaluate the performance of our algorithm, together with other
state-of-the-art implementations. As a result, we demonstrate that the WFA runs 20–300� faster than other methods
aligning short Illumina-like sequences, and 10–100� faster using long noisy reads like those produced by Oxford
Nanopore Technologies.

Availability and implementation: The WFA algorithm is implemented within the wavefront-aligner library, and it is
publicly available at https://github.com/smarco/WFA.

Contact: santiagomsola@gmail.com

1 Introduction

Pairwise alignment of biological sequences is a core component of
many bioinformatics tools. In genomics, it is an essential building
block for read mapping (Langmead and Salzberg, 2012; Li, 2013;
Marco-Sola et al., 2012), variant detection (DePristo et al., 2011),
de novo genome assembly (Simpson et al., 2009), multiple sequence
alignment (Notredame et al., 2000) and many other methods.
Moreover, it can be adapted to different protocols and applications
(e.g. DNA-seq, RNA-seq or bisulfite analysis) using different dis-
tance functions (e.g. mismatch, edit, gap-linear or gap-affine), modi-
fying the alignment scope (e.g. global, semi-global or local
alignment) or adjusting the scoring penalties. Nevertheless, all these
variations share the same algorithmic core.

Over the last decade, the volume of biological data generated by
sequencing technologies has increased exponentially. Besides, third-
generation technologies, such as those developed by PacBio and
Oxford Nanopore Technologies (ONT), can yield sequences longer
than 20K bases; more than 100� longer than those produced by
the extensively used Illumina sequencers. This presses for the

development of faster algorithms that can keep up with the data pro-
duction pace and scale with longer read lengths produced by newer
sequencing technologies.

In its most common formulation, the pairwise alignment prob-
lem is solved using some variation of the Needleman–Wunsch (NW)
algorithm (Needleman and Wunsch, 1970) for gap-linear penalties
or the Smith–Waterman–Gotoh (SWG) algorithm (Gotoh, 1982) for
gap-affine penalties. These solutions are based on dynamic program-
ming (DP) and consist on first computing the recurrence equations
on a DP matrix, and then tracing back the optimal alignment. As a
result, they require quadratic time and memory on the length of the
sequences.

Over the years, these algorithms have been extensively studied,
and many different techniques and heuristics have been developed to
accelerate DP computations. The most successful optimizations
focus on vectorization strategies (Daily, 2016) (including bit-parallel
encodings Loving et al., 2014), banded computations (Suzuki and
Kasahara, 2017) and cut-off techniques (Gusfield, 1997).
Notwithstanding these efforts, the quadratic execution time of clas-
sical approaches quickly becomes the bottleneck, and these methods
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fail to scale with longer read lengths. Besides, intrinsic dependencies
on the DP recurrences limit the effectiveness of vectorization
approaches; what is more, they require ad hoc implementations for
each different SIMD instruction set. In many cases, practical imple-
mentations tend to apply heuristics that can miss the optimal align-
ment at the expense of faster execution times. Interestingly, all these
algorithms are oblivious to the similarities between the sequences.
That is, they perform the same computations whether the sequences
are highly divergent or completely identical.

1.1 Previous work
Over the years, alignment algorithms for the edit distance have been
largely studied and optimized due to its simplicity. As a result, many
efficient libraries and tools like Edlib (�So�si�c and �Siki�c, 2017) [imple-
menting Myers’s bit-vector algorithm (Myers, 1999)], or DAligner
(Myers, 2014) [implementing Myers’s O(ND) difference algorithm
(Myers, 1986)] are now available. However, the edit distance fails
to capture critical properties of the difference between biological
sequences. For that reason, gap-affine distance is commonly pre-
ferred, and thus many research efforts have been invested on acceler-
ating the SWG algorithm.

Many of the SWG optimization techniques are focused on
exploiting intra-sequence parallelism using tailored vectorization
strategies. In this way, Wozniak (1997) first proposed to compute
DP cells along the minor diagonal in parallel. Then, Rognes (Rognes
and Seeberg, 2000) proposed to vectorize along the query sequence,
introducing the query profile technique. Later on, Farrar (2007) pro-
posed to reorganize computations in a striped fashion. Farrar’s
method dominated over all other approaches until Daily presented
the prefix-scan method (Daily et al., 2015), which in practice out-
performs all previous methods. Meanwhile, focusing on further
exploiting instruction-level parallelism, the BitPAl algorithm
(Loving et al., 2014) was presented as a natural extension of
Myers’s bit-vector algorithm restricted to gap-linear penalties.
Although it requires generating tailored code for each different set
of penalties, it represents an interesting method for computing the
alignment distance (i.e. not the full alignment) if all the penalties are
fixed and known in advance.

