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Abstract 

This paper describes a new method for generating primes together with a Proof of their primabty 

that is extremely efficient (for lOOdigit primes the average running time is equal to the average time 

required for finding a “strong pseudoprime” of the same size that passes the Miller-Rabin test for only 

four bases), that yields primes that are nearly uniformly distributed over the set of all primes in a given 

interval, and that is easily modified to yield (with no additional computational effort) primes that are 

nearly uniformly distributed over the subset of these primes that satisfy certain security constraints 

for use in the RSA cryptosystem. This method is used to generate, for a given encryption exponent 

e, an RSA-modulus m = pp that is nearly uniformly distributed over all secure RSA-moduli in a 

given interval I, i.e., over the set of all integers in I that are (1) the product of exactly two primes 

p and q none of which is smaller than a given limit L, where (2) (p - 1, e) = (q - 1, e) = 1 and (3) 

p - 1 and Q - 1 each contain a prime factor greater than a given limit L’, and where (4) for all but a 

provably (given) small fraction of plaintexts in Z:, the minimum number of iterated encryptions with 

exponent e required to recover the plaintext, is provably greater than a given limit 44. Our method 

exploits a well-known result due to Pocklington [20] that allows one to prove the primality of p when 

only a partial factorization of p - 1 is known. These prime factors of p - 1 are generated by recursive 

application of the prime generating procedure. Although the discussion is centered on the RSA system, 

our method can of course be used in other cryptographic systems, such as the Diffie-Hellman public 

key distribution system, that require large primes satisfying certain security constraints. 
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1. Introduction 

The primes p and q in  the RSA cryptosystem [26] must satisfy certain conditions in order t o  prevent 
that the system can easily be broken. Two kinds of attacks are usually considered: factorization of the 
modulus m = pq and decryption by iterated encryption [25,27,29,31]. To prevent fast factorization 
of the modulus, p and q should be sufficiently large, and p - 1 [and similarly q - 1) should contain 
a large prime factor p‘ (q’) t o  make the so-called p - 1 factoring method (see [24], p.172 and [21]) 
infeasible. Other conditions, for example that p + 1, p2 + 1 or p2 f p + 1 (and similarly for q )  each 
contain a large prime factor can for a similar reason also be placed on the primes. However these 
additional conditions are less stringent and are usually not considered, with some exceptions for the 
(pi-1)-condition [12,18,28]. The usual way to guarantee that the iterated encryption attack is infeasible 
for virtually all plaintexts is by requiring that p‘ (and similarly q ‘ )  must contain a large prime factor p” 
(q”).  To satisfy these conditions [25,27] it  is usually required that p and q are roughly of the same size 
(e.g. have equally many digits) and to  choose p (and similarly q )  of the special form p = 2ap’ -t 1 with 
p‘ = 2 b p ” f  1 where p’ and p” are both primes and where a and b are small integers (often a = 6 = 1). 
This is a strong restriction on the set of allowed primes as will be shown. 

Our approach differs in the way the security constraints are satisfied. We argue that the security 
requirements should be specified by the security parameters described in Section 3,  but that the RSA- 
modulus should then be randomly chosen from the set of all RSA-moduli in a given interval that  
satisfy these constraints, in order to achieve maximal diversity and not to give the enemy any a priori 
information about the special form of the primes. For characterization of the iterated encryption 
attack, a new result (Theorem 2) is presented in Section 2 showing that the condition that  p‘ - 1 has 
a large prime factor p” is not necessary, although this is in practice virtually always the case. For 
one reasonable formulation of the security constraints, about 23% of all products of two sufficiently 
large primes are shown t o  be acceptable. This fraction is by orders of magnitude greater than that  
achieved by using the strong restrictions described above. We argue that there is little reason for 
such strong restrictions when the security requirements can also be met by a much looser restriction. 
Moreover, even if the general factorization problem were indeed difficult, it is a t  least conceivable that  
a specialized fast algorithm exists for factoring numbers that are the product of two primes of the 
described special form, although at  present these instances of the factorization problem seem t o  be 
the most difficult ones. However, the security constraints in our method for generating primes can 
be specified flexibly, and by an appropriate choice the described strong restrictions can also be met if 
required by the security policy. 

The method for generating RSA-moduli described in Section 3 is based on an analysis of the 
probability distribution of the size of the smaller prime factor of an integer randomly selected from 
the set of integers of a given size that are the product of exactly two primes, both of which are greater 
than a given limit. The underlying recursive method for generating primes is based on an analysis of 
the probability distribution of the size of the largest prime factor of an integer randomly selected from 
the set of integers n of a certain size, for which 271 + 1 is prime. Other conditions on 7 1 ,  namely that  
2 a n t  1, and possibly also 2b(2an + 1) + 1,2c(26(2an+ 1) + 1) -t 1 etc., are primes, are also considered. 
These derivations, which are based on evident heuristic arguments similar to those used in [15] for 
estimating the number of primes p below n for which (p - 1)/2 is also prime, lead to number-theoretic 
conjectures about the asymptotic behaviour of the mentioned distributions, which are of independent 
interest. 

