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Abstract. A very efficient recursive algorithm for generating nearly random 
provable primes is presented. The expected time for generating a prime is only 
slightly greater than the expected time required for generating a pseudoprime 
of the same size that passes the Miller-Rabin test for only one base. Therefore 
our algorithm is even faster than algorithms presently used for generating only 
pseudoprimes because several Miller-Rabin tests with independent bases must 

be applied for achieving a sufficient confidence level. Heuristic arguments 
suggest that the generated primes are close to uniformly distributed over the 
set of primes in the specified interval. 

Security constraints on the prime parameters of certain cryptographic 
systems are discussed, and in particular a detailed analysis of the iterated 
encryption attack on the RSA public-key cryptosystem is presented. The 
prime-generation algorithm can easily be modified to generate nearly random 
primes or RSA-moduli that satisfy these security constraints. Further results 
described in this paper include an analysis of the optimal upper bound for trial 

division in the Miller-Rabin test as well as an analysis of the distribution of the 
number of bits of the smaller prime factor of a random k-bit RSA-modulus, 
given a security bound on the size of the two primes. 

Key words. Public-key cryptography, Prime numbers, Primality proof, 
Miller-Rabin test, RSA cryptosystem, Number theory. 

I. Introduction 

A var ie ty  of  c ry p t o g rap h i c  systems,  i n c l u d i n g  p u b l i c - k e y  d i s t r i b u t i o n  sys tems 

[28], [45], [58], pub l i c -key  c ryp tosys t ems  [30], [36], [47], [79], d igi ta l  s i g n a t u r e  

s c h e m e s  [30], [79], [80], [82], [90], a n d  iden t i f i c a t i on  p ro toco l s  [32], [39], a n d  a 

*Some results of this paper were presented at EUROCRYPT '89, Houthalen, Belgium, April 
10-13, 1989 [55]. 
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large number of variations of some of these systems have recently been 

proposed. The security of most public-key schemes is based on the (conjectured) 

difficulty of certain number-theoretic problems such as the factorization of large 

integers or the discrete logarithm problem in some finite group, and their public 

and/or  private parameters include one or several large prime numbers. 

This paper reviews previous approaches to the generation of cryptographic 

primes and its main purpose is to present a new algorithm for generating prime 

numbers and secure public-key parameters. This algorithm has the properties 

that it yields provable primes (as opposed to only probable primes or pseudo- 

primes), that the primes can be expected to be chosen at random with suffi- 

ciently uniform distribution from the set of primes in a specified interval and, 

more importantly, that it is faster than all previous methods for generating even 

only pseudprimes for cryptographic applications. More precisely, the algorithm 

is less than 40% slower than an optimal algorithm for generating a strong 

pseudoprime that passes the Miller-Rabin test for only one base, and this 

number can be reduced to less than 5% when some deviations from the uniform 

distribution can be tolerated. Moreover, the algorithm is easily modified to 

generate primes that satisfy certain important cryptographic security constraints, 

without increasing the expected running time and without causing significant 

further deviation of the distribution from the uniform distribution over all 

primes in a given interval satisfying these conditions. A further goal of the paper 
is to present several new theoretical results on the RSA public-key cryptosystem. 

A large prime number can in principle be generated by repeatedly choosing 

an integer n at random from the specified interval and testing n for primality. 

The simplest primality test is to divide the given number n by all primes less 

than or equal to (h--, but this approach is completely infeasible when the length 

of n exceeds 15-20 decimal digits. Several sophisticated general-purposes algo- 

rithms for testing primality exist [20], [64] (see also [49]). According to [66], the 

current record in primality testing is held by Morain [65] who proved the 

primality of a 1505-digit number of a general form using massive parallel 
computational resources. 

The history of theoretical results on primality testing is long. Pratt [75] showed 

that the primes are recognizable in nondeterministic polynomial time, Miller 

[62] proved that the Riemann hypothesis for Dirichlet L-functions implied that 

the primes were recognizable in deterministic polynomial time. Adleman et al. 

[2] showed that the primes were recognizable in deterministic time 
O((logn) cl~176176 for some constant c, and finally Adleman and Huang 

proved in a seminal report [1] that the primes were recognizable in random 
polynomial time. A significant step toward this result was achieved by 

Goldwasser and Kilian [35]. It is interesting to note that the primality tests used 

in practice [20], [64] appear to have superpolynomial running times and that the 

algorithm of [1] is superior only for very large numbers that are by far out of 
reach for presently available computational resources. 

Special-purpose primality tests exist for numbers of certain special forms (for 
instance, for Mersenne numbers which are of the form 2 q - -  1 where q is a 
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prime [48]), but these primes can not generally be used in cryptography for 

security reasons. For instance, Mersenne prime factors of a given integer can be 

found easily. 

In most present implementations of public-key cryptographic systems the 

primes are generated by application of a probabilistic compositeness test [62], 

[76], [85]. The most popular such test is the so-called MiUer-Rabin test [76]. Let 

n be an integer to be tested and let n - 1 = 2uv with v odd. The integer n 

passes the test for the base b if and only if either 

b " - I  (modn)  

o r  

b 2~v -'- - 1 (mod n) 

for some i satisfying 0 _< i < u. It can be shown that every composite number n 

can pass this test for at most one-quarter of the bases b in the interval 

[1, . . . ,  n - 1]. Hence the probability that a composite integer is not detected by 

t applications of the Miller-Rabin test with independent randomly chosen bases 

is at most (�88 [63]. In fact, much stronger results can be proved because for 

most composite integers the fraction of bases satisfying the above conditions is 

much smaller than one-quarter. Let Pk. t denote the probability that, when odd 

k-bit integers are selected at random until one of them passes t consecutive 

independent Miller-Rabin tests, this integer is prime. Note as an aside that it 

does not follow from the described bound that Pk,, < (�88 [11] because Pk,t 

depends on the density of primes, However, Kim and Pomerance [43] and 

Damg~rd et al. [23] proved much stronger bounds on Pk, t. For instance, 
p256,6 < 2-52  [23]. While for large enough t the error probability Pk, t can be 

made sufficiently small for all practical purposes, the primality of an integer 

cannot be proved by a feasible number of such compositeness tests. However, 

such a proof would follow from the unproven extended Riemann hypothesis (see 

[62]). Alford, Granville, and Pomerance (see [38]) proved that for every given 

finite set of bases composite numbers exist that pass the Miller-Rabin test for 

these bases. Bleichenbacher [13] exhibits a 55-digit composite number which 

passes the test for all bases < 100. One of the results proved in [14] is that the 

Miller-Rabin test for the bases 2, 3, 5, 7, 11, 13, and 23 is a correct primality 

test for numbers < 1016. Jaeschke [42] has also derived correctness bounds for 

the Miller-Rabin test when applied for several bases. 

In this paper we consider the problem of generating random primes together 

with a certificate ofprimality. Our results draw on Pocklington's [69], on Pratt's 

[75], and on Bach's [4] work: the certificate for a prime p contains a partial 

factorization of p - 1. However, in contrast to Bach's algorithm [4] for generat- 

ing (truly) random factored integers, our algorithm does not make use of a 
general primality test. Of course, if such a general primality test were sufficiently 

fast, it could be used in our context directly for generating primes, without a 

detour to generating random partially factored numbers first. In other words, 
avoiding the use of such a test while nevertheless obtaining provable primes is 
one of the goals of this paper. 
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The generation of provable primes has previously been considered [22], [68], 
[83], but the major advantages of our algorithm are that it is faster and that the 

diversity of primes that can be generated is much larger. Heuristic arguments 
suggest that a generated prime is close to uniformly distributed over a specified 
interval where only a small fraction of the primes is excluded for efficiency 

reasons. Moreover, our algorithm can, at no extra computational cost, be 
modified to generate a prime p that satisfies certain cryptographic security 

constraints. 
The paper is organized as follows. Section 2 summarizes some number-theo- 

retic results. The proposed algorithm for generating primes as well as a simpli- 
fied version of it are described in Section 3. The running time analysis for these 

algorithms as well as for generating pseudoprimes is presented in Section 4, 
where the optimal bound for trial division in these algorithms is derived. 

Cryptographic security constraints on primes and RSA-moduli are discussed in 

Section 5. The probability distributions of the relative size of the prime factors 
of large "random" integers are discussed in Appendix 1. Appendix 2 provides a 

detailed analysis of the iterated-encryption attack against the RSA cryptosystem 

[79]. An asymptotic theorem of possible independent interest about the distribu- 

tion of the size of the smaller prime factor of a random integer of a given size, 
known to be the product of exactly two primes, is analyzed in Appendix 3. 

2. Number-Theoretic Preliminaries 

Throughout this paper Z* denotes the multiplicative group modulo n, ord , ( x )  

denotes the order of x in Z*,  i.e., the smallest positive integer t satisfying 
x t - 1 (mod n), and ~p(n) denotes Euler's totient function, i.e., the number of 

positive integers smaller than and relatively prime to n, with the exception 

~p(1) = 1. The greatest common divisor of a and b is denoted by (a, b) and the 

cardinality of a finite set S is denoted by #S. All logarithms are to the natural 

base e. A basic fact about multiplicative orders is that, for every x ~ Z*,  

n l m  ~ o rd , ( x ) l o rdm(X) .  (1) 

The following lemma, which is a key fact used in our algorithm, is a special 
case of a theorem due to Pocklington [69] (see also [16] or [48]). 

