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Abstract

Distance metric learning (DML) aims to find a suitable measure to compute a distance

between instances. Facilitated by side information, the learned metric can often improve

the performance of similarity or distance based methods such as kNN. Theoretical analyses

of DML focus on the learning effectiveness for squared Mahalanobis distance. Specifically,

whether the Mahalanobis metric learned from the empirically sampled pairwise constraints is

in accordance with the optimal metric optimized over the paired samples generated from the

true distribution, and the sample complexity of this process. The excess risk could measure

the quality of the generalization, i.e., the gap between the expected objective of empirical

metric learned from a regularized objective with convex loss function and the one with the

optimal metric. Given N training examples, existing analyses over this non-i.i.d. learning

problem have proved the excess risk of DML converges to zero at a rate of O

(
1√
N

)

. In

this paper, we obtain a faster convergence rate of DML, O
(

1
N

)

, when learning the distance

metric with a smooth loss function and a strongly convex objective. In addition, when the

problem is relatively easy, and the number of training samples is large enough, this rate

can be further improved to O

(
1

N 2

)

. Synthetic experiments validate that DML can achieve

the specified faster generalization rate, and results under various settings help explore the

theoretical properties of DML a lot.

Keywords Distance metric learning · Generalization analysis · Excess risk

1 Introduction

Similarity and distance measures often act as essential components in machine learning

algorithms. For example, the Euclidean distance can be used to measure nearest neighbors in
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both classification (kNN) and clustering tasks (KMeans). Since such a single form of distance

cannot be universally applied, distance metric learning (DML) methods aim to find suitable

similarity/distance metrics to compare instances better and lead to adaptable measurement

for various real applications. With the help of side information, the learned metric makes

similar instances close to each other while pushes dissimilar ones far away (Kulis 2012;

Bellet et al. 2015). It has been validated that DML methods are able to find good distance

and similarity measures effectively for classification (Weinberger et al. 2006; Davis et al.

2007), clustering (Xing et al. 2003; Law et al. 2016b; Park et al. 2015), ranking (McFee and

Lanckriet 2010; Lim et al. 2013; Chechik et al. 2010), semantic discovering (Frome et al.

2007; Changpinyo et al. 2013; Ye et al. 2016b), recommendation (Hsieh et al. 2017), etc.

Given instance and label space X and Y , example zi = (xi , yi ) is sampled from the latent

joint distribution Z = X × Y . For a pair of instances (xi , x j ) with xi/ j ∈ R
d , their squared

Mahalanobis distance is defined as:

Dis2
M (xi , x j ) = (xi − x j )

⊤M(xi − x j ) . (1)

M ∈ S+
d is a d ×d positive semi-definite (PSD) matrix. The Mahalanobis distance metric not

only measures the correlation between different features (Lim et al. 2013; Ye et al. 2016a),

but also possesses good optimization properties (Qian et al. 2013, 2015).

Types of side information provide supervision during the metric training process, based on

which distances between constructed pairs are optimized. Existing distance metric learning

methods can be mainly categorized into two parts based on the way they use side information,

i.e., focus on pairwise or higher order comparison constraints. Pairwise side information

indicates whether two instances xi and x j are similar or not directly (Shalev-Shwartz et al.

2004; Davis et al. 2007). Besides, higher order relationship is also popular for their owned

rich direction information (Weinberger and Saul 2009; Hwang et al. 2013; Law et al. 2016a).

For instance, relative comparison relationships are contained in a triplet (xi , x j , xk), i.e., the

target neighbor x j is more similar to the center xi than an imposter xk . We focus our analysis

on the former pairwise side information in this paper.

Given N examples {zi = (xi , yi )}N
i=1 sampled i.i.d. from Z, the Mahalanobis metric M

can be learned based on their pairwise relationship:

M̂ = arg min
M∈S

+
d

F̂(M) = arg min
M∈S

+
d

1

N (N − 1)

N
∑

i=1

N
∑

j=1, j �=i

ℓ(qi j (γ − Dis2
M (xi , x j )))

︸ ︷︷ ︸

ǫN (M)

+Ω(M) .

(2)

qi j = I[yi = y j ] ∈ {−1, 1} indicates whether two instances are affiliated to the same class.

It equals 1 if yi = y j and −1 otherwise. γ is a pre-defined threshold value. ℓ(·) is a convex

non-negative loss function, which is usually an upper bound of the 0-1 loss function. The

objective in Eq. 2 utilizes all possible N (N − 1) pairwise relationship between two different

instances, and requires the distance between them in accordance with their label supervision.

This optimization problem finds a metric M̂ , measured with which the same class instances

have distances smaller than γ , while instances in different classes are pushed away than the

threshold. Ω(·) is a non-negative convex regularizer on M , which controls the complexity

and structure of the metric. ǫN (M) is the empirical risk of M , measured by loss function

value with N (N − 1) pairs. These two components form the empirical objective F̂(M) of

the distance metric learning problem. Benefited from the convex property of Eq. 2, we can

get an optimal metric M̂ with standard optimization techniques.
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The true risk of the above learning process can be defined as follows:

M∗ = arg min
M∈S

+
d

F(M) = arg min
M∈S

+
d

Ez1,z2 [ℓ(q12(γ − Dis2
M (x1, x2)))]

︸ ︷︷ ︸

ǫ(M)

+Ω(M) . (3)

The expectation E(·) in Eq. 3 involves the loss value w.r.t. two randomly sampled examples

z1 and z2 from Z. The expected objective F(M) contains the expected risk ǫ(M) and the

regularizer Ω(M), whose optimal solution is M∗. This expected risk reveals the generaliza-

tion ability of a metric, which is measured over an unseen pair of examples. Based on this

expected objective, we define the excess risk

F(M̂) − F(M∗) = F(M̂) − min
M

F(M) = ǫ(M̂) − ǫ(M∗) + Ω(M̂) − Ω(M∗) , (4)

i.e., the difference between the expected objective of empirical optimal M̂ and true optimal

M∗. It justifies whether the distance metric learned by optimizing over empirical training

example pairs in Eq. 2 is consistent with the one learned from pairs generated from true

distribution in Eq. 3. Besides, it also reveals the difference of generalization ability between

the empirical optimal metric M̂ and the true optimal one M∗ when testing distance measure

on unseen randomly sampled pairs.

In this paper, we propose to bound the excess risk F(M̂) − F(M∗) given smooth loss

function and strongly convex objective, and we focus on the rate the excess risk converging to

zero w.r.t. the number of training examples. The main technologies for the proof are followed

from Zhang et al. (2017). The analysis on distance metric learning scenario, however, is a

non-trivial extension, since the measure over pairs of examples is not i.i.d. as in traditional

classification task anymore. In our proof, we obtain a O
(

1
N

)

convergence rate of the excess

risk for the empirical optimized metric M̂ . Besides, when the task is relative easy, i.e., ǫ(M∗)

is small, the convergence rate can be further improved to O

(
1

N 2

)

given a large number of

training examples. Our theory validates the fast learning rate of distance metric learning

objective given a wide condition (as we will discuss in Sect. 4). Besides, it verifies that

the distance metric learning can achieve the same fast convergence rates as in traditional

classification tasks in spite of facing non-i.i.d. examples.

In the rest of this paper, we first discuss related work on distance metric learning from

both algorithmic and theoretical perspectives. Then, the primary results and analyses are

described in detail. After that, we extend our analysis on a pairwise ranking problem. After

the theorem proof, we validate the theory on synthetic data, and various settings are inves-

tigated to show different properties of the learning problem. Last are the conclusion and

discussion.

2 Related work

Types of side information are utilized to guide the properties of distance between pairs of

examples in distance metric learning. Xing et al. (2003) propose to utilize pairwise constraints

and learn the distance between instances, which can improve the performance of clustering.

Shalev-Shwartz et al. (2004) deal with this pairwise learning problem in an online manner.

Later, Weinberger and Saul (2009) propose to consider triplet type side information generated

from Euclidean nearest neighbors from same and different classes. A large margin is also

required to improve the generalization ability. Davis et al. (2007) tackle the distance metric

learning problem with an information theoretical regularizer, and (McFee and Lanckriet 2010;
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Lim et al. 2013) extend the learning of Mahalanobis metric to the application of ranking and

retrieval problems. Sparse metric is considered in Huang et al. (2009) and Ying et al. (2009).

Distance metric learning can also be used for the collaborative recommendation as in Hsieh

et al. (2017). The relationship between metric learning and SVM objective is discussed in Do

et al. (2012). Detailed overviews of distance metric learning can be found in Kulis (2012)

and Bellet et al. (2015).

Statistical learning theory links the performance of the learned hypothesis on both training

and unseen test data. Given enough training examples sampled i.i.d. from an unknown latent

distribution, the divergence between the empirical and expected statistics vanishes. Sample

complexity shows the order of training samples required to achieve a specified difference

between this gap. In other words, the difference shrinks between the gap given the number

of training examples. Here we denote the empirical optimal and true optimal solutions are

optimized over the empirical training sets and the ground-truth distribution, respectively.

Two kinds of bounds are commonly used to reveal the generalization ability of the learned

hypothesis. Generalization bound focuses on the gap between empirical error and expected

error concerning the same empirical optimal hypothesis (or uniformly over all hypotheses);

while excess risk bound analyzes whether the empirical solution could perform as well as the

expected optimal solution over the ground-truth distribution. The excess risk can be obtained

based on the generalization bound result in some cases (Shalev-Shwartz and Ben-David

2014).