There exist two approaches for generating a prime in a given interval: to choose odd integers a t  
random and to apply a primality test until a prime is obtained, or to construct a prime (e.g. by 
the methods of [18], [19], [28] or (311). The first approach is not suited for practical applications, 
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because the most efficient presently known general primality tests, which are due to Morain [17], 
and t o  Adleman, Pomerance and Rumely [I] as well as Cohen ahd Lenstra [5,6], are not efficient 
enough t o  be suited for implementation on a small computer or on special purpose cryptographic 
hardware. Another related paper by Goldwasser and Killian [11] shows that almost all primes can be 
certified in time polynomial in thei;length, but this approach cannot be efficiently implemented either. 
This problem of bad efficiency is in practice usually remedied by using instead of a primality test a 
probabilistic compositeness test [23,30], which is efficient but does not yield provable primes. The 
construction approach on the other hand allows one to prove the primality of the generated integers, 
but has either had the disadvantage that  the diversity of reachable primes is moderate [18,28,31], that  
the interval for the primes cannot be chosen flexibly enough [18], or waa computationally not efficient 
enough ([19], method A). 

2. Theoretical Results on the Decipherability by Multiple Encryption 

In the following, we denote by or&(s)  the order of s in Z;, the multiplicative group modulo n. 
A basic fact that will be used repeatedly is: n/m o ~ d , ( s ) l o r ~ ( r ) .  The following lemma, which 
is the key to our method for constructing primes, is a special case of a well-known theorem due to 
Pocblington ([20], see also [24], p. log) ,  which is the basis of the contruction method presented in [28]. 

Lemma 1: Let n - 1 = RF where F = ni=, q,P, with q l , .  . . , q, distinct primes. If there is an integer 
a, satisfying a*-' =- 1 (mod n) and (u(~-')/~J - I, n) = 1 for j = 1,. . . , T ,  then each prime factor p of 
n has the form p = Fm + 1 for some integer m 2 1. Moreover, if F > 6, then n is prime. 

Proof: Let p be a prime divisor of n and let a be its multiplicity. We prove that q, l (p  - 1) for 
j = l ,  ..., T.  We have 

P 

un-l z 1 (mod n) = ~ ~ d , , ( ~ ) l ( ~  - 1) = m4.(a)j(n - 1), (1) 

47-(a)lIp(P") where cp(P*) = (P - l)P*-l, (2)  

(3) 
bY(1) p -f (n - 1) ==+ p t o ~ d p = ( a )  '3' o~dp-(a)j(p - l), and 

Using (1) and (3)  and the trivial fact that for a prime q ,  q p l y ,  tjy and z + ( y / q )  together imply qpIz, 
finally yields 

It is obvious that if every prime factor of a number is greater than its square root then the  number 
itself must be prime. 0 

More sophisticated conditions that guarantee the primality of a number p if the factored part of 
p -  1 is less than fl are described in [4] and [7] but these conditions are computationally more costly 
to verify. Note that Lemma 1 is usually stated in a way that allows the base a to be different for each 
ql [4,7,28]. We will only make use of the special case because the verification of the conditions is first 
computationally more efficient and secondly allows to prove, as will be demonstrated by Theorem 2, 
that iterated encryption is infeasible to  recover the plaintext when a is chosen to be the encryption 
exponent. 
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A few basic facts about Euler’s totient function cp( .) are: 

cp(ab) 2 cp(a)cp(b) with equality if and only if (a, b )  = 1, 

xcp(d) = n, and 
dln 

p prime and d l ( p  - 1) = # { z  E Zp’ : ord,(r) = d }  = cp(d). (7) 

Lemma 2: Let p be a prime and d a divisor o f p  - 1. Then 

# {z  E Zp’ : d l o r 4 ( ~ ) }  2 ~ ( p  - 1) 

with equality if and only if ( d ,  ( p  - l ) / d )  = 1. 

 roof: # { z  E z; : d jo4, (z) }  b27’ c cp(d‘) = 1 cp(lcd) 
d’ :d jd‘ ,d’  I( p -  1 ) k : k l F  

bY(5) P - 1  
2 c cp(k)cp(d) = c p ( 4  c cpP(k) b2’ c p ( 4 d .  

k : k l q  k : k i q  

The inequality holds with equality if and only if ( d ,  ( p  - l ) / d )  = 1. 0 

The following new result shows that  virtually any a can be used in Lemma 1 if all q l ’ s  are large. 