Lemma 1. Let  n = 2 R F  + 1 where the pr ime factorization o f F  is F = q~lq~2 ... 

qfl,. I f  there is an integer a satisfying 

and 

a " - l - 1  (modn)  

( a  ( n - 1 ) / q j  - 1, n) = 1 

for  j = 1 . . . .  , r, then each pr ime factor  p o f  n is o f  the form p = m F  + 1 for  some 

integer m > 1. Moreover,  i f  F > v/-n, or i f  F is odd and F > R,  then n is prime.  
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Proof. Let  p be any prime dividing n. From the first and second condition on 

a it follows that ordp(a) divides n -  1 and t h a t  ordp(a) does not divide 

(n - 1)/qj  for j = 1 . . . . .  r, respectively. Therefore  ordp(a) is a multiple of qflJ 

for j = 1 , . . . ,  r, hence also o f  F, and thus so is p - 1. The last claim of the 

lemma follows from the fact that at most one prime factor of a number can be 

greater than its square root and that when F is odd, the smallest possible prime 

factor of n is 2 F  + 1; hence n can be composite only if n > (2F  + 1) 2, which 

contradicts F > R. [] 

The following lemma allows us to prove the primality of an integer n even 

when the factored part is only greater than ~ rather than x/-n-. It is pointed out 

that this lemma can be used to speed up the prime-generation algorithm 

described in the following section at the expense of somewhat distorting the 

uniformity of the distribution of the generated primes. 

Lemma 2. Let n, R, F, and a be as in Lemma (1) and let x > 0 and y be defined 

by 2R  = xF + y and O < y < F. I f  F > 3x/-n and if  y2 - 4x is neither 0 n o r a  

perfect square, then n is prime. 

ProoL According to Lemma 1 every prime factor of n is at least F + 1. 

Therefore,  because n _< F 3, n can have at most two prime factors. Assume n is 

composite, i.e., n = ( turF + 1)(m2F + 1) = m l m 2 F  2 + (rn I + m2)F + 1 for 

some m 1 >_ m E. Hence 2R = m l m E F  + m 1 + m 2. Since m l m  2 < F and the 

choice (ml ,  m E) = ( f -  1, 1)  violates n __ F 3, it follows that m 1 + m 2 < F 

and hence that x = m l m  2 and y = m 1 + m 2 . Substituting m 2 b y  y - m  I in 

x = m l m  2 gives m 2 -- ym 1 + x ---- 0, which has a solution for ml in integers if 

and only if y2 _ 4x is a perfect square or 0. [] 

To show that a large integer is not a perfect square it suffices to find a small 

prime modulo where the number is a quadratic nonresidue. Quadratic residuos- 

ity can be tested by computing the Legendre symbol. The expected number of 

Legendre symbol computations for proving that a given integer is not a square is 

on the order  of 2. The problem of proving a number is not a perfect square was 

considered in [19]. For  related results and more references we refer to [9]. 

Results that are similar to this lemma are described in [17] and [22], but the 

proofs appear to be more complicated. Note that Lemmas 1 and 2 can easily be 

generalized to allow a to be different for each qj [16], but we will only make use 

of the special case because Lemma 4 demonstrates that, in our application, 

virtually every base a is successful in proving a number prime by application of 

Lemma 1. 

A few basic facts about Euler 's ~ func t ion  are 

n pin pin P 
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where the product and summation are over all (distinct) prime divisors of n, 

q~(ab) > q~(a)q~(b) (3) 

with equality if and only if (a, b) = 1, and 

~o(d) = n. 

din 

(4) 

The group Zp is cyclic for every prime p and hence 

# { x  ~ Z ; :  ordp(x) = d} = ~ ( d )  (5) 

for every divisor d of p - 1. 

Lemma 3. Let p be a prime and let d be a divisor of  p - 1. Then 

~(d) 
# { x  ~ Z p : d l o r d e ( x )  } > d ( p  - 1) 

with equality if and only i f  ( d , ( p  - 1)/d)  = 1. 

Proof. Using (5), (3), and (4) we obtain 

# ( x  ~ Z ; :  dlordp(X)} = E ~o(d') = E 
d': dld'l(p- 1) k: kK(p- 1)/d) 

> ~ ~o(k)~o(d) = ~o(d) 

k: kl((p- 1)/d) 

- 1  
= qo(d) p -~ 

The inequality holds with equality if and only if (d, (p  - 1) /d)  = 1. 

~o(/a/) 

~o(k) 
k: k[(( p -  1)/d) 

[] 

Remark. The proof demonstrates that Lemma 3 holds for any cyclic group 

when ordp(x) and p - 1 are replaced by the order of x in the group and the 

order of the group, respectively, but this generalization is not used in the paper. 

The following lemma demonstrates that if n is prime, then virtually every base 

a can successfully be used in Lemma 1 to prove this fact, provided that all the 

q/s  are sufficiently large (which will always be the case in our application). 

Lemma4.  L e t p =  2RF + l b e a p r i m e w i t h F  = l-l~j=]q~J,F> R, a n d ( 2 R ,  F)  

= 1, where ql . . . . .  qr are distinct primes. Then the probability that a randomly 

selected base a ~ Zp is successful in proving the primality o f  p by Lemma one is 

equal to q~(F)/F which is at least 1 - E~= l l / q j .  
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Proof. a p- 1 = 1 (mod p) is satisfied for every a ~ Zp.  If (2R, F)  = 1, then 

the two statements F[ordp(a) and 

atp-1)/qj ~ 1 (modp)  

for 1 < j < r are equivalent. Application of Lemma 3 with d = F and of (2) 

completes the proof. [] 

3. A Recursive Algorithm for Generating Nearly 

Random Primes 

A very efficient algorithm for generating provable primes with approximately 

uniform distribution over the set of primes in a given interval is described in this 

section. For efficiency reasons, a small fraction of the primes p in the interval 

are excluded, namely, those of the form p = 2ap' + 1 for a small a and with p' 

prime. A simplified version of the algorithm which is straightforward to imple- 

ment is given in Section 3.4. Readers interested only in this simplified version 

can skip much of Sections 3.1-3.3. In Section 5 we describe how the algorithms 

can be modified to generate nearly random primes satisfying certain security 

constraints. 

3.1. Outline of the Algorithm 

Lemma 1 suggests constructing a large prime by choosing some primes ql , - . . ,  qr, 

computing F = FI~= lqP' for some exponents /31 . . . . .  /3,, and repeatedly choos- 

ing integers R < F at random until n = 2 RF + 1 can be proved to be prime by 

Lemma 1 for an appropriate choice of the base a. Lemma 4 shows that if n is 

prime, then finding such a base is easy. On the other hand, if n is composite, 

then virtually every base a will satisfy a n- 1 ~ 1 (mod n) and hence be a witness 

for the compositeness of n, unless n is of a very special form (see [11] and [18]). 

(Of course, in a reasonable implementation, n is first tested for small prime 

divisors before applying a modular exponentiation.) 

Instead of choosing F and R sufficiently large at the beginning, the described 

construction approach can also be applied repeatedly by using some generated 

primes as factors of a larger F, thereby constructing larger and larger primes 

[83]. However, one major problem with this approach is that it is difficult to 

control the diversity of reachable primes and that this might endanger the 

security of a cryptosystem. For instance, factoring the product of two such 

primes could be significantly easier than solving a general instance of the 

factoring problem. Moreover, the algorithm of [83] is less efficient than our 

algorithm. 

The goal of our algorithm, although it is based on the above construction, is 

that the primes be selected randomly with reasonably uniform distribution from 

the set of primes in a given interval. This goal is achieved by generating 

sufficiently many of the largest prime factors ql, q2,-.- of (n - 1)/2 (only one 
or two are needed in most cases), each of appropriate size as described below. 
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These prime factors are generated by recursive application of the algorithm. 

Depending on whether Lemma 1 or I_emma 2 is used for the primality proof of 
3 

n, the factored part of n - 1 must exceed ~ or ~/-n-, respectively. 

In order to assure that the generated prime n is chosen (almost) at random 

despite the fact that n - 1 is constructed in part from known prime factors, the 

sizes of these prime factors must be chosen according to the appropriate 

probability distributions. The distributions of the sizes of the largest prime 

factors of a randomly selected large integer a has been investigated in [44]. For 

instance, the probability that the relative size 2 of the largest prime factor is at 
1 most a is for ~ _< a < 1 given by 1 + log a (see Appendix 1). 3 For example, the 

probability that the largest prime factor of an integer is smaller than its square 

root is 1 + log(1) = 1 - log 2 = 0.307, and the probability that the length of the 

largest prime factor exceeds 95% of the length of the integer is only -1og0.95 

= 0.051. 

The distributions of the sizes of the prime factors of a large random integer as 

well as a simple algorithm due to Bach [6] for sampling according to these 

distributions are discussed in Appendix 1. Note that one would actually have to 

use  the conditional distribution of the relative sizes of the prime factors of an 

integer x, given that 2x + 1 is prime. However, strong heuristic arguments for 

showing that this condition does not change the asymptotic distribution are 

given in [56]. Further results supporting the idea that when p is prime, the 

factorization pattern of p - 1 does not differ greatly from that of a "random" 

number can be found in [10], [31], [33], [34], [40], [41], [46], [72], [74], and [89]. 

3.2. Description of Procedure RandomPrime 

A listing of PROCEDURE RandomPrime is shown in Fig. 1. It is intended to 

serve as a guideline rather than a blueprint for an implementation, and some 

additional hints for an actual implementation are given below and in Section 3.3. 

