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Cubic graphs are graphs where every vertex

has degree 3 (3 edges meet in every

vertex).
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They are very interesting in chemistry as

models of molecules (vertices are e.g.

Carbon atoms as in fullerenes)

They are very interesting in mathematics

(for a lot of conjectures smallest possible

counterexamples are cubic graphs)
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Enumeration of cubic graphs

1889 De Vries – up to 10 vertices

1966/67 Balaban – up to 12 vertices

(computer)

1968 Bussemaker, Seidel – up to 10 vertices

(by hand)

1971 Imrich – up to 10 vertices (by hand)



1974 A.L. Petrenjuk, A.W. Petrenjuk

– up to 12 vertices

1976 Bussemaker, Cobeljic, Cvetkovic,

Seidel – up to 14 vertices

1976 Faradzev – up to 18 vertices

1985 McKay, Royle – up to 20 vertices



1992 Brinkmann – up to 24 vertices

(In the meantime the same program –

minibaum – has been used up to

30 vertices, that are 845.480.228.069 graphs.)

1999 Meringer – general regular graphs gen-

erator – faster for small vertex numbers,

slower for large vertex numbers.

2000 McKay, Sanjmyatav – fast specialized

algorithm, but was never released
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The following algorithm is faster than any

previously developed algorithm.

It uses a construction that is folklore (and

was already used by De Vries and McKay,

Sanjmyatav), some standard isomorphism

rejection techniques (McKay’s canonical

construction path method), well known

efficient datastructures. . .

. . . plus one simple new idea.
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The generation algorithm consists of

2 steps:

Tetrahedron

⇓

Prime graphs

⇓

All (remaining) cubic graphs
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Operations of De Vries (1889)

Start from the tetrahedron. . .

(1)

(2)
(3)

can be the
same



Small modification

(3)

can be the
same

(1)

(2)
(2a)
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Operations to generate . . .

(2)
(2a)

(1)

prime graphs remaining cubic graphs

(3)

can be the
same
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Now first only the operations (1),(2),(2a)
can be applied – and operation (3) last.

So we first generate all graphs of the form
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. . . these are the prime graphs.

There are relatively few prime graphs – for

26 vertices 0.0000025% of all graphs – and

the rate is decreasing fast.

So for this part of the generation,

efficiency is not the issue.
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Generation of remaining cubic
graphs

The following operation remains
(and completely determines the efficiency):

can be the

same
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Isomorphism rejection (McKay’s

canonical construction path method)

• Assign a unique inverse operation for

every graph (except the prime graphs) to

obtain an ancestor.

• Make sure that from the same graph you

don’t obtain the same ancestor twice in

the same way.
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• Assign a unique inverse operation for

every graph (except the startgraphs) to

obtain an ancestor:

Assign up to isomorphism an edge that

must be removed (i.e. the canonical edge).

First use some cheap criteria and only in

case these don’t help use nauty to compute

a canonical form.
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Cheap criterion to determine the
canonical edge

E.g.: first choose the removable edges that
have as few as possible vertices at

distance at most 2.
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Cheap criterion to determine the
canonical edge

E.g.: first choose the removable edges that
have as few as possible vertices at

distance at most 2.
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Cheap criterion to determine the
canonical edge

E.g.: first choose the removable edges that
have as few as possible vertices at

distance at most 2.

8
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Cheap criterion to determine the
canonical edge

E.g.: first choose the removable edges that

have as few as possible vertices at

distance at most 2.

8

9

9

9
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• Make sure that from the same graph you

don’t obtain the same ancestor twice in

the same way:

Approximately: Compute the orbits of the

automorphism group on the pairs of edges

that can be chosen for extension.
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The red pair and the green pair (and lots of

others) give the same result.
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So the rough pseudocode is

recursion(n) {
// check canonicity of last operation
// this may require to compute the group
if (canonical) {

if (n=wanted number of vertices)
write up

else {
// compute possible extensions
compute group // if not yet known
compute equivalence classes (needs group)
for each class choose extension i {

// choose extension i
extend(i)
recursion(n+1)

}
}

}
}



Just applying this (with some technical

optimizations and a good implementation)

already gives an algorithm that works quite

well!

This is (more or less) the way the program

of McKay and Sanjmyatav works.
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Expensive parts are

• determining whether the last operation

was canonical

• computing the symmetry group
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Around 80% of the graphs have triangles –

if this part could be optimized. . .

=
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Simple new idea

Reduction: (determine ancestor)

Collapse all independent triangles (triangles
that don’t share an edge with other

triangles) to a point –
alltogether in one operation.

well . . . cheating a little bit. . .
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The inverse operation:

Compute orbits of sets of vertices so that

each triangle contains at least one. Blow

these vertices up – no canonicity check.

And no non-canonical graphs!

Faculty of Science



26 vertices

graphs with 0 triangles: 20.66%

graphs with 1 triangles: 32.45%

graphs with 2 triangles: 25.72%

graphs with 3 triangles: 13.59%

graphs with 4 triangles: 5.36%

graphs with 5 triangles: 1.66%

graphs with 6 triangles: 0.42%

graphs with 7 triangles: 0.08%

etc.
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Expensive parts are

• determining whether the last operation

was canonical

• computing the symmetry group
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Adding an edge can change the group

dramatically – the group can get larger

and can get smaller.
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So in case of adding an edge no

information about the group can be reused.
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Blowing up vertices to (all) triangles leads

to subgroups (in a certain sense. . . ).

A lot of information about the group can

be reused to speed up the computation of

the group – and in case of a trivial group

we know that the group after the

construction is trivial too!

Faculty of Science



Faculty of Science



Combined with look ahead for small cycles:

graphs with girth 4 or 5 can be generated

efficiently!

Ongoing work: similar principle of

simultaneaous blow up for 4-gons.
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Results: (Intel 64bit 2.33 GHz)

20 vertices: 80.000 graphs/sec 510.489 graphs

22 vertices: 88.000 graphs/sec 7.319.447 graphs

24 vertices: 93.000 graphs/sec 117.940.535 graphs

26 vertices: 95.000 graphs/sec 2.094.480.864 graphs

Speedup 3.76 to 3.3 compared to

minibaum.
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But well, . . . in principle minibaum was fast

enough.

Everything you wanted to do with the

graphs took longer than the generation. . .
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So it is partly record hunting,

but the most important reason for the

development of the new generator is the

efficient generation of the subclass known

as Snarks.
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There are only very few Snarks among the

cubic graphs

This construction method allows early

detection of a lot of non-Snarks, so it is

much faster than just applying a filter.
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Thanks for your attention
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