Lemma 3: Let p = R F  + 1 be a prime with F = n:=,q,”1, F > R and ( R , F )  = 1, where q,, 
1 5 j 5 T, are primes. Then the fraction of elements a E 2; that are successful in proving the 
primality o f p  by Lemma 1 is ( p ( F ) / F  2 1 - C:=, l / q J .  

Proof: up-’ 3 1 ( m o d  p )  is satisfied for every a E 2;. If ( R ,  F )  = 1 then Flord,(a) and a(P-’ ) /91  $ 
1 (mod p )  for 1 5 j 5 T are equivalent statements. Application of Lemma 2 with d = F completes 
the proof. 0 

The following theorem will be required to prove Theorem 2, the final result: 

Theorem 1: Let m = p q  be an RSA-modulus where p - 1 = RpFp and q - 1 = R9Fq and where 
the prime factorizations of Fp and Fp are Fp = nT=l p:”’ and Fq = nhl &’, respectively. Then the 
fraction of plaintexts x f 2; for which ord,(z) is not a multiple of Icm(F’, Fp) is upper bounded by 
EL1 U P :  -k EL1 l / d .  

Proof: By Lemma 2, 
def cp(F 1 

FP ,=I p ,  
def 1 

F9 ,=l 4, 

np = # {z f Zp’ : F, /or$(z ) )  2 ( p  - 1 ) L  = (p - 1) f i (1 -  +), and 

np = # ( z  E 2; : ~,lord,(x)) 2 ( q -  1 ) f l  = ( q  - 1) h(1- 
FplOrdp(z) and FqIordp(z) for z E 2; together imply I c m ( F , ,  Fq)1or&(z). Since 2; = 2; X 2; we 
have 

T 

*=l 
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Iterated t-fold encryption in an RSA cryptosystem reveals the plaintext z if and only if z'" 
I (mod m) for some u 3 t ,  i.e., if and only if e' 1 (mod or&(z ) )  for some u 5 t. Hence the minimal 
number of encryptions needed to  recover the plaintext is ordord,,(r)(e); it is required for security that  
this number be large for virtually a l l  I. 

Theorem 2: Let m = p q  be an RSA-modulus where p - 1 = RpFp and q - 1 = R q F q ,  and where 
the prime factorizations of Fp and Fp are Fp = p:*' and Fq = n:=, @, respectively. Further k t  

- 1 = R,:F,: for 1 5 i 5 s where the prime factorizations of Fp: 
and Fq; are Fp: = nSll pc"'' for 1 5 i 5 r and Fq; = ni;, q::pvJ for 1 5 i 5 s. For every integer a 
relatively prime to (p - l ) ( q  - 1) and satisfying 

- 1 = R IF I for 1 5 i 5 r and 
p, p, 

for 1 - -  < i < T ab:-')/p;: $ 1 (mod p i )  for 15 j 5 T;, 
a(q;-l)'q;: + 1 (mod q:) for 1 5 j 5 s,, and for 1 5 i 5 s : 

the fraction of plajntexts I E 2: for which oTdOrdm(z)(a) is not a multiple of 
lcm(F,:, . . . , Fp;, Fp;, . . . , F q : )  is upper bounded by 

Proof: Similar arguments as used in the proof of Lemma 1 d o w  one to show that F,;lord,:(a) and 
hence that Fp: lwdp; - , (a )  and also that Fp:lord~,(a) for 1 5 i 5 T. Thus lcrn(F,:, . . . , F,;)lord~,(a). 
Simililarly one obtains fcm(F,:, . . . , Fp:) I o r d ~ ~ ( a )  and hence that icm(F,:, . . . , Fp;, F,;, . . . , F4:) di- 
vides O'dl , (Fp,~ , ) (u) .  From lcm(F,, Fq) 1 ord,,,(z) it follows that o ~ d ~ , ( ~ , , ~ , ) ( a )  I o ~ d , , ~ , ( ~ ~ ( a )  and 

0 

Theorem 2 illustrates that ,  in order to prevent decipherability by iterated encryption, the condition 
that p' - 1, where p' is the largest prime factor of p - 1, must again have a very large prime factor p", 
is not necessary. 

l/p: t C:=l l /q : .  

hence application of Theorem 1 completes the proof. 

3. Recursive Algorithm for Generating Cryptographically Secure Primes 
and RSA-Moduli with Almost Maximal Diversity 

Lemma 1 suggests a method for constructing large primes. One can form the product F = n;=, q: 
of some known primes q,, raised t o  some powers P I ,  and repeatedly choose an integer R < F at  random 
until n = 2RF t 1 can be proved t o  be prime by an appropriate choice of the base a. Lemma 3 shows 
that if n is indeed prime and if all q l ' s  are large, then virtually every base a can be used for certifying 
the primality of n. On the other hand, if n is composite but does not contain a small prime factor 
that allows to detect this by trial division, then virtually every base a will satisfy an-' $ 1 (mod n )  
and hence reveal the compositeness of n, unless n is of a very special form. 

