
J. Cryptology (1995) 8:123-155
Journal of

CRYPTOLOGY
�9 1995 International Association for
Cryptologic Research

Fast Generation of Prime Numbers and Secure

Public-Key Cryptographic Parameters*

U e l i M. M a u r e r

Institute for Theoretical Computer Science, ETH Ziirich,
CH-8092 Ziirich, Switzerland

maurer@inf.ethz.ch

Communicated by Gilles Brassard

Received 2 September 1991 and revised 14 November 1994

Abstract. A very efficient recursive algorithm for generating nearly random
provable primes is presented. The expected time for generating a prime is only
slightly greater than the expected time required for generating a pseudoprime
of the same size that passes the Miller-Rabin test for only one base. Therefore
our algorithm is even faster than algorithms presently used for generating only
pseudoprimes because several Miller-Rabin tests with independent bases must

be applied for achieving a sufficient confidence level. Heuristic arguments
suggest that the generated primes are close to uniformly distributed over the
set of primes in the specified interval.

Security constraints on the prime parameters of certain cryptographic
systems are discussed, and in particular a detailed analysis of the iterated
encryption attack on the RSA public-key cryptosystem is presented. The
prime-generation algorithm can easily be modified to generate nearly random
primes or RSA-moduli that satisfy these security constraints. Further results
described in this paper include an analysis of the optimal upper bound for trial

division in the Miller-Rabin test as well as an analysis of the distribution of the
number of bits of the smaller prime factor of a random k-bit RSA-modulus,
given a security bound on the size of the two primes.

Key words. Public-key cryptography, Prime numbers, Primality proof,
Miller-Rabin test, RSA cryptosystem, Number theory.

I. Introduction

A var ie ty of c ry p t o g rap h i c systems, i n c l u d i n g p u b l i c - k e y d i s t r i b u t i o n sys tems

[28], [45], [58], pub l i c -key c ryp tosys t ems [30], [36], [47], [79], d igi ta l s i g n a t u r e

s c h e m e s [30], [79], [80], [82], [90], a n d iden t i f i c a t i on p ro toco l s [32], [39], a n d a

*Some results of this paper were presented at EUROCRYPT '89, Houthalen, Belgium, April
10-13, 1989 [55].

123

124 U . M . M a u r e r

large number of variations of some of these systems have recently been

proposed. The security of most public-key schemes is based on the (conjectured)

difficulty of certain number-theoretic problems such as the factorization of large

integers or the discrete logarithm problem in some finite group, and their public

and/or private parameters include one or several large prime numbers.

This paper reviews previous approaches to the generation of cryptographic

primes and its main purpose is to present a new algorithm for generating prime

numbers and secure public-key parameters. This algorithm has the properties

that it yields provable primes (as opposed to only probable primes or pseudo-

primes), that the primes can be expected to be chosen at random with suffi-

ciently uniform distribution from the set of primes in a specified interval and,

more importantly, that it is faster than all previous methods for generating even

only pseudprimes for cryptographic applications. More precisely, the algorithm

is less than 40% slower than an optimal algorithm for generating a strong

pseudoprime that passes the Miller-Rabin test for only one base, and this

number can be reduced to less than 5% when some deviations from the uniform

distribution can be tolerated. Moreover, the algorithm is easily modified to

generate primes that satisfy certain important cryptographic security constraints,

without increasing the expected running time and without causing significant

further deviation of the distribution from the uniform distribution over all

primes in a given interval satisfying these conditions. A further goal of the paper
is to present several new theoretical results on the RSA public-key cryptosystem.

A large prime number can in principle be generated by repeatedly choosing

an integer n at random from the specified interval and testing n for primality.

The simplest primality test is to divide the given number n by all primes less

than or equal to (h--, but this approach is completely infeasible when the length

of n exceeds 15-20 decimal digits. Several sophisticated general-purposes algo-

rithms for testing primality exist [20], [64] (see also [49]). According to [66], the

current record in primality testing is held by Morain [65] who proved the

primality of a 1505-digit number of a general form using massive parallel
computational resources.

The history of theoretical results on primality testing is long. Pratt [75] showed

that the primes are recognizable in nondeterministic polynomial time, Miller

[62] proved that the Riemann hypothesis for Dirichlet L-functions implied that

the primes were recognizable in deterministic polynomial time. Adleman et al.

[2] showed that the primes were recognizable in deterministic time
O((logn) cl~176176 for some constant c, and finally Adleman and Huang

proved in a seminal report [1] that the primes were recognizable in random
polynomial time. A significant step toward this result was achieved by

Goldwasser and Kilian [35]. It is interesting to note that the primality tests used

in practice [20], [64] appear to have superpolynomial running times and that the

algorithm of [1] is superior only for very large numbers that are by far out of
reach for presently available computational resources.

Special-purpose primality tests exist for numbers of certain special forms (for
instance, for Mersenne numbers which are of the form 2 q - - 1 where q is a

Fast Generation of Prime Numbers and Secure Public-Key Cryptographic Parameters 125

prime [48]), but these primes can not generally be used in cryptography for

security reasons. For instance, Mersenne prime factors of a given integer can be

found easily.

In most present implementations of public-key cryptographic systems the

primes are generated by application of a probabilistic compositeness test [62],

[76], [85]. The most popular such test is the so-called MiUer-Rabin test [76]. Let

n be an integer to be tested and let n - 1 = 2uv with v odd. The integer n

passes the test for the base b if and only if either

b " - I (modn)

o r

b 2~v -'- - 1 (mod n)

for some i satisfying 0 _< i < u. It can be shown that every composite number n

can pass this test for at most one-quarter of the bases b in the interval

[1, . . . , n - 1]. Hence the probability that a composite integer is not detected by

t applications of the Miller-Rabin test with independent randomly chosen bases

is at most (�88 [63]. In fact, much stronger results can be proved because for

most composite integers the fraction of bases satisfying the above conditions is

much smaller than one-quarter. Let Pk. t denote the probability that, when odd

k-bit integers are selected at random until one of them passes t consecutive

independent Miller-Rabin tests, this integer is prime. Note as an aside that it

does not follow from the described bound that Pk,, < (�88 [11] because Pk,t

depends on the density of primes, However, Kim and Pomerance [43] and

Damg~rd et al. [23] proved much stronger bounds on Pk, t. For instance,
p256,6 < 2-52 [23]. While for large enough t the error probability Pk, t can be

made sufficiently small for all practical purposes, the primality of an integer

cannot be proved by a feasible number of such compositeness tests. However,

such a proof would follow from the unproven extended Riemann hypothesis (see

[62]). Alford, Granville, and Pomerance (see [38]) proved that for every given

finite set of bases composite numbers exist that pass the Miller-Rabin test for

these bases. Bleichenbacher [13] exhibits a 55-digit composite number which

passes the test for all bases < 100. One of the results proved in [14] is that the

Miller-Rabin test for the bases 2, 3, 5, 7, 11, 13, and 23 is a correct primality

test for numbers < 1016. Jaeschke [42] has also derived correctness bounds for

the Miller-Rabin test when applied for several bases.

In this paper we consider the problem of generating random primes together

with a certificate ofprimality. Our results draw on Pocklington's [69], on Pratt's

[75], and on Bach's [4] work: the certificate for a prime p contains a partial

factorization of p - 1. However, in contrast to Bach's algorithm [4] for generat-

ing (truly) random factored integers, our algorithm does not make use of a
general primality test. Of course, if such a general primality test were sufficiently

fast, it could be used in our context directly for generating primes, without a

detour to generating random partially factored numbers first. In other words,
avoiding the use of such a test while nevertheless obtaining provable primes is
one of the goals of this paper.

126 U.M. Maurer

The generation of provable primes has previously been considered [22], [68],
[83], but the major advantages of our algorithm are that it is faster and that the

diversity of primes that can be generated is much larger. Heuristic arguments
suggest that a generated prime is close to uniformly distributed over a specified
interval where only a small fraction of the primes is excluded for efficiency

reasons. Moreover, our algorithm can, at no extra computational cost, be
modified to generate a prime p that satisfies certain cryptographic security

constraints.
The paper is organized as follows. Section 2 summarizes some number-theo-

retic results. The proposed algorithm for generating primes as well as a simpli-
fied version of it are described in Section 3. The running time analysis for these

algorithms as well as for generating pseudoprimes is presented in Section 4,
where the optimal bound for trial division in these algorithms is derived.

Cryptographic security constraints on primes and RSA-moduli are discussed in

Section 5. The probability distributions of the relative size of the prime factors
of large "random" integers are discussed in Appendix 1. Appendix 2 provides a

detailed analysis of the iterated-encryption attack against the RSA cryptosystem

[79]. An asymptotic theorem of possible independent interest about the distribu-

tion of the size of the smaller prime factor of a random integer of a given size,
known to be the product of exactly two primes, is analyzed in Appendix 3.

2. Number-Theoretic Preliminaries

Throughout this paper Z* denotes the multiplicative group modulo n, ord , (x)

denotes the order of x in Z*, i.e., the smallest positive integer t satisfying
x t - 1 (mod n), and ~p(n) denotes Euler's totient function, i.e., the number of

positive integers smaller than and relatively prime to n, with the exception

~p(1) = 1. The greatest common divisor of a and b is denoted by (a, b) and the

cardinality of a finite set S is denoted by #S. All logarithms are to the natural

base e. A basic fact about multiplicative orders is that, for every x ~ Z*,

n l m ~ o rd , (x) l o rdm(X) . (1)

The following lemma, which is a key fact used in our algorithm, is a special
case of a theorem due to Pocklington [69] (see also [16] or [48]).

Lemma 1. Let n = 2 R F + 1 where the pr ime factorization o f F is F = q~lq~2 ...

qfl,. I f there is an integer a satisfying

and

a " - l - 1 (modn)

(a (n - 1) / q j - 1, n) = 1

for j = 1 , r, then each pr ime factor p o f n is o f the form p = m F + 1 for some

integer m > 1. Moreover, i f F > v/-n, or i f F is odd and F > R, then n is prime.

Fast Generation of Prime Numbers and Secure Public-Key Cryptographic Parameters 127

Proof. Let p be any prime dividing n. From the first and second condition on

a it follows that ordp(a) divides n - 1 and t h a t ordp(a) does not divide

(n - 1)/qj for j = 1 r, respectively. Therefore ordp(a) is a multiple of qflJ

for j = 1 , . . . , r, hence also o f F, and thus so is p - 1. The last claim of the

lemma follows from the fact that at most one prime factor of a number can be

greater than its square root and that when F is odd, the smallest possible prime

factor of n is 2 F + 1; hence n can be composite only if n > (2F + 1) 2, which

contradicts F > R. []

The following lemma allows us to prove the primality of an integer n even

when the factored part is only greater than ~ rather than x/-n-. It is pointed out

that this lemma can be used to speed up the prime-generation algorithm

described in the following section at the expense of somewhat distorting the

uniformity of the distribution of the generated primes.

Lemma 2. Let n, R, F, and a be as in Lemma (1) and let x > 0 and y be defined

by 2R = xF + y and O < y < F. I f F > 3x/-n and if y2 - 4x is neither 0 n o r a

perfect square, then n is prime.

