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Mash: fast genome and metagenome
distance estimation using MinHash
Brian D. Ondov1, Todd J. Treangen1, Páll Melsted2, Adam B. Mallonee1, Nicholas H. Bergman1, Sergey Koren3

and Adam M. Phillippy3*

Abstract

Mash extends the MinHash dimensionality-reduction technique to include a pairwise mutation distance and P value
significance test, enabling the efficient clustering and search of massive sequence collections. Mash reduces large
sequences and sequence sets to small, representative sketches, from which global mutation distances can be rapidly
estimated. We demonstrate several use cases, including the clustering of all 54,118 NCBI RefSeq genomes in 33 CPU h;
real-time database search using assembled or unassembled Illumina, Pacific Biosciences, and Oxford Nanopore data;
and the scalable clustering of hundreds of metagenomic samples by composition. Mash is freely released under a BSD
license (https://github.com/marbl/mash).
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Background
When BLAST was first published in 1990 [1], there were

less than 50 million bases of nucleotide sequence in the

public archives [2]; now a single sequencing instrument

can produce over 1 trillion bases per run [3]. New

methods are needed that can manage and help organize

this scale of data. To address this, we consider the

general problem of computing an approximate distance

between two sequences and describe Mash, a general-

purpose toolkit that utilizes the MinHash technique [4]

to reduce large sequences (or sequence sets) to com-

pressed sketch representations. Using only the sketches,

which can be thousands of times smaller, the similarity

of the original sequences can be rapidly estimated with

bounded error. Importantly, the error of this computa-

tion depends only on the size of the sketch and is inde-

pendent of the genome size. Thus, sketches comprising

just a few hundred values can be used to approximate

the similarity of arbitrarily large datasets. This has

important applications for large-scale genomic data

management and emerging long-read, single-molecule

sequencing technologies. Potential applications include

any problem where an approximate, global distance is

acceptable, e.g. to triage and cluster sequence data,

assign species labels, build large guide trees, identify

mis-tracked samples, and search genomic databases.

The MinHash technique is a form of locality-sensitive

hashing [5] that has been widely used for the detection

of near-duplicate Web pages and images [6, 7], but has

seen limited use in genomics despite initial applications

over ten years ago [8]. More recently, MinHash has been

applied to the relevant problems of genome assembly

[9], 16S rDNA gene clustering [10, 11], and metagenomic

sequence clustering [12]. Because of the extremely low

memory and CPU requirements of this probabilistic

approach, MinHash is well suited for data-intensive prob-

lems in genomics. To facilitate this, we have developed

Mash for the flexible construction, manipulation, and

comparison of MinHash sketches from genomic data. We

build upon past applications of MinHash by deriving a

new significance test to differentiate chance matches when

searching a database, and derive a new distance metric,

the Mash distance, which estimates the mutation rate

between two sequences directly from their MinHash

sketches. Similar “alignment-free” methods have a long

history in bioinformatics [13, 14]. However, prior methods

based on word counts have relied on short words of only

a few nucleotides, which lack the power to differentiate

between closely related sequences and produce distance
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measures that can be difficult to interpret [15–18]. Alter-

natively, methods based on string matching can produce

very accurate estimates of mutation distance, but must

process the entire sequence with each comparison, which

is not feasible for all-pairs comparisons [19–22]. In con-

trast, the Mash distance can be quickly computed from

the size-reduced sketches alone, yet produces a result that

strongly correlates with alignment-based measures such

as the Average Nucleotide Identity (ANI) [23]. Thus,

Mash combines the high specificity of matching-based ap-

proaches with the dimensionality reduction of statistical

approaches, enabling accurate all-pairs comparisons be-

tween many large genomes and metagenomes.

Mash provides two basic functions for sequence com-

parisons: sketch and dist. The sketch function converts a

sequence or collection of sequences into a MinHash

sketch (Fig. 1). The dist function compares two sketches

and returns an estimate of the Jaccard index (i.e. the

fraction of shared k-mers), a P value, and the Mash dis-

tance, which estimates the rate of sequence mutation

under a simple evolutionary model [22] (see “Methods”).

Since Mash relies only on comparing length k sub-

strings, or k-mers, the inputs can be whole genomes,

metagenomes, nucleotide sequences, amino acid se-

quences, or raw sequencing reads. Each input is simply

treated as a collection of k-mers taken from some

known alphabet, allowing many applications. Here we

examine three specific use cases: (1) sketching and

clustering the entire NCBI RefSeq genome database;

(2) searching assembled and unassembled genomes

against the sketched RefSeq database in real time; and

(3) computing a distance between metagenomic samples

using both assembled and unassembled read sets.

Additional applications can be envisioned and are covered

in the “Discussion”.

Results and discussion
Clustering all genomes in NCBI RefSeq

Mash enables scalable whole-genome clustering, which is

an important application for the future of genomic data

management, but currently infeasible with alignment-

based approaches. As genome databases increase in size

and whole-genome sequencing becomes routine, it will

become impractical to manually assign taxonomic labels

for all genomes. Thus, generalized and automated

methods will be useful for constructing groups of related

genomes, e.g. for the automated detection of outbreak

clusters [24]. To illustrate the utility of Mash, we sketched

and clustered all of NCBI RefSeq Release 70 [25], totaling

54,118 organisms and 618 Gbp of genomic sequence. The

resulting sketches total only 93 MB (Additional file 1:

Supplementary Note 1), yielding a compression factor of

more than 7000-fold versus the uncompressed FASTA

(674 GB). Further compression of the sketches is possible

using standard compression tools. Sketching all genomes

and computing all ~1.5 billion pairwise distances required

just 26.1 and 6.9 CPU h, respectively. This process is easily

parallelized, which can reduce the wall clock time to

minutes with sufficient compute resources. Once con-

structed, additional genomes can be added incrementally

to the full RefSeq database in just 0.9 CPU s per 5 MB

Fig. 1 Overview of the MinHash bottom sketch strategy for estimating
the Jaccard index. First, the sequences of two datasets are decomposed

into their constituent k-mers (top, blue and red) and each k-mer is
passed through a hash function h to obtain a 32- or 64-bit hash,
depending on the input k-mer size. The resulting hash sets, A and B,

contain |A| and |B| distinct hashes each (small circles). The Jaccard index
is simply the fraction of shared hashes (purple) out of all distinct hashes

in A and B. This can be approximated by considering a much smaller
random sample from the union of A and B. MinHash sketches S(A) and
S(B) of size s = 5 are shown for A and B, comprising the five smallest

hash values for each (filled circles). Merging S(A) and S(B) to recover the
five smallest hash values overall for A∪B (crossed circles) yields S(A∪B).
Because S(A∪B) is a random sample of A∪B, the fraction of elements in

S(A∪B) that are shared by both S(A) and S(B) is an unbiased estimate
of J(A,B)
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genome (or 4 CPU min for a 3 GB genome). Thus, we

have demonstrated that it is possible to perform unsuper-

vised clustering of all known genomes and to efficiently

update this clustering as new genomes are added.

Importantly, the resulting Mash distances correlate well

with ANI (a common measure of genome similarity), with

D ≈ 1 −ANI over multiple sketch and k-mer sizes (Fig. 2).

Due to the high cost of computing ANI via whole-genome

alignment, a subset of 500 Escherichia genomes was se-

lected for comparison (Additional file 1: Supplementary

Note 1). For ANI in the range of 90–100 %, the correl-

ation with Mash distance is very strong across mul-

tiple sketch sizes and choices of k. For the default

sketch size of s = 1000 and k = 21, Mash approximates

1–ANI with a root-mean-square error of 0.00274 on this

dataset. This correlation begins to degrade for more diver-

gent genomes because the variance of the Mash estimate

grows with distance. Increasing sketch size improves the

accuracy of Mash estimates, especially for divergent ge-

nomes (Table 1, Additional file 1: Figures S1 and S2). This

results in a negligible increase in runtime for sketching, but

the size of the resulting sketches and time required for dis-

tance comparisons increases linearly (Table 2). The choice

of k is a tradeoff between sensitivity and specificity. Smaller

values of k are more sensitive for divergent genomes, but

lose specificity for large genomes due to chance k-mer colli-

sions (Additional file 1: Figure S3). Such chance collisions

will skew the Mash distance, but given a known genome

size, undesirable k-mer collisions can be avoided by

choosing a suitably large value of k (see “Methods”). How-

ever, too large of a k-mer will reduce sensitivity and so

choosing the smallest k that avoids chance collisions is

recommended.

Approximate species clusters can be generated from

the all-pairs distance matrix by graph clustering methods

or simple thresholding of the Mash distance to create

connected components. To illustrate, we linked all

RefSeq genomes with a pairwise Mash distance ≤0.05,

which equates to an ANI of ≥95 %. This threshold

roughly corresponds to a 70 % DNA-DNA reassociation

s=500 s=1,000 s=5,000

k=15

k=21

k=27

0.0 

0.05 

0.1 

0.0 

0.05 

0.1 

0.0 

0.05 

0.1 

0.0 0.05 0.1 0.0 0.05 0.1 0.0 0.05 0.1 

0.00690 

0.00374 

0.00340 

0.00624 

0.00274 

0.00294 

0.00552 

0.00255 

0.00280 

M
a

s
h

 D
M

a
s
h

 D
M

a
s
h

 D

Fig. 2 Scatterplots illustrating the relationship between ANI and Mash distance for a collection of Escherichia genomes. Each plot column shows a
different sketch size s and each plot row a different k-mer size k. Gray lines show the model relationship D = 1–ANI and numbers in the bottom

right of each plot give the root-mean-square error versus this perfect model. Blue lines show linear regression models. Increasing the sketch size
improves the accuracy of the Mash distance, especially for more divergent sequences. However, there is a limit on how well the Mash distance

can approximate ANI, especially for more divergent genomes (e.g. ANI considers only the core genome)
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value—a historical, albeit debatable, definition of bacter-

ial species [23]. Figure 3 shows the resulting graph of

significant (P ≤10–10) pairwise distances with D ≤0.05 for

all microbial genomes. Simply considering the connected

components of the resulting graph yields a partitioning

that largely agrees with the current NCBI bacterial spe-

cies taxonomy. Eukaryotic and plasmid components are

shown in Additional file 1: Figures S4 and S5, but would

require alternate parameters for species-specific cluster-

ing due to their varying characteristics.

Beyond simple clustering, the Mash distance is an ap-

proximation of the mutation rate that can also be used

to rapidly approximate phylogenies using hierarchical

clustering. For example, all pairwise Mash distances for

17 RefSeq primate genomes were computed in just 2.5

CPU h (11 min wall clock on 17 cores) with default

parameters (s = 1000 and k = 21) and used to build a

neighbor-joining tree [26]. Figure 4 compares this tree

to an alignment-based phylogenetic tree model down-

loaded from the UCSC genome browser [27]. The Mash

and UCSC primate trees are topologically consistent for

everything except the Homo/Pan split, for which the

Mash topology is more similar to past phylogenetic

studies [28] and mitochondrial trees [14]. On average,

the Mash branch lengths are slightly longer, with a

Branch Score Distance [29] of 0.10 between the two

trees, but additional distance corrections are possible for

k-mer based models [22]. However, due to limitations of

both the k-mer approach and simple distance model, we

emphasize that Mash is not explicitly designed for phyl-

ogeny reconstruction, especially for genomes with high

divergence or large size differences. For example, clus-

tering the treeshrew, mouse, rat, guinea pig, and rabbit

genomes alongside the primate genomes causes the tar-

sier to become misplaced (Additional file 1: Figure S6).