When this construction approach is used for generating RSA-primes p and q (see also [23]), the 
major problem is to  avoid that the generated primes are of a special form, i.e., that the enemy has a 
priori information about the generated primes that could help him to factor m = p q .  Therefore the 
prime factors of F must not be chosen from a small set of "base primes". Instead, in order to  generate 
candidates n that are random odd integers, these prime factors should rather be selected according to 
their actual probability disrribution. This can be achieved by selecting the sizes of the prime factors 
according to their probability distribution and then generating primes of the selected sizes. Note that 
by doing this, we are solving the original problem of generating a prime by reduction to  itself, i.e., by 
recursion. It is somewhat surprising that t h s  recursive construction turns out to be even faster than 
the generation of a strong pseudoprime that passes the Miller-Rabin test for an appropriate number 
of bases. 
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Let again m = p g  denote a n  RSA-modulus where p < q ,  p i ,  . . . p i  are the r largest distinct 
prime factors of p - 1 in decreasing order and q;, . . . ,q: are the s largest distinct prime factors of 
q - 1 in decreasing order. Our aim is to  randomly generate secure RSA-moduli m = p q  for a given 
encryption exponent e, i.e., t o  randomly select with uniform distribution one of the integers that  (1) 
lie in a given intervd I centered at k ,  (2) are the product of exactly two primes p and q satisfying 
(p-1, e) = (el, e) = 1, and (3) satisfy certain security constraints. According to  the results in  Section 2 
and recommendations in the literature, these conditions are (1) that p as well as q must be  greater 
than a given limit L = N' for some 7 with 0 < 7 < 1 /2  (this is to prevent factorization by a method 
specialized for finding small prime factors), (2a) that p - 1 and q - 1 must contain large prime factors 
p i  and q;, respectively, with p i  2 L' and qi 2 L' for a given limit L' = N7' for some 7' with 0 < 7' < Y 
(this is to prevent factorization by the so-called p - 1 factoring method [24]), (2b) that the remaining 
T - 1 largest prime factors p;  . . . , p: of p -  1 and s - 1 largest prime factors q i ,  . . . ,q: of q - 1, needed for 
the application of Lemma 1 and in order t o  satisfy condition (3) below, are each greater than a given 
limit L" = Nr" for some y" with 0 < y" < 7' (this is to make the bound C,T,l l / p :  -k C:=l l / q :  given 
in Theorem 2 sufficiently small), and (3) that Icm( Fp:, . . . , Fp;,  Fq;,  . . . , F4; )  2 M (see Theorem 2) for 
a given limit M = N 6  with 0 < 6 < 27,  where F p ; ,  . . . , Fp; and Fp;, . , ., Fp: are the factored parts of 
pi-1, . . . , p i -  1 and q;-1, .  . . , q : - l ,  respectively. Condition (3) can be satisfied by requiring that  for 
some p with 0 < p < 1, Fp: 2 p : p  for 1 5 i 5 T and Fp: 2 qiP for 1 5 i 5 s as well as Fp = n:=, pi 2 pp 
and Fq = n:=, pi 2 qp. If p i , .  . . , p t  and g;, . . . , q i  are dis t inct ,  and Fp; ,  . . . ,  Fp; and F p ; ,  . . . ,  Fp; 
are pairwise relatively prime (as is virtually automatically the case and can be easily tested during 
the generation process), these conditions guarantee that Lcm(F,:, . . . , Fp;,  F,:, . . . , F,:) 2 N P ' ,  hence 
the choice p = 4 guarantees that  condition (3)  is satisfied. Note that p 2 1/2 is required for 
the pr imdty  proof by Lemma 1 for the primes p i . .  . . , p : , q { ,  . . .,I, p and q ,  and in  general the 
choice p = 1/2 guarantees a sufficiently large lower bound of N ' / 4  on Icm(Fp:, , Fp;,  Fq:, . . ., F g ) ,  
the guaranteed number (for virtually all plaintexts) of iterated encryptions required t o  recover the 
plaintext. However, other values for 6 can easily be accommodated as well if necessary. 

For practical applications where the RSA-moduli must be in a given interval [MI, Mz] centered at  
N (e.g. N = lozoo), we recommend to  choose 7 zz 0.4,~' zz 0 . 3 , ~  ='1/2 and 6 = 1/4. The choices 
y = 0.4 and 7' = 0.3 guarantee that p i  > and qi > m, and hence that if p = 1 / 2  then 
only one prime factor p i  of p - 1 and one prime factor q; of q - 1 must be generated. 