A simplified and easy-to-implement version of the algorithm for which the 

diversity of the generated primes is somewhat reduced is described in Section 

3.4. 

We use a Pascal-like notation, where keywords are in capital letters. The 

same variable and constant names are used somewhat differently in the text and 

in the listing, but we believe that this should cause no confusion. Names with 

subscripts in the text are used in the listing by incorporating the subscript into 

1 Of course, it is impossible to generate random integers with uniform distribution. This imprecise 

wording should here and below be understood as meaning to choose an integer at random from the 

interval [1, N], or [cN, N] for some c < 1, where N goes to infinity. 

We define the relative size of  an integer a with respect to an integer b as log a / l o g  b which is 

independent of  the base to which the logarithms are computed. For instance, the square root of  an 

integer has relative size �89 

3 Throughout the paper, log denotes the natural logarithm (base e) unless a different base is 

specified. 
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PROCEDURE RandomPrime(Pl,P2: Longln t ;  VAR p: Longln t ) ;  

CONST c _ i n t  = 1.2;  rmax = tO; P0 = 10000000; 

TYPE 

VAR 

FUNCTION 

FUNCTION 

FUNCTION 

FUNCTION 

FUNCTION 

FUNCTION 

PROCEDURE 

FUNCTION 

PFac to rL i s t  = ARRAY [1. . rmax]  OF LongInt;  

E e l S i z e L i s t  =ARRAY [ l . . r m a x ]  OF REAL; 

a , n , P , Q , F , I t , 1 2 :  Longln t ;  

i , g , r :  INTEGER; success :  BOOLEAN; 

e l :  R o l S i z o L i s t ;  p f l :  P F a c t o r L i s t ;  

S q r t ( a :  Longln t ) :  Longln t ;  

Exponen t i a t e (a :  Longln t ;  e :  REAL): LongInt ;  

Random(a,b: LongIn t ) :  Longln t ;  

Pr imeTes t (a :  LongIn t ) :  BOOLEAN; 

T r i a l D i v i s i o n ( a , b :  LongIn t ) :  BOOLEAN; 

g_opt (a :  LongInt ) :  LongInt ;  

G e n e r a t e S i z e L i s t ( V A R r s l :  R e l S i z e L i s t ;  VAR r :  INTEGER); 

CheckLeJmal(u,v:  LongInt ;  L: PFac to rL i s t ;  r :  INTEGER): BOOLEAN; 

BEGIN 

IF P2 <= PO THEN BEGIN 

REPEAT 

n := Random(Pl,P2); 

UNTIL Pr imeTest(n)  ; 

p := n; END; 

ELSE BEGIN 

Generat  e S i z e L i s t  ( e l ,  r )  ; 

P := S q r t ( ( P t - t ) * ( P 2 - 1 ) )  DIV 2; 

F := 1; g := g_opt (P) ;  

FOR i := 1 TO r DO BEGIN 

Q :-- E x p o n e n t i a t e ( P , s l [ i ] )  ; 

RandomPrime (Q/c_ in t ,  q*c_$nt , p f l  [ i ]  ) ; 

F := F * p f l [ i ]  ; 

END; 

I I  := (PX-I) DIV (2*F); I2 := (P2-I )  DIV (2*F); 

success  := FALSE; 

WHILE NOT(succsss) DO BEGIN 

n := 2 * R a n d o a ( I I , I 2 )  * F + 1;  

a := Random(2,P); 

IF T r i a l D i v i s i o n ( n , g )  THEN success  := C h e c k L e - - - a t ( n , a , p f l , r ) ;  

END; 

p := n; 

END; 

END. 

Fig. 1. Sketch of a listing of procedure RandomPrime in a Pascal-like notation. The function and 

procedure implementations are discussed in the text. 
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the name (e.g., P1 in the text corresponds to Pl in Fig. 1). The functions Sqrt, 

Exponentiate, Random, PrimeTest, TrialDivision, g_opt and CheckLemmal 

and procedure GenerateSizeList are described in the following. The listing of 
Fig. 1 shows only the function and procedure declarations, without implementa- 
tions. 

A variable of the type Longlnt can represent integers of the size needed in a 

cryptographic context (e.g., up to 1024 bits). Such a type is often implemented (if 

no special-purpose hardware is available) by an array of integers whose first 

component contains the number d of active (nonzero) array components and 

whose first d components represent the integer in some fixed base (e.g., base 

216). m set of procedures implementing the basic arithmetic operations for 

integers of the type Longlnt are assumed to be available, but the calls to these 

procedures are not shown explicitly in Fig. 1. Instead, the usual notation for 

integer operations ( + ,  - ,  *, DIV) is used. Moreover, for the sake of simplicity, 

we allow numbers of the types INTEGER and Longlnt to be multiplied and 

divided by REAL numbers. 

FUNCTION Sqrt(a: Longln0: Longlnt returns the square root of a (this is 

equivalent to a in the function declaration), rounded to the nearest integer or, 

in a more efficient implementation, some integer approximation of the square 

root of a depending only on the most significant bits and the length of a. 

FUNCTION Exponentiate(a: Longlnt; e: REAL): Longlnt returns the largest 

integer not greater than a e, o r  a good approximation of this number. FUNC- 

TION Random(a,b: Longlnt): Longlnt selects an integer at random from the 

interval [a, b] with uniform distribution. 

FUNCTION PrimeTest(a: Longlnt): BOOLEAN returns the value TRUE if and 

only if a is a prime. It must be efficient only for relatively small integers and 

can, for instance, be implemented as trial division up to the square root of the 

tested number. This procedure is needed to end the recursion in the procedure 

RandomPdme when the primes to be generated are sufficiently small. 

FUNCTION TrialDivision(a,b: Longlnt): BOOLEAN returns the value TRUE if 

and only if a is not divisible by a prime smaller or equal to b. This procedure 

requires a list of small primes, e.g., the primes smaller than 216 = 65536. 

FUNCTION g_opt(a:  Longlnt): Longlnt returns the optimal trial division 

bound (see Section 4) which minimizes the total time for detecting the compos- 

iteness of an integer. This bound depends both on the size of the integer to be 

tested as well as on the particular implementation of long-integer arithmetic. 

PROCEDURE GenerateSizeList(VAR rsl: RolSizeList; VAR r: INTEGER) gen- 
erates an ordered list of relative sizes of prime factors of an integer according to 

the procedure described in Appendix 1, where the number of prime factors is 

returned in the variable r. Typically, the list consists of one to three elements 

consists of one or two elements. Examples of such lists are [0.68], [0.42, 0.35], 

and [0.32,0.14,0.09]. Without the modifications discussed in Section 3.3, the 

probability that the list consists of only one element (i.e., r = 1) is log 2 = 0.693. 

The probabilities that r = 2, r = 3, r = 4, and r = 5 are approximately 25.8%, 

4.4%, 0.45%, and 0.035%, respectively. 
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FUNCTION CheckLemmal(n,a: Longlnt, L: PFactorList; r: INTEGER): 
BOOLEAN takes as input two integers n and a and a list L = [ql . . . .  , qr] of 

prime factors of n - 1, where the length of the list is given by the parameter r. 

It returns the value TRUE if and only if the two conditions of Lemma 1 are 

satisfied, which proves that n is prime. When r = 1 (i.e., L = [q l ] ) ,  the consecu- 

tive computation of a (n - l ) /q~  and a"-1 corresponds to only one full modular 

exponentiation. When r > 1 and n is prime, then procedure CheckLemmal  

requires slightly more than a full modular exponentiation for proving the 

primality of n. We refer to Section 4 for a running time analysis of procedure 

CheckLemmal. 
For given P1 and P2, PROCEDURE RandomPrime(P1,P2: Longlnt; VAR p: 

Longlnt) generates and returns a prime number p in the interval [P1, P2]  (for 

example, the interval [2511,2512 - 1] of 512-bit integers). When P2 is smaller 

than a given constant P0 (e.g., P0 = 107),  then the prifiae p can be generated by 

selecting integers at random from [P1, P2] until a prime is found, which is 

checked by using the function PrirneTest (i.e., for instance by trial division up to 

its square root). This part of procedure RandomPrime is needed to end the 

recursion described below. 

When P2 > P0, the construction approach described in Section 3.1 is used. 

Let P = gt(Pl - 1)(P 2 - 1) /2  be the (approximate) geometric midpoint of the 

interval [(P1 - 1)/2,(P2 - 1)/2]. The number of primes in F is equal to the 

parameter r returned by procedure GenerateSizeList, and the relative sizes 

sl . . . . .  s, of ql . . . . .  qr are chosen according to the list of relative sizes returned 

by procedure GenerateSizeList in the variable s l .  For each of these primes qi 

with relative size s i = sl  [i], the actual approximate size Q = ps, is computed by 

the statement Q:= Exponentiate(P,sl[i]). Here Q is taken as the geometric 

midpoint of an integral [Q/cint, Q. cint] where ci , t  > 1 is a small constant (e.g., 

Cin t = 1.2). Then a prime is selected (approximately) at random from this 

interval by recursive application of procedure RandomPrime. 

