
Fast Generation of

Cubic Graphs

Gunnar Brinkmann and Jan Goedgebeur

Gunnar.Brinkmann@UGent.be

Jan.Goedgebeur@UGent.be

Faculty of Science



Cubic graphs are graphs where every vertex

has degree 3 (3 edges meet in every

vertex).

Faculty of Science



They are very interesting in chemistry as

models of molecules (vertices are e.g.

Carbon atoms as in fullerenes)

They are very interesting in mathematics

(for a lot of conjectures smallest possible

counterexamples are cubic graphs)

Faculty of Science



Enumeration of cubic graphs

1889 De Vries – up to 10 vertices

1966/67 Balaban – up to 12 vertices

(computer)

1968 Bussemaker, Seidel – up to 10 vertices

(by hand)

1971 Imrich – up to 10 vertices (by hand)



1974 A.L. Petrenjuk, A.W. Petrenjuk

– up to 12 vertices

1976 Bussemaker, Cobeljic, Cvetkovic,

Seidel – up to 14 vertices

1976 Faradzev – up to 18 vertices

1985 McKay, Royle – up to 20 vertices



1992 Brinkmann – up to 24 vertices

(In the meantime the same program –

minibaum – has been used up to

30 vertices, that are 845.480.228.069 graphs.)

1999 Meringer – general regular graphs gen-

erator – faster for small vertex numbers,

slower for large vertex numbers.

2000 McKay, Sanjmyatav – fast specialized

algorithm, but was never released

Faculty of Science



The following algorithm is faster than any

previously developed algorithm.

It uses a construction that is folklore (and

was already used by De Vries and McKay,

Sanjmyatav), some standard isomorphism

rejection techniques (McKay’s canonical

construction path method), well known

efficient datastructures. . .

. . . plus one simple new idea.

Faculty of Science



The generation algorithm consists of

2 steps:

Tetrahedron

⇓

Prime graphs

⇓

All (remaining) cubic graphs

Faculty of Science



Operations of De Vries (1889)

Start from the tetrahedron. . .

(1)

(2)
(3)

can be the
same



Small modification

(3)

can be the
same

(1)

(2)
(2a)

Faculty of Science



Operations to generate . . .

(2)
(2a)

(1)

prime graphs remaining cubic graphs

(3)

can be the
same

Faculty of Science



Now first only the operations (1),(2),(2a)
can be applied – and operation (3) last.

So we first generate all graphs of the form

Faculty of Science



. . . these are the prime graphs.

There are relatively few prime graphs – for

26 vertices 0.0000025% of all graphs – and

the rate is decreasing fast.

So for this part of the generation,

efficiency is not the issue.

Faculty of Science



Generation of remaining cubic
graphs

The following operation remains
(and completely determines the efficiency):

can be the

same

Faculty of Science



Isomorphism rejection (McKay’s

canonical construction path method)

• Assign a unique inverse operation for

every graph (except the prime graphs) to

obtain an ancestor.

• Make sure that from the same graph you

don’t obtain the same ancestor twice in

the same way.

Faculty of Science



• Assign a unique inverse operation for

every graph (except the startgraphs) to

obtain an ancestor:

Assign up to isomorphism an edge that

must be removed (i.e. the canonical edge).

First use some cheap criteria and only in

case these don’t help use nauty to compute

a canonical form.

Faculty of Science



Cheap criterion to determine the
canonical edge

E.g.: first choose the removable edges that
have as few as possible vertices at

distance at most 2.

Faculty of Science



Cheap criterion to determine the
canonical edge

E.g.: first choose the removable edges that
have as few as possible vertices at

distance at most 2.

Faculty of Science



Cheap criterion to determine the
canonical edge

E.g.: first choose the removable edges that
have as few as possible vertices at

distance at most 2.

8

Faculty of Science



Cheap criterion to determine the
canonical edge

E.g.: first choose the removable edges that

have as few as possible vertices at

distance at most 2.

8

9

9

9

Faculty of Science



• Make sure that from the same graph you

don’t obtain the same ancestor twice in

the same way:

Approximately: Compute the orbits of the

automorphism group on the pairs of edges

that can be chosen for extension.

Faculty of Science



The red pair and the green pair (and lots of

others) give the same result.

Faculty of Science



So the rough pseudocode is

recursion(n) {
// check canonicity of last operation
// this may require to compute the group
if (canonical) {

if (n=wanted number of vertices)
write up

else {
// compute possible extensions
compute group // if not yet known
compute equivalence classes (needs group)
for each class choose extension i {

// choose extension i
extend(i)
recursion(n+1)

}
}

}
}



Just applying this (with some technical

optimizations and a good implementation)

already gives an algorithm that works quite

well!

This is (more or less) the way the program

of McKay and Sanjmyatav works.

Faculty of Science



Expensive parts are

• determining whether the last operation

was canonical

• computing the symmetry group

Faculty of Science



Around 80% of the graphs have triangles –

if this part could be optimized. . .

=

Faculty of Science



Simple new idea

Reduction: (determine ancestor)

Collapse all independent triangles (triangles
that don’t share an edge with other

triangles) to a point –
alltogether in one operation.

well . . . cheating a little bit. . .

Faculty of Science



The inverse operation:

Compute orbits of sets of vertices so that

each triangle contains at least one. Blow

these vertices up – no canonicity check.

And no non-canonical graphs!

Faculty of Science



26 vertices

graphs with 0 triangles: 20.66%

graphs with 1 triangles: 32.45%

graphs with 2 triangles: 25.72%

graphs with 3 triangles: 13.59%

graphs with 4 triangles: 5.36%

graphs with 5 triangles: 1.66%

graphs with 6 triangles: 0.42%

graphs with 7 triangles: 0.08%

etc.

Faculty of Science



Expensive parts are

• determining whether the last operation

was canonical

• computing the symmetry group

Faculty of Science



Adding an edge can change the group

dramatically – the group can get larger

and can get smaller.

Faculty of Science



So in case of adding an edge no

information about the group can be reused.

Faculty of Science



Blowing up vertices to (all) triangles leads

to subgroups (in a certain sense. . . ).

A lot of information about the group can

be reused to speed up the computation of

the group – and in case of a trivial group

we know that the group after the

construction is trivial too!

Faculty of Science



Faculty of Science



Combined with look ahead for small cycles:

graphs with girth 4 or 5 can be generated

efficiently!

Ongoing work: similar principle of

simultaneaous blow up for 4-gons.

Faculty of Science



Results: (Intel 64bit 2.33 GHz)

20 vertices: 80.000 graphs/sec 510.489 graphs

22 vertices: 88.000 graphs/sec 7.319.447 graphs

24 vertices: 93.000 graphs/sec 117.940.535 graphs

26 vertices: 95.000 graphs/sec 2.094.480.864 graphs

Speedup 3.76 to 3.3 compared to

minibaum.

Faculty of Science



But well, . . . in principle minibaum was fast

enough.

Everything you wanted to do with the

graphs took longer than the generation. . .

Faculty of Science



So it is partly record hunting,

but the most important reason for the

development of the new generator is the

efficient generation of the subclass known

as Snarks.

Faculty of Science



There are only very few Snarks among the

cubic graphs

This construction method allows early

detection of a lot of non-Snarks, so it is

much faster than just applying a filter.

Faculty of Science



Thanks for your attention

Faculty of Science