In the following we describe our algorithm for generating secure RSA-moduli with uniform dis- 
tribution over a given interval [MI, Mz] centered at N ,  as well as the underlying recursive algorithm 
for generating primes in a given interval that satisfy certain conditions. The algorithm has been im- 
plemented on a VAX 8650 [8] which demonstrates its practicality and the correctness of the running 
time analysis. Many important and interesting implementation details can only be mentioned in this 
paper and are not discussed in detail. The algorithm is very well suited for implementation on a small 
computer like a PC or on special-purpose cryptographic hardware. 

Assume the public encryption exponent c ,  a n  interval [ M i , M 2 ]  centered at N ,  a n d  the security 
parameters y,  y', 7'' and S have been (arbitrarily) specified. The primes p and q will be  generated to 
be compatible with e ,  i.e., t o  satisfy the contitions ( p  - 1, e )  = 1 and ( q  - 1, e )  = 1, and t o  satisfy the 
security constraints. In particular they satisfy the conditions given in Theorem 2 for a replaced by e .  

Note that e must be used as the base when Lemma 1 is applied for the primality proof of the largest 
prime factors of p -  1 and q - 1, i.e., of p i  and q ; ,  in order to allow application of Theorem 2. The first 
step is to choose the relative size a, = logNp of the smaller prime factor p according to its probability 
distribution P[op 2 p] = [log(l - p )  - logp]/[log(l - 7) - log71 x (1 - 2p)/(1 - 27) (see [l6] for a 
derivation). Note that for 7 > 0.3, up is almost uniformly distributed over the interval [7,1/2]. The 
second step is t o  generate p at  random in a small interval centered at N'P by the recursive procedure 
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RANDOMPRLME described below. The last step is the generation of q at  random in the interval 
[ M l / p ,  M z / p ]  by another application of the recursive procedure. 

The probabilistic recursive procedure RANDOMPRIME generates a prime p at  random with (vir- 
tually) uniform distribution over the interval [PI, 41 = [ P / c ,  c P ] ,  where c is a given interval span 
constant with c sz 1.05.. .2. The interval is specified equivalently by PI and Pz or by P and C. If 
the upper interval boundary P2 is below a certain limit Pllm (e.g. PI,, = lo7),  then p is generated 
by repeatedly choosing integers from [PI, Pa] at  random until one is shown to be prime by trial di- 
vision by a l l  primes below its square root, and the procedure is finished. If P2 > Plim then the first 
step is to  select the relative size up; = logp/lp; of the largest prime factor pi of ( p  - 1)/2 accord- 
ing to  the conditional probability distribution of the size of the largest prime factor of an integer n 
on the order of P / 2 ,  given tha t  2 n  + 1 is prime. This distribution will be discussed in  Section 4. 
In this first step, a lower bound L’ on p i  prescribed by security constraints can easily be accom- 
modated by using the appropriate conditional distribution, given that p;  > L’, which can easily be 
obtained from the unconditional distribution by a normalization step. The largest prime factor p; is 
then generated by a recursive call to  RANDOMPRIME, where the interval for pi is [P’/c’, c’P‘] with 
P’ = (P/2)OP; and where c’ is a small interval span constant (e.g. c‘ = 1.05 ... 2, preferably C’ = c). 
Ifp’, > (i.e., roughly if up; > 1/2) ,  which happens with probability close t o  70%, then 
an integer R E [(PI - 1)/2p;, (Pz  - 1) /2p ; ]  is repeatedly chosen at random until p = 2Rp;  + 1 can be 
proved to be prime by application of Lemma 1 for some base a. In this case the procedure is finished. 
If p i  < d ( ,  then the relative size up; = logp,zp; of the second largest prime factor p i  of 
( p  - 1)/2 is selected according t o  the conditional probability distribution of the size of the second 
largest prime factor of an integer n on the order of P/2 ,  given that the largest prime factor of n is p i  
and given that 2 n  + 1 is prime. This conditional distribution is equal to the conditional probability 
distribution of the size of the largest prime factor of a number I on the order of P/(2pi), given that  
it is s m d e r  than p i  and given that  2p;l+ 1 is prime. This distribution is dicussed in [16]. Then p;  
is generated, also by a recursive call to  RANDOMPRIME where the interval for p i  is [P”/c”, c”P”] 
with P” = (P/2)up;  and where c” is again a small interval span constant (e.g. c” = c). This process 
continues until the product 5 = nL1 p: of the generated r distinct largest prime factors of ( p  - 1)/2 
satisfies (Pa - 1 ) / 2 z  < p i .  This condition, which is stronger than the condition x > Jm 
suggested by the fact that the factored part of a number n in Lemma 1 must be greater than its 
square root, is necessary to  ensure that  a randomly chosen integer R E [ (PI  - 1 ) / 2 z ,  (P2 - 1)/2z] 
cannot have a prime factor greater than p : ,  a circumstance that would violate the condition that  pk 
is the r - th  largest prime factor, and thus would falsify the final distribution of the sizes of the prime 
factors of ( p  - 1) /2 .  Note that  in order to test 2 R x  + 1 for primality one first rules out all primes 
below a certain limit as divisors. (The optimal trial division limit is discussed in Section 5.)  Instead 
of dividing 2 R x  + 1 by these small primes we suggest to divide the much smaller integer R by these 
small primes and checking whether R has a remainder modulo one of the small primes th& would 
result in 2 R x  t 1 z 0 modulo this prime. This gives an improvement over trial division of 2Rx + 1 
which contributes to  the surprising efficiency of the method. 