ProoL According to Lemma 1 every prime factor of n is at least F + 1.

Therefore, because n _< F 3, n can have at most two prime factors. Assume n is

composite, i.e., n = (turF + 1)(m2F + 1) = m l m 2 F 2 + (rn I + m2)F + 1 for

some m 1 >_ m E. Hence 2R = m l m E F + m 1 + m 2. Since m l m 2 < F and the

choice (ml , m E) = (f - 1, 1) violates n __ F 3, it follows that m 1 + m 2 < F

and hence that x = m l m 2 and y = m 1 + m 2 . Substituting m 2 b y y - m I in

x = m l m 2 gives m 2 -- ym 1 + x ---- 0, which has a solution for ml in integers if

and only if y2 _ 4x is a perfect square or 0. []

To show that a large integer is not a perfect square it suffices to find a small

prime modulo where the number is a quadratic nonresidue. Quadratic residuos-

ity can be tested by computing the Legendre symbol. The expected number of

Legendre symbol computations for proving that a given integer is not a square is

on the order of 2. The problem of proving a number is not a perfect square was

considered in [19]. For related results and more references we refer to [9].

Results that are similar to this lemma are described in [17] and [22], but the

proofs appear to be more complicated. Note that Lemmas 1 and 2 can easily be

generalized to allow a to be different for each qj [16], but we will only make use

of the special case because Lemma 4 demonstrates that, in our application,

virtually every base a is successful in proving a number prime by application of

Lemma 1.

A few basic facts about Euler 's ~ func t ion are

n pin pin P

128 U.M. Maurer

where the product and summation are over all (distinct) prime divisors of n,

q~(ab) > q~(a)q~(b) (3)

with equality if and only if (a, b) = 1, and

~o(d) = n.

din

(4)

The group Zp is cyclic for every prime p and hence

{ x ~ Z ; : ordp(x) = d} = ~ (d) (5)

for every divisor d of p - 1.

Lemma 3. Let p be a prime and let d be a divisor of p - 1. Then

~(d)
{ x ~ Z p : d l o r d e (x) } > d (p - 1)

with equality if and only i f (d , (p - 1)/d) = 1.

Proof. Using (5), (3), and (4) we obtain

(x ~ Z ; : dlordp(X)} = E ~o(d') = E
d': dld'l(p- 1) k: kK(p- 1)/d)

> ~ ~o(k)~o(d) = ~o(d)

k: kl((p- 1)/d)

- 1
= qo(d) p -~

The inequality holds with equality if and only if (d, (p - 1) /d) = 1.

~o(/a/)

~o(k)
k: k[((p - 1)/d)

[]

Remark. The proof demonstrates that Lemma 3 holds for any cyclic group

when ordp(x) and p - 1 are replaced by the order of x in the group and the

order of the group, respectively, but this generalization is not used in the paper.

The following lemma demonstrates that if n is prime, then virtually every base

a can successfully be used in Lemma 1 to prove this fact, provided that all the

q/s are sufficiently large (which will always be the case in our application).

Lemma4. L e t p = 2RF + l b e a p r i m e w i t h F = l-l~j=]q~J,F> R, a n d (2 R , F)

= 1, where ql qr are distinct primes. Then the probability that a randomly

selected base a ~ Zp is successful in proving the primality o f p by Lemma one is

equal to q~(F)/F which is at least 1 - E~= l l / q j .

Fast Generation of Prime Numbers and Secure Public-Key Cryptographic Parameters 129

Proof. a p- 1 = 1 (mod p) is satisfied for every a ~ Zp. If (2R, F) = 1, then

the two statements F[ordp(a) and

atp-1)/qj ~ 1 (modp)

for 1 < j < r are equivalent. Application of Lemma 3 with d = F and of (2)

completes the proof. []

3. A Recursive Algorithm for Generating Nearly

Random Primes

A very efficient algorithm for generating provable primes with approximately

uniform distribution over the set of primes in a given interval is described in this

section. For efficiency reasons, a small fraction of the primes p in the interval

are excluded, namely, those of the form p = 2ap' + 1 for a small a and with p'

prime. A simplified version of the algorithm which is straightforward to imple-

ment is given in Section 3.4. Readers interested only in this simplified version

can skip much of Sections 3.1-3.3. In Section 5 we describe how the algorithms

can be modified to generate nearly random primes satisfying certain security

constraints.

3.1. Outline of the Algorithm

Lemma 1 suggests constructing a large prime by choosing some primes ql , - . . , qr,

computing F = FI~= lqP' for some exponents /31 /3,, and repeatedly choos-

ing integers R < F at random until n = 2 RF + 1 can be proved to be prime by

Lemma 1 for an appropriate choice of the base a. Lemma 4 shows that if n is

prime, then finding such a base is easy. On the other hand, if n is composite,

then virtually every base a will satisfy a n- 1 ~ 1 (mod n) and hence be a witness

for the compositeness of n, unless n is of a very special form (see [11] and [18]).

(Of course, in a reasonable implementation, n is first tested for small prime

divisors before applying a modular exponentiation.)

Instead of choosing F and R sufficiently large at the beginning, the described

construction approach can also be applied repeatedly by using some generated

primes as factors of a larger F, thereby constructing larger and larger primes

[83]. However, one major problem with this approach is that it is difficult to

control the diversity of reachable primes and that this might endanger the

security of a cryptosystem. For instance, factoring the product of two such

primes could be significantly easier than solving a general instance of the

factoring problem. Moreover, the algorithm of [83] is less efficient than our

algorithm.

The goal of our algorithm, although it is based on the above construction, is

that the primes be selected randomly with reasonably uniform distribution from

the set of primes in a given interval. This goal is achieved by generating

sufficiently many of the largest prime factors ql, q2,-.- of (n - 1)/2 (only one
or two are needed in most cases), each of appropriate size as described below.

130 U . M . Maurer

These prime factors are generated by recursive application of the algorithm.

Depending on whether Lemma 1 or I_emma 2 is used for the primality proof of
3

n, the factored part of n - 1 must exceed ~ or ~/-n-, respectively.

In order to assure that the generated prime n is chosen (almost) at random

despite the fact that n - 1 is constructed in part from known prime factors, the

sizes of these prime factors must be chosen according to the appropriate

probability distributions. The distributions of the sizes of the largest prime

factors of a randomly selected large integer a has been investigated in [44]. For

instance, the probability that the relative size 2 of the largest prime factor is at
1 most a is for ~ _< a < 1 given by 1 + log a (see Appendix 1). 3 For example, the

probability that the largest prime factor of an integer is smaller than its square

root is 1 + log(1) = 1 - log 2 = 0.307, and the probability that the length of the

largest prime factor exceeds 95% of the length of the integer is only -1og0.95

= 0.051.

The distributions of the sizes of the prime factors of a large random integer as

well as a simple algorithm due to Bach [6] for sampling according to these

distributions are discussed in Appendix 1. Note that one would actually have to

use the conditional distribution of the relative sizes of the prime factors of an

integer x, given that 2x + 1 is prime. However, strong heuristic arguments for

showing that this condition does not change the asymptotic distribution are

given in [56]. Further results supporting the idea that when p is prime, the

factorization pattern of p - 1 does not differ greatly from that of a "random"

number can be found in [10], [31], [33], [34], [40], [41], [46], [72], [74], and [89].

3.2. Description of Procedure RandomPrime

A listing of PROCEDURE RandomPrime is shown in Fig. 1. It is intended to

serve as a guideline rather than a blueprint for an implementation, and some

additional hints for an actual implementation are given below and in Section 3.3.

A simplified and easy-to-implement version of the algorithm for which the

diversity of the generated primes is somewhat reduced is described in Section

3.4.

We use a Pascal-like notation, where keywords are in capital letters. The

same variable and constant names are used somewhat differently in the text and

in the listing, but we believe that this should cause no confusion. Names with

subscripts in the text are used in the listing by incorporating the subscript into

1 Of course, it is impossible to generate random integers with uniform distribution. This imprecise

wording should here and below be understood as meaning to choose an integer at random from the

interval [1, N], or [cN, N] for some c < 1, where N goes to infinity.

We define the relative size of an integer a with respect to an integer b as log a / l o g b which is

independent of the base to which the logarithms are computed. For instance, the square root of an

integer has relative size �89

3 Throughout the paper, log denotes the natural logarithm (base e) unless a different base is

specified.

Fast Generation of Prime Numbers and Secure Public-Key Cryptographic Parameters 131

PROCEDURE RandomPrime(Pl,P2: Longln t ; VAR p: Longln t) ;

CONST c _ i n t = 1.2; rmax = tO; P0 = 10000000;

TYPE

VAR

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

PROCEDURE

FUNCTION

PFac to rL i s t = ARRAY [1. . rmax] OF LongInt;

E e l S i z e L i s t =ARRAY [l . . r m a x] OF REAL;

a , n , P , Q , F , I t , 1 2 : Longln t ;

i , g , r : INTEGER; success : BOOLEAN;

e l : R o l S i z o L i s t ; p f l : P F a c t o r L i s t ;

S q r t (a : Longln t) : Longln t ;

Exponen t i a t e (a : Longln t ; e : REAL): LongInt ;

Random(a,b: LongIn t) : Longln t ;

Pr imeTes t (a : LongIn t) : BOOLEAN;

T r i a l D i v i s i o n (a , b : LongIn t) : BOOLEAN;

g_opt (a : LongInt) : LongInt ;

G e n e r a t e S i z e L i s t (V A R r s l : R e l S i z e L i s t ; VAR r : INTEGER);

CheckLeJmal(u,v: LongInt ; L: PFac to rL i s t ; r : INTEGER): BOOLEAN;

BEGIN

IF P2 <= PO THEN BEGIN

REPEAT

n := Random(Pl,P2);

UNTIL Pr imeTest(n) ;

p := n; END;

ELSE BEGIN

Generat e S i z e L i s t (e l , r) ;

P := S q r t ((P t - t) * (P 2 - 1)) DIV 2;

F := 1; g := g_opt (P) ;

FOR i := 1 TO r DO BEGIN

Q :-- E x p o n e n t i a t e (P , s l [i]) ;

RandomPrime (Q/c_ in t , q*c_$nt , p f l [i]) ;

F := F * p f l [i] ;

END;

I I := (PX-I) DIV (2*F); I2 := (P2-I) DIV (2*F);

success := FALSE;

WHILE NOT(succsss) DO BEGIN

n := 2 * R a n d o a (I I , I 2) * F + 1;

a := Random(2,P);

IF T r i a l D i v i s i o n (n , g) THEN success := C h e c k L e - - - a t (n , a , p f l , r) ;

END;

p := n;

END;

END.

Fig. 1. Sketch of a listing of procedure RandomPrime in a Pascal-like notation. The function and

procedure implementations are discussed in the text.

132 U.M. Maurer

the name (e.g., P1 in the text corresponds to Pl in Fig. 1). The functions Sqrt,

Exponentiate, Random, PrimeTest, TrialDivision, g_opt and CheckLemmal

and procedure GenerateSizeList are described in the following. The listing of
Fig. 1 shows only the function and procedure declarations, without implementa-
tions.