After F = I-I~=lq; is generated, integers R are chosen at random with 

uniform distribution from the interval [11,/2], where 11 = (P~ - 1 ) / (2F)  and 

12 = (P2 - 1) / (2F) ,  until n = 2RF + 1 is prime. Candidates n are tested first 

by trial division up to a bound determined by procedure g _ o p t  and then by 

procedure CheckLemmal  which checks whether the conditions of Lemma 1 for 

primality of n are satisfied. 

3.3. Implementat ion  Issues and Further C o m m e n t s  

The described implementation of RandomPrime assumes that the spread P2/P1 
of the interval [P1, '~ is reasonably small (e.g., less than 2). If a prime should be 

selected uniformly from a larger interval, it is advisable to cut the interval into 

subintervals of reasonable spread, to select one of the intervals at random 

according to the corresponding probability distribution, and to use procedure 

RandomPrime to generate a prime in the selected interval. 

A problem with procedure RandomPrime as described above is that when the 

relative size 1 - E r,= lSi of R is too small, then the interval [11,/2] may be too 
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small to contain an R for which 2RF + 1 is prime. An endless execution of the 

WHILE loop can be prevented, for example, by restricting the number of 

iterations. Furthermore, it must be avoided with high probability that the 

interval [I1, 12] contains no prime factor because in this case F (or at least the 

smallest prime factor of F)  would have to be regenerated. Allowing F to be 

rejected with nonnegligible probability would increase the running time of the 

algorithm significantly, in particular because the rejection could happen at 

several levels of the recursion. We therefore recommend two modification to 

procedure RandomPrime which are not described in Fig. 1. 

1. The output of procedure GeneratoSizeList should only be accepted if the 

sum of the relative sizes, 1 - ET=lsi, is less than a given bound. We 

suggest using the bound 1 - C1/(log2P + C2) for C 1 = 10 and C 2 = 50. 
This modification reduces the diversity of reachable primes slightly; how- 

ever, this can be tolerated in applications. In particular, primes p for which 

(p  - 1)/2 is the product of a small R and a prime or the product of a 

small R and two primes of similar size, cannot be reached. These unreach- 

able primes include the primes often referred to as safe primes, an 

attribute not justified sufficiently in the author's opinion because no 

indications exist that these primes lead to the most diffficult factoring 

instances. It is even conceivable, though not likely, that the so-called safe 

primes form a small class of primes that are actually insecure. Discarding 

these special primes distorts the uniformity of the distribution slightly, but 

has essentially no influence on the security of a cryptographic scheme. 

2. It is further recommended letting the interval constant ci, t depend on P2, 

increasing when P2 decreases, to ensure that the spread of the intervals 

passed to procedure RandomPrime is always sufficiently large to guarantee 

that, for the largest possible value 1 -  C1/(log2P + C2) for the sum 
r S 1 - Ei= 1 i of relative sizes (as described above), the expected number of 

R's resulting in a prime 2RF + 1 is sufficiently large. We suggest the 

choice Cin t = 1 + Ca/(log2Q + C4) for C 3 --- 20 and C 4 -- 10. 

Several ways to speed up procedure RandomPrimo by allowing slight further 

deviations from the uniform distribution are described in Section 4.4. Finally, it 

should be mentioned that the efficiency of the code of Fig. 1 can of course be 

improved in several ways (known to a good programmer and depending on the 

available processor and memory size) at the expense of possibly making it more 

complicated. 

3.4. A Simplified Version of the Algorithm 

The above description of the algorithm for generating primes appears to be 

quite complicated. The reason is that we have paid much attention to the 

probability distribution of the generated primes. In a practical implementation 
one might not care very much about details of the distribution as long as it is 
reasonably close to uniform and the diversity of primes is sufficiently large. In 

this section we describe a simplified, easy-to-implement version of the algorithm 
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for generating k-bit primes. For the sake of simplicity procedure FastPrime in 

Fig. 2 is (like Fig. 1) syntactically not completely correct (for instance, integer 

numbers are multiplied by real numbers). 
The functions Random, TrialDivision, and PrimeTest are identical to those 

described in Section 3.2. The function Power2 computes powers of 2. The trial 

division bound g is set equal to some constant c_op t  times k 2, where the 
optimal value for c_op t  can be determined experimentally. 

The major simplification in procedure FastPrime compared with procedure 

RandomPrime is the fact that F consists of only one prime factor q, which is 

PROCEDURE FastPrimsCk: INTEGER; VAR p: Longln t ) ;  

CONST c_opt = 0 .1 ;  PO = 10000000; margin - 20; 

VAR a , n , q , I , R :  LongInt ;  

i , g :  INTEGER; 

s u c c e s s :  BOOLEAN; 

r e l a t i v e _ s i z e :  REAL; 

FUNCTION 

FUNCTION 

FUNCTION 

FUNCTION 

FUNCTION 

FUNCTION 

Power2(k: INTEGER) : Longlnt ;  

Random(a,b: Longlnt)  : Longlnt ;  

P r imeTes t (a :  Long ln t ) :  BOOLEAN; 

T r i a l D i v i s i o n ( a , b :  Longln t ) :  BOOLEAN; 

G e n e r a t e R e l a t i v e S i z e O  : P.FAL; 

ChsckLemmal(n,a,q: Long ln t ) :  BOOLEAN; 

B E G I N  

IF P2 <= PO THEN BEGIN 

REPEAT n : -  RandomCPower2(k-1) ,Power2(k)- l )  UNTIL Pr imeTest(n)  ; 

p := n; END; 

ELSE BEGIN 

g := c_opt  * k * k; 

REPEAT 

r e l a t i v e _ s i z e  :=  G e n e r a t e R e l a t i v e S i z e O  

UNTIL k * r e l a t i v e _ s i z e  �9 k - margin;  

F a s t P r ~ e ( T R U N C ( r e l a t i v e _ s i z e  * k) ,q) ; 

END; 

s u c c e s s  := FALSE; I := Poeer2(k-1)  OIV q; 

m I L E  NOT(success) DO BEGIN 

B :=  Random(I ,2*I) ;  

n := 2 * Random(I,2*I) * q § 1; 

a := P~mdom(2,n-1); 

IF T r i a l D i v i s i o n ( n , g )  THEN success  := C h e c k L e ~ m l ( n , a , q ) ;  

END; 

p : = n ;  

END; 

END. 

Fig. 2. Sketch of the listing of the procedure FastPrime for generating a k-bit prime p, which is a 
simptified version of the procedure RandomPrime. 



136 U .M.  Maurer 

greater than the square root of the generated prime. The data types PFaetorList 

and RolSizeList are therefore no longer needed. Procedure CheekLommal is 

simplified accordingly: it checks whether the conditions of Lemma 1 are satis- 

fied, for r = 1 and F = q. The function GenoratoRolativoSizo selects a relative 

size from the interval [0.5, 1] according to the conditional probability distribution 

of the relative size x of the largest prime factor of a large random integer, given 
1 

that it is at least 7. The cumulative distribution is (1 + log2x) for 0.5 _< x < 1, 

ranging from 0 to 1 in this interval. The probability density is hence 1/(x log 2). 

A precompiled table of this distribution can be used in an implementation. 

The constant margin determines the minimal number of bits of the integer R. 

The interval from which R is selected should be sufficiently large to ensure that 

it contains at least some successful R's (see also Section 3.3). 

For one level of the recursion the above modifications reduce the diversity of 

the generated prime only by 30%-40%. When accumulated over the several 

levels of recursion needed to generate a prime, the total diversity of reachable 

primes is on the order of roughly 10% of all primes. 

4. Running Time Analysis for Generating Probable Versus 

Provable Primes 

4.1. Efficient Generation of Pseudoprimes and the Optimal 
Trial-Division Bound 

Consider the problem of randomly selecting a k-bit strong pseudoprime for one 

base, i.e., a k-bit integer n that passes the Miller-Rabin test for some base b. 

Before being used in a cryptographic application such an integer n would be 

tested for several other bases in order to achieve a sufficient level of confidence 

in the primality of n. In a reasonable implementation, a selected odd candidate 

n is tested for small prime divisors below a certain bound g before the first 

Miller-Rabin test involving a computationally expensive full modular exponenti- 

ation is invoked. This can be done either by sequentially dividing by 

3, 5, 7, 11, 13 . . . .  up to the greatest prime < g or by computing greatest com- 

mon divisors of n and certain products of several of the small primes. This 

defines an optimization problem for g: when too few small primes are tested, 

then an exponentiation is required ~n too many cases, but when too many small 

primes are tested, then the trial division step dominates the expected running 
time. 

Let gopt be the trial division bound that minimizes the expected running time 
for generating a pseudoprime. Of course, gopt depends on the size of the 

integers and on the particular implementation of long-integer arithmetic. How- 

ever, it can be shown that, almost independently of the implementation, for all 

sufficiently large k (including the cases of interest in cryptography), gopt(k) = 
texp(k)//tdiv(k) w h e r e  texp(k) and tdiv(k) a r e  the times required for a full k-bit 
modular exponentiation and for ruling out one small prime as divisor of a k-bit 

integer, respectively. All the running times analyzed in this section are functions 
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of the number k of bits of the integers, but for ease of notation the variable k 

vs often omitted. 
Let zr(x) denote the number of primes less than or equal to x. It is well 

known that the density of primes among the integers on the order of x is 

approximately 1/log x and that 7r (x)~ x / log  x. The probability that a ran- 

domly selected odd k-bit integer is prime is thus approximately 2 / ( k  log 2) = 

2.89/k. 
Let Y be a positive integer-valued random variable. The expected value of Y 

is defined by E[Y] = Ey= lY" P[Y  = Y] and it is easy to verify that 

or  

E[Y]  = ~_, P [ Y  >_ y]. (6) 
y = l  

A random odd integer has no prime factor smaller than or equal to g with 

probability 

3<p<_g 

where here and in the following the variable p indicates that the product (or 

summation) is only over primes in the specified range. The term d(g)  is very 

well approximated by 

2e-V 

d ( g )  = log g 

where y = 0.5772 is Euler's constant [77] giving 2e -~ = 1.123. 