The size of the primes t o  be generated by RANDOMPRIME decreases with increasing level of 
recursion. The end of the recursion is reached as soon as the upper boundary P2 of the intewal for the 
prime is below Plim (see above). The final result of RANDOMPRIME is hence a tree where the root 
is the generated prime p E [PI, Pz], the intermediate and terminal nodes are the largest prime factors 
of the immediate predecessors in the tree reduced by 1, and where the termmal nodes are primes less 
than Plim. This tree allows one to give a simple proof of the primality of ail nodes, starting with the 
terminal nodes. Note that  the obtained primality proof for p is an even more succinct certificate for p 
than the ones proposed by Prat t  [22] and Plaisted 1191. The procedure RANDOMPRIME can also be 
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modified to  efficiently solve the problem of randomly generating an integer with uniform distribution 
over a given interval, such that  its factorization, or partial factorization, is known. This is a problem 
that has been considered by Bach [2], whose results were applied by Blum and Micali [3] to show that, 
according to their definition, the set B of predicates related to the quadratic residuosity problem is 
accessible. Note that our method diffeis from Bach’s method (21, which is of theoretical rather than of 
practical interest, in that  i t  is computationally efficient but on the other hand sacrifices the rigorously 
provable uniform distribution. 

As mentioned in  Section 1, common security constraints placed on the primes p and q are that  
they be of about equal size (e.g. have equally many dgi ts)  and that p = 2p‘ + 1, q = 2q’ + 1, 
p’ = 2p” + 1 and q’ = 2q” + 1, where p’,q’,p/’ and q” are primes. In the following we compare the 
restrictiveness of this choice with that  of our method. One can show by convincing heuristic arguments 
[16] that the probability that a prime on the order of P be of this special form is P r w  is prime(2p’ + 
1 is prime] x P r p  is prime(2p” + 1 and 4p“ + 3 are primes] z Cz/log(P/2) x 3c3/2log(P/4) where 

Hence for example, among all numbers of size roughly N that are the product of exactly two roughly 
equally large primes, only a fraction [ C z / l o g ( n / 2 )  x 3C3/210g(fl/4)]2 has both prime factors of 
the special form. For N = this fraction is one out of 5.4 billion. We argue that there is little 
reason for such a strong restriction, because the security requirements can also be met by a much 
looser restriction. 

It can be shown again by convincing heuristic arguments (see [l6]) that the fraction of numbers 
on the order of N that are the product of exactly two primes, none of which is less than N u ,  is for 
a E [0.03,0.5] well approximated by [log( 1 - a) - logal/ log N .  We conjecture that for 0 < a < 1/2, 
limN-= #{z( N : x=pq with p and q primes, p 2 Na,q  2 Nu} - N(log(1 -a) -loga)/logN. The  
fraction of numbers on the order of N that  are the product of exactly two primes, p and q,  both of 
which are greater than L = N7 and such that both p - 1 and q - 1 have a prime factor greater than 
L’ = N7‘ is approximately given by J:/’[1+ log(7’/z)][1+ log(7’/( 1 - .))I/.( 1 - z) .dx/ log N ,  which 
for 7 = 0.4 and 7‘ = 0.3 becomes 0.094/logN. These numbers make up approximately 23% of all 
products on the order of N of exactly two primes both greater than (Note that the condition 
Icm(F,:, . . . , Fp;, Fp;, . . . , F,:) 2 N 6  is no essential additional restriction on the set of allowed RSA- 
moduli pq. It is only a restriction on the method for finding such primes.) Thus we can claim, 
unlike for the c a e  where primes of a very special form are used, that factoring our RSA-moduli is 
about equivalent to solving the general problem of factoring the product of two large primes. Note 
that breaking the RSA system is not more difficult than the problem of factoring the product of two 
primes, which is not necessarily more and possibly much less, difficult than the problem of factoring 
generd integers of comparable size. By allowing the RSA-modulus to be the product of more than 2 
primes, i.e., a general integer, one could possibly obtain a cryptosystems which is as difficult t o  break 
a~ the general problem of factoring integers is difficult to solve. However this author does not suggest 
such a generalization for practical applications. To prove the equivalence of breaking the system and 
factoring would probably be even more difficult than for the original RSA-system. 

CZ = n,,r~e,,,,q(q - 2)/(q - = 0.66016 and C3 = ~ q p ~ m e , p ~ s d q  - 3)/(9 - l ) ( q  - 2) = 0.722. 