A variable of the type Longlnt can represent integers of the size needed in a

cryptographic context (e.g., up to 1024 bits). Such a type is often implemented (if

no special-purpose hardware is available) by an array of integers whose first

component contains the number d of active (nonzero) array components and

whose first d components represent the integer in some fixed base (e.g., base

216). m set of procedures implementing the basic arithmetic operations for

integers of the type Longlnt are assumed to be available, but the calls to these

procedures are not shown explicitly in Fig. 1. Instead, the usual notation for

integer operations (+ , - , *, DIV) is used. Moreover, for the sake of simplicity,

we allow numbers of the types INTEGER and Longlnt to be multiplied and

divided by REAL numbers.

FUNCTION Sqrt(a: Longln0: Longlnt returns the square root of a (this is

equivalent to a in the function declaration), rounded to the nearest integer or,

in a more efficient implementation, some integer approximation of the square

root of a depending only on the most significant bits and the length of a.

FUNCTION Exponentiate(a: Longlnt; e: REAL): Longlnt returns the largest

integer not greater than a e, o r a good approximation of this number. FUNC-

TION Random(a,b: Longlnt): Longlnt selects an integer at random from the

interval [a, b] with uniform distribution.

FUNCTION PrimeTest(a: Longlnt): BOOLEAN returns the value TRUE if and

only if a is a prime. It must be efficient only for relatively small integers and

can, for instance, be implemented as trial division up to the square root of the

tested number. This procedure is needed to end the recursion in the procedure

RandomPdme when the primes to be generated are sufficiently small.

FUNCTION TrialDivision(a,b: Longlnt): BOOLEAN returns the value TRUE if

and only if a is not divisible by a prime smaller or equal to b. This procedure

requires a list of small primes, e.g., the primes smaller than 216 = 65536.

FUNCTION g_opt(a: Longlnt): Longlnt returns the optimal trial division

bound (see Section 4) which minimizes the total time for detecting the compos-

iteness of an integer. This bound depends both on the size of the integer to be

tested as well as on the particular implementation of long-integer arithmetic.

PROCEDURE GenerateSizeList(VAR rsl: RolSizeList; VAR r: INTEGER) gen-
erates an ordered list of relative sizes of prime factors of an integer according to

the procedure described in Appendix 1, where the number of prime factors is

returned in the variable r. Typically, the list consists of one to three elements

consists of one or two elements. Examples of such lists are [0.68], [0.42, 0.35],

and [0.32,0.14,0.09]. Without the modifications discussed in Section 3.3, the

probability that the list consists of only one element (i.e., r = 1) is log 2 = 0.693.

The probabilities that r = 2, r = 3, r = 4, and r = 5 are approximately 25.8%,

4.4%, 0.45%, and 0.035%, respectively.

Fast Generation of Prime Numbers and Secure Public-Key Cryptographic Parameters 133

FUNCTION CheckLemmal(n,a: Longlnt, L: PFactorList; r: INTEGER):
BOOLEAN takes as input two integers n and a and a list L = [ql , qr] of

prime factors of n - 1, where the length of the list is given by the parameter r.

It returns the value TRUE if and only if the two conditions of Lemma 1 are

satisfied, which proves that n is prime. When r = 1 (i.e., L = [q l]) , the consecu-

tive computation of a (n - l) /q~ and a"-1 corresponds to only one full modular

exponentiation. When r > 1 and n is prime, then procedure CheckLemmal

requires slightly more than a full modular exponentiation for proving the

primality of n. We refer to Section 4 for a running time analysis of procedure

CheckLemmal.
For given P1 and P2, PROCEDURE RandomPrime(P1,P2: Longlnt; VAR p:

Longlnt) generates and returns a prime number p in the interval [P1, P2] (for

example, the interval [2511,2512 - 1] of 512-bit integers). When P2 is smaller

than a given constant P0 (e.g., P0 = 107), then the prifiae p can be generated by

selecting integers at random from [P1, P2] until a prime is found, which is

checked by using the function PrirneTest (i.e., for instance by trial division up to

its square root). This part of procedure RandomPrime is needed to end the

recursion described below.

When P2 > P0, the construction approach described in Section 3.1 is used.

Let P = gt(Pl - 1)(P 2 - 1) /2 be the (approximate) geometric midpoint of the

interval [(P1 - 1)/2,(P2 - 1)/2]. The number of primes in F is equal to the

parameter r returned by procedure GenerateSizeList, and the relative sizes

sl s, of ql qr are chosen according to the list of relative sizes returned

by procedure GenerateSizeList in the variable s l . For each of these primes qi

with relative size s i = sl [i], the actual approximate size Q = ps, is computed by

the statement Q:= Exponentiate(P,sl[i]). Here Q is taken as the geometric

midpoint of an integral [Q/cint, Q. cint] where ci , t > 1 is a small constant (e.g.,

Cin t = 1.2). Then a prime is selected (approximately) at random from this

interval by recursive application of procedure RandomPrime.

After F = I-I~=lq; is generated, integers R are chosen at random with

uniform distribution from the interval [11,/2], where 11 = (P~ - 1) / (2F) and

12 = (P2 - 1) / (2F) , until n = 2RF + 1 is prime. Candidates n are tested first

by trial division up to a bound determined by procedure g _ o p t and then by

procedure CheckLemmal which checks whether the conditions of Lemma 1 for

primality of n are satisfied.

3.3. Implementat ion Issues and Further C o m m e n t s

The described implementation of RandomPrime assumes that the spread P2/P1
of the interval [P1, '~ is reasonably small (e.g., less than 2). If a prime should be

selected uniformly from a larger interval, it is advisable to cut the interval into

subintervals of reasonable spread, to select one of the intervals at random

according to the corresponding probability distribution, and to use procedure

RandomPrime to generate a prime in the selected interval.

A problem with procedure RandomPrime as described above is that when the

relative size 1 - E r,= lSi of R is too small, then the interval [11,/2] may be too

134 U . M . M a u r e r

small to contain an R for which 2RF + 1 is prime. An endless execution of the

WHILE loop can be prevented, for example, by restricting the number of

iterations. Furthermore, it must be avoided with high probability that the

interval [I1, 12] contains no prime factor because in this case F (or at least the

smallest prime factor of F) would have to be regenerated. Allowing F to be

rejected with nonnegligible probability would increase the running time of the

algorithm significantly, in particular because the rejection could happen at

several levels of the recursion. We therefore recommend two modification to

procedure RandomPrime which are not described in Fig. 1.

1. The output of procedure GeneratoSizeList should only be accepted if the

sum of the relative sizes, 1 - ET=lsi, is less than a given bound. We

suggest using the bound 1 - C1/(log2P + C2) for C 1 = 10 and C 2 = 50.
This modification reduces the diversity of reachable primes slightly; how-

ever, this can be tolerated in applications. In particular, primes p for which

(p - 1)/2 is the product of a small R and a prime or the product of a

small R and two primes of similar size, cannot be reached. These unreach-

able primes include the primes often referred to as safe primes, an

attribute not justified sufficiently in the author's opinion because no

indications exist that these primes lead to the most diffficult factoring

instances. It is even conceivable, though not likely, that the so-called safe

primes form a small class of primes that are actually insecure. Discarding

these special primes distorts the uniformity of the distribution slightly, but

has essentially no influence on the security of a cryptographic scheme.

2. It is further recommended letting the interval constant ci, t depend on P2,

increasing when P2 decreases, to ensure that the spread of the intervals

passed to procedure RandomPrime is always sufficiently large to guarantee

that, for the largest possible value 1 - C1/(log2P + C2) for the sum
r S 1 - Ei= 1 i of relative sizes (as described above), the expected number of

R's resulting in a prime 2RF + 1 is sufficiently large. We suggest the

choice Cin t = 1 + Ca/(log2Q + C4) for C 3 --- 20 and C 4 -- 10.

Several ways to speed up procedure RandomPrimo by allowing slight further

deviations from the uniform distribution are described in Section 4.4. Finally, it

should be mentioned that the efficiency of the code of Fig. 1 can of course be

improved in several ways (known to a good programmer and depending on the

available processor and memory size) at the expense of possibly making it more

complicated.

3.4. A Simplified Version of the Algorithm

The above description of the algorithm for generating primes appears to be

quite complicated. The reason is that we have paid much attention to the

probability distribution of the generated primes. In a practical implementation
one might not care very much about details of the distribution as long as it is
reasonably close to uniform and the diversity of primes is sufficiently large. In

this section we describe a simplified, easy-to-implement version of the algorithm

Fast Generation of Prime Numbers and Secure Public-Key Cryptographic Parameters 135

for generating k-bit primes. For the sake of simplicity procedure FastPrime in

Fig. 2 is (like Fig. 1) syntactically not completely correct (for instance, integer

numbers are multiplied by real numbers).
The functions Random, TrialDivision, and PrimeTest are identical to those

described in Section 3.2. The function Power2 computes powers of 2. The trial

division bound g is set equal to some constant c_op t times k 2, where the
optimal value for c_op t can be determined experimentally.

The major simplification in procedure FastPrime compared with procedure

RandomPrime is the fact that F consists of only one prime factor q, which is

PROCEDURE FastPrimsCk: INTEGER; VAR p: Longln t) ;

CONST c_opt = 0 .1 ; PO = 10000000; margin - 20;

VAR a , n , q , I , R : LongInt ;

i , g : INTEGER;

s u c c e s s : BOOLEAN;

r e l a t i v e _ s i z e : REAL;

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

Power2(k: INTEGER) : Longlnt ;

Random(a,b: Longlnt) : Longlnt ;

P r imeTes t (a : Long ln t) : BOOLEAN;

T r i a l D i v i s i o n (a , b : Longln t) : BOOLEAN;

G e n e r a t e R e l a t i v e S i z e O : P.FAL;

ChsckLemmal(n,a,q: Long ln t) : BOOLEAN;

B E G I N

IF P2 <= PO THEN BEGIN

REPEAT n : - RandomCPower2(k-1) ,Power2(k)- l) UNTIL Pr imeTest(n) ;

p := n; END;

ELSE BEGIN

g := c_opt * k * k;

REPEAT

r e l a t i v e _ s i z e := G e n e r a t e R e l a t i v e S i z e O

UNTIL k * r e l a t i v e _ s i z e �9 k - margin;

F a s t P r ~ e (T R U N C (r e l a t i v e _ s i z e * k) ,q) ;

END;

s u c c e s s := FALSE; I := Poeer2(k-1) OIV q;

m I L E NOT(success) DO BEGIN

B := Random(I ,2*I) ;

n := 2 * Random(I,2*I) * q § 1;

a := P~mdom(2,n-1);

IF T r i a l D i v i s i o n (n , g) THEN success := C h e c k L e ~ m l (n , a , q) ;

END;

p : = n ;

END;

END.

Fig. 2. Sketch of the listing of the procedure FastPrime for generating a k-bit prime p, which is a
simptified version of the procedure RandomPrime.