Increasing the sketch size from 1000 to 5000 corrects

this placement, but Mash has limited accuracy at these

distances and should only be used in cases where such

approximations are sufficient.

Real-time genome identification from assemblies or reads

With a pre-computed sketch database, Mash is able to

rapidly identify isolated genomes from both assemblies

and raw sequencing reads. To illustrate, we computed

Mash distances for multiple Escherichia coli datasets

compared against the RefSeq sketch database (Table 3).

This test included the K12 MG1655 reference genome

as well as assembled and unassembled sequencing runs

from the ABI 3730, Roche 454, Ion PGM, Illumina

MiSeq, PacBio RSII, and Oxford Nanopore MinION

instruments. For assembled genomes, the correct strain

was identified as the best hit in a few seconds. For each

Table 1 Example Mash error bounds for a k-mer size of 21 and increasing sketch sizes

Mash distance

Sketch size 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

100 0.0271 0.0868 – – – – – –

500 0.0098 0.0245 0.0473 – – – – –

1000 0.0068 0.0158 0.0323 0.0630 – – – –

5000 0.0029 0.0065 0.0124 0.0235 0.0460 – – –

10,000 0.0020 0.0046 0.0086 0.0159 0.0300 0.0726 – –

50,000 0.0009 0.0020 0.0037 0.0065 0.0116 0.0219 0.0396 0.0822

100,000 0.0006 0.0014 0.0026 0.0046 0.0081 0.0143 0.0250 0.0492

500,000 0.0003 0.0006 0.0011 0.0020 0.0035 0.0060 0.0105 0.0187

1,000,000 0.0002 0.0004 0.0008 0.0014 0.0024 0.0042 0.0072 0.0128

For a given sketch size and Mash distance, the Mash estimation error will be less than the given value with 0.99 probability, as calculated by the binomial inverse

cumulative distribution function. Missing values indicate that the estimate is unbounded, i.e. there is a chance that no matching k-mers will be found and the

Mash distance will be undefined. Plots of the upper and lower error bounds for k = 16 and k = 21 are given in Additional file 1: Figure S2

Table 2 Mash runtime and output size for all-pairs RefSeq computation using various sketch and k-mer sizes

k = 16 k = 21

Sketch size Sketch (CPU h) Dist (CPU h) Size (Mb) gzip (Mb) Sketch (CPU h) Dist (CPU h) Size (Mb) gzip (Mb)

500 26.4 8.4 120.1 89.7 31.3 9.0 229.8 201.8

1000 27.7 15.9 224.9 179.7 31.3 17.4 439.2 399.6

5000 26.4 74.5 1022.5 873.8 31.6 83.6 2034.5 1924.6

10,000 26.8 146.9 1961.8 1691.1 31.7 164.0 3913.0 3696.2

Sketch: CPU h required for the Mash sketch operation for all 54,118 RefSeq genomes. Dist: CPU h required for the Mash dist table operation for all pairs of

sketches. Size: combined size of the resulting sketches in megabytes. gzip: combined size of the resulting sketches after gzip compression
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unassembled genome, a single sketch was constructed

from the collection of k-mers in the reads and compared

to the sketch database. In these cases, the best hit was to

the correct species, including for E. coli 1D MinION

reads [30], which had an average sequencing error rate

of ~40 %. However, the best-hit strain was often incor-

rect due to noise in the raw reads. To account for this

uncertainly, we applied lowest common ancestor (LCA)

classification (see “Methods”), which was correct in all

cases, albeit with reduced resolution. To further mitigate

the problem of erroneous k-mers, Mash can filter low-

abundance k-mers from raw sequencing data to improve

accuracy. Increasing the sketch size can also improve

sensitivity, as would error correction using dedicated

methods [31]. However, there are tradeoffs to consider

when filtering or correcting low-coverage datasets (e.g.

less than 5X coverage [22]).

To test Mash’s discriminatory power, we searched

Oxford Nanopore MinION reads collected from Bacillus

anthracis and Bacillus cereus against the full RefSeq

sketch database. In both cases Mash was able to

correctly differentiate these closely related species

(ANI ≈ 95 %) using 43,806 and 91,379 sequences col-

lected from single MinION R7.3 runs of B. anthracis

Ames and B. cereus ATCC 10987, respectively (com-

bined 1D and 2D reads). In the case of the higher quality

B. cereus reads, processed with a more recent ONT

workflow (1.10.1 vs. 1.6.3), the correct strain was identi-

fied as the best hit. These two searches both required

just 1 min of CPU and 209 MB of RAM. Such low-

Fig. 3 Comparison and de novo clustering of all RefSeq genomes using Mash. Each graph node represents a genome. Two genomes are connected by
an edge if their Mash distance D ≤0.05 and P value ≤10–10. Graph layout was performed using Cytoscape [61] organic layout algorithm [62]. Individual

nodes are colored by species and the top two rows of clusters have been annotated with the majority species label they contain. Only components
containing microbial genomes are shown here (including viruses). Additional file 1: Figures S4 and S5 show eukaryotes, orphan plasmids, and organelles
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overhead searches could be used for quickly triaging un-

known samples or to rapidly select a reference genome

for performing further, more detailed comparative ana-

lyses. For example, Mash uses an online algorithm for

sketch construction and can therefore compare a se-

quencing run against a sketch database in real time.

When tested on the Ebola virus MinION dataset, the

Zaire ebolavirus reference genome was matched with a

Mash P value of 10–10 after processing the first 227,445

bases of sequencing data, which were collected by the

MinION after just 770 s of sequencing. However, analyz-

ing such streaming data presents a multiple testing

problem and determining appropriate stopping condi-

tions is left for future work (e.g. by monitoring the sta-

bility of a sketch as additional data are processed).