Recently, Suzuki and Kasahara (2018) proposed a differential
encoding of the DP matrix that effectively reduces the size required
to store each DP cell to further exploit SIMD operations. Combined
with an adaptive-band, that adjusts its size according to the scores
computed so far, they developed the Gaba library (Suzuki and
Kasahara, 2017). Because of its good performance, this algorithm
was re-implemented in the KSW2 library, which is currently used
within the core of the Minimap2 mapper (Li, 2018).

Over the past decade, many libraries implementing efficient
SWG algorithms have been developed due to its critical role in sev-
eral bioinformatics tools and pipelines. The SSW library (Zhao
et al., 2013) was one of the first libraries to offer an efficient imple-
mentation of the SWG using Farrar’s striped algorithm. Later on,
the Parasail library (Daily, 2016), that implements several intra-
sequence vectorization strategies, was published. But also, the
SeqAn (Rahn et al., 2018) developers have put many efforts into
incorporating high-performance and parallel implementations of the
SWG among its many algorithms. At the same time, all these libra-
ries implement additional optimizations that can further enhance
the presented methods. For instance, the integer saturation strategy,
which first computes the alignment using a small integer type, and
recomputes the alignment in case an overflow/underflow is detected.
In addition, these libraries implement several coarse-grain parallel-
ization techniques that allow performing various independent align-
ments in parallel. But also, they include tailored implementations
for specific SIMD instruction sets than can yield shorter execution
times.

Last, it should be noted that there are many other lines of research
for accelerating the SWG involving hardware accelerators; including
Graphics Processing Units (Chacón et al., 2014; Liu et al., 2013),
Field-Programmable Gate Arrays (Li et al., 2007), Cell Broadband
Engine (Szalkowski et al., 2008), Xeon Phi processor (Liu et al., 2014)
and even custom hardware designs (Hasan et al., 2008).

1.2 Our contribution
In this article, we present the wavefront alignment algorithm (WFA)
for exact pairwise alignment of sequences. This novel alignment
method progressively computes partial alignments of increasing
score until the optimal solution is reached. In this way, the WFA al-
gorithm exploits similarities between sequences to accelerate the
computation of the optimal alignment. As a result, its time complex-
ity O(ns) depends on the sequence length n and the optimal align-
ment score s. This allows scaling with sequence length provided that
the error-rate between the sequences remains moderate. We demon-
strate that the WFA algorithm outperforms other state-of-the-art
methods, while requiring less memory.

2 Materials

In the following sections, we describe the main concepts behind the
WFA algorithm. First, we introduce the concept of furthest-reaching
points and wavefronts, and then we redefine the recurrent equations
of the SWG algorithm in terms of wavefronts. Finally, we prove that
the first wavefront that reaches the bottom-right corner of the DP
matrix corresponds to the optimal pairwise alignment between the
sequences.

2.1 Pairwise global alignment of sequences
Let the query q ¼ q0q1 . . . qn�1 and the text t ¼ t0t1 . . . tm�1 be
strings of length jqj ¼ n and jtj ¼ m, respectively (Table 1). We de-
fine the pairwise global alignment problem in terms of computing
the alignment [or edit path, Myers (1986)] from (0, 0) to (n, m) with
minimum penalty score, allowing matching bases, substitutions and
gaps (i.e. insertions and deletions). Under the gap-affine model, the
alignment penalty score is computed based on fa;x; o; eg, where a
and x correspond to the penalty of matching or mismatching two
bases, respectively, and the gap-penalty function is expressed as the
linear function gðnÞ ¼ oþ n � e (where n is the length of the gap). As
stated before, this problem is commonly solved using some variation
of the SWG algorithm (Gotoh, 1982). Eq. 1 shows the recurrence
relations of the DP matrix used in the SWG algorithm.

Iv;h ¼ minfMv;h�1 þ oþ e; Iv;h�1 þ eg
Dv;h ¼ minfMv�1;h þ oþ e;Dv�1;h þ eg
Mv;h ¼ minfIv;h;Dv;h;Mv�1;h�1 þ sðqv�1; th�1Þg

:

8<
: (1)

Despite its general formulation, in practice, the majority of
applications use strictly positive penalties, i.e. x; o; e > 0. And, as in
other methods, we focus on the match-mismatch model where the
mismatch between every two different bases always has the same
penalty, x. That is, function s(v, h), for 0 � v < n and
0 � h < m, evaluates to a if qv ¼¼ th and x otherwise. In addition,
our method fixes the match score to zero (a¼0) to enable exploiting
similarities between the sequences and accelerate the alignment pro-
cess. As we demonstrate later, this allows defining a much simpler
and faster method for gap-affine alignment.