136 U .M. Maurer

greater than the square root of the generated prime. The data types PFaetorList

and RolSizeList are therefore no longer needed. Procedure CheekLommal is

simplified accordingly: it checks whether the conditions of Lemma 1 are satis-

fied, for r = 1 and F = q. The function GenoratoRolativoSizo selects a relative

size from the interval [0.5, 1] according to the conditional probability distribution

of the relative size x of the largest prime factor of a large random integer, given
1

that it is at least 7. The cumulative distribution is (1 + log2x) for 0.5 _< x < 1,

ranging from 0 to 1 in this interval. The probability density is hence 1/(x log 2).

A precompiled table of this distribution can be used in an implementation.

The constant margin determines the minimal number of bits of the integer R.

The interval from which R is selected should be sufficiently large to ensure that

it contains at least some successful R's (see also Section 3.3).

For one level of the recursion the above modifications reduce the diversity of

the generated prime only by 30%-40%. When accumulated over the several

levels of recursion needed to generate a prime, the total diversity of reachable

primes is on the order of roughly 10% of all primes.

4. Running Time Analysis for Generating Probable Versus

Provable Primes

4.1. Efficient Generation of Pseudoprimes and the Optimal
Trial-Division Bound

Consider the problem of randomly selecting a k-bit strong pseudoprime for one

base, i.e., a k-bit integer n that passes the Miller-Rabin test for some base b.

Before being used in a cryptographic application such an integer n would be

tested for several other bases in order to achieve a sufficient level of confidence

in the primality of n. In a reasonable implementation, a selected odd candidate

n is tested for small prime divisors below a certain bound g before the first

Miller-Rabin test involving a computationally expensive full modular exponenti-

ation is invoked. This can be done either by sequentially dividing by

3, 5, 7, 11, 13 up to the greatest prime < g or by computing greatest com-

mon divisors of n and certain products of several of the small primes. This

defines an optimization problem for g: when too few small primes are tested,

then an exponentiation is required ~n too many cases, but when too many small

primes are tested, then the trial division step dominates the expected running
time.

Let gopt be the trial division bound that minimizes the expected running time
for generating a pseudoprime. Of course, gopt depends on the size of the

integers and on the particular implementation of long-integer arithmetic. How-

ever, it can be shown that, almost independently of the implementation, for all

sufficiently large k (including the cases of interest in cryptography), gopt(k) =
texp(k)//tdiv(k) w h e r e texp(k) and tdiv(k) a r e the times required for a full k-bit
modular exponentiation and for ruling out one small prime as divisor of a k-bit

integer, respectively. All the running times analyzed in this section are functions

Fast Generation of Prime Numbers and Secure Public-Key Cryptographic Parameters 137

of the number k of bits of the integers, but for ease of notation the variable k

vs often omitted.
Let zr(x) denote the number of primes less than or equal to x. It is well

known that the density of primes among the integers on the order of x is

approximately 1/log x and that 7r (x)~ x / log x. The probability that a ran-

domly selected odd k-bit integer is prime is thus approximately 2 / (k log 2) =

2.89/k.
Let Y be a positive integer-valued random variable. The expected value of Y

is defined by E[Y] = Ey= lY" P[Y = Y] and it is easy to verify that

or

E[Y] = ~_, P [Y >_ y]. (6)
y = l

A random odd integer has no prime factor smaller than or equal to g with

probability

3<p<_g

where here and in the following the variable p indicates that the product (or

summation) is only over primes in the specified range. The term d(g) is very

well approximated by

2e-V

d (g) = log g

where y = 0.5772 is Euler's constant [77] giving 2e -~ = 1.123.

When a random odd integer is tested for compositeness by dividing it by all

primes less than or equal to g, starting with 3, then the expected number of

divisions that must be performed is, according to (6), given by

g
e (g) ~= 1 + Y'~ d (p) = a (g) l o g Z g

3<p<g

where o~(g) is defined by the above equation and depends only slightly on g; it

ranges from 1.87 to 1.40 when g ranges from 100 to 10 6.
A random composite integer n that fails to be detected by trial division by

primes < g is detected with overwhelming probability by the first Miller-Rabin

test which requires one full exponentiation. The expected time required for

detecting the compositeness of an odd integer is hence

E[tc] = e(g)tdi v + d(g)tex p �9 (7)

On the other hand, when the selected integer is prime, the time required to

establish it as a pseudoprime (for one base) is

tp = (zr(g) - 1)tai . + tex p . (8)

138 U.M. Maurer

When a sequence of independent random experiments is performed, where each

experiment has a success probability p, then the expected number of trials

required for one success is 1/p. Hence the expected number of composite

integers that need to be tested and discarded before a prime is found is well

approximated by k . log 2 /2 = 0.347k. The total expected time for finding a

pseudoprime is thus

E[tpp] ~ (l - ~) "k'E[tc] + tp. (9)

In the following we determine which choice for the parameter g minimizes

E[tpp]. The time tp depends only slightly on g and, furthermore, tp is negligible

in (9) for large k. Hence we can almost equivalently determine gopt minimizing

E[t c] given in (7). Assume that the parameter g is increased to include the next

larger prime q > g. When the integer n to be tested contains a prime _< g, this

modification has no effect on the running time. In what follows we therefore

only consider the case where n contains no prime < g. Thus one extra division

by the additional prime needs to be performed. The probability that an expo-

nentiation can be saved is equal to the probability that a number is divisible by

the extra prime, which is 1/q ~ 1/g. The expected running time is minimized

when the increase and decrease in expected running time are in balance, i.e.,

when taw = (l/g)tex p . Hence we have

texp

g o p t - td iv" (10)

For this choice we can now express the expected running time E[t c] as a

function of only tex p "

E[t c] = - - + d(g) tex p ~- -~ tex p
g I log g ~ '

where g = gopt = texp//tdiv �9 For reasonably large k we thus have

(2 e -~ o e (g (k))) l o g 2

E[tpp(k)] ~ log g(k) -~ log 2 g(k) T Ktexp(k)

(0.55) k
= 0.39 + log g(k) log g(k) texp(k)' (11)

where g(k)= gopt(k)= texp(k)/tdiv(k). We have assumed a(g(k))= 1.6 and
have neglected tp(k).

Let us find realistic figures f o r E[tpp] for integers of 100 and 200 decimal
digits, i.e., for k = 332 and k = 664, respectively. For the somewhat arbitrary

but realistic values gopt(332) = 1000 and gopt(664) = 4000 we obtain
E[tpp(332)] = 22.5" texp(332) and E[tpp(664)] ~- 36.5" texp(664). Note that the
r a t i o E[tpp]/lex p increases when a better implementation of exponentiation is
used (for instance when exponentiation is performed on special-purpose hard-

ware).

Fast Generat ion of Prime Numbers and Secure Public-Key Cryptographic Parameters 139

4.2. Analysis o f Procedure CheckLemmal

Procedure CheekLemmal takes the list L = [q l , . . . , qr] of prime factors of

n -- 1 as a parameter, where the sizes s~ s r of ql , qr relative to n - 1

are generated by procedure GenerateSizeList as described in Section 3.2 and

Appendix 1. When n is composite, CheckLemmal performs, with overwhelming

probability, a computation corresponding to only one full exponentiation. Only

when n is prime and r > 1 does the computation for proving this fact require

some additional steps.

Verification of the conditions of Lemma 1 requires the computation of

a (n -1) /q~ for i = 1 , r as well as a ("-1). We have Sl > 0.5 with probability

log2 = 70%, in which case the list contains only one prime factor ql and the

consecutive computation of a (n- 1)/q, and a r 1) corresponds to one full modu-

lar exponentiation. When r = 2, i.e., s z < s 1 < 0.5 but s2 > 1 - s 1 - s2 (which

happens with probability --- 25.8%), then the conditions of Lemma 1 can be

checked by computing consecutively A = a (n- 1)/qlq2, B ~-- A ql = a (n - 1)/q2, C =

Bq2 = ar 17, and D = A q2 = a (n - 1)/ql, where computing the first three terms is

equivalent to one full exponentiation and where computing the last term

corresponds to s 2 times a full exponentiation. For the general case r > 2 it is

straightforward to arrange the computation of a (n-1) /q~ for i = 1 , . . . , r and

a ("-1) as a sequence of steps corresponding to 1 +]~r=2(i -- 1)si times a full

modular exponentiation. Careful analysis shows that when n is prime, the

procedure CheckLemmal requires an expected number E[1 + T.~=2(i - 1)s~]

< 1.17 full modular exponentiations.

4.3. Running Time Analysis for Procedure RandomPrime

We now consider the expected running time E[tRe(k)] of procedure Random-

Prime described in the previous section. E[tRe(k)] is the sum of the expected

time for generating the integer F = 1-I~= lqi and the expected time for generat-

ing a prime p = 2RF + 1 by random choices of R. The second step is computa-

tionally virtually equivalent to the generation of a pseudoprime with a negligible

additional expected 0.17 full exponentiations (see Section 4.2) required for the

primality proof.

Hence the expected time for finding a suitable R is almost exactly equal to

E[tpp(k)]. Under the simplifying but for this analysis admissible assumption that

at each level of the recursion of RandomPrime, F consists of a single prime

factor of relative size 8, E[tRe(k)] can be approximated by

E[tRe(k)] = E[tne (Sk)] + E[tpp(k)]

e r

-~ E E [t p p (S i k)]
i = 0

1

1 - 8 3"585 E[tpp tk) l , , ,

140 U.M. Maurer

where the term 1/(1 - 6 3"585) is obtained for the Karatsuba-Ofman implemen-

tation of long-integer arithmetic (see Section 4.5) w i t h E [t p p (k)] =

O(k 3"585 /log k), neglecting the 1/log k factor. The average of ct 3585, where a is

distributed according to Fl(x) (see Appendix 1), is approximately 0.26. When
8 3.585 in the above expression is replaced by the average of a 3"585, i.e., by 0.26,

we obtain

E[tRe(k)] ~ 1.35.E[tpp(k)].

Simulations have suggested that this approximation is quite accurate [25], [86],

i.e., that the expected running time of RandomPrime is less than 40% greater

than the time required for generating a pseudoprime. For a straightforward (as
opposed to Karatsuba-Ofman) implementation of long-integer arithmetic, the
factor is smaller than 1.4.

Of course, the above running time analysis assumes that all the procedures
within RandomPrime are implemented efficiently.

4.4. Speeding up Procedure RandomPrime

Procedure RandomPrime can be sped up in various ways. In order to speed up

the trial divisions when F is generated and candidates 2RF + 1 are tested for

several R, the remainders of F modulo the small primes can be stored such

that, for every choice of R, only the remainders of R (rather than of n) modulo
the small primes need to be computed. However, because most of the time is

consumed by the exponentiations and not by the trial divisions, the achievable
improvement is limited.

The uniform distribution is usually not of crucial importance and therefore

the following modifications can speed up procedure [qandomPrimo. These
modifications do not seem to endanger the security of a system, but it should be

pointed out that because the primes are generated recursively, deviations from
the uniform distribution are amplified at each level of the recursion.

1. A significant speedup can be achieved by using Lemma 2 for the primality

proof (instead of Lemma 1), which requires only that the factored part F

of. p - 1 be greater than ~'p-. In particular, when the relative size s 1 of ql

is, for instance, restricted to being in the range [1, �89 then E[tRe(k)] is
only about 5% greater than E[tpp(k)].