When a random odd integer is tested for compositeness by dividing it by all 

primes less than or equal to g, starting with 3, then the expected number of 

divisions that must be performed is, according to (6), given by 

g 
e (g )  ~= 1 + Y'~ d ( p )  = a ( g ) l o g Z g  

3<p<g 

where o~(g) is defined by the above equation and depends only slightly on g; it 

ranges from 1.87 to 1.40 when g ranges from 100 to 10 6. 
A random composite integer n that fails to be detected by trial division by 

primes < g is detected with overwhelming probability by the first Miller-Rabin 

test which requires one full exponentiation. The expected time required for 

detecting the compositeness of an odd integer is hence 

E[tc] = e(g)tdi v + d(g)tex p �9 (7) 

On the other hand, when the selected integer is prime, the time required to 

establish it as a pseudoprime (for one base) is 

tp = (zr(g) - 1)tai . + tex p . ( 8 )  
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When a sequence of independent random experiments is performed, where each 

experiment has a success probability p, then the expected number of trials 

required for one success is 1/p. Hence the expected number of composite 

integers that need to be tested and discarded before a prime is found is well 

approximated by k .  log 2 /2  = 0.347k. The total expected time for finding a 

pseudoprime is thus 

E[tpp] ~ ( l - ~ )  "k'E[tc] + tp. (9) 

In the following we determine which choice for the parameter g minimizes 

E[tpp]. The time tp depends only slightly on g and, furthermore, tp is negligible 

in (9) for large k. Hence we can almost equivalently determine gopt minimizing 

E[t c ] given in (7). Assume that the parameter g is increased to include the next 

larger prime q > g. When the integer n to be tested contains a prime _< g, this 

modification has no effect on the running time. In what follows we therefore 

only consider the case where n contains no prime < g. Thus one extra division 

by the additional prime needs to be performed. The probability that an expo- 

nentiation can be saved is equal to the probability that a number is divisible by 

the extra prime, which is 1/q ~ 1/g. The expected running time is minimized 

when the increase and decrease in expected running time are in balance, i.e., 

when taw = (l/g)tex p . Hence we have 

texp 

g o p t -  td iv"  (10) 

For this choice we can now express the expected running time E[t c] as a 

function of only tex p " 

E[t c] = - -  + d(g) tex p ~- -~ tex p 
g I log g ~ ' 

where g = gopt = texp//tdiv �9 For reasonably large k we thus have 

( 2 e  -~ o e ( g ( k ) ) ) l o g 2  

E[tpp(k)] ~ log g(k)  -~ log 2 g(k)  T Ktexp(k) 

( 0.55 ) k 
= 0.39 + log g(k) log g(k)  texp(k)' (11) 

where g(k )=  gopt(k)= texp(k)/tdiv(k). We have assumed a(g(k) )= 1.6 and 
have neglected tp(k). 

Let us find realistic figures f o r  E[tpp] for integers of 100 and 200 decimal 
digits, i.e., for k = 332 and k = 664, respectively. For the somewhat arbitrary 

but realistic values gopt(332) = 1000 and gopt(664) = 4000 we obtain 
E[tpp(332)] = 22.5" texp(332) and E[tpp(664)] ~- 36.5" texp(664). Note that the 
r a t i o  E[tpp]/lex p increases when a better implementation of exponentiation is 
used (for instance when exponentiation is performed on special-purpose hard- 

ware). 
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4.2. Analysis o f  Procedure CheckLemmal  

Procedure CheekLemmal  takes the list L = [ q l , . . . ,  qr]  of prime factors of 

n -- 1 as a parameter,  where the sizes s~ . . . . .  s r of ql . . . .  , qr relative to n - 1 

are generated by procedure GenerateSizeList  as described in Section 3.2 and 

Appendix 1. When n is composite, CheckLemmal  performs, with overwhelming 

probability, a computation corresponding to only one full exponentiation. Only 

when n is prime and r > 1 does the computation for proving this fact require 

some additional steps. 

Verification of the conditions of Lemma 1 requires the computation of 

a (n -1) /q~  for i = 1 . . . .  , r as well as a ("-1). We have Sl > 0.5 with probability 

log2 = 70%, in which case the list contains only one prime factor ql and the 

consecutive computation of a (n- 1)/q, and a r 1) corresponds to one full modu- 

lar exponentiation. When r = 2, i.e., s z < s 1 < 0.5 but s2 > 1 - s 1 - s2 (which 

happens with probability --- 25.8%), then the conditions of Lemma 1 can be 

checked by computing consecutively A = a (n- 1)/qlq2, B ~-- A ql = a ( n -  1)/q2, C = 

Bq2 = ar 17, and D = A q2 = a ( n -  1)/ql, where computing the first three terms is 

equivalent to one full exponentiation and where computing the last term 

corresponds to s 2 times a full exponentiation. For  the general case r > 2 it is 

straightforward to arrange the computation of a (n-1) /q~  for i = 1 , . . . , r  and 

a ("-1) as a sequence of steps corresponding to 1 + ]~r=2( i  --  1)si times a full 

modular exponentiation. Careful analysis shows that when n is prime, the 

procedure CheckLemmal  requires an expected number E[1 + T.~=2(i - 1)s~] 

< 1.17 full modular exponentiations. 

4.3. Running Time Analysis for Procedure RandomPrime 

We now consider the expected running time E[tRe(k)] of procedure Random- 

Prime described in the previous section. E[tRe(k)] is the sum of the expected 

time for generating the integer F = 1-I~= lqi and the expected time for generat- 

ing a prime p = 2RF + 1 by random choices of R. The second step is computa- 

tionally virtually equivalent to the generation of a pseudoprime with a negligible 

additional expected 0.17 full exponentiations (see Section 4.2) required for the 

primality proof. 

Hence the expected time for finding a suitable R is almost exactly equal to 

E[tpp(k)]. Under  the simplifying but for this analysis admissible assumption that 

at each level of the recursion of RandomPrime,  F consists of a single prime 

factor of relative size 8, E[tRe(k)] can be approximated by 

E[tRe(k)]  = E[ tne (Sk ) ]  + E[tpp(k)] 

e r  

-~ E E [ t p p ( S i k ) ]  
i = 0  

1 

1 - 8  3"585 E[ tpp tk) l  , , ,  
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where the term 1/(1 - 6 3"585) is obtained for the Karatsuba-Ofman implemen- 

tation of long-integer arithmetic (see Section 4.5) w i t h  E [ t p p ( k ) ]  = 

O( k 3"585 /log k), neglecting the 1/log k factor. The average of ct 3585, where a is 

distributed according to Fl(x) (see Appendix 1), is approximately 0.26. When 
8 3.585 in the above expression is replaced by the average of a 3"585, i.e., by 0.26, 

we obtain 

E[tRe(k)] ~ 1.35.E[tpp(k)].  

Simulations have suggested that this approximation is quite accurate [25], [86], 

i.e., that the expected running time of RandomPrime is less than 40% greater 

than the time required for generating a pseudoprime. For a straightforward (as 
opposed to Karatsuba-Ofman) implementation of long-integer arithmetic, the 
factor is smaller than 1.4. 

Of course, the above running time analysis assumes that all the procedures 
within RandomPrime are implemented efficiently. 

4.4. Speeding up Procedure RandomPrime 

Procedure RandomPrime can be sped up in various ways. In order to speed up 

the trial divisions when F is generated and candidates 2RF + 1 are tested for 

several R, the remainders of F modulo the small primes can be stored such 

that, for every choice of R, only the remainders of R (rather than of n) modulo 
the small primes need to be computed. However, because most of the time is 

consumed by the exponentiations and not by the trial divisions, the achievable 
improvement is limited. 

The uniform distribution is usually not of crucial importance and therefore 

the following modifications can speed up procedure [qandomPrimo. These 
modifications do not seem to endanger the security of a system, but it should be 

pointed out that because the primes are generated recursively, deviations from 
the uniform distribution are amplified at each level of the recursion. 

1. A significant speedup can be achieved by using Lemma 2 for the primality 

proof (instead of Lemma 1), which requires only that the factored part F 

of. p - 1 be greater than ~'p-. In particular, when the relative size s 1 of ql 

is, for instance, restricted to being in the range [1, �89 then E[tRe(k)] is 
only about 5% greater than E[tpp(k)]. 