Table 1. Notations

Symbol Description

q, t Strings: q ¼ q0q1 . . . qn�1; t ¼ t0t1 . . . tm�1

p ¼ fa; x; o; eg Gap-affine penalty scores

M, I, D SWG alignment matrices

F s;k Furthest-reaching (f.r.) point on diagonal k with score s
~Ms;k Offset in the diagonal to the corresponding f.r. point F s;k

~Is ; ~Ds ; ~Ms Components of the wavefront WFs

WFs Wavefront of score s
~M

hi
Index of the rightmost diagonal in the component

~M
lo

Index of the lowest diagonal in the component

WFmin Minimum wavefront length

WFdiff Maximum difference distance
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2.2 Wavefront furthest-reaching diagonals
Restricted to the edit distance, the so-called diagonal-transition
algorithms (Landau and Vishkin, 1989; Ukkonen, 1985) exploited
the fact that DP diagonals have monotonically increasing scores. In
particular, Myers’ O(nd) algorithm (Myers, 1986), implemented at
the core of the Linux diff-tool, computes the longest common subse-
quence of two sequences taking advantage of stretches of matching
characters along the diagonals. Our algorithm extends these ideas to
the gap-affine model.

For each score s and diagonal k, the furthest-reaching (f.r.) point
F s;k denotes the DP-cell, on diagonal k and with score s, that is
more far-off from the beginning of the diagonal. Note that a point
p ¼ ðv;hÞ, in the diagonal k ¼ h� v, is further than other p0 ¼
ðv� 1; h� 1Þ (p0 < p) in the same diagonal. Then, we define
~Is;k; ~Ds;k and ~Ms;k as the offset in the diagonal to the f.r. point F s;k

for each of the three SWG matrices I, D and M, respectively. So, for
a given score s, we define the s-wavefront (WFs) as the set of all the
f.r. points with score s; that is, the set of offsets ~Is;k; ~Ds;k and ~Ms;k,
for all k. Likewise, we denote ~Is ; ~Ds and ~Ms , the components of the
wavefront WFs. Assuming each component of a wavefront is repre-
sented using a vector of offsets centred over the main diagonal
(k¼0), let ~M

hi
denote the index of the rightmost diagonal in the

component, and ~M
lo

the index of the lowest.
Our goal is to compute the minimum s such that any of the f.r.

points of WFs reaches (n, m). We notice that for any s, the f.r. points of
WFs can only be originated from points whose score is s – o, s – e or s –
x; or from a previous point with score s solely followed by matches
along the diagonal. Considering only insertions, deletions and mis-
matches; we can redefine Eq. 1 in terms of offsets to f.r. points (Eq. 2).

~Is;k ¼ max
~Ms�o�e;k�1 ðOpen insertionÞ
~Is�e;k�1 ðExtend insertionÞ

( )
þ 1

~Ds;k ¼ max
~Ms�o�e;kþ1 ðOpen deletionÞ
~Ds�e;kþ1 ðExtend deletionÞ

( )

~Ms;k ¼ max

~Ms�x;k þ 1 ðSubstitutionÞ
~Is;k ðInsertionÞ
~Ds;k ðDeletionÞ

8>><
>>:

9>>=
>>;;

(2)

with initial condition ~M0;0 ¼ 0
Essentially, Eq. 2 states that we can compute the set of f.r.

points of WFs using WFs�o; WFs�e and WFs�x. For example, in
order to compute the f.r. point ~Ds;k, we only have to consider
which f.r. point brings the resulting offset further: a newly opened
deletion ~Ms�o�e;kþ1, or an extended one ~Ds�e;kþ1 (both coming
from one diagonal above). Similarly, as to compute the f.r. point
~Ms;k, we only need to compare offsets between the f.r. points cor-

responding to an insertion ~Is;k, a deletion ~Ds;k and a mismatch
from ~Ms�x;k. Then, we consider matches, and we take advantage
of the fact that a¼0. For that, we extend all the previously com-
puted points by Eq. 2, as far as possible, following matching char-
acters along the diagonal.

LEMMA 2.1. The resulting points of applying Eq. 2 and extending them,

following matching characters along the diagonal, are the f.r. points for

the score s, that is WFs.