Clustering massive metagenomic datasets

Mash can also replicate the function of k-mer based

metagenomic comparison tools, but in a fraction of the

time previously required. The metagenomic comparison

tool DSM, for example, computes an exact Jaccard index

using all k-mers that occur more than twice per sample

[32]. By definition, Mash rapidly approximates this result

by filtering unique k-mers and estimating the Jaccard

index via MinHash. COMMET also uses k-mers to

approximate similarity, but attempts to identify a set of

similar reads between two samples using Bloom filters

[33, 34]. The similarity of two samples is then defined as

the fraction of similar reads that the two datasets share,

which is essentially a read-level Jaccard index. Thus,

both DSM and COMMET report Jaccard-like similarity

measures, which drop rapidly with increasing diver-

gence, whereas the Mash distance is linear in terms of

the mutation rate, but becomes less accurate with in-

creasing divergence. Figure 5a replicates the analysis in

Maillet et al. [33] using both Mash and COMMET to

cluster Global Ocean Survey (GOS) data [35]. On this

dataset, Mash is over tenfold faster than COMMET and

correctly identifies clusters from the original GOS study.

This illustrates the incremental scalability of Mash

where the primary overhead is sketching, which occurs

only once per each sample. After sketching, computing

pairwise distances is near instantaneous. Thus, Mash

avoids the quadratic barrier usually associated with all-

pairs comparisons and scales well to many samples. For

example, COMMET would require 1 h to add a new

GOS sample to this analysis, compared to less than

1 min for Mash.

For a large-scale test, samples from the Human

Microbiome Project [36] (HMP) and Metagenomics of the

Human Intestinal Tract [37] (MetaHIT) were combined

to create a ~10 TB 888-sample dataset. Importantly, the

size of a Mash sketch is independent of the input size,

requiring only 70 MB to store the combined sketches

(s = 10,000, k = 21) for these datasets. Both assembled

and unassembled samples were analyzed, requiring 4.4

CPU h to process all assemblies and 279.6 CPU h to

process all read sets. We estimated that COMMET would

require at least 140,000 CPU h to process all read sets

(500 times slower than Mash), so it was not run on the full

dataset. The Mash assembly-based and read-based clus-

ters are remarkably similar, with all samples clearly

a) UCSC genome browser b) Mash

Human

Chimpanzee

Bonobo

Gorilla

Orangutan

nobbigdekeehc-etihwnrehtroN
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Fig. 4 Primate trees from the UCSC genome browser and Mash. a A primate phylogenetic tree model from the UCSC genome browser, with
branch lengths derived from fourfold degenerate sites extracted from reference gene multiple alignments. b A comparable Mash-based tree

generated from whole genomes using a sketch size of s = 1000 and k-mer size of k = 21. Additional file 1: Figure S6 includes this Mash tree with
five additional mammals of increasing divergence
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grouped by body site (Fig. 5b). Additionally, Mash identi-

fied outlier samples that were independently excluded by

the HMP’s quality control process. When included in the

clustering, these samples were the only ones that failed to

cluster by body site (Additional file 1: Figure S7). However,

because the Mash distance is based on simple k-mer sets,

it may be more prone to batch effects from sequencing or

sample preparation methods. For example, Mash does not

cluster MetaHIT samples by health status, as previously

reported [37], and MetaHIT samples appear to preferen-

tially cluster with one another.

Conclusions

Mash enables the comparison and clustering of whole

genomes and metagenomes on a massive scale. Potential

applications include the rapid triage and clustering of

sequence data, for example, to quickly select the most

appropriate reference genome for read mapping or to

identify mis-tracked or low quality samples that fail to

cluster as expected. Strong correlation between the Mash

distance and sequence mutation rate enables approximate

phylogeny construction, which could be used to rapidly

determine outbreak clusters for thousands of genomes in

real time. Additionally, because the Mash distance is based

upon simple set intersections, it can be computed using

homomorphic encryption schemes [38], enabling privacy-

preserving genomic tests [39].

Future applications of Mash could include read

mapping and metagenomic sequence classification via

windowed sketches or a containment score to test for

the presence of one sequence within another [4]. How-

ever, both of these approaches would require additional

sketch overhead to achieve acceptable sensitivity. Im-

provements in database construction are also expected.

For example, rather than storing a single sketch per

sequence (or window), similar sketches could be merged

to further reduce space and improve search times.

Obvious strategies include choosing a representative

sketch per cluster or hierarchically merging sketches via a

Bloom tree [40]. Finally, both the sketch and dist functions

Table 3 Sequencing runs and assemblies searched against the Mash RefSeq database

Organism Tech Type NCBI accession Size (Mbp) Time (CPU s) LCA Best hit

E. coli
K12 MG1655

MiSeq Assembly (SPAdes) 4.6 2.45 Entero. E. coli
K12 MG1655

E. coli
K12 MG1655

PacBio Assembly GCA_000801205 4.6 2.66 Entero. E. coli
K12 MG1655

E. coli
DH1

ABI 3730 Reads (Trace Archive) 60 17.08 Entero. E. coli
DH1

E. coli
K12 MG1655

454 Reads SRR797242 233 57.12 Entero. E. coli
K12 MG1655

E. coli
K12 MG1655

Ion PGM Reads SRR515925 407 72.01 E. coli E. coli
K12 1655

E. coli
K12 MG1655

MiSeq Reads SRR1770413 387 72.01 Entero. E. coli
KLY

E. coli
K12 MT203

HiSeq Reads SRR490124 2155 369.86 E. coli E. coli
GCF_000833635

E. coli
K12 MG1655

PacBio Reads SRR1284073 397 77.96 E. coli E. coli XH140A
GCF_000226585

E. coli
K12 MG1655

MinION 1D ERR764952..55 248 55.52 Entero. E. coli
O113 H21

E. coli
K12 MG1655

MinION 2D ERR764952..55 134 27.82 E. coli E. coli
GCF_000953515

B. anthracis Ames MinION 1D + 2D SRR2671867 210 44.66 B. anthracis B. anthracis
str. Carbosap

B. cereus ATCC 10987 MinION 1D + 2D SRR2671868 266 76.85 B. cereus ATCC 10987 B. cereus
ATCC 10987

Zaire ebolavirus MinION 1D + 2D ERR1050070 8.7 2.06 Zaire ebolavirus Zaire ebolavirus
Mayinga

In all cases, Mash search required 21 MB of RAM for genome assemblies and 209 MB of RAM for sequencing runs (due to the additional Bloom filter overhead).