2. It was pointed out by Mihailescu [61] that instead of generating R's at 
random until 2RF + 1 is prime, it is somewhat more efficient to search for 
the prime in an appropriate interval of the arithmetic progression 1, 2F + 
1,4F + 1 . . . . .  Note, however, that searching primes in an arithmetic 
progression has the effect that the probability that a certain prime is 
selected is proportional to the length of the interval of composite numbers 
preceding it in the progression, and that these intervals can vary signifi- 
cantly in length. It appears reasonable in applications to tolerate the 
resulting distortion of the uniform distribution. 
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4.5. Asymptotic Running Time Analysis 

We now investigate the asymptotic running time of our algorithm. Let M(k,  1) 

denote the time required for multiplying a k-bit integer with an/-bit  integer. A 

straightforward implementation of integer multiplication has running time 
M(k,  1) = O(kl). In contrast, a sophisticated but not practical algorithm due to 

Sch/Snhage and Strassen [81] (see also pp. 270-274 of [3]) has an asymptotic 

running time M(k,  k) = O ( k .  log k.  log log k) for multiplying two k-bit inte- 
gers. This is only slightly better than for FFT-based methods which, in contrast 
to the Sch6nhage-Strassen algorithm, are practical. However, in practical imple- 

mentations for cryptographic purposes where the numbers have at most a few 

hundred decimal digits, it is preferable to use the asymptotically slower recursive 

algorithm of Karatsuba and Ofman (see pp. 62-64 of [3]) which multiplies two 
k-bit integers in time O(kL585). 

Modular reduction can be implemented by a multiplication with the inverse of 

the modulus rounded to sufficient precision. Hence, based on the asymptotically 

fastest algorithm, we have 

t exp ( k ) = O( k . M(  k,  k ) ) = O( k 2. log k.  loglog k). 

We further have tdiv(k)= O ( k .  log(g(k))) which for the choice g ( k ) =  

O(k  log log k) is tail(k) = O(k  log k). Using (7) and (9) we thus obtain 

E[tpp(k)] = O ( k  3 loglog k), 

whereas for an implementation based on the Karatsuba-Ofman algorithm we 

obtain 

E[tpp(k)] = O(  l~gk  

A straightforward implementation of integer arithmetic would result in 
E[tep(k)] = O(k4 / logk ) .  We refer to [8] and [11] for further analyses of 

prime-generation algorithms. 

5. Security Constraints for Public-Key Cryptographic Parameters 

The security of many cryptographic systems is based on the conjectured diffi- 

culty of solving a certain number-theoretic problem. For each of these problems 
some special-purpose algorithms exist that can efficiently solve certain special 
instances. It depends on the density of such special instances and on the security 
policy whether it is necessary to guarantee, by an appropriate design of the 
system parameters, that a certain special-purpose algorithm is infeasible, or 
whether it is sufficiently secure to choose the parameters at random, relying on 
the probability of picking a bad set of parameters being very small. 
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Choosing system parameters to create the most difficult instance for some 
special-purpose algorithm has often been proposed. For example, it is suggested 

in [78] choosing primes p for the RSA system of the form 2ap' + 1 with 

p' = 2bp" + 1 where p '  and p" are also primes and a and b are very small 
integers (e.g., a = b = 1), or it is suggested choosing primes p such that p + 1 

contains a very large prime factor [37], [67]. However, it is conceivable (though 

not likely) that special-purpose algorithms exist for efficiently solving instances 
in such a severely restricted parameter space, while the general problem may 

still be computationally intractable. Therefore, it is important to balance reason- 

ably between the diversity of the parameters and the feasibility of all the known 

special-purpose algorithms for solving the problem on which a system's security 
is resting. 

Systems based on discrete logarithms and on factoring are discussed in 

Sections 5.1 and 5.2, respectively. The iterated encryption attack on the RSA 
system is analyzed in Appendix 2 and this analysis implies that the iterated 

encryption attack can easily be thwarted by a simple modification in procedure 
RandomPrimo (see Section 5.2). Choosing both primes in the RSA system of the 

same length in bits is often suggested. In Section 5.3 and in Appendix 3 we 

investigate the implications of such a restriction by analyzing the distribution of 
the relative size of the smaller prime in a random RSA modulus, given a security 

bound on the size of the primes. 

5.1. Systems Based on Discrete Logarithms Modulo p 

The security of many cryptographic systems and protocols is based on the 

difficulty of the discrete logarithm problem in a finite group. Most proposals are 
based on the multiplicative group of GF(p) or a subgroup thereof, i.e., on 

computations modulo a large publicly known prime p (e.g., [15], [28], [30], [39], 
[80], and [90]). The fastest known general algorithm for computing discrete 

logarithms modulo p is based on the number-field sieve and has asymptotic 
. . 1 / 3  2 / 3  c(log p) (log log p) ) running time O(e ) for some small constant c. At present the 

fastest implementations of discrete logarithm algorithms (see [21]) have larger 
1 2 asymptotic running times (both exponents 3 and 3 in the above formula must be 

replaced by �89 Computing discrete logarithms modulo a prime seems at present 
to be infeasible for primes of more than 120 digits. We refer to [59] and [51] for 

a discussion of discrete logarithm algorithms and to [57] for treatment of the 
question whether breaking the Diffie-Hellman protocol is equivalent to comput- 
ing discrete logarithms in the underlying group. 

The fastest generic discrete logarithm algorithms applicable for any finite 
group have running times on the order of the square root of the group order. 
Other groups than those discussed above, most prominently elliptic curves [60], 
have been proposed for use in cryptography. Many of these groups generally 
have the advantage that no discrete logarithm algorithm is known that is faster 
than the best generic algorithm. 

The running time of the algorithm of Pohlig and Hellman [70] is on the order 
of the square root of the largest prime factor of p - 1 and hence it is a 
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necessary condition for security that p - 1 contains at least one sufficiently 

large prime factor ql .  The probability that a randomly selected integer has no 

prime factor greater than its sixth, eighth, or tenth root is FI(~) -- 1.96- 10 -5, 

FI(~) = 3 .23 .10  -8, or Fl(~0) = 2.8- 10-11, respectively (see [44]). A heuristic 

justification is given in [56] for the conjecture that integers of the form 

( p  - 1)/2,  where p is a prime, have the same distribution of the sizes of prime 

factors as random integers. Note that, for instance, with probability 3 . 1 0  -8, the 

largest prime factor of  a 512-bit prime, reduced by 1, has at most 64 bits and 

that the Pohlig-Hellman algorithm appears to be feasible in this case. 

While it is not necessary that p - 1 contains an extremely large prime factor, 

it appears nevertheless advisable for systems based on the discrete logarithm in 

Z* to choose p of  the form p = 2Rq + 1 where the relative size of q is at least 
1 p 
3, or even higher (e.g., 0.9). Choosing R = 1 is often suggested. This choice 

creates the most difficult instances for the Pohlig-Hellman algorithm, but 

may on the other hand be vulnerable against another (yet undiscovered) special- 

purpose discrete-logarithm algorithm. Note that for q of size as small as 

log q = O((log p)C) for c > 1, the number-field sieve is faster than the Pohlig- 
Hellman algorithm. 

We do not recommend choosing q as small as indicated above and we do not 

seriously object against using primes of the form p - 2q + 1. However, there 

are arguments suggesting choosing R > 1, for example, having 10-20 or more 

decimal digits, or even choosing p of the form 2Rqlq2 + 1 for two sufficiently 

large primes ql and q2 that are kept secret such that factoring the group order 

is difficult. While for a fixed choice of R (e.g., R = 1) an expected number 

(log p)/2 of primes q must be generated until 2Rq + 1 is prime, allowing R to 

be picked from a certain interval has the further advantage that only one prime 

q must be generated because R can be varied until 2Rq + 1 is a prime. 

In discrete-logarithm-based systems it is usually recommended choosing as 

the base b a generator of the group. However, for the multiplicative group 

modulo p with small R and F = ql ,  it is almost equivalent from a security point 

of  view [70] to require only that q divides ordp(b). The algorithm of Section 3 

for generating primes can easily be adapted to generate a prime with nearly 

uniform distribution over the set of primes p in a given interval for which p - 1 

has a prime factor q of at least a certain specified size. The base a used in 

Lemma 1 for proving the primality of p satisfies qlordp(a) and can thus be used 

as the base in discrete-logarithm-based systems. Furthermore, when R is small 

and hence its factorization is easily obtained, the base a can be proved to be 

primitive (if it is) by checking that in addition to the conditions of Lemma 1, for 
every prime factor s of R, 

a~n-x)/s ~ 0 (mod p) .  

These additional checks can be performed very efficiently. According to Lemma 

3, a random a is primitive with probability ~p(p - 1 ) / ( p  - 1) which is close to 

1 /2  when R contains no very small prime factors, and slightly smaller if it does. 
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It is straightforward to modify procedure RandomPrime to generate a prime 

and a generator for the group satisfying the constraints for the Schnorr scheme 

[80] or the NIST proposal for a digital signature standard (DSS) [90]. 

5.2. Systems Based on Factoring 

Another collection of systems is based on the difficulty of factoring a composite 

modulus [32], [47], [79], [82]. The largest size of integers of general form that can 

presently be factored using massively parallel computation have on the order of 

130 decimal digits [50]. These factoring records are achieved using variations of 

the quadratic sieve algorithm (e.g., see [53]), but the asymptotically fastest 

factoring algorithm is the number-field sieve described in [52]. We refer to [51] 

and [73] for a discussion of factoring algorithms. 

Many special-purpose factoring algorithms exist. Lenstra's elliptic curve algo- 

rithm [54] is successful in finding "small" factors having (at present) up to 40 

decimal digits [29]. PoUard's algorithm [71] finds factors p for which p - 1 has 

only relatively small prime factors. This algorithm was generalized by Williams 

[87], [88] to primes for which p + 1 has no large prime factor and by Bach and 

Shallit [7] to primes for which any cyclotomic polynomial evaluated at p has 

no large prime factor, i.e., for which either p -  1, p + 1, p2 + p  + 1, 
p4 + p3 + p2 + p + 1, etc., has no large prime factor. 