Proof. Suppose that point p 2WFs (originated by point q from a previ-

ous WFs0 ; s0 ¼ s� p; p 2 fx; o; eg) is not the f.r. point on the diagonal k.

Then, there must exist a point p0 that is f.r. on that diagonal ðp0 > pÞ.
For that p0, there must exist a point q0 (with a score s0) that generated p0

(perhaps, after extension by accounting matches on the diagonal).

However, q0 cannot be the f.r. point on the diagonal (i.e. does not belong

to WFs0 ), otherwise, it would have generated p. Therefore, q0 < q and

thus, it follows that p0 � p, in the best case (f.r point), p0 ¼ p. h

It follows from Lemma 2.1 that the optimal alignment corresponds to

the sequence of wavefronts from WF0 to WFs, being WFs the wavefront

with the smallest s that contains a f.r. point that reaches (n, m).

2.3 Wavefront algorithm
Using Lemma 2.1 and staring with ~M0;0 ¼ 0, the WFA algorithm
(Algorithm 1) progressively computes wavefronts of increasing score
until the cell (n, m) is reached. First, for each score s, the algorithm

extends the points ~Ms;k following matching characters along the
diagonals, using WF_EXTEND( ~Ms; q; t) (Algorithm 2). Then, it
checks whether any of the resulting f.r. points of wavefront WFs

reaches (n, m). If not, the algorithm proceeds to compute the next
wavefront WFsþ1 using WF_NEXT( ~D; ~I ; ~M;q; t; s) (Algorithm 3,
which applies Eq. 2), and iterates again.In the case of global align-

ment, the algorithm starts with a unitary wavefront ( ~M0;0). As the

algorithm iterates, the length of the wavefronts increases according
to Eq. 3. That is, each new wavefront grows to span over one more

diagonal on each end (i.e. ~M
hi

s and ~M
lo

s ) compared to the wavefronts

it depends on. As a result, the size of each subsequent wavefront
increases proportional to the alignment score between the sequen-

ces. Hence, the algorithm requires Oðs2Þ memory to store all
wavefronts.

~M
hi

s ¼ ~I
hi

s ¼ ~D
hi

s ¼ max ~M
hi

s�x;
~M

hi

s�o�e;
~I

hi

s�e;
~D

hi

s�e

n o
þ 1

~M
lo

s ¼ ~I
lo

s ¼ ~D
lo

s ¼ max ~M
lo

s�x
~M

lo

s�o�e
~I

s�e

s ; ~D
s�e

s

n o
� 1:

(3)

Also, note that extending a wavefront (WF_EXTEND function)
is bounded by the number of diagonal matching characters
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(maxfn;mg) and the length of the wavefront. Similarly, the function
WF_NEXT computes each next wavefront in time proportional to
the wavefront length. Therefore, the running time of the WFA algo-
rithm, to compute an alignment of score s, is bounded in the worst
case by Oðmaxfn;mg � sÞ, or O(ns) assuming that the sequences
have the same length.

Figure 1 shows an example of computing a global gap-affine
alignment using a DP matrix and the WFA algorithm. The figure
demonstrates that the WFA only needs to compute a minimal num-
ber of DP cells to find the optimal alignment. The WFA explores the
cells of the DP matrix by increasing score, like seeking for the min-
imum cost path from (0, 0) to (n, m). In this way, the algorithm ef-
fectively computes an adaptive band without previous knowledge of
the alignment error between the sequences. Moreover, it performs
this seemingly irregular computation using simple and regular opera-
tions over the wavefronts. Furthermore, the algorithm only requires
to store a few wavefronts before reaching the bottom right cell of the
DP matrix. Considering the penalties used in Figure 1, the only score
values that can appear in the DP matrix, before reaching the optimal
alignment at s¼8, are s¼0 and s¼4. For that reason, the WFA
only needs to store the wavefronts WF0, WF4 and WF8. And, unlike
the DP matrix, these wavefronts avoid storing runs of cells with the
same score (byproduct of the matches along the diagonal).

Once the algorithm computes a wavefront that reaches (n, m),
and therefore, the optimal alignment between the sequences, it can
retrieve back the path that leads from (0, 0) to (n, m) (i.e. back-
trace). As opposed to DP-based algorithms, the WFA’s backtrace is
performed across the wavefronts’ offsets instead of using the DP ma-
trix scores. On each step of the backtrace, the function determines
which f.r. point, from the previous wavefronts, originated the cur-
rent offset. The difference between the actual offset and the source is
the total amount of matching characters between the two positions.
For example, in Figure 1, offset ~M8;0 ¼ 6 has been generated from
the f.r. point ~M4;0 ¼ 4. The difference between the two offsets corre-
sponds to the matches from (5, 5) to (6, 6), both included.