Organism: source strain. Tech: Sequencing technology ABI 3730, 454 GS FLX, Illumina MiSeq, Illumina HiSeq, Ion PGM, PacBio RSII, Oxford Nanopore MinION. Type:

Assembly, reads, 1D and 2D nanopore reads. NCBI accession: NCBI accession of the dataset or reads. The SPAdes [63] assembly was derived from the MiSeq reads.

Size: total dataset size in Mbp. LCA: lowest common ancestor classification based on the NCBI taxonomy and the resulting hits within a significance tolerance of

the best. In several cases, the LCA is at the family level (Enterobacteriaceae) due to significant Mash hits to both E. coli and S. sonnei species. This is a known

species naming conflict within the NCBI taxonomy, with some genomes sharing ANI >98 % between these species. Best hit: reports the smallest significant

distance reported
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are designed as online algorithms, enabling, for example,

dist to continually update a sketch from a streaming input.

The program could then be modified to terminate when

enough data have been collected to make a species identi-

fication at a predefined significance threshold. This func-

tionality is designed to support the analysis of real-time

data streams, as is expected from nanopore-based sequen-

cing sensors [24].

Methods

Mash sketch

To construct a MinHash sketch, Mash first determines

the set of constituent k-mers by sliding a window of

length k across the sequence. Mash supports arbitrary

alphabets (e.g. nucleotide or amino acid) and both

assembled and unassembled sequences. Without loss

of generality, here we will assume a nucleotide

Fig. 5 Metagenomic clustering of ocean and human metagenomes using Mash. a Comparison of Global Ocean Survey (GOS) clustering using
Mash (top left) and COMMET (top right) using raw Sanger sequencing data. Heat maps illustrate the pairwise similarity between samples, scaled

between 0 (white) and 100 (red) for comparison to COMMET. Sample groups are identified and colored using the same key as in Rusch et al. [35].
The Mash clustering identifies two large clusters of temperate and tropical water samples as well as subgroupings consistent with the original
GOS study. b Human metagenomic samples combined from the HMP and MetaHIT projects clustered by Mash from 888 sequencing runs

(bottom left) and 879 assemblies (bottom right). For both sequencing reads and assemblies, Mash successfully clusters samples by body site and
appropriately clusters MetaHIT and HMP stool samples together, even though these samples are from different projects with different protocols
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alphabet Σ = {A,C,G,T}. Depending on the alphabet

size and choice of k, each k-mer is hashed to either a 32-

bit or 64-bit value via a hash function, h. For nucleotide

sequence, Mash uses canonical k-mers by default to allow

strand-neutral comparisons. In this case, only the lexico-

graphically smaller of the forward and reverse comple-

ment representations of a k-mer is hashed. For a given

sketch size s, Mash returns the s smallest hashes output

by h over all k-mers in the sequence (Fig. 1). Typically

referred to as a “bottom-k sketch” for a sketch of size k,

we refer to these simply as “bottom sketches” to avoid

confusion with the k-mer size k. For a sketch size s and

genome size n, a bottom sketch can be efficiently com-

puted in O(n log s) time by maintaining a sorted list of size

s and updating the current sketch only when a new hash

is smaller than the current sketch maximum. Further, the

probability that the i-th hash of the genome will enter the

sketch is s/i, so the expected runtime of the algorithm is

O(n + s log s log n) [4], which becomes nearly linear when

n > > s.

As demonstrated by Fig. 3, a sketch comprising 400

32-bit hash values is sufficient to roughly group micro-

bial genomes by species. With these parameters, the

resulting sketch size equals 1.6 kB for each genome. For

large genomes, this represents an enormous lossy com-

pression (e.g. compared to the 750 MB needed to store a

3 Gbp genome using 2-bit encoding). However, the

probability of a given k-mer K appearing in a random

genome X of size n is:

P K∈Xð Þ ¼ 1− 1− Σj j−k
� �n

ð1Þ

Thus, for k = 16 the probability of observing a given

k-mer in a 3 Gbp genome is 0.50 and 25 % of k-mers are

expected to be shared between two random 3 Gbp ge-

nomes by chance alone. This will skew any k-mer based

distance and make distantly related genomes appear more

similar than reality. To avoid this phenomenon, it is suffi-

cient to choose a value of k that minimizes the probability

of observing a random k-mer. Given a known genome size

n and the desired probability q of observing a random

k-mer (e.g. 0.01), this can be computed as [41]:

k 0 ¼
l

log
Σj j n 1−qð Þ=qð Þ

m

ð2Þ

which yields k = 14 and k = 19 for 5 Mbp and 3 Gbp ge-

nomes (q = 0.01), respectively. We have found the pa-

rameters k = 21 and s = 1000 give accurate estimates in

most cases (including metagenomes), so this is set as the

default and still requires just 8 kB per sketch. However,

for constructing the RefSeq database, k = 16 was chosen

so that each hash could fit in 32 bits, minimizing the

database size at the expense of reduced specificity for

larger genomes. The small k also improves sensitivity,

which helps when comparing noisy data like single-

molecule sequencing (Additional file 1: Figures S2 and S3).