It is therefore often recommended (e.g., [12] and [37]) generating primes for 

which it is guaranteed that some of these expressions, in particular p - 1 and 

p + 1, each contains at least one large prime factor. However, it should be 

pointed out that in view of the elliptic curve factoring algorithm [54] these 

conditions make little sense. For every fixed choice of elliptic curve parameters 

a and b, it is roughly equally probable that (for instance) p + 1 is smooth with 

respect to a certain bound and that the order of the corresponding elliptic curve 

Ep(a, b) is smooth with respect to the same bound (see also [61]). The fact that 

the order of the elliptic curve cannot be given explicitly as an algebraic 

expression in p has no impact on the validity of this observation. 

However, a nonsmoothness condition on p - 1 is justified for a different 

reason. One way of deciphering ciphertexts in the RSA public-key cryptosystem 

[79] without factoring the modulus is by iterated encryption [84]. In Appendix 2 

a detailed analysis of this attack is given, and Theorem 6 states sufficient 

nonrestrictive conditions on p and q that allow us provably to foil this attack for 
any fixed given public exponent e. These conditions can be satisfied at no extra 
computational cost by a simple modification in procedure RandomPrime. 

Let the primes p~ and q~ be generated at the first level of the recursion and 

the primes p~. and q'i~ at the second level. Note that the conditions on a 

required by Theorem 6 to ensure that decryption by iterated encryption is 

infeasible are satisfied automatically when Fp, . . . . .  Fp, r, Fq, . . . . .  Fq, are pairwise 
relatively prime and when the public encryption exponent e is used as the 
parameter a in procedure CheckLemmal at the second level of the recursion, 

i.e., for proving the primality of the p~) and q~). Hence the conditions of 
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Theorem 6 can be satisfied simply by controlling the choice of the parameter a 

and by avoiding the repeated use of primes. 

5.3. Generating Random Secure RSA Moduli 

Implementing the RSA system with a modulus m = pq for two primes p and q 

with equally many bits (e.g., 512 bits) is usually recommended. For a given size 

of the modulus this choice results in the most difficult instances for the elliptic 

curve factoring algorithm and also makes an implementation more symmetric 

when Chinese remaindering is used for decryption. On the other hand, choosing 

both prime factors of equal length entails a possibly unnecessary, though not 

severe, restriction on the diversity of moduli that can be generated. Although we 

do not strongly recommend choosing primes that differ strongly in size, we 

nevertheless investigate the problem of choosing an RSA modulus m = pq (with 

p < q) at random from the set of integers in a given interval [cN, N] (with 

0 < c < 1) that are the product of two distinct primes and satisfy certain 

security constraints. 

Given the present knowledge of attacks against the RSA system, the following 

appears to be a reasonable set of  security constraints: 

1. p as well as q must be greater than a given bound L = N v for some 3' 

(e.g., 3' > 0.4). 

2. p - 1 and q - 1 must contain distinct large prime factors P'I and q'l, 

respectively, with P'I > L'  and q~ > L'  for a given bound L' = N ~' for 

some 3'' < 3' (e.g., 3'' > 0.3). 

These two conditions with the somewhat arbitrary numbers 0.4 and 0.3 are 

only mildly restrictive and imply that P'I > X/P - 1 and q'l > 1/q - 1 and hence 

that only one prime factor P'I of p - 1 and one prime factor q'l of q - 1 must 

be generated. Moreover, since the factored parts Fp, of P'I and Fq, of q'l are 

greater  than V/~-I - 1 and ~ - 1 ,  respectively, the lower bound 

lcm(Fpq . . . . .  Fo,, Fq, t . . . . .  Fq, s) = lcm(Fp~, Fq,) of Theorem 6 is greater than N 1/4 
when (Fp,, Fq, x~ = 1. 

Theorem 7 states that when m is chosen at random from the set of integers 

[cN, N] (for some fixed c) that are the product of exactly two primes, both 

> N v, then the probability that the smaller prime factor p is greater than N "  is, 
asymptotically, given by 

log(1 - a )  - log a 
1 - ( 1 2 )  

log(1 - 3,) - log 3, ' 

which ranges from 0 to 1 when ot ranges from y to �89 T h e  density of the 
distribution on the interval [y, �89 is thus 

(13) 
a (1  - a)( log(1 - 3,) - log 3,) " 
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It follows from (13), that for 3' > 0.4, the relative size of p is close to uniformly 

distributed over the interval [3", 1], with sizes in the range of 3' being slightly 
1 

more probable than sizes in the range of ~. 

The above conditions can be satisfied by making appropriate use of (12) for 

selecting an interval for the smaller prime p, and by restricting the size of the 

largest prime factors of p - 1 and q - 1. When p is generated, the interval for 

the prime q is [N1/p ,  N2/p] ,  where [N 1, N 2 ] is the specified interval for m. 
Note that selecting p at random from the primes in the interval IN v, N ~/2 ] 

would result in an entirely different distribution. In particular, the size of p 

would with very high probability be very close to 1, which is in sharp contrast to 

the above analysis. 

6. Concluding Remarks 

A fast algorithm for generating prime numbers for cryptographic applications 

has been presented. An important issue in the generation of cryptographic 

parameters is the tradeoff between security constraints that must be placed on 

the parameters of a cryptosystem and the diversity of the parameters, i.e., the 

probability distribution according to which they are selected. We have provided 

a detailed analysis of this tradeoff for the major cryptographic systems based on 

large prime numbers. 
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Appendix 1. On the Relative Size of the Prime Factors of Large Integers 

Let the relative size of an integer a with respect to an integer b be defined as 

log a / log  b, which is independent of the base of the logarithms. Let pi (n)  

denote the ith largest prime factor of the integer n and let o~i(N, x) be the 
number of positive integers less than or equal to N for which the ith largest 

prime factor is at most N x, i.e., let 

toi(N, x) = #{n: 1 < n < N ,  P i (n )  < NX}. 

Knuth and Trabb Pardo [44] showed that 

toi( N ,  x ) 
lim Fi ( x ) , 

N--.~ N 
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where the functions Fi(x) are, for i > 1, defined by the integral equations 

1( ( 1 ) ~  ( 1 ) ) d / ~  -7 
Fi(x) = 1 -  f~ F, - Fi_ , 

with the convention that Fo(x) = 0 for all x and Fi(x) = 1 for x >_ 1, for i _> 1. 
1 

For example, if ~ _< x _< 1 we have t / (1  - t) >_ 1 for all t > x and hence 

dt 
Ft(x)  1 f t  . . . .  1 + log x 

Jx t 

1 
for ~ < x _< 1. It follows, for instance, that the probability that a randomly 

selected large integer 4 has a prime factor greater than its square root is 

1 - Fl(�89 = log2 = 0.693. The functions Fl(x),  FE(X), and F3(x) are tabulated 

in [44]. A few more values of F 1 are FI(�88 = 0.00491, FI(�89 = 0.0486, and 

F1(0.4) = 0.130. The function x ~ Fl(1/x)  is also known as the rho-function 

studied by Dickman [27]. A good algorithm for computing the Dickman rho- 

function is described in [24]. 

Consider the following process, suggested to the author by Eric Bach [5] (see 

also [6]), for generating real-valued random variables sl, s 2 . . . . .  We make use of 

auxiliary random variables ul, u z , . . . .  First, u I is chosen uniformly from the 

interval [0, 1], then u 2 is chosen uniformly from [0, 1 - Ul] , then u 3 is chosen 

uniformly from [0, 1 - u 1 - u2], and so on. The numbers ul, u 2 . . . .  are main- 

tained in a list ordered in decreasing order. The elements of the ordered list are 

the numbers sl, s 2 , . . . .  Although this is a conceptually infinite process, it can be 

stopped after the first r dements  in the ordered list, s l , . . . ,  s r, are known to be 

fixed. After the generation of u l , . . . ,  u d, the values s I . . . .  , sr are fixed as soon 

a s  

d 

Sr > 1--  ]~_, ui, 
i=1  

because this implies that Ud+ 1, Ua+2 . . . .  will be inserted into the list after s~. 

However, we need the somewhat stronger condition 

s~ > 1 -  ~ si (14) 
i=1 

to ensure that R (which is of relative size 1 - E~= ~s~) cannot contain a prime 

factor greater than qr. If it did, the distribution of the relative sizes of the prime 

factors of (n - 1 ) /2  would differ from that of a random integer of the same 

size, which may be undesirable. Condition (14) can result in a larger value for r 

but does not change the distribution of s 1, s z . . . . .  The procedure described for 

generating s 1 . . . .  , s~ satisfying (14) is used in procedure IqanclomPrimo de- 

scribed in Section 3, where it is called GonoratoSizoList. 

4 See footnote 1 in Section 3.1. 
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It is not difficult to see that the cumulative distributions G~,G2 . . . .  of  

sl, s2 . . . . .  where Gi(x) = Prob[s i < x] for i >_ 1, satisfy the following integral 

equations: 

X X 

a i ( x )  = foX ( a i ( f ' ~ )  + G i - l ( - ~ ~ ) )  dt 

with the convention that Go(x) = 0 for all x and Gi(x) -- 1 for x > 1, for i > 1. 