2.4 Adaptive wavefront reduction
As the WFA algorithm iterates, wavefronts of increasing score span
over more and more diagonals. While some of the f.r. points quickly

advance towards the solution, others are left behind on their diag-
onal as they are unlikely to lead to the optimal solution. As a conse-
quence, the WFA algorithm invests a substantial amount of time
processing unpromising paths. For that reason, we propose a heuris-
tic version of the algorithm (WFA-Adapt) that removes f.r. points
from outer diagonals that are extremely far behind compared to
other points in the same wavefront.

In this way, the WFA-Adapt performs a wavefront pruning
(Algorithm 4) after performing each wavefront extension. It deter-
mines the distance dk of each diagonal f.r. point to the (n, m) cell.
Then it computes the minimum dmin ¼ minkfdkg and discards outer
diagonal points that are more than WFdiff cells behind it (i.e.
dk � dmin > WFdiff). Despite its simplicity, computing each dk

distance for all the f.r. points of the wavefront carries a non-
negligible toll on the total running time of the algorithm. For that
reason, we define a minimum wavefront length WFmin required to
trigger the reduction (WF_REDUCE).

In practice, the WFA-Adapt heuristic successfully removes dis-
tant f.r. points unlikely to be part of the optimal alignment.
Therefore, the span of the wavefront is focused on the diagonals
closer to the alignment solution, further reducing the amount of
memory required by the algorithm. In a way, similar pruning techni-
ques are implemented into DP-based algorithms. These banded
methods avoid computing paths beyond a band of diagonals. Unlike
those methods, our wavefront reduction method prunes based on
the potential of the diagonal to lead to the optimal solution, without
previous knowledge of the error between the sequences whatsoever.

Nonetheless, it is important to highlight that the WFA-Adapt
method is no longer exact and might miss some optimal solutions;
unlike the WFA. In practice, for a reasonable selection of
ðWFmin;WFdiffÞ, this is rarely the case, even when aligning long
noisy sequences.

Fig. 1. (A) DP matrices (i.e. M, D and I) depicting the only cells computed by the

WFA in order to align q ¼ “GATACA” against t ¼ “GAGATA” using the penalties

fx ¼ 4; o ¼ 6; e ¼ 2g. The arrows show the f.r. points of the main diagonal in ma-

trix M (i.e. ~M0;0; ~M4;0 and ~M8;0). (B) Equivalent representation using wavefronts

(i.e. WF0, WF4 and WF8)
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2.5 Efficient computation of wavefronts
As opposed to traditional DP-based algorithms, the core functions
of the wavefront algorithm depict simple data dependencies (Fig. 2).
This allows the implementation of effective fine-grain parallelization
techniques to accelerate the computation of each wavefront.

In the case of the WF_NEXT function, the automatic vectoriza-
tion features of modern compilers can easily detect the dependencies
between wavefronts and transparently issue SIMD instructions to
significantly accelerate the computation. This represents a major ad-
vantage over other methods that rely on specific SIMD intrinsics
and custom implementations. These tools not only have limited
portability to different computer architectures but also require com-
plicated, time-consuming and error-prone implementations. In con-
trast, our approach allows transparent vectorization of the
algorithm for any SIMD instruction-set and architecture supported
by the compiler.

In the same way, the function WF_EXTEND can be accelerated
by means of exploiting bit-level parallelism techniques. That is, in-
stead of comparing characters along the diagonal one at a time, we
perform comparisons in blocks of eight characters (i.e. packed in a
64-bit computer word). In this way, the algorithm performs parallel
comparisons and extends each diagonal up to eight positions per
step. Taking into account that spurious matches between blocks of
eight characters are very unlikely to occur, this technique prevents
the inner loop of WF_EXTEND from iterating more than once in
most cases. Otherwise, it means that the function has detected a
stretch of matches which, in turn, favors the overall performance of
the algorithm.

Note that, depending on the penalties selected, some (or even all)
of the wavefronts required to compute a wavefront might not exist.
That means that there is no possible combination of penalties that
can generate the current score. In those cases, the number of opera-
tions involved in WF_NEXT gets reduced. Hence, our implementa-
tion contains different specializations of this function to accelerate
those cases where some source wavefronts are not needed, and thus
the complexity can be reduced.