Different theoretical tools approach the generalization ability analysis. Stability (Bousquet

and Elisseeff 2002) and Rademacher complexity (Bartlett and Mendelson 2002) are the usual

tools, which can induce a generalization bound with sample complexity O

(
1√
N

)

in general

cases. Bartlett et al. (2005) consider a Bennett type concentration inequality, together with

localized Rademacher complexity measure for a self-bounded reweight hypothesis class,

which can achieve a faster rate near O
(

1
N

)

. Types of properties of objective functions are

also utilized to improve the convergence rate. Sridharan et al. (2009) analyze the convergence

rate for strongly convex objective, especially those with convex loss and strongly convex reg-

ularizer like support vector machine, can also achieve O
(

1
N

)

using the peeling and reweight

technologies. Srebro et al. (2010) considers the objective with a smooth loss function, which

can also improve the convergence rate. Both the strongly convex and smooth properties are

analyzed in Zhang et al. (2017), where the complexity bound is built on the properties of the

first order information of the objective. In the analysis of Zhang et al. (2017), the excess risk

not only gets a fast rate as in previous methods with both smooth and strongly convex prop-

erty parameters but can also be proved to achieve a faster rate as O

(
1

N 2

)

when the number

of examples N is large enough, and the expected risk of the optimal hypothesis is small. In

this paper, our analysis of distance metric learning is based on non-i.i.d. pairs extracted from

the underlying distribution, and our results validate that learning a metric can also get a faster

rate as in i.i.d. supervised learning.

The generalization ability of the learned distance metric could be analyzed based on dif-

ferent theoretical tools. Jin et al. (2010) use the algorithmic stability (Bousquet and Elisseeff

2002) to measure the consistency of the learned metric and propose an online optimization

method. This analysis requires the learning objective be a convex one, and a Frobenius norm

of metric is often used to obtain the stability. Bellet et al. (2015) provide a stability analysis

for metric learning in a more general scenario. Similar methods can also be applied to the

analyses in transfer learning case with biased regularizer (Perrot and Habrard 2015), and for

multiple metrics extensions (Perrot et al. 2014). Robustness is also considered as a tool for

sparse (regularized) metric learning (Bellet and Habrard 2015). Verma and Branson (2015)
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impose the i.i.d. assumption on given pairs, and use Rademacher complexity (Bartlett and

Mendelson 2002) to find the upper and lower sample complexity bound of the metric learn-

ing objective. Similarly, Mason et al. (2017) focus on the triplet side information case and

also require the triplet i.i.d. assumption. The latent dimension and low-rank property of the

metric are stressed in the theoretical result. Cao et al. (2016) use the same theoretical tool

to do the analysis, but properties of U-statistics (Clémençon et al. 2008) are used to deal

with the non-i.i.d. pairs. Sample complexities for hinge loss with several different types of

regularizer are analyzed in Cao et al. (2016). There are also several analyses related to the

relationship between the learned metric and the classification performance (Bellet et al. 2012;

Guo and Ying 2014). Among all existing results for batch distance metric learning, there is

a general O

(
1√
N

)

type of convergence rate from ǫN (M̂) to ǫ(M̂), or from ǫ(M̂) to ǫ(M∗).

This result is tight since there are no more conditions on the components of distance metric

learning problem. In this paper, we explore some practical properties of the loss functions

and regularizers when learning a distance metric, so as to get a faster convergence rate for

the excess risk of the regularized objective.

3 Distancemetric learning analysis

In this section, we present our main theoretical result on distance metric learning in detail.

We first describe some preliminaries, followed by the main theorem, and then discuss the

result.

3.1 Preliminaries

For a differentiable convex function F(M) : S+
d → R, it is λ-strongly convex if for any M

and M ′:

F(M) ≥ F(M ′) + 〈∇F(M ′), M − M ′〉 + λ

2
‖M − M ′‖2

F .

∇F(M ′) is the gradient of F(·) at M ′. We use notation Tr(·) for the trace of a matrix. The

Frobenius norm ‖M‖2
F = Tr(M M⊤). Inner product 〈M, M ′〉 = Tr(M M ′⊤). A non-negative

regularizer Ω(M) : S+
d → R

+ is L-Lipschitz w.r.t. Frobenius norm if for M and M ′:

|Ω(M) − Ω(M ′)| ≤ L‖M − M ′‖F .

For a non-negative loss function ℓ(·) : R → R
+, it is β-smooth if its gradient is β-Lipschitz,

i.e., for x, y ∈ R, |ℓ′(x) − ℓ′(y)| ≤ β|x − y|. For matrix input, the β-smooth of a function

F(M) also has the following property:

F(M) ≤ F(M ′) + 〈∇F(M ′), M − M ′〉 + β

2
‖M − M ′‖2

F .

Given smooth property for a non-negative function, the norm of gradient can be bounded by

the value of the function: ‖∇F(M)‖F ≤ 2βF(M).
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3.2 Excess risk bound for distancemetric learning

For notation clarity, we define the outer product of the difference between two instances xi and

x j as Ai j = (xi −x j )(xi −x j )
⊤. Furthermore, we assume it is bounded by A, i.e., ‖Ai j‖F ≤

A. This bounded assumption can be implemented by an instance-wise normalization pre-

processing. It is notable that in the following theoretical analysis, we only use the symmetric

property of M to ensure the symmetric of distance between two instances as in Bellet et al.

(2015) and Cao et al. (2016). The norm of the learned metric is also bounded, ‖M‖F ≤ R.

Then, we can obtain the following theorem for the distance metric learning problem:

Theorem 1 Assume F(M) is λ-strongly convex, F̂(M) is a convex function, the loss function

ℓ(·) is β-smooth, and Ω(M) is L-Lipschitz. Define:

B = sup
zi ,z j ∼Z

‖∇ℓ(qi j (γ − Dis2
M∗(xi , x j )))‖F ,

s = ⌈log2 2R + 2 log2 N⌉,

C1 = 16
√

2 + 8
√

2 log s/δ , C2 = 8
√

2 + 8
√

log(s/δ) , C3 = 40B

3
log(s/δ) .

For 0 < δ < 1, with probability 1 − 2δ:

F(M̂) − F(M∗) ≤ max

{

B + L

N 2
+ β A2

2N 4
,

4C2
1 R2β2 A4

λN
+ C2

2

λN
β A2ǫ(M∗) + 2RC3

N

}

.

(5)

Furthermore, if

N ≥ 16β2 A2C2
1

λ2
, (6)

we have with probability 1 − 2δ:

F(M̂) − F(M∗) ≤ max

{

B + L

N 2
+ β A2

2N 4
,

2C2
2β A2ǫ(M∗)

λN
+ 2C2

3

λN 2

}

. (7)

Remark 1 Theorem 1 shows that the convergence rate of the regularized metric learning

objective can achieve an O
(

1
N

)

rate with smooth loss function and strongly convex objective.

Although there is a log2 N term in s, it is eventually formed as a log log N term and can be

neglected in most cases. The r.h.s. of the bound in Eq. 5 is related to the parameter of

the previous two properties. The larger the value of λ and the smaller the value of β, the

r.h.s. of the above inequality will be tighter, thus can achieve a better convergence rate.

This convergence rate of the objective function reflects the sample complexity to train a

metric. To achieve the same value of error tolerance ǫ ≪ 1 between F(M̂) and F(M), the

O

(
1√
N

)

convergence rate needs 1
ǫ2 samples, while the O

(
1
N

)

convergence rate bound needs

1
ǫ

samples. This comparison means given fixed samples in a real task, the model possessing a

faster convergence rate has a priority to achieve the required generalization error, thus could

perform better on unseen instances.

Remark 2 It is notable that the faster convergence rate proved in Theorem 1 reveals the

property of the regularized objective. Consider the structural risk minimization, the focus
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on the convergence rate of the regularized objective is meaningful. If the expected loss

function itself is strongly convex (as we will show in the experiments), then the improved

rate can be applied to the loss counterpart. In a general case, when missing strongly convex

and smooth property, the convergence of the loss term ǫ(M) has a lower bound with the

order O

(
1√
N

)

(Guo and Ying 2014; Verma and Branson 2015), which is slower than the

convergence rate of the regularized objective F(M). This phenomenon has also been observed

in i.i.d. learning case such as support vector machine (Sridharan et al. 2009).

Although the results in Theorem 1 focuses on the excess risk of the regularized objective,

it is general enough to facilitate the analysis of the generalization ability w.r.t. the loss part in

the case of Frobenius norm regularizer Ω(M) = λ′‖M‖2
F . In addition, we can approximate

the strongly convex parameter of F(M) as λ′. From Eq. 7, we have

F(M̂) − F(M∗) = ǫ(M̂) − ǫ(M∗) + λ‖M̂‖2
F − λ′‖M∗‖2

F

≤ max

{

B + L

N 2
+ β A2

2N 4
,

2C2
2β A2ǫ(M∗)

λ′N
+ 2C2

3

λ′N 2

}

.

Therefore, due to the non-negativity of the regularizer,

ǫ(M̂) − ǫ(M∗) ≤ max

{

B + L

N 2
+ β A2

2N 4
,

2C2
2β A2ǫ(M∗)

λ′N
+ 2C2

3

λ′N 2

}

+ λ′‖M∗‖2
F .

By choosing the value of λ′ as

λ′ =
√

2C2
2β A2ǫ(M∗)

‖M∗‖2
F N

+ 2C2
3

‖M∗‖2
F N 2

,

we can get

ǫ(M̂) − ǫ(M∗) ≤ max

⎧

⎨

⎩

B + L

N 2
+ β A2

2N 4
+ λ′‖M∗‖2

F , 2‖M∗‖F

√

2C2
2β A2ǫ(M∗)

N
+ 2C2

3

N 2

⎫

⎬

⎭

� 2‖M∗‖F

⎛

⎝

√

2C2
2β A2ǫ(M∗)

N
+ 2C3

N

⎞

⎠ . (8)

In Eq. 8, we neglect the fast rate term and focus on the r.h.s. part only with the possible slower

rate. From the result, the convergence rate of the metric loss term has the order O

(
1√
N

)

as in

previous analyses, which attaches the lower bound of similarity and distance metric learning

for convex loss function. Since also with smooth loss assumption in our conditions, we can

achieve a fast rate with order O
(

1
N

)

when ǫ(M∗) → 0. The improvement over loss function

excess risk has been proved for the i.i.d. learning setting (Srebro et al. 2010). Both the faster

and lower convergence rate for regularized objective and the loss term are validated in the

experiments.