2. It was pointed out by Mihailescu [61] that instead of generating R's at
random until 2RF + 1 is prime, it is somewhat more efficient to search for
the prime in an appropriate interval of the arithmetic progression 1, 2F +
1,4F + 1 Note, however, that searching primes in an arithmetic
progression has the effect that the probability that a certain prime is
selected is proportional to the length of the interval of composite numbers
preceding it in the progression, and that these intervals can vary signifi-
cantly in length. It appears reasonable in applications to tolerate the
resulting distortion of the uniform distribution.

Fast Generation of Prime Numbers and Secure Public-Key Ctyptographic Parameters 141

4.5. Asymptotic Running Time Analysis

We now investigate the asymptotic running time of our algorithm. Let M(k, 1)

denote the time required for multiplying a k-bit integer with an/-bit integer. A

straightforward implementation of integer multiplication has running time
M(k, 1) = O(kl). In contrast, a sophisticated but not practical algorithm due to

Sch/Snhage and Strassen [81] (see also pp. 270-274 of [3]) has an asymptotic

running time M(k, k) = O (k . log k. log log k) for multiplying two k-bit inte-
gers. This is only slightly better than for FFT-based methods which, in contrast
to the Sch6nhage-Strassen algorithm, are practical. However, in practical imple-

mentations for cryptographic purposes where the numbers have at most a few

hundred decimal digits, it is preferable to use the asymptotically slower recursive

algorithm of Karatsuba and Ofman (see pp. 62-64 of [3]) which multiplies two
k-bit integers in time O(kL585).

Modular reduction can be implemented by a multiplication with the inverse of

the modulus rounded to sufficient precision. Hence, based on the asymptotically

fastest algorithm, we have

t exp (k) = O(k . M(k, k)) = O(k 2. log k. loglog k).

We further have tdiv(k)= O (k . log(g(k))) which for the choice g (k) =

O(k log log k) is tail(k) = O(k log k). Using (7) and (9) we thus obtain

E[tpp(k)] = O (k 3 loglog k),

whereas for an implementation based on the Karatsuba-Ofman algorithm we

obtain

E[tpp(k)] = O(l~gk

A straightforward implementation of integer arithmetic would result in
E[tep(k)] = O(k4 / logk) . We refer to [8] and [11] for further analyses of

prime-generation algorithms.

5. Security Constraints for Public-Key Cryptographic Parameters

The security of many cryptographic systems is based on the conjectured diffi-

culty of solving a certain number-theoretic problem. For each of these problems
some special-purpose algorithms exist that can efficiently solve certain special
instances. It depends on the density of such special instances and on the security
policy whether it is necessary to guarantee, by an appropriate design of the
system parameters, that a certain special-purpose algorithm is infeasible, or
whether it is sufficiently secure to choose the parameters at random, relying on
the probability of picking a bad set of parameters being very small.

142 U . M . Maurer

Choosing system parameters to create the most difficult instance for some
special-purpose algorithm has often been proposed. For example, it is suggested

in [78] choosing primes p for the RSA system of the form 2ap' + 1 with

p' = 2bp" + 1 where p ' and p" are also primes and a and b are very small
integers (e.g., a = b = 1), or it is suggested choosing primes p such that p + 1

contains a very large prime factor [37], [67]. However, it is conceivable (though

not likely) that special-purpose algorithms exist for efficiently solving instances
in such a severely restricted parameter space, while the general problem may

still be computationally intractable. Therefore, it is important to balance reason-

ably between the diversity of the parameters and the feasibility of all the known

special-purpose algorithms for solving the problem on which a system's security
is resting.

Systems based on discrete logarithms and on factoring are discussed in

Sections 5.1 and 5.2, respectively. The iterated encryption attack on the RSA
system is analyzed in Appendix 2 and this analysis implies that the iterated

encryption attack can easily be thwarted by a simple modification in procedure
RandomPrimo (see Section 5.2). Choosing both primes in the RSA system of the

same length in bits is often suggested. In Section 5.3 and in Appendix 3 we

investigate the implications of such a restriction by analyzing the distribution of
the relative size of the smaller prime in a random RSA modulus, given a security

bound on the size of the primes.

5.1. Systems Based on Discrete Logarithms Modulo p

The security of many cryptographic systems and protocols is based on the

difficulty of the discrete logarithm problem in a finite group. Most proposals are
based on the multiplicative group of GF(p) or a subgroup thereof, i.e., on

computations modulo a large publicly known prime p (e.g., [15], [28], [30], [39],
[80], and [90]). The fastest known general algorithm for computing discrete

logarithms modulo p is based on the number-field sieve and has asymptotic
. . 1 / 3 2 / 3 c(log p) (log log p)) running time O(e) for some small constant c. At present the

fastest implementations of discrete logarithm algorithms (see [21]) have larger
1 2 asymptotic running times (both exponents 3 and 3 in the above formula must be

replaced by �89 Computing discrete logarithms modulo a prime seems at present
to be infeasible for primes of more than 120 digits. We refer to [59] and [51] for

a discussion of discrete logarithm algorithms and to [57] for treatment of the
question whether breaking the Diffie-Hellman protocol is equivalent to comput-
ing discrete logarithms in the underlying group.

The fastest generic discrete logarithm algorithms applicable for any finite
group have running times on the order of the square root of the group order.
Other groups than those discussed above, most prominently elliptic curves [60],
have been proposed for use in cryptography. Many of these groups generally
have the advantage that no discrete logarithm algorithm is known that is faster
than the best generic algorithm.

The running time of the algorithm of Pohlig and Hellman [70] is on the order
of the square root of the largest prime factor of p - 1 and hence it is a

Fast Generation of Prime Numbers and Secure Public-Key Cryptographic Parameters 143

necessary condition for security that p - 1 contains at least one sufficiently

large prime factor ql . The probability that a randomly selected integer has no

prime factor greater than its sixth, eighth, or tenth root is FI(~) -- 1.96- 10 -5,

FI(~) = 3 .23 .10 -8, or Fl(~0) = 2.8- 10-11, respectively (see [44]). A heuristic

justification is given in [56] for the conjecture that integers of the form

(p - 1)/2, where p is a prime, have the same distribution of the sizes of prime

factors as random integers. Note that, for instance, with probability 3 . 1 0 -8, the

largest prime factor of a 512-bit prime, reduced by 1, has at most 64 bits and

that the Pohlig-Hellman algorithm appears to be feasible in this case.

While it is not necessary that p - 1 contains an extremely large prime factor,

it appears nevertheless advisable for systems based on the discrete logarithm in

Z* to choose p of the form p = 2Rq + 1 where the relative size of q is at least
1 p
3, or even higher (e.g., 0.9). Choosing R = 1 is often suggested. This choice

creates the most difficult instances for the Pohlig-Hellman algorithm, but

may on the other hand be vulnerable against another (yet undiscovered) special-

purpose discrete-logarithm algorithm. Note that for q of size as small as

log q = O((log p)C) for c > 1, the number-field sieve is faster than the Pohlig-
Hellman algorithm.

We do not recommend choosing q as small as indicated above and we do not

seriously object against using primes of the form p - 2q + 1. However, there

are arguments suggesting choosing R > 1, for example, having 10-20 or more

decimal digits, or even choosing p of the form 2Rqlq2 + 1 for two sufficiently

large primes ql and q2 that are kept secret such that factoring the group order

is difficult. While for a fixed choice of R (e.g., R = 1) an expected number

(log p)/2 of primes q must be generated until 2Rq + 1 is prime, allowing R to

be picked from a certain interval has the further advantage that only one prime

q must be generated because R can be varied until 2Rq + 1 is a prime.

In discrete-logarithm-based systems it is usually recommended choosing as

the base b a generator of the group. However, for the multiplicative group

modulo p with small R and F = ql , it is almost equivalent from a security point

of view [70] to require only that q divides ordp(b). The algorithm of Section 3

for generating primes can easily be adapted to generate a prime with nearly

uniform distribution over the set of primes p in a given interval for which p - 1

has a prime factor q of at least a certain specified size. The base a used in

Lemma 1 for proving the primality of p satisfies qlordp(a) and can thus be used

as the base in discrete-logarithm-based systems. Furthermore, when R is small

and hence its factorization is easily obtained, the base a can be proved to be

primitive (if it is) by checking that in addition to the conditions of Lemma 1, for
every prime factor s of R,

a~n-x)/s ~ 0 (mod p) .

These additional checks can be performed very efficiently. According to Lemma

3, a random a is primitive with probability ~p(p - 1) / (p - 1) which is close to

1 /2 when R contains no very small prime factors, and slightly smaller if it does.

144 u.M. Maurer

It is straightforward to modify procedure RandomPrime to generate a prime

and a generator for the group satisfying the constraints for the Schnorr scheme

[80] or the NIST proposal for a digital signature standard (DSS) [90].

5.2. Systems Based on Factoring

Another collection of systems is based on the difficulty of factoring a composite

modulus [32], [47], [79], [82]. The largest size of integers of general form that can

presently be factored using massively parallel computation have on the order of

130 decimal digits [50]. These factoring records are achieved using variations of

the quadratic sieve algorithm (e.g., see [53]), but the asymptotically fastest

factoring algorithm is the number-field sieve described in [52]. We refer to [51]

and [73] for a discussion of factoring algorithms.

Many special-purpose factoring algorithms exist. Lenstra's elliptic curve algo-

rithm [54] is successful in finding "small" factors having (at present) up to 40

decimal digits [29]. PoUard's algorithm [71] finds factors p for which p - 1 has

only relatively small prime factors. This algorithm was generalized by Williams

[87], [88] to primes for which p + 1 has no large prime factor and by Bach and

Shallit [7] to primes for which any cyclotomic polynomial evaluated at p has

no large prime factor, i.e., for which either p - 1, p + 1, p2 + p + 1,
p4 + p3 + p2 + p + 1, etc., has no large prime factor.

It is therefore often recommended (e.g., [12] and [37]) generating primes for

which it is guaranteed that some of these expressions, in particular p - 1 and

p + 1, each contains at least one large prime factor. However, it should be

pointed out that in view of the elliptic curve factoring algorithm [54] these

conditions make little sense. For every fixed choice of elliptic curve parameters

a and b, it is roughly equally probable that (for instance) p + 1 is smooth with

respect to a certain bound and that the order of the corresponding elliptic curve

Ep(a, b) is smooth with respect to the same bound (see also [61]). The fact that

the order of the elliptic curve cannot be given explicitly as an algebraic

expression in p has no impact on the validity of this observation.

However, a nonsmoothness condition on p - 1 is justified for a different

reason. One way of deciphering ciphertexts in the RSA public-key cryptosystem

[79] without factoring the modulus is by iterated encryption [84]. In Appendix 2

a detailed analysis of this attack is given, and Theorem 6 states sufficient

nonrestrictive conditions on p and q that allow us provably to foil this attack for
any fixed given public exponent e. These conditions can be satisfied at no extra
computational cost by a simple modification in procedure RandomPrime.