Lastly, for sketching raw sequencing reads, Mash

provides both a two-stage MinHash and Bloom filter

strategy to remove erroneous k-mers. These approaches

assume that redundancy in the data (e.g. depth of cover-

age >5) will result in true k-mers appearing multiple

times in the input, while false k-mers will appear only a

few times. Given a coverage threshold c, Mash can op-

tionally ignore such low-abundance k-mers with counts

less than c. By default, the coverage threshold is set to

one and all k-mers are considered for the sketch. In-

creasing this threshold enables the two-stage MinHash

filter strategy, which is based on tracking both the k-mer

hashes in the current sketch and a secondary set of can-

didate hashes. At any time, the current sketch contains

the s smallest hashes of all k-mers that have been ob-

served at least c times and the candidate set contains

hashes that are smaller than the largest value in the

sketch (sketch max), but have been observed less than c

times. When processing new k-mers, those with a hash

greater than the sketch max are immediately discarded,

as usual. However, if a new hash is smaller than the

current sketch max, it is checked against the candidate

set. If absent, it is added to this set. If present with a

count less than c – 1, its counter is incremented. If

present with a count of c – 1 or greater, it is removed

from the candidate set and added to the sketch. At this

point, the sketch max has changed and the candidate set

can be pruned to contain only values less than the new

sketch maximum. The result of this online method is

equivalent to running the MinHash algorithm on only

those k-mers that occur c or more times in the input.

However, in the worst case, if all k-mers in the input

occur less than the coverage threshold c, no hashes

would escape the candidate set and memory use would

increase with each new k-mer processed.

Alternatively, a Bloom filter can be used to probabilis-

tically exclude single-copy k-mers using a fixed amount

of memory. In this approach, a Bloom filter is main-

tained instead of a candidate list and new hashes are

inserted into the sketch only if they are less than sketch

max and found in the Bloom filter. If a new hash would

have otherwise been inserted in the sketch but was not

found in the Bloom filter, it is inserted into the Bloom

filter so that subsequent appearances of the hash will

pass. This effectively excludes many single-copy k-mers

from the sketch, but does not guarantee that all will be

filtered. With this approach, filtering k-mers with a copy

number greater than one would also be possible using a

counting Bloom filter, but this has not been imple-

mented since the exact method typically outperforms

the Bloom method in practice, both in terms of accuracy

and memory usage.
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Mash distance

A MinHash sketch of size s = 1 is equivalent to the

subsequent “minimizer” concept of Roberts et al. [42],

which has been used in genome assembly [43], k-mer

counting [44], and metagenomics [45]. Importantly, the

more general MinHash concept permits an approxi-

mation of the Jaccard index J A;Bð Þ ¼ A∩Bj j
A∪Bj j between two

k-mer sets A and B. Mash follows Broder’s original for-

mulation and merge-sorts two bottom sketches S(A) and

S(B) to estimate the Jaccard index [4]. The merge is

terminated after s unique hashes have been processed

(or both sketches exhausted), and the Jaccard estimate is

computed as j ¼ x
s′
for x shared hashes found after pro-

cessing s’ hashes. Because the sketches are stored in

sorted order, this requires only O(s) time and effectively

computes:

J A;Bð Þ ¼ A∩Bj j
A∪Bj j≈

S A∪Bð Þ∩S Að Þ∩S Bð Þj j
S A∪Bð Þj j ð3Þ

which is an unbiased estimate of the true Jaccard index,

as illustrated in Fig. 1. Conveniently, the error bound of

the Jaccard estimate ε ¼ O 1
ffiffi

s
p

� �

relies only on the sketch

size and is independent of genome size [46]. Specific

confidence bounds are given below and in Additional file

1: Figure S1. Note, however, that the relative error can

grow quite large for very small Jaccard values (i.e. diver-

gent genomes). In these cases, a larger sketch size or

smaller k is needed to compensate. For flexibility, Mash

can also compare sketches of different size, but such

comparisons are constrained by the smaller of the two

sketches s < u and only the s smallest values are

considered.

The Jaccard index is a useful measure of global se-

quence similarity because it correlates with ANI, a com-

mon measure of global sequence similarity. However,

like the MUM index [19], J is sensitive to genome size

and simultaneously captures both point mutations and

gene content differences. For distance-based applica-

tions, the Jaccard index can be converted to the Jaccard

distance Jδ(A, B) = 1 − J(A, B), which is related to the

q-gram distance but without occurrence counts [47]. This

can be a useful metric for clustering, but is non-linear in

terms of the sequence mutation rate. In contrast, the

Mash distance D seeks to directly estimate a mutation rate

under a simple Poisson process of random site mutation.

As noted by Fan et al. [22], given the probability d of a

single substitution, the expected number of mutations in a

k-mer is λ = kd. Thus, under a Poisson model (assuming

unique k-mers and random, independent mutation), the

probability that no mutation will occur in a given k-mer is

e−kd, with an expected value equal to the fraction of con-

served k-mers w to the total number of k-mers t in the

genome, w
t
. Solving e�kd ¼ w

t
gives d ¼ −

1
k
ln w

t
. To ac-

count for two genomes of different sizes, Fan et al. [22] set

t to the smaller of the two genome’s k-mer counts, thereby

measuring containment of the k-mer set. In contrast,

Mash sets t to the average genome size n, thereby penaliz-

ing for genome size differences and measuring resem-

blance (e.g. to avoid a distance of zero between a phage

and a genome containing that phage). Finally, because the

Jaccard estimate j can be framed in terms of the average

genome size j ¼ w
2n−w

, the fraction of shared k-mers can be

framed in terms of the Jaccard index w
n
¼ 2j

1þj
, yielding the

Mash distance:

D ¼ −
1

k
ln

2j

1þ j
ð4Þ

Equation 4 carries many assumptions and does not

attempt to model more complex evolutionary processes,

but closely approximates the divergence of real genomes

(Fig. 2). With appropriate choices of s and k, it can be

used as a replacement for costly ANI computations.