Remark 3 When the number of examples is large enough in Eq. 6, the convergence of the

objective can achieve a O

(
1

N 2

)

given ǫ(M∗) is small enough. ǫ(M∗) measure the general-

ization performance of the optimal metric learned on the true risk, which reveals the difficulty

of a particular task. For instance, as the realizability assumption in PAC learnability analy-

sis (Shalev-Shwartz and Ben-David 2014), i.e., there exists an oracle hypothesis metric M∗
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and all labels can be generated from it. This separable case leads to the condition ǫ(M∗) = 0.

On the other hand, for a problem that instances from different localities are easily separated,

i.e., all required pairwise relationship generated from true data distribution can be easily

satisfied by the best metric with large probability so that ǫ(M∗) → 0. Therefore, given

enough training examples, the distance metric learning task can already perform well, and it

is much better than the case with a small number of examples. The condition on the number

of instances to get a faster rate indicates there may be an improvement over the generalization

convergence rate with the increase of N . The precise number of N may be much smaller than

the condition given in Eq. 6, which is also validated in the experiments.

Remark 4 The r.h.s. of the result is not related to the dimensionality of the data, which means

it can be applied to even high dimensional cases. This dimension free property of distance

metric learning generalization is also discussed in Verma and Branson (2015). Besides, higher

dimension of metric induces larger hypothesis space, so that the optimal metric solution of

F(M) can perform better. Therefore, the value of ǫ(M∗) will be smaller in a high-dimensional

case, which will prompt the condition for faster rates. This phenomenon has been validated

in our experiment.

Remark 5 These two results are consistent with the improved rates in classification (Zhang

et al. 2017) for i.i.d. examples, which shows that the learning process of distance metric

learning can also get the same fast rates as in those classification tasks. In other words,

learning based on the pairwise relationship can also obtain the same fast rate as the learning

for just first order relationship.

Remark 6 The bounded condition of M , i.e., ‖M‖F ≤ R, can be achieved by the Frobenius

norm regularizer with bounded loss function some times. When Ω = λ‖M‖2
F , we have

F̂(M̂) + λ‖M̂‖2
F ≤ F̂(0), which can be used to bound ‖M̂‖F . Similarity, ‖M∗‖ can also be

bounded. Thus, we can restrict the discussion of M in a bounded domain.

Remark 7 In the theorem, the whole objective is required to be strongly convex in expectation,

i.e., F(M) is λ-strongly convex. This is a weak assumption w.r.t. requiring the empirical

objective F̂(M) to be strongly convex for all input data (it is notable that in Theorem 1,

we only require F̂(M) to be convex). In real applications, we can validate this assumption

by checking the empirical objective. This weak condition extends our analysis to more real

cases. An example with a strongly convex expected objective but a convex empirical objective

can be found in the experiments.

4 Applications of the analysis of distancemetric learning problems

It is notable that three essential properties of the expected objective F(M) are required for the

proof of the Theorem 1, namely the L-Lipschitz regularizer Ω(·), the β-smooth loss function,

and the λ-strongly convex objective. Several different types of loss functions and regularizers

have been utilized in existing distance metric learning approach (Kulis 2012), and we will

analyze the application of our theorem in existing methods in detail. By verifying function

properties of regularizer (Lipschitz), loss (smooth), and objective (strongly convex), all the

three conditions are easy to satisfy in a practical distance metric learning implementation.

For regularizer Ω(·), it is required to be a Lipschitz function. This is a widely satisfied

requirement among distance metric learning methods. For example, the commonly used

(squared) Frobenius norm ΩF (M) = ‖M‖2
F , which is 2‖M‖F -Lipschitz in the domain. The
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regularizer can also be the form ΩT (M) = Tr(MC), and C is a pre-defined matrix depended

on real applications. When C = I , it requires the metric to be a low rank solution (Lim et al.

2013); while C =
∑

yi =y j
(xi − x j )(xi − x j )

⊤, it is equivalent to minimize the distances

between the same class instances, which is also used in Weinberger and Saul (2009). The

Lipschitz parameter is related to the norm of C . The form ΩL(M) = Tr(M) − log det(M)

is used in Davis et al. (2007), which intrinsically require the metric to be a PSD matrix. All

these regularizers are Lipschitz in the PSD matrix set.

For the loss term ℓ(·), hinge loss ℓh(x) = max(1 − x, 0) is often used to transform hard

constraints for pairwise distances to soft ones (Shalev-Shwartz et al. 2004). In addition to

requiring the input distance satisfy a similar or dissimilar distance constraint, it also preserve

a margin 1 between the distance value and the threshold γ , which has been validated to

improve the generalization ability in several cases (Weinberger and Saul 2009). The hinge

loss is not a smooth function, since there are several possible sub-gradient directions at the

input x = 1. Therefore, some smooth versions of it are also used, which can usually speed

up the optimization (Beck and Teboulle 2009). For example, the squared hinge loss ℓ1
s (x) =

max(1 − x, 0)2, exponential smoothed hinge loss (Qian et al. 2013) ℓ2
s (x) = ρ log(1 +

exp(− 1
ρ
(x −1))), and smooth hinge loss (Qian et al. 2015) ℓ3

s (x) = max(1− x − ρ
2
, 0) when

x ∈ (−∞, 1−ρ)∪ (1,∞), and ℓ3
s (x) = 1

2ρ
(1− x)2 otherwise. The parameter ρ ≥ 0 in ℓ2

s (·)
and ℓ3

s (·) is to tune the smoothness of the loss function. The smaller the value of ρ → 0,

the larger the proportion the loss function closer to the hinge loss ℓh(·), and the smaller the

smoothness parameter β of it. Log loss ℓl(x) = log(1+ exp(−x)) also possesses the smooth

property, which also acts as an important composition in distance metric training (Bian and

Tao 2011). In addition, the square loss ℓ2(x) = (x − 1)2 satisfies the smooth assumption.

In this case, the distance value of similar and dissimilar instances are required to be close to

γ − 1 and γ + 1, respectively (we assume the value γ − 1 > 0).

The strongly convex requirement is also required on the whole expected objective F(M).

As in Remark 7, this condition can be checked by verifying strongly convexity of empirical

objective F̂(M). It is noteworthy that in spite of the strongly convex property of the square

loss ℓ2(x), it cannot deduce the strongly convex property of the objective F̂(M) w.r.t. metric

M directly. For example, when instances have low rank property, it is hard to obtain strongly

convexity w.r.t. F̂(M).1 Thus, a strong convex regularizer like the (squared) Frobenius norm

ΩF (M) is safe to ensure the strongly convex of the whole objective, just as that in the

support vector machine. Besides, the strongly convex regularizer can be used together with

other convex but not strongly convex regularizers to obtain strongly convex property and

structure on metric at the same time. The larger the weight of ΩF (M), the larger proportion

the strongly convex property of the objective, and thus the faster convergence rate. Although

the combined strategy helps to achieve the overall strongly convex property of the objective,

it is not reasonable to set a large regularizer to achieve fast convergence rate, since it will also

introduce a large bias to the empirical optimal solution of the loss function. The proportion of

the bias can either be measured by the value of |Ω(M̂) − Ω(M∗)| or ‖M̂ − M∗‖F . Directly

using Ω(M) = ‖M‖2
F implicitly assumes a zero metric as the prior, which may be far from

the true optimal one. Therefore, an iterative procedure can be applied to sequentially estimate

the optimal solution of the problem, i.e., learning the distance metric with multiple stages

and assuming the stage-wise solutions provide and approach better optimal estimations. Set

M−1 = 0 as the value of initial matrix, subsequent metrics can be learned based on

1 In the experiment section, we give an example with strongly convex expected objective but only convex

empirical objective, which is consistent with the requirement in Theorem 1.
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F(Mg) = min
M∈S

+
d

1

N (N − 1)

N
∑

i=1

N
∑

j=1, j �=i

ℓ(qi j (γ − Dis2
M (xi , x j ))) + λ′‖M − Mg−1‖2

F .

Then the metric learned in the g-th stage reduce the bias towards optimal metric M∗ by

estimating it with the empirical optimal solution of the last stage. Similar stage-wise strategies

have been proved to be effective in Weinberger and Saul (2009), Zhan et al. (2009) and Qian

et al. (2015). Particularly in Qian et al. (2015), a smooth hinge loss ℓ2
s (·) is also used to satisfy

the smooth condition.

5 Analysis on the ranking problem

In a ranking problem, there are N examples {zi = (xi , yi )}N
i=1, where xi ∈ R

d , but yi ∈ R

may be a real value reveals the preference order among different instances. The goal of ranking

is to seek a scoring function f : R
d × R

d → R by minimizing the expected risk (Agarwal

and Niyogi 2009; Rejchel 2012)

Υ ( f ) = Ez1,z2 [I[sign(Y1 − Y2) f (x1, x2) < 0]] .

sign(·) ∈ {−1, 1} shows sign of the input value. The expected risk involves a pair of examples,

which is similar to the distance metric learning scenario. Its empirical counterpart can be

formulated as

Υ̂ ( f ) = 1

N (N − 1)

N
∑

i=1

∑

j �=i

I[sign(Yi − Y j ) f (xi , x j ) < 0] .

The indicator function I[·] is often replaced as a convex surrogate ℓ(·), when we implement

f with linear predictor w ∈ R
d , we can redefine the expected risk and empirical risk of

ranking problem as following:

Υ (w) = Ez1,z2 [ℓ(sign(Y1 − Y2)w
⊤(x1 − x2))] + Ω(w) . (9)

Υ̂ (w) = 1

N (N − 1)

N
∑

i=1

∑

j �=i

ℓ(sign(Yi − Y j )w
⊤(xi − x j )) + Ω(w) . (10)

Ω(w) is a convex regularizer on w. The optimal solution of Eqs. 9 and 10 are w∗ and ŵ,

respectively. Similar to the proof of Theorem 1, we can get the following theorem, which

provides the relationship between Υ (w) and Υ̂ (w).