Notably, the WFA encodes the offsets to the f.r. points on each
diagonal, not the actual score values. Therefore, the representation
range of each wavefront element is bounded by the length of the
sequences, and not by the maximum score possible. In most cases,
the WFA can conveniently encode offsets using 16-bit integers (for
sequences up to 216 characters), or even 8-bit integers (for Illumina-
like sequences, no longer than 255 bases). This succinct representa-
tion not only allows saving memory but also allows using wider
SIMD instructions that can operate over more elements at once.
In turn, this further enhances the efficiency of our WFA
implementation.

3 Results

We evaluate the performance of our implementation of the WFA
and WFA-Adapt algorithms, together with other widely used libra-
ries that implement optimized versions of well-known pairwise
alignment algorithms.

3.1 Experimental setup
We select the widely used Parasail library (Daily, 2016) that imple-
ments the diagonal method by Wozniak (Wozniak, 1997)
(ParaDiag), the striped approach proposed by Farrar (Farrar, 2007)
(ParaStrip), the prefix-scan algorithm (Daily et al., 2015) (ParaScan)
and the classical banded heuristic method (ParaBand). Also, we
evaluate the gap-affine implementation of the SeqAn library (Rahn
et al., 2018), the bit-parallel implementation for non-unitary penal-
ties (Loving et al., 2014) (BitPAl) and the adaptive band algorithm
from Suzuki (Suzuki and Kasahara, 2018) (Gaba). In addition, we
evaluate the performance of the highly optimized SIMD algorithms
KSW2-Z2 (ksw2_extz2_sse), and KSW2-D2 (ksw2_extd2_sse),
from the KSW2 library, used within Minimap2 (Li, 2018). On top
of that, we present the performance results of the Edlib (�So�si�c and
�Siki�c, 2017) library as a base line for comparison. Because Edlib is
restricted to compute the edit-distance alignment, its execution is re-
markably fast.

For the purpose of the evaluation, all the methods have been con-
figured to generate global alignments. These methods are grouped in
three categories: ‘Gap-affine (Exact)’ (WFA, KSW2-Z2, SeqAn,
ParaStrip, ParaScan and ParaDiag) for exact algorithms that use
gap-affine penalties, ‘Gap-affine (Banded)’ (WFA-Adap, Gaba and
ParaBand) for approximate algorithms that use gap-affine penalties,
and ‘Others’ (Edlib, BitPAl and KSW2-D2) for exact methods that
use other penalty models. Note that the gap-affine banded methods
are approximated and not guaranteed to find the optimal alignment.
Similarly, note that the algorithms ParaBand and BitPAl only com-
pute the alignment score (not the full alignment) and the latter is
restricted to linear-gap penalties.

We discarded other methods from the evaluation as their run-
ning time was exceedingly long or because their recall was substan-
tially below par. This is the case of other KSW2 algorithms (like the
approximate versions), other edit distance methods [e.g. BPM
(Myers, 1999) or DAligner (Myers, 2014)] or custom implementa-
tions for hardware accelerators (which fall beyond the scope of this
article).

We choose two real datasets: 100 000 sequences from an
Illumina HiSeq 2000 of 100 bp (Accession number ERX069505),
and 25 000 ONT MinION sequences from (Bowden et al., 2019)
(Accession numbers ERR3278877–ERR3278886). Also, we simu-
late several datasets of various lengths (i.e. 100, 1K, 10K and 100K
bases), with different error rates (i.e. d¼1, 2, 5, 10 and 20% error
rate) by means of randomly adding mismatches and indels. For every
dataset, we select as many sequences as needed, so that each of them
contains a total of 10 million bp.

All tests are executed on an Intel Xeon Platinum 8160 equipped
with 96 GB of RAM, running SuSE Linux Enterprise Server. For
each method, we measure execution time and memory consumed. In
addition, we verify the results using a basic SWG implementation in
order to compute the recall of each method.

3.2 Evaluation on real data
Table 2 shows the time performance results obtained for all the
algorithms evaluated using both real and simulated datasets. On real
datasets, the WFA performs many times faster than other methods.
In particular, aligning HiSeq sequences, our method is 200–300�
faster compared to traditional DP algorithms, and 20–40� faster
than the adaptive-band methods. Similarly, when aligning ONT
sequences, the WFA performs 28–200� and 6–7� times faster than
DP algorithms and adaptive-band methods, respectively. Moreover,
it is several times faster than methods that only compute the align-
ment score. Furthermore, the WFA-Adapt refinement attains an
extra 1.6� speedup over the original WFA when aligning long ONT
reads.