Table 1 and Additional file 1: Figure S2 give error

bounds on the Mash distance for various sketch sizes

and Additional file 1: Figure S3 illustrates the relation-

ship between the Jaccard index, Mash distance, k-mer

size, and genome size.

Mash P value

In the case of distantly related genomes it can be diffi-

cult to judge the significance of a given Jaccard index or

Mash distance. As illustrated by Eq. 1, for small k and

large n there can be a high probability of a random k-

mer appearing by chance. How many k-mers then are

expected to match between the sketches of two unre-

lated genomes? This depends on the sketch size and the

probability of a random k-mer appearing in the genome,

where the expected Jaccard index r between two random

genomes X and Y is given by:

r ¼ P K∈Xð ÞP K∈Yð Þ
P K∈Xð Þ þ P K∈Yð Þ−P K∈Xð ÞP K∈Yð Þ ð5Þ

From Eq. 1, the probability of a random k-mer de-

pends both on the size of k, which is known, and total

number of k-mers in the genome, which can be esti-

mated from the sketch [48]. For the sketch size s, max-

imum hash value in the sketch v, and hash bits b, the

number of distinct k-mers in the genome is estimated as

n = 2bs/v. For the population size m of all distinct k-mers

in X and Y and the number of shared k-mers w, where:

m ¼ X∪Yj j ¼ Xj j þ Yj j−w ð6Þ

the probability p of observing x or more matches

between the sketches of these two genomes can be
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computed using the hypergeometric cumulative distribu-

tion function. For the sketch size s, shared size w, and

population size m:

p x; s;w;mð Þ ¼ 1−
X

x−1

i¼0

w

i

� �

m−w

s−i

� �

m

s

� � ð7Þ

However, because m is typically very large and the

sketch size is relatively much smaller, it is more practical

to approximate the hypergeometric distribution with the

binomial distribution where the expected value of r ¼ w
m

can be computed using Eq. 5:

p x; s; rð Þ ¼ 1−
X

x−1

i¼0

s

i

� �

ri 1−rð Þs−i ð8Þ

Mash uses Eq. 8 to compute the P value of observing

a given Mash distance (or less) under the null hypothesis

that both genomes are random collections of k-mers.

This equation does not account for compositional

characteristics like GC bias, but it is useful in practice

for ruling out clearly insignificant results (especially for

small values of k and j). Interestingly, past work suggests

that a random model of k-mer occurrence is not entirely

unreasonable [41]. Note, this P value only describes the

significance of a single comparison and multiple testing

must be considered when searching against a large

database.

RefSeq clustering

By default, Mash uses 32-bit hashes for k-mers where

|Σ|k ≤ 232 and 64-bit hashes for |Σ|k ≤ 264. Thus, to

minimize the resulting size of the all-RefSeq sketches,

k = 16 was chosen along with a sketch size s = 400. While

not ideal for large genomes (due to the small k) or highly

divergent genomes (due to the small sketch), these param-

eters are well suited for determining species-level relation-

ships between the microbial genomes that currently

constitute the majority of RefSeq. For similar genomes

(e.g. ANI >95 %), sketches of a few hundred hashes are

sufficient for basic clustering. As ANI drops further, the

Jaccard index rapidly becomes very small and larger

sketches are required for accurate estimates. Confidence

bounds for the Jaccard estimate can be computed using

the inverse cumulative distribution function for the hyper-

geometric or binomial distributions (Additional file 1:

Figure S1). For example, with a sketch size of 400, two ge-

nomes with a true Jaccard index of 0.1 (x = 40) are very

likely to have a Jaccard estimate between 0.075 and 0.125

(P >0.9, binomial density for 30 ≤ x ≤ 50). For k = 16, this

corresponds to a Mash distance between 0.12 and 0.09.

RefSeq Complete release 70 was downloaded from

NCBI FTP (ftp://ftp.ncbi.nlm.nih.gov). Using FASTA and

Genbank records, replicons and contigs were grouped

by organism using a combination of two-letter accession

prefix, taxonomy ID, BioProject, BioSample, assembly

ID, plasmid ID, and organism name fields to ensure dis-

tinct genomes were not combined. In rare cases this

strategy resulted in over-separation due to database mis-

labeling. Plasmids and organelles were grouped with

their corresponding nuclear genomes when available;

otherwise they were kept as separate entries. Sequences

assigned to each resulting “organism” group were com-

bined into multi-FASTA files and chunked for easy

parallelization. Each chunk was sketched with:

mash sketch -s 400 -k 16 -f -o chunk *.fasta

This required 26.1 CPU h on a heterogeneous cluster

of AMD processors. (Note: option -f is not required in

Mash v1.1.) The resulting, chunked sketch files were

combined with the Mash paste function to create a

single “refseq.msh” file containing all sketches. Each

chunked sketch file was then compared against the com-

bined sketch file, again in parallel, using:

mash dist -t refseq.msh chunk.msh

This required 6.9 CPU h to create pairwise distance

tables for all chunks. The resulting chunk tables were

concatenated and formatted to create a PHYLIP format-

ted distance table.

For the ANI comparison, a subset of 500 Escherichia

genomes was selected to present a range of distances yet

bound the runtime of the comparatively expensive ANI

computation. ANI was computed using the MUMmer

v3.23 “dnadiff” program and extracting the 1-to-1

“AvgIdentity” field from the resulting report files [49].

The corresponding Mash distances were taken from the

all-vs-all distance table as described above.