4. On the Size of the Prime Factors of Certain Numbers 

The basic probability distribution required by the procedure RANDOMPRIME is (for all relevant 
orders of magnitude, N )  the probability distribution of the relative size apt = logNp’ of the largest 
prime factor p’ of an integer n on the order of N ,  given that n satisfies a certain condition. For the 
generation of the largest prime factor of ( p  - 1)/2 in the procedure RANDOMPRIME, this condition 
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is simply that 2n + 1 is prime. For the generation of the second and further largest prime factors of 
( p  - 1)/2 (which is only necessary with probability 0.3, namely when the largest prime factor p' of 
( p  - 1)/2 is less than Jij) this condition is that 2an + 1 is prime, where a is the product of the prime 
factors generated so far. In the i-th level of the recursion, that is at depth i in the prime generation 
tree, the condition on n is of the form that  2al + 1, 2a2(2al+ 1) + 1, 2aj(2a~(2al + 1) + 1) t 1,. .', 
2q-1(2&-2(. . .(2al + 1). . .) + 1) + 1 must all be prime. 

A l l  the xguments used in the derivation of these probability distributions are heuristic rather than 
mathematically rigorous, but they are empirically and numerically evident enough to  be convincing. 
The arguments are similar t o  those used by Koblitz [15] for estimating the number S(n) of primes P less 
than n for which ( p -  1)/2 is prime as S(n) N CZn/(logn)', where Cp = ng,,rimc,q~3 q ( q - 2 ) / ( q -  1)' z 
0.66016. Similar heuristics can also be used to derive the conjecture stated by Hardy and Littlewood 
[13] that the number Pz(n) of prime-pairs (primes p for which p + 2  is prime) below n is asymptoticdly 
given as P*(n) N 2Czn/(l0gn)~. Note that ,  as is also true fcr our analysis, the gap is wide between 
these precise and numerically evident conjectures and the best result that can be rigorously proved. 
It is namely not even proved yet that there exist infinitely many prime-pairs or infinitely.many primes 
p for which ( p  - 1)/2. The basic result of our analysis is that the distribution of the sizes of the prime 
factors of a number n on the order of N is virtually independent of the different conditions that  c a ~ l  
be placed on n, although for example the probabilities that n is prime, or that n = k q  with q prime 
for a specific I c ,  can strongly depend on the condition. 

In this paper we only briefly consider the probability distribution of the largest prime factor of a 
number n on the order of N ,  given that  271 + 1 is prime. For further information we refer to a forth- 
coming paper [16]. Let p N ( k )  denote the Probability that a randomly selected integer R. on the order of 
N is of the form n = kp' where p' is the largest prime factor of R, let j i N ( k )  denote the corresponding 
conditional probability, given that  2n t 1 is prime, and let F?(Q) and F ~ ( c Y )  denote the probability, 
with and without the above condition, respectively, of the event t h a t  the largest prime factor p' of n 
is smaller or equal to Nu. Heuristic reasoning suggests for k 5 v% that p ~ ( k )  z l / k .  l / log(N/k) ,  
where l / k  is the probability that k divides n and l/log(N/k) = l / ( logN - logk) is the probability 
that a number on the order of N / k  is prime. Similar heuristic reasoning as used in [15] (for the case 
k = 1) suggests that P N ( ~ )  = A k p N ( k )  where Ak = C2 nqprimc,;>3,q,k(q - l ) / ( q  - 2 )  and where CZ has 
been defined above. We conjecture from similar heuristic evidence that for every fixed k. the number 
S k ( n )  of primes p 5 n for which ( p  - 1) /2  = kq with q prime satisfies Sk(n) - Akn/k( logn)2 .  

-N -N F, (a) (and similarly F?(cY)) can be computed for a 2 1/2 as F, (a) = CF2ypj jN(k) .  It 
is interesting to note that  E[&] = 1 for randomly chosen integers k. Because x f ! L a p N ( k )  zz 

E [ A k ] C f ; ; - p ~ ( k )  = E[Ak]F:(n) = Fi'ja), it  follows that F f r ( a )  zz F y ( a ) .  
That is, the distribution of the size of the largest prime factor of a random integer n does not depend 
on the condition that 2n + 1 is prime, although for example the probability that n is prime is 34% 
smaller when the condition "271 t 1 prime" is given. Similar results can be obtained if additional 
conditions are placed on n, for example that " 2 a ( 2 n t l ) + l  must also be prime" for a given constant 
a, "2b(2a(2n 3.1) + 1) f 1 must also be prime for a given constant b,  etc.. Knuth and Trabb Pardo [14] 
proved that the limiting function F l ( a )  = limN-,m Ff(a) exists, where n is assumed to  be uniformly 
distributed in [ l , N ] .  F l ( a )  is defined by Fl(cr) = 1 - J,' Fl(r/(l - r ) ) / z . d r  with F1(a) = 1 for a 2 1. 
In particular, &(a) = 1 t loga  for 1/2 _< a 5 1. The probability that the largest prime factor of a 
randomly chosen large integer is greater than its square root is hence lo 2 = 0.69. We conjecture on 
the basis of substancial heuristic and empirical evidence that lim,v-m F ,  ( a )  = F l ( a ) .  