Fig. 2. (A) Dependencies between DP cells when computing another cell using gap-

affine penalties. (B) Dependencies between wavefronts as to compute one element of

the next wavefront (Algorithm 3)
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3.3 Evaluation on simulated data
When aligning simulated datasets, WFA methods consistently out-
perform other algorithms. Overall, WFA and adaptive-band meth-
ods are faster than classical DP algorithms. In particular, as the read
length increases, Parasail and SeqAn’s implementations require im-
practical running times. Notably, BitPAl and ParaBand running
times remain reasonably low, but alas, their results are limited to the
alignment score. Altogether, these methods prove to be completely
insensitive to the error between the sequences. For that reason, WFA
and WFA-Adapt methods achieve remarkable speedups when the
error rate remains moderate (i.e. d¼1–5%). For instance, compared
to ParaBand, WFA methods run up to 13� and 78� faster for error
rates of 1 and 5%, respectively; and up to 138� and 814� faster
compared to BitPAl for the same error rates.

On the other hand, WFA methods prove to be generally faster
and more accurate than adaptive-band methods. Although these
adaptive algorithms prove to be superior to classical approaches,
WFA and WFA-Adapt methods scale better with both the sequence
length and the error rate. In particular, executions of the KSW2 li-
brary consistently take between 2� and 510� longer than the WFA.
In the demanding scenario of aligning reads of 100K bases at just
1% of divergence rate, WFA-Adapt runs more than three orders of
magnitude faster than the KSW2 algorithms. It is important to note
that KSW2-D2 uses 2-piece affine model (Gotoh, 1990), that is why
it is slower than KSW2-Z2 which uses the 1-piece/standard model.

In general, as the error rate increases, adaptive-band methods ei-
ther take longer to finish, like KSW2-Z2 and KSW2-D2, or become
insensitive reporting suboptimal alignments, like Gaba. Table 3
presents a summary of time and recall results obtained using two
broadly used penalty schemes; that is, those used by the ubiquitous
mappers BWA-MEM (Li, 2013) and Bowtie2 (Langmead and
Salzberg, 2012). In the case of the Gaba algorithm, executions times
seem to decrease as the sequence length increases. Nonetheless, this
is the result of aggressive heuristics that, in the end, cause a signifi-
cant drop in the total recall (�5%) or fail to align noisy sequences
(e.g. aligning ONT sequences). Notably, only the WFA methods
could successfully align all datasets of 100K bases, whereas other
methods took an unreasonable amount of time or failed. Moreover,
WFA-Adapt could finish all the executions in less than 7 seconds
achieving the maximum possible recall; that is, reporting 100% of
the optimal alignments.

In practice, the WFA algorithm seems barely sensitive to the se-
quence length, but to the alignment score between the sequences. In

turn, this is subject to the penalty scores chosen for the alignment.
Table 3 reflects how the performance of the WFA methods is
affected by different choices of penalty scores. Although the running
times remain remarkably low, selecting penalties that increase the
final alignment score can negatively impact the performance of the
algorithm; in this case, increasing the alignment time up to 2� in
the worst case.

3.4 Memory footprint
Table 4 presents the overall memory consumption of the algorithms
evaluated. These results experimentally confirm the reduced mem-
ory footprint required by the WFA methods. Moreover, as the read
length and error rate increases, the WFA-Adapt method uses 19–
36� times less memory than other methods. This not only results in
a significant reduction on the overall memory used but also relieves
the pressure put in the memory hierarchy by traditional DP-based
algorithms.

4 Discussion

In this article, we presented a novel algorithm for gap-affine pair-
wise alignment. Our method exploits the similarities between the
sequences to deliver exact alignments while outperforming in time
and memory other state-of-the-art algorithms. To this end, our algo-
rithm computes alignments of increasing score using a succinct
diagonal-transition representation. As a result, the WFA algorithm
runs in O(ns) time and memory; being n the sequence length, and s
the alignment score between the sequences.

To date, adaptive-band algorithms dominated over other
approaches. In practice, these methods seek to heuristically delimit
the alignment path to avoid computing DP cells whose score is too
high. Compared to them, the WFA algorithm naturally computes
cells of the DP matrix by increasing score without introducing fur-
ther complexities. Due to its simplicity, the WFA algorithm can be
easily vectorized using SIMD instructions, as opposed to traditional
DP-based algorithms. Moreover, data dependencies can be automat-
ically understood by modern compilers in order to transparently
issue SIMD instructions for any supported vectorial architecture.
Furthermore, when aligning moderately long sequences (i.e. less
than 255 bases), the WFA can encode diagonal offsets using 8-bit
integers, which not only enhances SIMD performance but also fur-
ther reduces the memory footprint.