For the primate phylogeny, the FASTA files were

sketched separately, in parallel, taking an average time of

8.9 min each and a maximum time of 11 min (Intel

Xeon E5-4620 2.2 GHz processor and solid-state drive).

The sketches were combined with Mash paste and the

combined sketch given to dist. These operations took in-

significant amounts of time, and table output from dist

was given to PHYLIP v3.695 [50] neighbor to produce

the phylogeny. Accessions for all genomes used are given

in Additional file 1: Table S1. The UCSC tree was down-

loaded from [51].

RefSeq search

Each dataset listed in Table 3 was compared against the

full RefSeq Mash database using the following command

for assemblies:

mash dist refseq.msh seq.fasta

and the following command for raw reads:

mash dist -u refseq.msh seq.fasta
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which enabled the Bloom filter to remove erroneous,

single-copy k-mers. (Note: option -u was replaced by -b

in Mash v1.1.) Hits were sorted by distance and all hits

within one order of magnitude of the most significant

hit (P ≤10–10) were used to compute the lowest common

ancestor using an NCBI taxonomy tree. The RefSeq gen-

ome with the smallest significant distance, with ties

broken by P value, was also reported.

Metagenomic clustering

The Global Ocean Survey (GOS) dataset [35] was down-

loaded from the iMicrobe FTP site (ftp://ftp.imicrobe.us/

projects/26). The full dataset was split into 44 samples

corresponding to Table 1 in Rusch et al. [35]. This is the

dataset used for benchmarking in the Compareads paper

[33] and that analysis was replicated using both Mash

and COMMET [34], the successor to Compareads.

COMMET v24/07/2014 was run with default parameters

(t = 2, m = all, k = 33) as:

python Commet.py read_sets.txt

where “read_sets.txt” points to the gzipped FASTQ files.

This required 34 CPU h (2069 CPU min) and 4 GB of

RAM. As suggested by COMMET’s author, samples

were also truncated to contain the same number of

reads to improve runtime (50,980 reads per sample,

Nicolas Maillet, personal communication). On this re-

duced dataset COMMET required 10 CPU h (598 CPU

min). The heatmaps were generated in R using the

quartile coloring of COMMET [34] (Additional file 1:

Supplementary Note 2). Additional file 1: Figure S8

shows the original heatmap generated by COMMET on

this dataset. Mash was run as:

mash sketch -u -g 3500 -k 21 -s 10000 -o

gos *.fa

This required 0.6 CPU h (37 CPU min) and 19.6 GB

of RAM with Bloom filtering or 8 MB without. (Note:

options -u and -g were replaced by -b in Mash v1.1.)

The resulting combined sketch file totaled just 3.4 MB

in size, compared to the 20 GB FASTA input. Mash

distances were computed for all pairs of samples as:

mash dist -t gos.msh gos.msh

which required less than 1 CPU s to complete.

All available HMP and MetaHIT samples were down-

loaded: HMP reads [52], HMP assemblies [53], MetaHIT

reads (ENA accession ERA000116), and MetaHIT as-

semblies [54]. This totaled 764 sequencing runs (9.3 TB)

and 755 assemblies (60 GB) for HMP and 124 sequen-

cing runs (1.1 TB) and 124 assemblies (10 GB) for

MetaHIT. Mash was run in parallel with the same pa-

rameters used for the GOS datasets and the resulting

sketches merged with Mash paste. Sketching the 764

HMP sequencing runs required 259.5 CPU h (average

0.34, max 2.01) and the 755 assemblies required 3.7 CPU

h (average 0.005). Sketching the 124 MetaHIT sequencing

runs required 20 CPU h (average 0.16, max 0.62), and the

124 assemblies required 0.64 CPU h (average 0.005).

COMMET was tested on three read sets (SAMN00038294,

SAMN00146305, and SAMN00037421), which were

smaller than the average HMP sample size and required an

average of 655 CPU s per pairwise comparison. Thus, it

was estimated to compare all 8882 pairs of HMP and

MetaHIT samples would require at least 143,471 CPU h.

Mash distances were computed for all pairs of samples as

before for GOS. This required 3.3 CPU min for both

sequencing runs and assemblies. HMP samples that did

not pass HMP QC requirements [36] were removed from

Fig. 5b, but Additional file 1: Figure S7 shows all HMP

assemblies clustered, with several samples that did not pass

HMP quality controls included. These samples are the only

ones that fail to group by body site. Thus, Mash can also

act as an alternate QC method to identify mis-tracked or

low-quality samples.

Mash engineering

Mash builds upon the following open-source software

packages: kseq [55] for FASTA parsing, Cap’n Proto for

serialized output [56], MurmurHash3 for k-mer hashing

[57], GNU Scientific Library [58] (GSL) for P value

computation, and the Open Bloom Filter Library [59].

All Mash code is licensed with a 3-clause BSD license. If

needed, Mash can also be built using the Boost library

[60] to avoid the GSL (GPLv3) license requirements.

Due to Cap’n Proto requirements, a C++11 compatible

compiler is required to build from source, but precom-

piled binaries are distributed for convenience.

Additional file

Additional file 1: Figure S1. Absolute and relative error bounds for
Mash Jaccard estimates given various sketch sizes. Figure S2. Error
bounds for Mash distance estimate using k = 16 and k = 21 and various
sketch sizes. Figure S3. Effect of k-mer and genome size on the Mash
distance. Figure S4. Eukaryotic components of the RefSeq clustering,
colored by taxonomic order. Figure S5. Plasmid and organelle components
of the RefSeq clustering, colored by taxonomic species. Figure S6. Mash
tree from Fig. 4 supplemented with five additional mammals. Figure S7.

Mash clustering of all HMP and MetaHit sample assemblies. Figure S8. Raw
COMMET output for the GOS dataset. Supplementary Note 1.
Supporting data. Supplementary Note 2. Metagenomic heatmap R code.
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