Theorem 2 Assume Υ (w) is λ-strongly convex, Υ̂ (w) is convex function, loss function ℓ(·)
is β-smooth, and Ω(w) is L-Lipschitz. Define:

‖w‖F ≤ R, ‖x‖ ≤ A ,

B = sup
zi ,z j ∼Z

‖∇ℓ(sign(yi − y j )(w
∗⊤

(xi − x j )))‖F ,

s = ⌈log2 2R + 2 log2 N⌉,

C1 = 128
√

2 + 32
√

2 log s/δ , C2 = 16
√

2 + 16
√

log(s/δ) , C3 = 40B

3
log(s/δ) .

123



Machine Learning (2019) 108:267–295 277

For 0 < δ < 1, with probability 1 − 2δ:

Υ (ŵ) − Υ (w∗) ≤ max

{

B + L

N 2
+ β A2

2N 4
,

4C2
1 R2β2 A4

λN
+ C2

2

λN
β A2ǫ(w∗) + 2RC3

N

}

.

Furthermore, if

N ≥ 16β2 A2C2
1

λ2
,

we have with probability 1 − 2δ:

Υ (ŵ) − Υ (w∗) ≤ max

{

B + L

N 2
+ β A2

2N 4
,

2C2
2β A2ǫ(w∗)

λN
+ 2C2

3

λN 2

}

.

Remark 8 The analysis of the ranking problem has been researched from various perspec-

tives (Clémençon et al. 2008; Agarwal and Niyogi 2009; Rejchel 2012). In the above

Theorem 2, we utilize the property of loss function and regularizer to improve the gen-

eralization rate of a ranking problem. The convergence rate is related to the property of the

objective function. In summary, the pairwise linear ranking problem and distance metric

learning task have similar convergence results.

6 Proof of the Theorem

In this section, we present the proof details of Theorem 1 for distance metric learning problem.

The Proof of Theorem 2 for ranking can be constructed similarly.

The main differences between the proof for distance metric learning objective and the

classification task are two-fold. First, in the i.i.d. classification tasks, symmetrization tech-

nique (Bartlett and Mendelson 2002) is often used to introduce Rademacher random variables

as a measure of hypothesis complexity. For the non-i.i.d. pairwise objective in distance metric

learning, this symmetrization does not apply. U-statistics (Clémençon et al. 2008) is used to

transform the original non-i.i.d. pairs to the sum of i.i.d. blocks. Second, a Bernstein-type

inequality for vectors is used in Zhang et al. (2017) to bound the first order difference of

excess risk on the optimal solution, which requires the input is the sum of i.i.d. random

vectors. In our proof, a peeling strategy plus a Bernstein-type inequality for U-statistics is

applied to the non-i.i.d. random variables, which helps achieve the same rate.

At first, we prove the smoothness property for the gradient of the loss function. The norm

notation presents the Frobenius norm by default. For M and M ′, we have

‖∇ℓ(qi j (γ − Dis2
M (xi , x j ))) − ∇ℓ(qi j (γ − Dis2

M ′(xi , x j )))‖
= ‖ℓ′(qi j (γ − Dis2

M (xi , x j )))(−qi j Ai j ) − ℓ′(qi j (γ − Dis2
M ′(xi , x j )))(−qi j Ai j )‖

= ‖ℓ′(qi j (γ − Dis2
M (xi , x j ))) − ℓ′(qi j (γ − Dis2

M ′(xi , x j )))‖‖Ai j‖
≤ β|qi j (γ − Dis2

M (xi , x j )) − qi j (γ − Dis2
M ′(xi , x j ))|A

= β A|Dis2
M (xi , x j ) − Dis2

M ′(xi , x j )|
= β A|〈Ai j , M − M ′〉|
≤ β A2‖M − M ′‖ (11)
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Inequality Eq. 11 comes from the smooth property of loss function ℓ(·), which means its

differential is β-Lipschitz. From the above proof, the gradient of loss function ∇ℓ(·) is still

a smooth function over M , and its smooth parameter is β A2.

Proof of Theorem 1 Since all possible metrics are restricted in the domain ‖M −M∗‖F ≤ 2R,

we consider to split this range into two parts based on the proportion of the solution’s closeness

to the optimal one. Besides, we use ΔM = M−M∗ and ΔM̂ = M̂−M∗ to simplify notations

in some of the following derivations. In the relative easy case 0 ≤ ‖ΔM‖F = ‖M − M∗‖F ≤
1

N 2 , we have the following bound for the excess risk

F(M̂) − F(M∗) = ǫ(M̂) − ǫ(M∗) + Ω(M̂) − Ω(M∗)

≤ 〈M̂ − M∗,∇ǫ(M∗)〉 + A2β

2
‖M̂ − M∗‖2 + L‖M̂ − M∗‖ (12)

≤ ‖M̂ − M∗‖‖∇ǫ(M∗)‖ + A2β

2

1

N 4
+ L

1

N 2

≤ B

N 2
+ A2β

2

1

N 4
= B + L

N 2
+ A2β

2N 4
(13)

In Eq. 12, we use the smooth property of the loss function ǫ(·) and the L-Lipschitz property

of the regularizer Ω(·) w.r.t. metric M . While in Eq. 13, we can bound the norm of ‖∇ǫ(M∗)‖
as

‖∇ǫ(M∗)‖ = ‖Ezi ,z j ∼Z

[

∇ℓ(qi j (γ − Dis2
M∗(xi , x j )))

]

‖
≤ Ezi ,z j ∼Z

[

‖∇ℓ(qi j (γ − Dis2
M∗(xi , x j )))‖

]

≤ B .

When 1
N 2 ≤ ‖ΔM‖F = ‖M − M∗‖F ≤ 2R, we follow Zhang et al. (2017) to get the upper

bound of the excess risk:

F(M̂) − F(M∗) + λ

2
‖ΔM̂‖2 ≤ 〈∇F(M̂),ΔM̂〉

= 〈∇F(M̂) − ∇F(M∗),ΔM̂〉 + 〈∇F(M̂),ΔM̂〉
= 〈∇F(M̂) − ∇F(M∗) − [∇ F̂(M̂) − ∇ F̂(M∗)],ΔM̂〉

+ 〈[∇ F̂(M̂) − ∇ F̂(M∗)] + ∇F(M̂),ΔM̂〉
≤ 〈∇F(M̂) − ∇F(M∗) − [∇ F̂(M̂) − ∇ F̂(M∗)],ΔM̂〉 + 〈∇F(M∗) − ∇ F̂(M∗),ΔM̂〉

(14)

= 〈∇ǫ(M̂) − ∇ǫ(M∗) − [∇ǫN (M̂) − ∇ǫN (M∗)],ΔM̂〉 + 〈∇ǫ(M∗) − ∇ǫN (M∗),ΔM̂〉
≤ sup

‖ΔM‖≤‖ΔM̂‖
〈∇ǫ(M) − ∇ǫ(M∗) − [∇ǫN (M) − ∇ǫN (M∗)],ΔM〉 (15)

+ sup
‖ΔM‖≤‖ΔM̂‖

〈∇ǫ(M∗) − ∇ǫN (M∗),ΔM〉 (16)

Equation 14 comes from the variational inequality (Boyd and Vandenberghe 2004) of the

convex optimal solution ∀M, 〈∇ F̂(M̂), M − M̂〉 ≥ 0. To bound the above inequalities in

Eqs. 15 and 16, we partition the range of ‖ΔM‖ = ‖M − M∗‖ into s = ⌈log2 2R+2 log2 N⌉
segments such that

Δk =
(

2k−1

N 2
,

2k

N 2

]

= (r−
k , r+

k ], k = 1, . . . , s .
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Benefited from the first kind of range partition, there are only finite s segments during the

current case, thus the theoretical analysis over one segment could be extended to the whole

range by union bound. The decomposition of intervals help to get tighter results. In addition, it

could introduce the variable ‖M̂−M∗‖ on the r.h.s. of the bound. For a particular‖M−M∗‖ ≤
r , the upper bound value r must lies in a certain segment r ∈ Δk . In the following, we bound

Eqs. 15 and 16 separately by the following two lemmas:

Lemma 1 Given conditions in Theorem 1 and 1
N 2 ≤ ‖ΔM‖F ≤ 2R,

sup
‖ΔM‖≤‖ΔM̂‖

〈∇ǫ(M) − ∇ǫ(M∗) − [∇ǫN (M) − ∇ǫN (M∗)],ΔM〉 ≤ β A2‖ΔM̂‖2

√
N

C1.

(17)

where C1 = 16
√

2 + 8
√

2 log s/δ.

Lemma 2 Given conditions in Theorem 1 and 1
N 2 ≤ ‖ΔM‖F ≤ 2R,

sup
‖ΔM‖≤‖ΔM̂‖

〈∇ǫ(M∗) − ∇ǫN (M∗),ΔM〉 ≤ ‖ΔM̂‖√
N

√

β A2ǫ(M∗)C2 + ‖ΔM̂‖C3

N
, (18)

where C2 = 8
√

2 + 8
√

log(s/δ) and C3 = 40B
3

log(s/δ).