Let the primes p~ and q~ be generated at the first level of the recursion and

the primes p~. and q'i~ at the second level. Note that the conditions on a

required by Theorem 6 to ensure that decryption by iterated encryption is

infeasible are satisfied automatically when Fp, Fp, r, Fq, Fq, are pairwise
relatively prime and when the public encryption exponent e is used as the
parameter a in procedure CheckLemmal at the second level of the recursion,

i.e., for proving the primality of the p~) and q~). Hence the conditions of

Fast Generation of Prime Numbers and Secure Public-Key Cryptographic Parameters 145

Theorem 6 can be satisfied simply by controlling the choice of the parameter a

and by avoiding the repeated use of primes.

5.3. Generating Random Secure RSA Moduli

Implementing the RSA system with a modulus m = pq for two primes p and q

with equally many bits (e.g., 512 bits) is usually recommended. For a given size

of the modulus this choice results in the most difficult instances for the elliptic

curve factoring algorithm and also makes an implementation more symmetric

when Chinese remaindering is used for decryption. On the other hand, choosing

both prime factors of equal length entails a possibly unnecessary, though not

severe, restriction on the diversity of moduli that can be generated. Although we

do not strongly recommend choosing primes that differ strongly in size, we

nevertheless investigate the problem of choosing an RSA modulus m = pq (with

p < q) at random from the set of integers in a given interval [cN, N] (with

0 < c < 1) that are the product of two distinct primes and satisfy certain

security constraints.

Given the present knowledge of attacks against the RSA system, the following

appears to be a reasonable set of security constraints:

1. p as well as q must be greater than a given bound L = N v for some 3'

(e.g., 3' > 0.4).

2. p - 1 and q - 1 must contain distinct large prime factors P'I and q'l,

respectively, with P'I > L' and q~ > L' for a given bound L' = N ~' for

some 3'' < 3' (e.g., 3'' > 0.3).

These two conditions with the somewhat arbitrary numbers 0.4 and 0.3 are

only mildly restrictive and imply that P'I > X/P - 1 and q'l > 1/q - 1 and hence

that only one prime factor P'I of p - 1 and one prime factor q'l of q - 1 must

be generated. Moreover, since the factored parts Fp, of P'I and Fq, of q'l are

greater than V/~-I - 1 and ~ - 1 , respectively, the lower bound

lcm(Fpq Fo,, Fq, t Fq, s) = lcm(Fp~, Fq,) of Theorem 6 is greater than N 1/4
when (Fp,, Fq, x~ = 1.

Theorem 7 states that when m is chosen at random from the set of integers

[cN, N] (for some fixed c) that are the product of exactly two primes, both

> N v, then the probability that the smaller prime factor p is greater than N " is,
asymptotically, given by

log(1 - a) - log a
1 - (1 2)

log(1 - 3,) - log 3, '

which ranges from 0 to 1 when ot ranges from y to �89 T h e density of the
distribution on the interval [y, �89 is thus

(13)
a (1 - a)(log(1 - 3,) - log 3,) "

1~ U.M. Mau~r

It follows from (13), that for 3' > 0.4, the relative size of p is close to uniformly

distributed over the interval [3", 1], with sizes in the range of 3' being slightly
1

more probable than sizes in the range of ~.

The above conditions can be satisfied by making appropriate use of (12) for

selecting an interval for the smaller prime p, and by restricting the size of the

largest prime factors of p - 1 and q - 1. When p is generated, the interval for

the prime q is [N1/p , N2/p] , where [N 1, N 2] is the specified interval for m.
Note that selecting p at random from the primes in the interval IN v, N ~/2]

would result in an entirely different distribution. In particular, the size of p

would with very high probability be very close to 1, which is in sharp contrast to

the above analysis.

6. Concluding Remarks

A fast algorithm for generating prime numbers for cryptographic applications

has been presented. An important issue in the generation of cryptographic

parameters is the tradeoff between security constraints that must be placed on

the parameters of a cryptosystem and the diversity of the parameters, i.e., the

probability distribution according to which they are selected. We have provided

a detailed analysis of this tradeoff for the major cryptographic systems based on

large prime numbers.

Acknowledgments

It is a great pleasure to thank Eric Bach for two significant contributions to this

paper mentioned in the text, as well as for suggesting several improvements for

the presentation of the paper. I would also like to thank Daniel Bleichenbacher

for many helpful discussions, and Ivan Damg~rd, Arjen Lenstra, and Preda

Mihailescu for comments on an earlier version of the paper.

Appendix 1. On the Relative Size of the Prime Factors of Large Integers

Let the relative size of an integer a with respect to an integer b be defined as

log a / log b, which is independent of the base of the logarithms. Let pi (n)

denote the ith largest prime factor of the integer n and let o~i(N, x) be the
number of positive integers less than or equal to N for which the ith largest

prime factor is at most N x, i.e., let

toi(N, x) = #{n: 1 < n < N , P i (n) < NX}.

Knuth and Trabb Pardo [44] showed that

toi(N , x)
lim Fi (x) ,

N--.~ N

Fast Genera t ion of Prime Numbers and Secure Public-Key Cryptographic Parameters 147

where the functions Fi(x) are, for i > 1, defined by the integral equations

1((1) ~ (1)) d / ~ -7
Fi(x) = 1 - f~ F, - Fi_ ,

with the convention that Fo(x) = 0 for all x and Fi(x) = 1 for x >_ 1, for i _> 1.
1

For example, if ~ _< x _< 1 we have t / (1 - t) >_ 1 for all t > x and hence

dt
Ft(x) 1 f t 1 + log x

Jx t

1
for ~ < x _< 1. It follows, for instance, that the probability that a randomly

selected large integer 4 has a prime factor greater than its square root is

1 - Fl(�89 = log2 = 0.693. The functions Fl(x), FE(X), and F3(x) are tabulated

in [44]. A few more values of F 1 are FI(�88 = 0.00491, FI(�89 = 0.0486, and

F1(0.4) = 0.130. The function x ~ Fl(1/x) is also known as the rho-function

studied by Dickman [27]. A good algorithm for computing the Dickman rho-

function is described in [24].

Consider the following process, suggested to the author by Eric Bach [5] (see

also [6]), for generating real-valued random variables sl, s 2 We make use of

auxiliary random variables ul, u z , First, u I is chosen uniformly from the

interval [0, 1], then u 2 is chosen uniformly from [0, 1 - Ul] , then u 3 is chosen

uniformly from [0, 1 - u 1 - u2], and so on. The numbers ul, u 2 are main-

tained in a list ordered in decreasing order. The elements of the ordered list are

the numbers sl, s 2 , Although this is a conceptually infinite process, it can be

stopped after the first r dements in the ordered list, s l , . . . , s r, are known to be

fixed. After the generation of u l , . . . , u d, the values s I , sr are fixed as soon

a s

d

Sr > 1--]~_, ui,
i=1

because this implies that Ud+ 1, Ua+2 will be inserted into the list after s~.

However, we need the somewhat stronger condition

s~ > 1 - ~ si (14)
i=1

to ensure that R (which is of relative size 1 - E~= ~s~) cannot contain a prime

factor greater than qr. If it did, the distribution of the relative sizes of the prime

factors of (n - 1) /2 would differ from that of a random integer of the same

size, which may be undesirable. Condition (14) can result in a larger value for r

but does not change the distribution of s 1, s z The procedure described for

generating s 1 , s~ satisfying (14) is used in procedure IqanclomPrimo de-

scribed in Section 3, where it is called GonoratoSizoList.

4 See footnote 1 in Section 3.1.

148 U . M . M a u r e r

It is not difficult to see that the cumulative distributions G~,G2 of

sl, s2 where Gi(x) = Prob[s i < x] for i >_ 1, satisfy the following integral

equations:

X X

a i (x) = foX (a i (f ' ~) + G i - l (- ~ ~)) dt

with the convention that Go(x) = 0 for all x and Gi(x) -- 1 for x > 1, for i > 1.

Using the variable substitution y -'= x / (1 - t) it can be shown that Gi(x) = F~(x)

for i > 1. Thus the random variables Sl, S2,. . . generated according to the

process described are distributed according to F~, F: subject to the condi-

tions si+ 1 <-~ Si for i > 1 and E~= 1si = 1. Therefore, when this process is stopped

after s 1 , s r have been generated, then s I sr are distributed according to

the asymptotic joint distribution of the relative sizes of the r largest prime

factors of an integer chosen uniformly from [1, N] (or, equivalently, from

[cN, N] for a fixed interval spread c < 1), for N going to infinity.

Appendix 2. The lterated-Encryption Attack Against the RSA System

The encryption transformation of the RSA system is defined by

y =- x e (m o d m) ,

where x, y, e, and m are the plaintext, cfphertext, public encryption exponent,

and public modulus, respectively. Because this transformation is known publicly,
. e e e 2
it can be iterated without knowledge of the secret key, resulting m (x) = x ,

(xe2) e = X e3 This sequence is periodic and sill ultimately result in the

plaintext. Iterated t-fold encryption in an RSA cryptosystem reveals the plain-

text x if and only if

x (e")=x (m o d m)

for some u < t, i.e., if and only if

e" = 1 (mod ordm(x))

for some u < t. Hence the minimal number of encryptions needed to recover

the plaintext is ordordm(~)(e); for security reasons it is required that this number

of large for virtually all x. The following lemma is needed to prove Theorem 6,

which states nonrestrictive sufficient conditions for foiling the iterated encryp-

tion attack.

Lemma 5. Let m = pq be an RSA modulus where p - 1 = 2RpFp and q - 1 =

2 R q F q a n d where the prime factorizations o f Fp and Fq are F e = I-I~=lp~ ~' and

Fq = I-I~= lq~ ~', respectively. Then the fraction f o f plaintexts x ~ Z* for which

ordm(x) is at least lcm(Fp, Fq) satisfies

f >_ ~o(Fp) ~p(Fq) 1 1

ep Fq -- i = 1 P ; i = 1

Fast Generation of Prime Numbers and Secure Public-Key Cryptographic Parameters 149

Proof.

and

Lemma 3 states that

{ x ~ Zp : Fplordp(x)} > (p - 1) q~(Fp)

G

For x s Z* the conditions Fplordp(x) and Fq[ordq(x) together with (1) imply

that lcm(Fp, F~) divides ordm(X). Because Z* = Z~ • Zq we have

{ x ~ Z * : lcm(Fp, Fq)[ordm(x) } > (p - 1) (q - 1) q~ �9
q~(Fq)

- G G

The last inequality of the theorem follows from (2). []

Theorem 6. Let m = pq be an RSA modulus as in L e m m a 5 where P'i - 1 =

2 R E F E for 1 <_ i <_ r and q'i - 1 = 2Rq~fq~ for 1 < i < s and where the prime

factorizations o f F~, and F_ are F = FI ~., . n "~j for I <_ i < ," .,.,,4 ~ - ~ , n,,~,J
- - r i LI~ p~ J= l r i j j q~ - - x X j = l ' , l i j

for 1 < i <_ s. For every integer a relatively prime to (p - 1Xq - 1) and satisfying

a (p~-l)/pTj ~ 1

for 1 < i <_ r and 1 <_ j <_ r, as well as

a (q ~ - l) / q T i ~ 1

(mod Pl)

(mod q'i)

for 1 ,~ i < s and 1 <_ j < si, the fraction o f plaintexts x ~ Z * for which

ordord,(~)(a) is not a multiple o f lcm(Fp; , Fp,, Fq; Fq,,) is at most ~ ,~ l l /p'i

+ E~ = 11/q;.