Using the variable substitution y -'= x / (1  - t) it can be shown that Gi(x) = F~(x) 

for i > 1. Thus the random variables Sl, S2,. . .  generated according to the 

process described are distributed according to F~, F: . . . .  subject to the condi- 

tions si+ 1 <-~ Si for i > 1 and E~= 1si = 1. Therefore,  when this process is stopped 

after s 1 . . . .  , s r have been generated, then s I . . . . .  sr are distributed according to 

the asymptotic joint distribution of the relative sizes of the r largest prime 

factors of an integer chosen uniformly from [1, N] (or, equivalently, from 

[cN, N] for a fixed interval spread c < 1), for N going to infinity. 

Appendix 2. The lterated-Encryption Attack Against the RSA System 

The encryption transformation of the RSA system is defined by 

y =- x e ( m o d m ) ,  

where x, y, e, and m are the plaintext, cfphertext, public encryption exponent, 

and public modulus, respectively. Because this transformation is known publicly, 
. . . . .  e e e 2 
it can be iterated without knowledge of the secret key, resulting m ( x )  = x , 

(xe2)  e =  X e3 . . . . .  This sequence is periodic and sill ultimately result in the 

plaintext. Iterated t-fold encryption in an RSA cryptosystem reveals the plain- 

text x if and only if 

x (e")=x ( m o d m )  

for some u < t, i.e., if and only if 

e" = 1 (mod ordm(x)) 

for some u < t. Hence the minimal number of encryptions needed to recover 

the plaintext is ordordm(~)(e); for security reasons it is required that this number 

of large for virtually all x. The following lemma is needed to prove Theorem 6, 

which states nonrestrictive sufficient conditions for foiling the iterated encryp- 

tion attack. 

Lemma 5. Let m = pq be an RSA modulus where p - 1 = 2RpFp and q - 1 = 

2 R q F q  a n d  where the prime factorizations o f  Fp and Fq are F e = I-I~=lp~ ~' and 

Fq = I-I~= lq~ ~', respectively. Then the fraction f o f  plaintexts x ~ Z* for which 

ordm(x) is at least lcm(Fp, Fq) satisfies 

f >_ ~o(Fp) ~p(Fq) 1 1 

ep Fq -- i = 1  P ;  i = 1  
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Proof. 

and 

Lemma 3 states that 

# { x  ~ Zp  : Fplordp(x)} > ( p  - 1) q~(Fp) 

G 

For x s Z* the conditions Fplordp(x) and Fq[ordq(x) together with (1) imply 

that lcm(Fp, F~) divides ordm(X). Because Z* = Z~ • Zq we have 

# { x  ~ Z * :  lcm(Fp,  Fq)[ordm(x) } > ( p -  1 ) ( q -  1) q~ �9 
q~( Fq) 

- G G 

The last inequality of the theorem follows from (2). [] 

Theorem 6. Let  m = pq  be an RSA  modulus  as in L e m m a  5 where P'i - 1 = 

2 R E F  E for  1 <_ i <_ r and q'i - 1 = 2Rq~fq~ for  1 < i < s and where the prime 

factorizations o f  F~, and F_ are F = FI ~., . n "~j for  I <_ i < ," .,.,,4 ~ - ~ ,  n,,~,J 
- -  r i  LI~ p~ J= l r i j  j . . . . . . .  . q~ - -  x X j =  l ' , l i j  

for  1 < i <_ s. For every integer a relatively prime to ( p  - 1Xq - 1) and satisfying 

a (p~-l)/pTj ~ 1 

for  1 < i <_ r and 1 <_ j <_ r, as well as 

a ( q ~ - l ) / q T i  ~ 1 

(mod Pl) 

(mod q'i) 

for  1 ,~ i < s and 1 <_ j < si, the fraction o f  plaintexts x ~ Z *  for  which 

ordord,(~)(a) is not a multiple o f  lcm(Fp; . . . .  , Fp,, Fq; . . . . .  Fq,,) is at most  ~ ,~ l l  /p'i 

+ E~ = 11/q;.  

Proof. Similar arguments as used in the proof of Lemma 1 allow it to be shown 

that the first condition on a implies Fp~lordp;(a) for 1 _< i < r. Hence 

Fp;Iordp~,,(a) and also Fp, lordF(a) for 1 < i _< r. Thus lcm(Fp~ . . . . .  Fp, r) divides 

orde(a) .  Similarly lcm(Fq; . . . . .  Fq,)lordF(a) is obtained. It follows from (1) that 

lcm(F   . . . . .  Fr Fq; . . . . .  Fq,) divides ord,cm<Fp. F,)(a). According to Lemma 5 the 

condition lcm(Fp, Fq)iordm(x) is satisfied for at least a fraction 1 - E~=ll/P'i + 

E~=ll/ql of the x ~ Z* .  This together with (1) implies that 

ord~,(rp, e~)(a)lordo,a,(~)(a) and hence that lcm(Fp, . . . . .  Fp,, Fq~ . . . . .  Fq,) divides 

ordo~am(~)(a), as was to be shown. [] 

Theorem 6 illustrates that, in order to prevent decipherability by iterated 
encryption, the condition, suggested by Rivest [78] and others, that p '  - 1 

(where p'  is the largest prime factor of p - 1) must also have a very large prime 

factor p", is unnecessary. 
When procedure RandomPrime is used to generate p and q, the primes P'I 

and q; are generated on the first level, and the prirnes Pi~ and q'i~ are generated 



150 U.M. Maurer 

on the second level of the recursion. Note that the conditions on a required by 

Theorem 6 to ensure that decryption by iterated encryption is infeasible, are 

satisfied automatically when Fe~ . . . .  , Fp,, Fq, . . . .  , Fq, are pairwise relatively prime 

and when the public encryption exponent e is used as the parameter a in 

procedure Ghoekl_ommal at the second level of the recursion, i.e., for proving 

the primality of the p~. and q~. Hence the conditions of Theorem 6 can be 

satisfied at no extra computational cost, simply by controlling the choice of the 

parameter a and by avoiding the repeated use of primes. 

Similar conditions (based on the factorization of p + 1 and q + 1 rather than 

p - 1 and q - 1) for preventing feasible decryption by iterated encryption can 

be derived for the elliptic-curve public-key cryptosystem of [47] whose security is 

also based on the difficulty of factoring. 

Appendix  3. The Size  of  the P r i m e  Factors  of  a R a n d o m  RSA Modulus  

In the following we investigate the probability distribution of the relative size of 

the smaller prime factor of an integer chosen an random from all integers < N 

that are the product of two primes. 

Let 72(N, 3') be the number of integers < N that are the product of exactly 
1. 

two distinct primes, both greater or equal to N ~, where 3' is fixed with 0 < 3' < 3. 

z2(N, 3') = #{m: 1 < m < N ,  m = pq ,  NV < p <q}.  

Here and below p and q refer to primes. The following theorem was stated in 

[56] as a conjecture. It was pointed out to the author by Eric Bach [5] that it can 

be proved along the lines of the heuristic arguments given in [56] for its 

justification, by carefully estimating the error terms. 

Th eorem 7. For 0 < y < �89 

log N 
lira Y2(N, y ) ' - -  

N--,~o N 
= log(1 - 3') - log y .  

Proof.  

We thus have 

It is easy to verify that 

"r2(N, T )  = 

N~'<p < vfN 

N ~ p  < v ~  N ~ p  < ~ 

~-(p). (15) 

Remark.  The theorem also holds if z2(N,  3') is defined similarly, but for 

intervals [cN, N ]  with arbitrary fixed positive spread c < 1, when the denomina- 

tor N is replaced by (1 - c )N .  
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The second sum is smaller than Ep < v~ ~r(p) which is upper bounded by 

E zr(p) < ( , r ( v ~ ) )  2 = 0 ~ . (16) 
p<r 

For p in the range of interest, N/p  increases without bound as N goes to 
infinity. Therefore 

N )  N/p  
E p - E 

N'r'<p< ~l~ NV <p< ~l~ 

Replacing this sum by a Stieltjes integral and using (15) and (16) we obtain 

~'2(N,y) f j d T r ( x )  ( 1 )  
N x log(N/x) + 0 ~ . (17) 

Using zt(x) = f~ dt/(log t) + e(x) where e(x) = O(x/log 2 x) (see [26]), we 
obtain 

fN ~ drt(x) = f ~  dx 
x log(N/x) x log x log(N/x) 

+ fN? dE(x) 
X log(N/x)" (18) 

The first integral can be computed by using the variable substitution y = 

(log x)/(log N), with dy = dx/(x log N), which gives 

f ~  dx 1 f~/2 dy 
x log x log(N/x) log N y(1 - y) 

log(1 - y)  - log 3' 

log N 
(19) 

Using the rule for integration by parts, 

f g(x) af(x) = f (x )g(x )  - f f(x) ag(x), 

for f (x)  = e(x) and g(x) = 1/(x log(N/x)), allows us to transform the second 
integral in (18): 

x log(N/x) x log(N/x) 

fN~ N 1 + log(N/x) 
q- ~(x) x2 log2(N/x) 

dx. (2O) 
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We now make use of the bound e(x)  = O(x/log 2 x) which shows that the first 

term on the right-hand side of (20) is O(1 / log  3 N).  In order to show that 

the second term is O(1 / log  2 N),  note that the function to be integrated is 

O(1/(x log2 x log N))  which for N ~ < x _< ~ is also O(1/(x log 3 N),  and 

that f i-ffN~ dx/x = O(log N).  The proof of the theorem is completed by combin- 

ing (17)-(20). [] 
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