PI (a) can be very well approximated for finite N by F1(a) - €/log N for 1/2 5 CY < 1 where E 
is a computable positive constant less than one, and by (1 - t-/(lOg:!lOgN))Fl(Q) for 0 5 a 5 1/2.  

k=l A k p N ( k )  

-5 
-N 
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For small values of k below a certain limit, the cases ( p  - 1)/2 = kq with q prime must be considered 
separately and a different type of recursion of RANDOMPRIME than the one described above must 
be used. k must be selected according t o  its discrete distribution pAv(k). Then p i  must be generated 
by a recursive call to RANDOMPRIME with interval [(PI - 1)/2k,  (Pz  - 1 ) / 2 k ] .  Note that  this type 
of recursion, which occurs seldomly, requires the repeated generation of p i  until 2kp; + 1 is prime, 
as opposed to  the reselection of a random integer R until 2Rp; f 1 is prime. Hence the computation 
time for finding the desired prime p is considerably greater if this second type of recursion has to  be 
used. However measures can be taken to keep the increase in computation time reasonably small. We 
recommend for the sake of speed to  make use only of the fast type of ;ecursion. Note that  this slightly 
changes the a priori probabilities of those primes p in the given interval for which k is very small, i.e., 
p - 1 has a very large prime factor, which is of no relevance for practical applications. 

5 .  Comments on the Average Running Time and Conclusions 

We can only present some main results of the running time anaiysis because the number of pages 
of this paper is limited. For more details we refer to a forthcorning paper to be submitted to  the 
Journal of Cryptology. The aim of the running time analysis of the procedure RANDOMPRIME is 
to determine the ratios cpsp(n)  = Tpsp(n)/Texp(n) and cpri(n) = Tpr,(n)/Texp(n), where Tpsp(n) ,  
Tpri(n) and Texp(n) are the expected times required for finding an n-bit strong pseudoprime that 
passes the Miller-Rabin test for one base, for generating one n-bit prime by our algorithm and for 
one full modular n-bit exponentiation, respectively. Since modular exponentiation is the most time 
consuming operation, cpsp(n)  and cpr i (n)  are almost implementation independent. 

In order to find a strong pseudo-prime that passes the Miller-Rabin test for one base one can 
repeatedly select integers a t  random, rule out all primes below a certain limit as possible divisors 
by trial division, and if the trial division test is passed apply the Miller-Rabin test which costs one 
modular exponentiation. The optimal upper limit for trial division, i.e., the limit that minimizes the 
expected time for revealing the composite nature of an n-bit integer, can be shown t o  be Lopt (n)  = 
Texp(n)/Tdj,(n), where Tdjv(n) is the time for one division by a small integer (less than Lopt(n)) .  
When this optimal trial division limit is used, cpsp(n) can be shown to be a function growing as n/ log n; 
and, as an example, for n = 332 (100 decimal digits) it equals 14.5. Under the plausible simplifying 
assumption that in the procedure RANDOMPRIME the selected relative size app of the largest prime 
factor is always equal to  its average, i.e., a,; = 0.624, one can show that c p r ; ( n )  = 1.18. c p s p ( n ) .  In 
other words, the average running time for generating a prime is only roughly 20% greater than the time 
required for finding a strong pseudoprime that passes the Miller-Rabin test for only one base. For 100- 
digit integers, the expected time for generating a prime is equivalent to only 17.5 exponentiations (i.e., 
cPrj(332) = 17.5) compared to 14.5 for a pseudoprime. If the pseudoprime is tested for four different 
bases then the two methods are equally fast, but if more than four bases have to be tested (for a 
practical implementation 20 to 50 is reasonable in order to achieve a sufficient level of confidence), our 
method is considerably faster. The asymptotic running time is n4/ logn. 

Thus, our new method for generating primes not only offers the advantages of yielding provable 
primes that are virtually uniformly distributed over the set of primes in a given interval satisfying 
the flexibly specified RSA-security constraints, but moreover it is also faster than previous methods 
used to  generate only "probable primes". Of course it is not restricted to the RSA cryptosystem, 
but it can be used in other cryptocraphic systems that require large primes satisfying certain security 
constraints, such as the Diffie-Hellmaa public key distribution system [9], the El-Gamal cryptosystem 
and signature scheme [lo],  the Blum-Micali pseudorandom sequence generator [3], etc.. 
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