Proof. Similar arguments as used in the proof of Lemma 1 allow it to be shown

that the first condition on a implies Fp~lordp;(a) for 1 _< i < r. Hence

Fp;Iordp~,,(a) and also Fp, lordF(a) for 1 < i _< r. Thus lcm(Fp~ Fp, r) divides

orde(a) . Similarly lcm(Fq; Fq,)lordF(a) is obtained. It follows from (1) that

lcm(F Fr Fq; Fq,) divides ord,cm<Fp. F,)(a). According to Lemma 5 the

condition lcm(Fp, Fq)iordm(x) is satisfied for at least a fraction 1 - E~=ll/P'i +

E~=ll/ql of the x ~ Z* . This together with (1) implies that

ord~,(rp, e~)(a)lordo,a,(~)(a) and hence that lcm(Fp, Fp,, Fq~ Fq,) divides

ordo~am(~)(a), as was to be shown. []

Theorem 6 illustrates that, in order to prevent decipherability by iterated
encryption, the condition, suggested by Rivest [78] and others, that p ' - 1

(where p' is the largest prime factor of p - 1) must also have a very large prime

factor p", is unnecessary.
When procedure RandomPrime is used to generate p and q, the primes P'I

and q; are generated on the first level, and the prirnes Pi~ and q'i~ are generated

150 U.M. Maurer

on the second level of the recursion. Note that the conditions on a required by

Theorem 6 to ensure that decryption by iterated encryption is infeasible, are

satisfied automatically when Fe~ , Fp,, Fq, , Fq, are pairwise relatively prime

and when the public encryption exponent e is used as the parameter a in

procedure Ghoekl_ommal at the second level of the recursion, i.e., for proving

the primality of the p~. and q~. Hence the conditions of Theorem 6 can be

satisfied at no extra computational cost, simply by controlling the choice of the

parameter a and by avoiding the repeated use of primes.

Similar conditions (based on the factorization of p + 1 and q + 1 rather than

p - 1 and q - 1) for preventing feasible decryption by iterated encryption can

be derived for the elliptic-curve public-key cryptosystem of [47] whose security is

also based on the difficulty of factoring.

Appendix 3. The Size of the P r i m e Factors of a R a n d o m RSA Modulus

In the following we investigate the probability distribution of the relative size of

the smaller prime factor of an integer chosen an random from all integers < N

that are the product of two primes.

Let 72(N, 3') be the number of integers < N that are the product of exactly
1.

two distinct primes, both greater or equal to N ~, where 3' is fixed with 0 < 3' < 3.

z2(N, 3') = #{m: 1 < m < N , m = pq , NV < p <q}.

Here and below p and q refer to primes. The following theorem was stated in

[56] as a conjecture. It was pointed out to the author by Eric Bach [5] that it can

be proved along the lines of the heuristic arguments given in [56] for its

justification, by carefully estimating the error terms.

Th eorem 7. For 0 < y < �89

log N
lira Y2(N, y) ' - -

N--,~o N
= log(1 - 3') - log y .

Proof.

We thus have

It is easy to verify that

"r2(N, T) =

N~'<p < vfN

N ~ p < v ~ N ~ p < ~

~-(p). (15)

Remark. The theorem also holds if z2(N, 3') is defined similarly, but for

intervals [cN, N] with arbitrary fixed positive spread c < 1, when the denomina-

tor N is replaced by (1 - c)N .

Fast Generation of Prime Numbers and Secure Public-Key Cryptographic Parameters 151

The second sum is smaller than Ep < v~ ~r(p) which is upper bounded by

E zr(p) < (, r (v ~)) 2 = 0 ~ . (16)
p<r

For p in the range of interest, N/p increases without bound as N goes to
infinity. Therefore

N) N/p
E p - E

N'r'<p< ~l~ NV <p< ~l~

Replacing this sum by a Stieltjes integral and using (15) and (16) we obtain

~'2(N,y) f j d T r (x) (1)
N x log(N/x) + 0 ~ . (17)

Using zt(x) = f~ dt/(log t) + e(x) where e(x) = O(x/log 2 x) (see [26]), we
obtain

fN ~ drt(x) = f ~ dx
x log(N/x) x log x log(N/x)

+ fN? dE(x)
X log(N/x)" (18)

The first integral can be computed by using the variable substitution y =

(log x)/(log N), with dy = dx/(x log N), which gives

f ~ dx 1 f~/2 dy
x log x log(N/x) log N y(1 - y)

log(1 - y) - log 3'

log N
(19)

Using the rule for integration by parts,

f g(x) af(x) = f (x)g(x) - f f(x) ag(x),

for f (x) = e(x) and g(x) = 1/(x log(N/x)), allows us to transform the second
integral in (18):

x log(N/x) x log(N/x)

fN~ N 1 + log(N/x)
q- ~(x) x2 log2(N/x)

dx. (2O)

152 U.M. Maurer

We now make use of the bound e(x) = O(x/log 2 x) which shows that the first

term on the right-hand side of (20) is O(1 / log 3 N). In order to show that

the second term is O(1 / log 2 N), note that the function to be integrated is

O(1/(x log2 x log N)) which for N ~ < x _< ~ is also O(1/(x log 3 N), and

that f i-ffN~ dx/x = O(log N). The proof of the theorem is completed by combin-

ing (17)-(20). []

References

[1] L. M. Adleman and M. A. Huang, Primality Testing and Abelian Varieties over Finite Fields,

Lecture Notes in Mathematics, Vol. 1512, Berlin: Springer-Verlag, 1992.

[2] L. M. Adleman, C. Pomerance, and R. S. Rumely, On distinguishing prime numbers from
composite numbers, Annals of Mathematics, Vol. 117, pp. 173-206, 1983.

[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms,

Reading, MA: Addison-Wesley, 1974.
[4] E. Bach, How to generate factored random numbers, SlAM Journal on Computing, Vol. 17,

No. 4, pp. 173-193, 1988.
[5] E. Bach, Personal communication, April 1992.
[6] E. Bach, Exact analysis of a priority queue algorithm for random variate generation, Proc. 5th

ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 48-56, 1994.

[7] E. Bach and J. Shallit, Factoring with cyclotomic polynomials, Mathematics of Computation,

Vol. 52, pp. 201-219, 1989.
[8] E. Bach and J. Shallit, Algorithmic Number Theory, Vol. I: Efficient Algorithms, Cambridge, MA:

MIT Press, to appear.
[9] E. Bach and J. Sorensen, Sieve algorithms for perfect power testing, Algorithmica, Vol. 9,

pp. 313-328, 1993.
[10] A. Balog, p + a without large prime factors, Seminaire de theorie des hombres de Bourdeaux,

No. 31, 1983.
[11] P. Beauchemin, G. Brassard, C. Cr6peau, C. Goutier, and C. Pomerance, The generation of

random numbers that are probability prime, Journal of Cryptology, Vol. 1, No. 2, pp. 53-64,

1988.
[12] B. Blakley and G. B. Blakley, Security of number theoretic cryptosystems against random

attacks, I, Cryptologia, Vol. 2, No. 4, pp. 305-320, 1978.
[13] D. Bleichenbacher, On the power of pseudo-primality tests, Tech. Rep., Dept. of Computer

Science, ETH Zurich, Sept. 1993.
[14] D. Bleichenbacher and U. M. Maurer, Finding All Strong Pseudoprimes < x, Preprint, 1993.
[15] M. Blum and S. Micali, How to generate cryptographically strong sequences of pseudo-random

bits, SIAM Journal on Computing, Vol. 13, No. 4, pp. 850-864, 1984.
[16] D. M. Bressoud, Factorization and Primality Testing, Berlin: Springer-Verlag, 1989.
[17] J. Brillhart, D. H. Lehmer, and J. L. Selfridge, New primality criteria and factorizations of

2 m + 1, Mathematics of Computation, Vol. 29, pp. 620-647, 1975.
[18] R. D. Carmichael, On composite numbers P which satisfy the Fermat congruence a e- 1 =_ 1

(mod P), American Mathematical Monthly, Vol. 19, pp. 22-27, 1912.
[19] A. Cobham, The recognition problem for the set of perfect squares, Proc. 7th Annual Syrup. on

Switching and Automata Theory, pp. 78-87, 1966.
[20] H. Cohen and A. K. Lenstra, Implementation of a new primality test, Mathematics of Computa-

tion, Vol. 48, No. 177, pp. 103-121, 1987.
[21] D. Coppersmith, A. M. Odlyzko, and R. Schroeppel, Discrete logarithms in GF(p), Algorith-

mica, Vol. 1, pp. 1-15, 1986.
[22] C. Couvreur and J. J. Quisquater, An introduction to fast generation of large prime numbers,

PhilipsJoumal of Research, Vol. 37, pp. 231-264, 1982 (errata: ibid., Vol. 38, p. 77, 1983).
[23] I. Damg~rd, P. Landrock, and C. Pomeranee, Average case error estimates for the strong

probable prime test, Mathematics of Computation, Vol. 61, pp. 177-194, 1993.

Fast Generation of Prime Numbers and Secure Public-Key Cryptographic Parameters 153

[24] J. van de Lune and E. Wattel, On the numerical solution of a differential-difference equation

arising in analytic number theory, Mathematics of Computation, Vol. 23, pp. 417-421, 1969.

[25] R. De Moliner, Effiziente Konstruktion zuf~illiger grosser Primzahlen, Diploma Thesis, Inst. for
Signal and Information Processing, Swiss Federal Institute of Technology, Zurich, 1989.

[26] H. G. Diamond, Elementary methods in the study of the distribution of prime numbers, Bulletin

of the American Mathematical Society (New Series), Vol. 7, No. 3, pp. 553-589, 1982.
[27] K. Dickman, On the frequency of numbers containing prime factors of a certain relative

magnitude, Arkiv for Matematik, Astronomi och Fysik, Vol. 22A, No. 10, pp. 1-14, 1930.
[28] W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Transactions on Informa-

tion Theory, Vol. 22, No. 6, pp. 644-654, 1976.
[29] B. Dixon and A. K. Lenstra, Massively parallel elliptic curve factoring, Advances in Cryptology

--EUROCRYPT '92, Lecture Notes in Computer Science, Vol. 658, pp. 183-193, Berlin:

Springer-Verlag, 1993.
[30] T. El-Gamal, A public key cryptosystem and a signature scheme based on the discrete

logarithm, IEEE Transactions on Information Theory, Vol. 31, No. 4, pp. 469-472, 1985.

[31] P. Erdrs, On the normal number of prime factors of p - 1 and some related problems
concerning Euler's ~function, Quarterly Journal of Mathematics, Oxford, Vol. 6, pp. 205-213,
1935.

[32] A. Fiat and A. Shamir, How to prove yourself: practical solution to identification and signature
problems, Advances in Cryptology--CRYPTO '86, Lecture Notes in Computer Science,
Vol. 263, pp. 186-194, Berlin: Springer-Verlag, 1987.