Table 2. Time performance of pairwise alignment algorithms

100 1K 10K 100K

HiSeq ONT d¼ 1% d¼ 5% d¼ 20% d¼ 1% d¼ 5% d¼ 20% d¼ 1% d¼ 5% d¼ 20% d¼ 1% d¼ 5% d¼ 20%

Gap-affine

(Exact)

WFA 0.06 2.46 0.09 0.37 1.55 0.14 0.93 6.93 0.43 7.28 66.00 8.49 102.00 2542.00

KSW2-Z2 2.42 15.23 2.41 2.79 3.06 16.43 16.47 16.64 188.40 188.40 189.00 2146.00 2136.00 2139.00

SeqAn 18.18 180.60 18.28 19.17 22.64 184.80 190.80 213.60 n/a n/a n/a n/a n/a n/a

ParaStrip 77.40 530.40 77.40 75.60 70.80 603.60 602.40 572.40 n/a n/a n/a n/a n/a n/a

ParaScan 12.03 69.00 11.85 11.89 11.99 75.00 75.00 75.00 746.40 747.00 747.00 n/a n/a n/a

ParaDiag 17.80 130.20 17.53 17.58 17.66 141.60 141.60 141.60 n/a n/a n/a n/a n/a n/a

Gap-affine

(Banded)

WFA-Adap 0.07 1.51 0.09 0.50 2.20 0.16 0.68 2.75 0.17 0.68 3.00 0.26 1.53 6.97

Gaba 1.26 error 1.28 1.33 error 0.68 0.74 error 0.60 0.81 error 0.72 0.76 error

ParaBand 3.71 8.26 3.75 3.89 4.17 4.04 4.51 5.34 4.87 6.39 8.87 8.11 11.81 20.43

Others Edlib 1.75 2.28 1.73 1.82 1.94 1.95 2.03 2.73 3.67 4.50 7.39 6.95 19.34 error

BitPAl 0.47 2.18 0.47 0.47 0.47 2.27 2.31 2.33 21.44 21.44 21.47 212.40 212.40 212.40

KSW2-D2 2.87 18.13 2.86 3.23 3.49 19.56 19.64 19.81 219.60 219.60 220.20 2385.00 2380.00 2452.00

Note: Running time in seconds obtained by the different pairwise alignment algorithms on real and simulated datasets. Penalties used for all tests

fx ¼ 4; o ¼ 6; e ¼ 2g correspond to the ones used by BWA-MEM. Alignment algorithms have been grouped in three categories: ‘Gap-affine (Exact)’ for exact

algorithms that use gap-affine penalties, ‘Gap-affine (Banded)’ for approximate algorithms that use gap-affine penalties, and ‘Others’ for exact algorithms that use

other distance models (i.e. edit distance or linear-gap penalties). On simulated datasets, results are broken down by error rate. Experiments whose running time

exceeded 2 hours are marked as ‘n/a’. Likewise, runs that consistently failed are labelled with ‘error’. Note that WFA-Adapt was executed using WFmin ¼ 10 and

WFdiff ¼ 50.
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In addition, the WFA algorithm poses no constrain on the alpha-
bet size, nor requires any preprocessing step in advance. Besides, the
progressive computation of alignments of increasing score allows
the WFA to implement exact cut-offs techniques. And yet, this
method does not require any prior estimation of the alignment score
between the sequences whatsoever. Also, note that the optimizations
presented in this article are focused on intra-sequence paralleliza-
tion. Consequently, all the experiments were executed using a single
thread. Nevertheless, the WFA can be used together with many
inter-sequence paralellization techniques in order to exploit the
multi-threading capabilities of modern processors. And, although
the WFA algorithm has been presented using the gap-affine scoring
model, it can be easily adapted to more other scoring models, like
the linear-gap model or the piece-wise affine model (Gotoh, 1990;
Miller and Myers, 1988). Likewise, it can be adapted to semi-global
alignment by adjusting the initial conditions of Eq. 2 and the exit
condition on Algorithm 1. But also, it can even be used for finding
overlaps and local alignments in the spirit of mappers like DAligner
(Myers, 2014).

Undoubtedly, pairwise alignment will remain as a central and
critical building-block of many bioinformatics applications. For that
reason, our algorithm represents a fast and scalable solution for
many sequence analysis tools to cope with the ever-increasing yields
of sequencing technologies. In this way, the WFA approach will
pave the way for the design of better alignment algorithms in years
to come.
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