In summary, by Eqs. 17 and 18, we have

F(M̂) − F(M∗) + λ

2
‖M̂ − M∗‖2

≤ C1‖M̂ − M∗‖2 β A2

√
N

+ ‖M̂ − M∗‖ C2√
N

√

β A2ǫ(M∗) + ‖M̂ − M∗‖C3

N
(19)

For the first two terms, we have:

C1‖M̂ − M∗‖2 β A2

√
N

≤ C2
1‖M̂ − M∗‖2 β2 A4

λN
+ λ

4
‖M̂ − M∗‖2 , (20)

and

‖M̂ − M∗‖ C2√
N

√

β A2ǫ(M∗) ≤ C2
2

λN
β A2ǫ(M∗) + λ

4
‖M̂ − M∗‖2 . (21)

Plugging Eqs. 20 and 21 into Eq. 19, we have the first result:

F(M̂) − F(M∗) ≤ C2
1‖M̂ − M∗‖2 β2 A4

λN
+ C2

2

λN
β A2ǫ(M∗) + ‖M̂ − M∗‖C3

N

≤ 4C2
1 R2β2 A4

λN
+ C2

2

λN
β A2ǫ(M∗) + 2RC3

N
∼ O

(
1

N

)

.

In addition, for the last two terms in Eq. 19, we can bound by

‖M̂ − M∗‖ C2√
N

√

β A2ǫ(M∗) ≤ 2C2
2β A2ǫ(M∗)

λN
+ λ

8
‖M̂ − M∗‖2 . (22)

and

‖M̂ − M∗‖C3

N
≤ 2C2

3

λN 2
+ λ

8
‖M̂ − M∗‖2 . (23)

123



280 Machine Learning (2019) 108:267–295

If we have the condition

C1‖M̂ − M∗‖2 β A2

√
N

≤ λ‖M̂ − M∗‖2

4
,

which means

N ≥ (
4β A2C1

λ
)2 = 16β2 A4C2

1

λ2
,

with Eqs. 22 and 23, we have

F(M̂) − F(M∗) ≤ 2C2
2β A2ǫ(M∗)

λN
+ 2C2

3

λN 2
.

⊓⊔

Proof of Lemma 1 To prove an upper bound of the Eq. 15, we consider a particular ‖M −
M∗‖ = ‖ΔM‖ ≤ r . Therefore, it equals to prove

sup
‖ΔM‖≤r

〈∇ǫ(M) − ∇ǫ(M∗) − [∇ǫN (M) − ∇ǫN (M∗)],ΔM〉

≤ sup
‖ΔM‖≤r+

k

〈∇ǫ(M) − ∇ǫ(M∗) − [∇ǫN (M) − ∇ǫN (M∗)],ΔM〉

= sup
‖ΔM‖≤r+

k

g(z1, . . . , zN ) .

which can be further bounded by McDiarmid inequality (McDiarmid 1989). Bounded differ-

ence condition is required to use this inequality, which means the maximum absolute change

of the objective value when a particular instance in the input is changed. For two set of datasets

D = {z1, . . . , zk, . . . , zN } and D′ = {z1, . . . , z′
k, . . . , zN }, the notation (zi , z j ) ∼ D means

a set of P = N (N − 1) pairs of examples sampled from dataset D. We have

sup
D,D′

|g(z1, . . . , zk, . . . , zN ) − g(z1, . . . , z′
k, . . . , zN )|

= sup
D,D′

| 1

P

∑

(zi ,z j )∼D

〈∇ℓ(qi j (γ − Dis2
M (zi , z j ))) − ∇ℓ(qi j (γ − Dis2

M∗(zi , z j ))),ΔM〉

− 1

P

∑

(zi ,z j )∼D′
〈∇ℓ(qi j (γ − Dis2

M (zi , z j ))) − ∇ℓ(qi j (γ − Dis2
M∗(zi , z j ))),ΔM〉|

= sup
D,D′

| 2

P

∑

j �=k

〈∇ℓ(qi j (γ − Dis2
M (zk, z j ))) − ∇ℓ(qi j (γ − Dis2

M∗(zk, z j ))),ΔM〉

− 2

P

∑

j �=k

〈∇ℓ(qi j (γ − Dis2
M (z′

k, z j ))) − ∇ℓ(qi j (γ − Dis2
M∗(z

′
k, z j ))),ΔM〉|

≤ sup
D,D′

2

P

∑

j �=k

‖∇ℓ(qi j (γ − Dis2
M (zk, z j ))) − ∇ℓ(qi j (γ − Dis2

M∗(zk, z j )))‖‖ΔM‖

+
∑

j �=k

‖∇ℓ(qi j (γ − Dis2
M (z′

k, z j ))) − ∇ℓ(qi j (γ − Dis2
M∗(z

′
k, z j )))‖‖ΔM‖

≤ 4

N
β A2‖ΔM‖2 ≤ 4β A2

N
(r+

k )2 .
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Next step is to bound the expectation of g, which can be often dealt with by Rademacher

Complexity. For distance metric learning, however, since the given pairs are no longer i.i.d., it

is hard to use symmetrization technology and introduce Rademacher random variables. Ben-

efited from the following lemma (Clémençon et al. 2008), expectation over sum of pairwise

examples can be upper bounded by their sum of i.i.d. blocks.

Lemma 3 (Clémençon et al. 2008) Let qτ : Z × Z → R be real-valued functions indexed

by τ ∈ T where T is some set. If z1, . . . , zN are i.i.d. then for any convex nondecreasing

function Ψ ,

EΨ

⎛

⎝sup
τ∈T

1

P

∑

i �= j

qτ (zi , z j )

⎞

⎠ ≤ EΨ

⎛

⎜
⎝sup

τ∈T

1

⌊ N
2
⌋

⌊ N
2 ⌋
∑

i=1

qτ (zi , z
i+⌊ N

2 ⌋)

⎞

⎟
⎠ ,

assuming the supreme are measurable and the expected values exist.

In the following, we use the notation, n = ⌊ N
2
⌋. Ez[·] and Ez′ [·] mean the expectation is

taken w.r.t. the data D and D′, respectively.

Ez

⎡

⎣ sup
‖ΔM‖≤r+

k

〈∇ǫ(M) − ∇ǫ(M∗) − [∇ǫN (M) − ∇ǫN (M∗)], ΔM〉

⎤

⎦

= Ez

⎡

⎣ sup
‖ΔM‖≤r+

k

〈∇ǫ(M) − ∇ǫ(M∗) − 1

P

N
∑

i=1

∑

j �=i

[∇ℓ(M, zi , z j ) − ∇ℓ(M∗, zi , z j )], ΔM〉

⎤

⎦

= Ez

⎡

⎣ sup
‖ΔM‖≤r+

k

1

P

N
∑

i=1

∑

j �=i

〈
(

∇ǫ(M) − ∇ǫ(M∗)
)

−
(

∇ℓ(M, zi , z j ) − ∇ℓ(M∗, zi , z j )
)

, ΔM〉

⎤

⎦

Define a equivalent form of loss function as ǭn(M) =
∑n

i=1 ℓ(M, zi , zi+n) =
∑n

i=1

ℓ(qi,i+n(γ − Dis2
M (zi , zi+n))), we can upper bound the above expectation by Lemma 3

with

Ez

⎡

⎣ sup
‖ΔM‖≤r+

k

〈∇ǫ(M) − ∇ǫ(M∗) − [∇ǫN (M) − ∇ǫN (M∗)], ΔM〉

⎤

⎦

≤ Ez

⎡

⎣ sup
‖ΔM‖≤r+

k

1

n

n
∑

i=1

〈
(

∇ǫ(M) − ∇ǫ(M∗)
)

−
(

∇ℓ(M, zi , zi+n) − ∇ℓ(M∗, zi , zi+n)
)

, ΔM〉

⎤

⎦

= Ez

⎡

⎣ sup
‖ΔM‖≤r+

k

1

n

n
∑

i=1

〈∇ǫ(M) − ∇ǫ(M∗), ΔM〉 − 〈∇ℓ(M, zi , zi+n) − ∇ℓ(M∗, zi , zi+n), ΔM〉

⎤

⎦

= Ez

⎡

⎣ sup
‖ΔM‖≤r+

k

Ez′ [〈∇ ǭn(M) − ∇ ǭn(M∗), ΔM〉] − 〈∇ ǭn(M) − ∇ ǭn(M∗), ΔM〉

⎤

⎦

≤ 2Ez,σ

⎡

⎣ sup
‖ΔM‖≤r+

k

1

n

n
∑

i=1

σi 〈∇ℓ(M, zi , zi+n) − ∇ℓ(M∗, zi , zi+n), ΔM〉

⎤

⎦ (24)

= 2

n
Ez,σ

⎡

⎣ sup
‖ΔM‖≤r+

k

n
∑

i=1

σi (ℓ
′(M, zi , zi+n) − ∇ℓ′(M∗, zi , zi+n))〈Ai,i+n, ΔM〉

⎤

⎦ (25)
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In Eq. 24, we use Jensen’s inequality to combine two expectations, and then introduce

Rademacher random variables σi ∈ {−1, 1} with equal probability for each block. Then

in Eq. 25, it comes from that the σi and σi qi,i+ n
2

have the same distribution.

Here, the goal transform to bound the r.h.s. of Eq. 25, which is a multiplication of two

related terms. It can be decoupled by the similar method in Zhang et al. (2017), we list

the remaining steps here for completeness. Define ui = ui (M) = 1√
β
(ℓ′(M, zi , zi+n) −

ℓ′(M∗, zi , zi+n)) ∈ [−
√

β Ar+
k ,

√
β Ar+

k ] and vi = vi (M) =
√

β〈Ai,i+n,ΔM〉 ∈
[−√

β Ar+
k ,

√
β Ar+

k ]. With uivi = 1
4
((ui + vi )

2 − (ui − vi )
2), we can get

2

n
Ez,σ

⎡

⎣ sup
‖ΔM‖≤r+

k

n
∑

i=1

σi (ℓ
′(M, zi , zi+n) − ∇ℓ′(M∗, zi , zi+n))〈Ai,i+n,ΔM〉

⎤

⎦

= 2

n
Ez,σ

⎡

⎣ sup
‖ΔM‖≤r+

k

n
∑

i=1

σi ui (M)vi (M)

⎤

⎦

≤ 1

2n

⎛

⎝Ez,σ

⎡

⎣ sup
‖ΔM‖≤r+

k

n
∑

i=1

σi (ui + vi )
2

⎤

⎦+ Ez,σ

⎡

⎣ sup
‖ΔM‖≤r+

k

n
∑

i=1

σi (ui − vi )
2

⎤

⎦

⎞

⎠ .