[33] J. B. Friedlander, Shifted primes without large prime factors, in Number Theory and Applica-

tions, R. A. Mollin (ed.), Dordrecht: Kluwer, pp. 393-401, 1989.
[34] M. Goldfeld, On the number of primes p for which p + a has a large prime factor,

Mathematika, Vol. 16, pp. 23-27, 1969.
[35] S. Goldwasser and J. Kilian, Almost all primes can be quickly certified, Proc. 18th AnnualACM

Symp. on the Theory of Computing, pp. 316-329, 1986.

[36] S. Goldwasser and S. Micali, Probabilistic encryption, Journal of Computer and System Sciences,
Vol. 28, pp. 270-299, 1984.

[37] J. Gordon, Strong RSA Keys, Electronics Letters, Vol. 20, No. 12, pp. 514-516, 1984.

[38] A. Granville, Primality testing and Carmichael numbers, Notices of the American Mathematical

Society, Vol. 39, No. 6, pp. 696-700, 1992.

[39] L. C. Guillou and J.-J. Quisquater, A practical zero-knowledge protocol fitted to security
microprocessor minimizing both transmission and memory, Advances in Cryptology--

EUROCRYPT '88, Lecture Notes in Computer Science, Vol. 330, pp. 123-128, Berlin:
Springer-Verlag, 1988.

[40] G. H. Hardy and J. E. Littlewood, Some problems of "partitio numerorum"; III: on the
expression of a number as a sum of primes, Acta Mathematica, Vol. 44, pp. 1-70, 1922.

[41] C. Hooley, On the largest prime factor of p + a, Mathematika, Vol. 20, pp. 135-143, 1973.
[42] G. Jaeschke, On strong pseudoprimes to several bases, Mathematics of Computation, Vol. 61,

pp. 915-926, 1993.

[43] S. H. Kim and C. Pomerance, The probability that a random probable prime is composite,
Mathematics of Computation, Vol. 53, pp. 721-741, 1989.

[44] D. E. Knuth and L. Trabb Pardo, Analysis of a simple factorization algorithm, Theoretical

Computer Science, Vol. 3, pp. 321-348, 1976.

[45] N. Koblitz, A Course in Number Theory and Cryptography, Berlin: Springer-Verlag, 1987.

[46] N. Koblitz, Primality of the number of points on an elliptic curve over a finite field, Pacific
Journal of Mathematics, Vol. 131, No. 1, pp. 157-165, 1988.

[47] K. Koyama, U. M. Maurer, T. Okamoto, and S. A. Vanstone, New public-key cryptosystem
based on elliptic curves over the ring Zn, Advances in Cryptology--CRYPTO '91, Lecture Notes
in Computer Science, Vol. 576, pp. 252-266, Berlin: Springer-Verlag, 1992.

[48] E. Kranakls, Primality and Cryptography, Stuttgart: Teubner; New York: Wiley, 1986.
[49] A. IC Lenstra, Primality testing, in Cryptology and Computational Number Theory, C. Pomerance

(ed.), Proceedings of Symposia in Applied Mathematics, Vol. 42, pp. 13-25, Providence, RI:
American Mathematical Society, 1990.

154 U.M. Maurer

[50] A. K. Lenstra, D. Atkins, M. Graft, and P. C. Leyland, The magic words are squeamish
ossifrage, Proc. Asiacrypt '94, Wollongong, Australia, Nov. 28-Dec. 1, 1994, to appear.

[51] A. K. Lenstra and H. W. Lenstra, Algorithms in number theory, in Handbook of Theoretical

Computer Science, J. van Leeuwen (ed.), Chapter 12, Elsevier, 1990.
[52] A. K. Lenstra, H. W. Lenstra, M. S. Manasse, and J. M. Pollard, The number field sieve, Proc.

22nd ACM Symp. on Theory of Computing, pp. 564-572, 1990.
[53] A. K. Lenstra and M. S. Manasse, Factoring with two large primes, Advances in

Cryptology--EUROCRYPT '90, Lecture Notes in Computer Science, Vol. 473, pp. 69-80,

Berlin: Springer-Verlag, 1991.

[54] H. W. Lenstra, Jr., Factoring integers with elliptic curves, Annals of Mathematics, Vol. 126,
pp. 649-673, 1987.

[55] U. M. Maurer, Fast generation of secure RSA-moduli with almost maximal diversity, Advances
in Cryptology--EUROCRYPT '89, Lecture Notes in Computer Science, Vol. 434, pp. 636-647,
Berlin: Springer-Verlag, 1990.

[56] U. M. Maurer, Some number-theoretic conjectures and their relation to the generation of
cryptographic primes, in Cryptography and Coding H, C. Mitchell (ed.), pp. 173-191, Oxford:
Oxford, University Press, 1992.

[57] U. M. Maurer, Towards the equivalence of breaking the Diffie-Hellman protocol and comput-
ing discrete logarithms, Advances in Cryptology--CRYPTO '94, Lecture Notes in Computer
Science, Vol. 839, pp. 271-281, Berlin: Springer-Verlag, 1994.

[58] U. M. Maurer and Y. Yacobi, Non-interactive public-key cryptography, Advances in Cryptology

--EUROCRYPT '91, Lecture Notes in Computer Science, Vol. 547, pp. 498-507, Berlin:
Springer-Verlag, 1991.

[59] K. McCurley, The discrete logarithm problem, in Cryptology and ComputationalNumber Theory,
C. Pomerance (ed.), Proceedings of Symposia in Applied Mathematics, Vol. 42, pp. 49-74,

Providence, RI: American Mathematical Society, 1990.
[60] A. Menezes, Elliptic Curve Public Key Cryptosystems, Dordrecht: Kluwer, 1993.

[61] P. Mihailescu, Fast generation of provable primes using search in arithmetic progressions,
Advances in Cryptology--CRYPTO '94, Lecture Notes in Computer Science, Vol. 839,
pp. 282-293, Berlin: Springer-Verlag, 1994.

[62] G. L. Miller, Riemann's hypothesis and tests for primality, Journal of Computer and System
Sciences, Vol. 13, pp. 300-317, 1976.

[63] L. Monier, Evaluation and comparison of two efficient probabilistic primality testing algorithms,

Theoretical Computer Science, Vol. 12, pp. 97-108, 1980.
[64] F. Morain, Distributed primality proving and the primality of (2 3539 + 1)/3, Advances in

Cryptology--EUROCRYPT '90, Lecture Notes in Computer Science, Vol. 473, pp. 110-123,

Berlin: Springer-Verlag, 1991.
[65] F. Morain, Prime Values of Partition Numbers and the Primality of p(1840926), Tech. Report

L I X / 9 2 / R R / l l , Laboratoire d'Informatique de l'Ecole Polytechnique (LIX), F-91128
Palaiseau Cedex, France, 1992.

[66] F. Morain, Personal communication, September 1993.
[67] M. Ogiwara, A Method for Generating Cryptographically Strong Primes, Research Reports on

Information Sciences, No. C-93, Dept. of Information Sciences, Tokyo Institute of Technology,

April 1989.
[68] D. A. Plaisted, Fast verification, testing, and generation of large primes, Theoretical Computer

Science, Vol. 9, pp. 1-16, 1979 (errata: ibid., Vol. 14, p. 345, 1981).
[69] H. C. Pocklington, The determination of the prime or composite nature of large numbers by

Fermat's theorem, Proceedings of the Cambridge Philosphical Society, Vol. 18, pp. 29-30,
1914-1916.

[70] S. C. Pohlig and M. E. Helhnan, An improved algorithm for computing logarithms over GF(p)
and its cryptographic significance, IEEE Transactions on Information Theory, Vol. 24, No. 1,
pp. 106-110, 1978.

[71] J. M. Pollard, Theorems on factorization and primality testing, Proceedings of the Cambridge
Philosophical Society, Vol. 76, pp. 521-528, 1974.

[72] C. Pomerance, Popular values of Euler's function, Mathematika, Vol. 27, pp. 84-89, 1980.

Fast Generation of Prime Numbers and Secure Public-Key Cryptographic Parameters 155

[73] C. Pomerance, Factoring, in Cryptology and Computational Number Theory, C. Pomerance (ed.),

Proceedings of Symposia in Applied Mathematics, Vol. 42, pp. 27-47, Providence, RI: Ameri-

can Mathematical Society, 1990.

[74] K. Prachar, lJ-ber die Anzahl der Teiler einer natiirlichen Zahl, welche die Form p - 1 haben,
Monatshefte ~ r Mathematik, Voi. 59, pp. 91-97, 1955.

[75] V. R. Pratt, Every prime has a succinct certificate, SlAM Journal on Computing, Vol. 4, No. 3,
pp. 214-220, 1975.

[76] M. O. Rabin, Probabilistic algorithm for testing primality, Journal of Number Theory, Vol. 12,
pp. 128-138, 1980.

[77] H. Riesel, Prime Numbers and Computer Methods for Factorization, Boston: Birkhiiuser, 1985.
[78] R. L. Rivest, Remarks on a proposed cryptanalytic attack on the M.I.T. public key cryptosystem,

Cryptologia, Vol. 2, No. 1, pp. 62-65, 1978.
[79] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and

public-key cryptosystems, Communications of the Association for Computing Machinery, Vol. 21,
No. 2, pp. 120-126, 1978.

[80] C. P. Schnorr, Efficient identification and signatures for smart cards, Advances in

Cryptology--CRYPTO '89, Lecture Notes in Computer Science, Vol. 435, pp. 239-252, Berlin:
Springer-Verlag, 1990.

[81] A. Sch6nhage and V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing, Vol. 7,
pp. 281-292, 1971.

[82] A. Shamir, Efficient signature schemes based on birational permutations, Advances in Cryptol-

ogy--CRYPTO '93, Lecture Notes in Computer Science, Vol. 773, pp. 1-12, Berlin: Springer-
Verlag, 1994.

[83] J. Shawe-Taylor, Generating strong primes, Electronics Letters, Vol. 22, No. 16, pp. 875-877,
1986.

[84] G. Simmons and M. Norris, Preliminary comments on the M.I.T. public key cryptosystem,
Cryptologia, Vol. 1, No. 4, pp. 406-414, 1977.

[85] R. Solovay and V. Strassen, A fast Monte-Carlo test for primality, SlAM Journal on Computing,

Vol. 6, No. 1, pp. 84-85, 1977 (errata: ibid., Vol. 7, p. 118, 1978).
[86] G. Trenta, Werkzeuge zur Realisierung eines RSA-Kryptosystems, Diploma Thesis, Dept. of

Computer Science, Swiss Federal Institute of Technology, March 1990.

[87] H. C. Williams, A p + 1 method of factoring, Mathematics of Computation, Vol. 39, No. 159,
pp. 225-234, 1982.

[88] H. C. Williams and B. Schmid, Some remarks concerning the M.I.T. public-key cryptosystem,
BIT, Vol. 19, pp. 525-538, 1979.

[89] K. Wooldridge, Values taken many times by Euler's phi-function, Proceedings of the American

Mathematical Society, Vol. 76, pp. 229-234, 1979.

[90] Specifications for a digital signature standard, US Federal Register, Vol. 56, No. 169, August 30,
1991.