With the following comparison lemma:

Lemma 4 (Meir and Zhang 2003) Let {gi (θ)} and {hi (θ)} be sets of functions defined for all

θ in some domain Θ . If for all i , θ , θ ′, |gi (θ) − gi (θ
′)| ≤ |hi (θ) − hi (θ

′)|, then

Eσ

{

sup
θ∈Θ

N
∑

i=1

σi gi (θ)

}

≤ Eσ

{

sup
θ∈Θ

N
∑

i=1

σi hi (θ)

}

,

we can first remove the square on above equalities by the 2
√

β Ar+
k -Lipschitz of (·)2 in the

range of [−√
β Ar+

k ,
√

β Ar+
k ]:

1

2n

⎛

⎝Ez,σ

⎡

⎣ sup
‖ΔM‖≤r+

k

n
∑

i=1

σi (ui + vi )
2

⎤

⎦+ Ez,σ

⎡

⎣ sup
‖ΔM‖≤r+

k

n
∑

i=1

σi (ui − vi )
2

⎤

⎦

⎞

⎠

≤
√

β Ar+
k

n

⎛

⎝Ez,σ

⎡

⎣ sup
‖ΔM‖≤r+

k

n
∑

i=1

σi (ui + vi )

⎤

⎦+ Ez,σ

⎡

⎣ sup
‖ΔM‖≤r+

k

n
∑

i=1

σi (ui − vi )

⎤

⎦

⎞

⎠

=
2
√

β Ar+
k

n

⎛

⎝Ez,σ

⎡

⎣ sup
‖ΔM‖≤r+

k

n
∑

i=1

σi ui

⎤

⎦+ Ez,σ

⎡

⎣ sup
‖ΔM‖≤r+

k

n
∑

i=1

σivi

⎤

⎦

⎞

⎠ .

By the β-smooth of ℓ′(·), we have the property of ui (M) that

|ui (M) − ui (M ′)| ≤ 1√
β

|ℓ′(M, zi , zi+n) − ℓ′(M ′, zi , zi+n)| ≤
√

β‖M − M ′‖

=
√

β|〈Ai,i+n,ΔM〉 − 〈Ai,i+n, M ′ − M∗〉| = |vi (M) − vi (M ′)| .

Thus, by comparison Lemma 4, we have

Ez,σ

⎡

⎣ sup
‖ΔM‖≤r+

k

n
∑

i=1

σi ui

⎤

⎦ ≤ Ez,σ

⎡

⎣ sup
‖ΔM‖≤r+

k

n
∑

i=1

σivi

⎤

⎦ .
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For the r.h.s., it can be bounded by:

Ez,σ

⎡

⎣ sup
‖ΔM‖≤r+

k

n
∑

i=1

σivi

⎤

⎦ = Ez,σ

⎡

⎣ sup
‖ΔM‖≤r+

k

n
∑

i=1

σi

√

β〈Ai,i+n,ΔM〉

⎤

⎦

≤
√

βr+
k Ez,σ

[

‖
n
∑

i=1

σi Ai,i+n‖
]

≤
√

βr+
k A

∥
∥
∥
∥
∥
∥

√
√
√
√Ez,σ (

n
∑

i=1

σi )2

∥
∥
∥
∥
∥
∥

≤ r+
k A
√

β
√

n . (26)

The last inequality Eq. 26 comes the concave property of the
√· function, then the i.i.d.

property of Rademacher random variable σi . Thus, we can get

Ez

⎡

⎣ sup
‖ΔM‖≤r+

k

〈∇ǫ(M) − ∇ǫ(M∗) − [∇ǫN (M) − ∇ǫN (M∗)],ΔM〉

⎤

⎦

= 2

n

(

2r+
k A

√
β

n

)

(r+
k A
√

β
√

n) =
4(r+

k )2β A2

√
n

=
4
√

2(r+
k )2β A2

√
N

. (27)

Combine above results in McDiarmid inequality, we have

sup
‖ΔM‖≤r+

k

〈∇ǫ(M) − ∇ǫ(M∗) − [∇ǫN (M) − ∇ǫN (M∗)],ΔM〉

≤
4
√

2(r+
k )2β A2

√
N

+ 2(r+
k )2β A2

√

2 log 1/δ

N
=

β A2(r+
k )2

√
N

(4
√

2 + 2
√

2 log 1/δ) .

Then, with r+
k ≤ 2r , and combine results of s segments together with union bound, we have:

sup
‖ΔM‖≤r

〈∇ǫ(M) − ∇ǫ(M∗) − [∇ǫN (M) − ∇ǫN (M∗)],ΔM〉 (28)

≤
4
√

2(r+
k )2β A2

√
N

+ 2(r+
k )2β A2

√

2 log s/δ

N
= β A2r2

√
N

C1 . (29)

where C1 = 16
√

2 + 8
√

2 log s/δ. ⊓⊔

Proof of Lemma 2 To bound the term sup‖ΔM‖≤‖M̂−M∗‖〈∇ǫ(M∗)−∇ǫN (M∗),ΔM〉, we also

consider the impact of segmentation and bound sup‖ΔM‖≤r+
k
〈∇ǫ(M∗) − ∇ǫN (M∗),ΔM〉.

We can use the following Bosquet type inequality:

Theorem 3 (Rejchel 2015) Assume G is a subset of family of functions {g : Z × Z → R}
that are uniformly bounded by a constant G. Denote a U-Statistic with kernel g by

Un(g) = 1
N (N−1)

∑

i �= j g(zi , z j ) and its expectation by U (g) = Eg(z1, z2). Let the

W = supg∈G |Un(g) − U (g)| be the supreme of a centered U-process Un(g) and Σ2 =
supg∈G Var[g(z1, z2)]. Define a simpler form of the empirical process

T = sup
g∈G

1

⌊ N
2
⌋
|
⌊ N

2 ⌋
∑

i=1

g(zi , z
i+⌊ N

2 ⌋) − Eg(zi , z
i+⌊ N

2 ⌋)| .

Then, for every non-negative confidence δ, with probability at least 1 − δ we have:

W ≤ ET +
√

2 log(1/δ)Σ2

⌊ N
2
⌋

+ 10G log(1/δ)

3⌊ N
2
⌋

. (30)
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We can set g(zi , z j ) = 〈∇ℓ(M∗, zi , z j ),ΔM〉. The upper bound of g can be easily obtained

by

G = sup |g(zi , z j )| = sup
‖ΔM‖≤r+

k

|〈∇ℓ(M∗, zi , z j ),ΔM〉|

≤ r+
k ‖∇ℓ(M∗, zi , z j )‖ ≤ Br+

k .

For the variance term Σ2, we have

Σ2 = sup
g∈G

Var[g(z1, z2)] ≤ sup
g∈G

E[g(z1, z2)
2]

= sup
‖ΔM‖≤r+

k

E[〈∇ℓ(M∗, zi , z j ),ΔM〉2]

≤ sup
‖ΔM‖≤r+

k

E[‖∇ℓ(M∗, zi , z j )‖2‖ΔM‖2]

≤ (r+
k )2

E[‖∇ℓ(M∗, zi , z j )‖2]
≤ 4(r+

k )2β A2
E[ℓ(M∗, zi , z j )] = 4(r+

k )2β A2ǫ(M∗) . (31)

The inequality in Eq. 31 comes from the β A2-smooth property of ∇ℓ(·) function. For the

expectation term, we have:

E[T ] = Ez

[

sup
g∈G

1

n
|

n
∑

i=1

g(zi , zi+n) − Ez′ g(z′
i , z′

i+n)|
]

≤ Ez,z′

[

sup
g∈G

1

n
|

n
∑

i=1

g(zi , zi+n) − g(z′
i , z′

i+n)|
]

= 2

n
Ez,σ

[

sup
g∈G

|
n
∑

i=1

σi g(zi , zi+n)|
]

= 2

n
Ez,σ

⎡

⎣ sup
‖ΔM‖≤r+

k

|
n
∑

i=1

σi 〈∇ℓ(M∗, zi , zi+n),ΔM〉|

⎤

⎦

≤ 2

n
Ez,σ

⎡

⎣ sup
‖ΔM‖≤r+

k

‖
n
∑

i=1

σi∇ℓ(M∗, zi , zi+n)‖‖ΔM‖

⎤

⎦

≤
2r+

k

n
Ez,σ

[

‖
n
∑

i=1

σi∇ℓ(M∗, zi , zi+n)‖
]

≤
2r+

k

n

√
√
√
√Ez,σ

[

‖
n
∑

i=1

σi∇ℓ(M∗, zi , zi+n)‖2

]

≤
2r+

k

n

√
√
√
√

n
∑

i=1

Ez

[

‖∇ℓ(M∗, zi , zi+n)‖2
]

≤
2r+

k

n

√

4nβ A2ǫ(M∗) =
4r+

k√
n

√

β A2ǫ(M∗) .
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Putting all components together, we can get

sup
‖ΔM‖≤‖M̂−M∗‖

〈∇ǫ(M∗) − ∇ǫN (M∗),ΔM〉

≤
4r+

k√
n

√

β A2ǫ(M∗) +

√

2 log(1/δ)4(r+
k )2β A2ǫ(M∗)

n
+

10Br+
k log(1/δ)

3n

=
4
√

2r+
k√

N

√

β A2ǫ(M∗) + 4r+
k

√

log(1/δ)β A2ǫ(M∗)

N
+

20Br+
k log(1/δ)

3N
.

Combining s segments together, we have:

sup
‖ΔM‖≤r

〈∇ǫ(M∗) − ∇ǫN (M∗),ΔM〉

≤ 8
√

2r√
N

√

β A2ǫ(M∗) + 8r

√

log(s/δ)β A2ǫ(M∗)

N
+ 40Br log(s/δ)

3N

= r√
N

√

β A2ǫ(M∗)C2 + rC3

N
, (32)

where C2 = 8
√

2 + 8
√

log(s/δ) and C3 = 40B
3

log(s/δ). ⊓⊔

7 Experiments

In this section, we validate the generalization convergence rate of a distance metric learning

problem proposed in this paper on a two-class synthetic dataset. Various properties of the

proposed theory can be observed from the experimental results.

Square loss is used to implement ℓ(·), and (squared) Frobenius norm ‖M‖2
F serves as the

regularizer. Thus, the objective possesses both the strongly convex and smooth requirements.

Therefore, the empirical objective of a metric M in this case is:

F̂(M) = 1

N (N − 1)

N
∑

i=1

N
∑

j=1, j �=i

(qi j (γ − Dis2
M (xi , x j )) − 1)2 + λ‖M‖2

F . (33)

While the expected objective of a metric M can be formulated as:

F(M) = Ez1,z2 [(q12(γ − Dis2
M (x1, x2)) − 1)2] + λ‖M‖2

F .

This loss is equivalent to promote the distance of a pair to the predefined value γ − qi j .

For notation simplicity, we use λ as the non-negative parameter to weight the importance

of the regularizer. The larger the value of λ, the more proportion of strong convexity of the

regularized objective.

The synthetic dataset is generated as follows. Instances from both classes are sampled

based on normal distributions N (μ1,Σ1) and N (μ2,Σ2), respectively. Given the number

of training instances, we divide examples equally into two classes (therefore, two classes

with equal prior). The side information qi j can be generated based on the class difference

of sampled instances. For clarity of notations, we assume μ1 = 1 and μ2 = −1, where 1 is

the vector with all elements equal one. Then, we assume both covariances of the two classes

are equal to ηI , where η > 0 is a nonnegative parameter to tune the proportion of overlap

between these two classes and I is the identity matrix. Threshold value γ is set as 2. Since
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the true distribution of examples is known and fixed beforehand, the true risk of a particular

metric M can be computed analytically2:

F(M) = 5 − 8ηTr(M) + 8η2Tr(M M) + 4η2(Tr(M))2 − 121⊤M1

+ 16η1⊤M M1 + 8(1⊤M1)2 + 8ηTr(M)1⊤M1 + λ‖M‖2
F . (34)

Considering the computational burden, the number of training examples N changes from 2 to

4000 and we constrain M to be a diagonal matrix M = diag(m), where diag(·) transforms

a vector m ∈ R
d to a diagonal matrix.3 Based on the diagonal property, the closed form of

expected objective in Eq. 34 can be simplified as:

F(M) = 5 − 8η1⊤m + 8η2m⊤m + 4η2(1⊤m)2 − 121⊤m

+ 16ηm⊤m + 8(1⊤m)2 + 8η(1⊤m)2 + λ‖m‖2
2 .

= ǫ(m) + λ‖m‖2
2 (35)

The empirical objective in Eq. 33 equals

F̂(M) = 1

N (N − 1)

N
∑

i=1

N
∑

j=1, j �=i

((γ − qi j ) − (xi − x j )diag(m)(xi − x j ))
2 + λ‖m‖2

2

= 1

N (N − 1)

N
∑

i=1

N
∑

j=1, j �=i

((γ − qi j ) − ((xi − x j ) ⊙ (xi − x j ))
⊤m)2

︸ ︷︷ ︸

ǫN (m)

+λ‖m‖2
2 .

⊙ is the element-wise product. In other words, the empirical optimal solution can be obtained

by solving the ridge regression problem with pairwise instance extension (xi − x j ) ⊙ (xi −
x j ) ∈ R

d by a closed form solution.

Remark 9 We check the strongly convexity of the expected regularized objective F(M) by

observing its Hessian matrix w.r.t. the diagonal part m based on Eq 35:

∂2 F(m)

∂2m
= (16η2 + 32η + λ)I + (8η2 + 16η + 16)11⊤ . (36)

The second term of Eq. 36 is positive semidefinite, while the first term has all eigen-values

equal (16η2 + 32η + λ) > 0. So the Hessian matrix is positive definite, and the expected

objective is strongly convex. For our specific expected objective F(m), its strongly convex

proportion depends on both the value of λ and η.

When focusing on the loss term ǫN (m), with no regularizer, it is not necessary strongly

convex since the instance matrix is not always full row rank. For its expectation ǫ(m),

however, has positive definite Hessian and minimum eigenvalue at least 8η2 +16η, such that

satisfying the strongly convex expectation objective as in Theorem 1.

Remark 10 The value of λ used in the regularizer usually is tuned with the different number

of instances. In the paper, we analyze the behavior of excess risk for distance metric learning

objective with fixed regularizer Ω(M), the fixed balance parameter λ in this case. In addition,

2 The derivation of a general case can be found in the appendix.

3 Since only the symmetric property of the learned metric is used in our Theorem 1, to be consistent, we do

not impose the PSD constraint on the learned metric here.
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we can expect there exists a specified λ (or the true value of regularization parameter λ∗),

and the result shows how fast the regularized objective convergence with this pre-defined

parameter setting.

For a fixed N , N
2

examples are randomly sampled from two normal distributions respec-

tively, and N (N − 1) pairs are generated to train the distance metric M . This procedure is

repeated 30 times, and in each trial, benefited from the square form of the objective, the

empirical optimal solution M̂ can be found in a closed form. The optimal F(M∗) is approx-

imated by the minimum value of all computed F(M̂). The same strategy is also used to

compute or estimate ǫ(M̂) and ǫ(M∗).4

Mean values and error bars of excess risk w.r.t. variations on the training number of

examples with different parameter settings are plotted. To validate the convergence rate

of excess risk, we times it with different parameters proportion to the number of training

instances, namely, (F(M̂)−F(M∗))×
√

N , (F(M̂)−F(M∗))×N , and (F(M̂)−F(M∗))×
N 2. If the plot has a descending trend, it means that its convergence ratio is lower than

the one over the corresponding scale. When there appears an ascending trend, one over

the corresponding scale is a higher estimation. If the plot approaches a constant at last,

it is the corresponding ratio reveal the right convergence rate. The same strategy is also

used for (ǫ(M̂) − ǫ(M∗)). In the legends, “d” indicates the dimensionality of instances, η

representing the mess level of each class, and “λ” reveals the impact of strongly convex

regularizer additionally introduced by the regularizer except for the loss function itself.

We first investigate the change of excess risk in the low dimension case d = 2, and the

results are in the Fig. 1. Each row in Fig. 1 represents the change of excess risk w.r.t. the

number of training instances in a particular learning scenario (with different parameters for

dataset generation or metric learning objective, i.e., η and λ). The first and third rows focus

on the excess risk change over the loss term. Four columns correspond to the
√

N (blue), N

(green), N 2 (red), and 1 (pink) times the excess risk F(M̂)− F(M∗) (resp. ǫ(M̂)− ǫ(M∗)),
respectively. The darker color in plots shows the mean value of estimated excess risk over all

trials, while the lighter color shows the variance. This appearance style is also used for the

following experiments. For the change trend of the objective excess risk F(M̂) − F(M∗), it

will converge to zero given enough training examples as shown in the fourth column. These

results verify the fact that the metric M̂ learned from the empirical objective approach to the

one M∗ learned from the true distribution given more and more examples. For its convergence

rate, we can find that in figures (f), (n) and (v), (F(M̂)−F(M∗))×N approaches to a constant

very quickly, i.e., with a small number of training instances, which validate that there is a

basic O
(

1
N

)

convergence rate for the whole objective as in Theorem 1. As shown in the

Theorem 1, small value of ǫ(M∗) is also a necessary condition to get the faster O

(
1

N 2

)

convergence rate. Since the hypothesis space is small in this low dimensional metric learning

case, it may be difficult to find a suitable M∗ to make the value ǫ(M∗) small enough, so

only the O
(

1
N

)

can be obtained. The convergence can obtain a non-apparent improvement

as in plot (s) when η is very small and λ is relatively large. The plot in (s) levels out at

last, which means that in this easier case with lower noise, ǫ(M∗) is relatively small, and

the convergence rate of excess risk may be faster than O
(

1
N

)

. The first and third rows in

Fig. 1 show the convergence property of the loss part ǫ(M̂) − ǫ(M∗). It is noteworthy that

the empirical solution M̂ is solved from the regularized objective, as in most metric learning

implementations, and measured by the expected loss function. Like the change of objective

excess risk, it will converge to zero when the number of training instances is large. From

4 In the following context, we use metric M and its diagonal vector m exchangeably.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w) (x)

Fig. 1 Results on four sets of synthetic datasets. Each row of figures represents the change of excess risk

w.r.t. the number of training instances in a particular learning scenario (with different parameters for dataset

generation or metric learning objective). The first and third rows focus on the excess risk change over the loss

term. Four columns correspond to the
√

N (blue), N (green), N 2 (red), and 1 (pink) times the excess risk

F(M̂) − F(M∗) (resp. ǫ(M̂) − ǫ(M∗)), respectively (Color figure online)

(a)-(b), the O

(
1√
N

)

convergence rate can be discovered, as we proved in Remark 2. But in

(j), the convergence of excess risk for loss part has the order O
(

1
N

)

. The improvement of the

convergence may come from the strongly convexity property of loss part itself introduced by
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 2 Excess risk results in the case dimensionality d = 100. Each row of figures represents the change of

excess risk w.r.t. the number of training instances in a particular learning scenario (with different parameters

for dataset generation or metric learning objective). Four columns correspond to the
√

N (blue), N (green),

N 2 (red), and 1 (pink) times the excess risk F(M̂) − F(M∗), respectively (Color figure online)

η, as shown in Remark 9. We neglect the change of excess risk ǫ(M̂) − ǫ(M∗) in last two

cases, i.e., η = 0.001, λ = 100 and η = 100, λ = 100. For the first case, ǫ(M̂) − ǫ(M∗)
diverges since a large value of λ masks all properties of the distance measure loss counterpart,

and the learned metric does not have small loss values. For the later case, the excess risk of

loss is very similar to the excess risk of the objective.

The convergence results of the expected objective in the higher dimension case d = 100

are shown in Fig. 2. First two rows are the low noise case (η = 0.001), while in the latter two

rows η = 100. According to the results of Remark 9, when the expected objective is far from

strongly convexity, i.e., both η and λ are too small, there is only a O
(

1
N

)

rate as in plot (b).

While in other cases as in plots (g), (k), and (o), the strongly convex objective accelerates the

convergence rate of the excess risk a lot. It validates that for the non-i.i.d. pairwise distance

metric learning setting, when N is large enough, the convergence rate of F(M̂) − F(M∗)

can obtain the even faster order of O

(
1

N 2

)

. These results are consistent with our theoretical

analysis in Theorem 1. Comparing (g) with (k) and (o), it is notable that in later two cases

the convergence rate of excess risk obtain the faster O

(
1

N 2

)

rate earlier (the plots become a

constant trend with a smaller number of instances). This phenomenon results from the fact

that η influences more the strongly convexity of the expected objective than λ with given
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3 Excess risk results when dimension d = 500, 1000. Each row of figures represents the change of

excess risk w.r.t. the number of training instances in a particular learning scenario (with different parameters

for dataset generation or metric learning objective). Three columns correspond to the N (green), N 2 (red),

and 1 (pink) times the excess risk F(M̂) − F(M∗), respectively (Color figure online)

sets of values as in Remark 9. In addition, the threshold value of N to achieve the faster

convergence rates O

(
1

N 2

)

may be smaller than the theoretical value in Eq. 6.

For higher dimension scenario, i.e., dimension d = 500 and d = 1000, we show the

change of the expected objective function values in Fig. 3. Considering the computational

burden, the maximum number of training instances is set to 2000. We neglect the results of

with
√

N scale since in this higher dimensional case the convergence rate of the expected

objective function is obviously faster than O
(

1
N

)

. In different settings, the expected objective

function values converge at last. Based on (b), (e), (h), (k) in Fig. 3, the rate of convergence

achieves the faster rate with order O

(
1

N 2

)

. This is consistent with our theoretical analysis

since when dimensionality is higher enough, it is easier to get low expected loss function
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 4 Excess risk results when there is no regularizer (loss part is the objective). Each row of figures represents

the change of excess risk w.r.t. the number of training instances in a particular learning scenario (with different

parameters for dataset generation or metric learning objective). Four columns correspond to the
√

N (blue),

N (green), N 2 (red), and 1 (pink) times the excess risk F(M̂) − F(M∗) (resp. ǫ(M̂) − ǫ(M∗)), respectively

(Color figure online)

value in such a large hypothesis space. From these numerical results, when d and N are large

enough, it seems that the convergence rate could be even higher than O

(
1

N 2

)

since there exists

a decreasing trend of the expected convergence rate especially in (h). The counter-intuitive

phenomenon may result from the exponentially expanded hypothesis space or the sparsity in

high dimensionality problems. Some new theoretical analysis with different conditions may

be derived to explain the results (Fig. 4).

At last we consider the case there is no regularizer Ω(M), and the whole objective has

only the loss part, i.e., F(M) = ǫ(M). Different from the previous cases where M̂ and M∗ is

computed or estimated from the empirical objective with regularizer, here the corresponding

solutions of metric are computed and estimated based just on the loss function. First two

rows show the case with dimensionality equal 2, and last two rows are the cases d = 100. It

can be clearly found the excess risk of the objective (only contains loss term) can achieve fast

convergence rate O
(

1
N

)

in low dimension while achieving faster rate with order O

(
1

N 2

)

in

high dimension scenario. On the one hand, as pointed out in Remark 9, even the empirical

square loss is not strongly convex, its strongly convex expected objective is sufficed to use our

Theorem 1. Therefore, the faster convergence rate over loss function is achieved compared

with previous results (Guo and Ying 2014; Bellet et al. 2015; Verma and Branson 2015; Cao
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et al. 2016). On the other hand, since in the high dimensional space it is easier to find M∗ with

lower ǫ(M∗), we can explain the faster rate in (k) and (o) using the results of the Theorem 1.

In summary, our experiments on synthetic datasets validate the result in Theorem 1, that the

distance metric learning method will achieve fast convergence rate for smooth loss function

and strongly convex objective.

8 Conclusion and discussion

Distance metric learning is widely used in various machine learning fields and helps to

improve the performance of similarity/distance based methods a lot. With strongly convex

and smooth properties for the objective function and the loss respectively, we prove that

the generalization ability of distance metric learning problem, in particular, the excess risk,

can achieve faster convergence rate than previous results. This result also validates that the

distance metric learning problem, although dealing with non-i.i.d. training inputs, has the

same good property as traditional classification tasks concerning i.i.d. examples. We also

give discussions on the relatedness of our analysis with previous implementations of metric

learning methods. Similar proof techniques can also be applied to the ranking task while

improving its excess risk convergence rate as well.

More interesting investigations could be extended from our results. First, comparing the

example number condition in Eq. 6 and the results in Figs. 1 and 2, the required number of

examples to get a faster rate may be smaller than the number computed by Eq. 6. In addition,

since the distance metric learning objective uses the pairwise information, it implicitly uses

more information from examples than the i.i.d. classification models. Therefore, it is reason-

able to guess there exists a condition with a smaller number of examples but achieves the

faster convergence rates of excess risk. Second, although the properties of objective terms

are considered in the paper, the properties of the metric is not stressed, e.g., the low-rank,

sparse, or other complex structure induced by the regularizer. It is a promising future work

to analyze the possibility of having better rates with structural metrics.

Acknowledgements Funding was provided by National Key R&D Program of China (2018YFB1004300),

NSFC (Grant No. 61773198, 61632004).

Appendix

In the appendix, we derive the analytic form of generalization error for distance metric

learning with a square loss when applying to examples generated from normal distributions,

which helps analyze various properties of our theorem.

Given a two-class datasets with instances generated by N (μ1,Σ1) and N (μ2,Σ2), the

distance metric learning objective with square loss is defined as:

F(M) = Ez1,z2 [(q12(γ − Dis2
M (x1, x2)) − 1)2] + Ω(M) .

= Ez1,z2 [((γ − q12) − Dis2
M (x1, x2))

2] + Ω(M) . (37)

Since z1 and z2 are sampled independently from latent distribution, we set an equal prior

distribution for both classes, i.e., Pr(y1 = 1) = Pr(y1 = 2) = 1
2

. The expected square loss

value in Eq. 37 can be decomposed as

Ez1,z2 [((γ − q12) − Dis2
M (x1, x2))

2]
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= 1

4
Ez1,z2 [((γ − q12) − Dis2

M (x1, x2))
2 | y1 = 1, y2 = 1]

+ 1

4
Ez1,z2 [((γ − q12) − Dis2

M (x1, x2))
2 | y1 = 2, y2 = 2]

+ 1

2
Ez1,z2 [((γ − q12) − Dis2

M (x1, x2))
2 | y1 = 1, y2 = 2] (38)

For a pair of instance (x1, x2), when they come from the same class, e.g., class 1, their

difference vector come from the distribution m12 = x1 − x2 ∼ N (0, 2Σ1). Thus, their

expected distance value:

E[Dis2
M (x1, x2)] = E[(x1 − x2)

⊤M(x1 − x2)] = E[m⊤
12 Mm12] = 2Tr(MΣ1) .

In addition, the expected value of their squared distance is:

E[Dis4
M (x1, x2)] = E[m⊤

12 Mm12m⊤
12 Mm12] = 8Tr(MΣ1 MΣ1) + 4(Tr(MΣ1))

2 .

Therefore, the expected loss value for same class instances can be computed by:

Ez1,z2 [((γ − 1) − Dis2
M (x1, x2))

2]
= Ez1,z2 [((γ − 1)2 − 2(γ − 1)Dis2

M (x1, x2)) + Dis4
M (x1, x2))]

= (γ − 1)2 − 2(γ − 1)Ez1,z2 [Dis2
M (x1, x2))] + Ez1,z2 [Dis4

M (x1, x2)]
= (γ − 1)2 − 4(γ − 1)Tr(MΣ1) + 8Tr(MΣ1 MΣ1) + 4(Tr(MΣ1))

2 . (39)

When (x1, x2) comes from the first and second classes respectively, mi j ∼ N (μ1 −
μ2,Σ1 + Σ2). Using similar derivations, we have the expected loss:

Ez1,z2 [((γ − 1) − Dis2
M (x1, x2))

2]
= (γ + 1)2 − 2(γ + 1)Ez1,z2 [Dis2

M (x1, x2))] + Ez1,z2 [Dis4
M (x1, x2)]

= (γ + 1)2 − 2(γ + 1)(Tr(M(Σ1 + Σ2)) + (μ1 − μ2)
⊤M(μ1 − μ2))

+ 2Tr(M(Σ1 + Σ2)M(Σ1 + Σ2)) + 4(μ1 − μ2)
⊤M(Σ1 + Σ2)M(μ1 − μ2)

+ (Tr(M(Σ1 + Σ2)) + (μ1 − μ2)
⊤M(μ1 − μ2))

2 . (40)

Plugging Eqs. 39 and 40 into Eq. 38, we can get the expected objective. When we set

γ = 2, μ1 = 1, μ2 = −1, and Σ1 = Σ2 = ηI , the expected objective can be simplified as:

F(M) = 5 − 8ηTr(M) + 8η2Tr(M M) + 4η2(Tr(M))2 − 121⊤M1

+ 16η1⊤M M1 + 8(1⊤M1)2 + 8ηTr(M)1⊤M1 + Ω(M) .
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