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Abstract— In this paper we present a new approach for
labeling 3D points with different geometric surface primitives
using a novel feature descriptor – the Fast Point Feature
Histograms, and discriminative graphical models. To build
informative and robust 3D feature point representations, our
descriptors encode the underlying surface geometry around a
point p using multi-value histograms. This highly dimensional
feature space copes well with noisy sensor data and is not
dependent on pose or sampling density. By defining classes of 3D
geometric surfaces and making use of contextual information
using Conditional Random Fields (CRFs), our system is able
to successfully segment and label 3D point clouds, based on
the type of surfaces the points are lying on. We validate and
demonstrate the method’s efficiency by comparing it against
similar initiatives as well as present results for table setting
datasets acquired in indoor environments.

I. INTRODUCTION

Segmenting and interpreting the surrounding environment

that a personal robot operates in from sensed 3D data is

an important research topic. Besides recognizing a certain

location on the map for localization or map refinement

purposes, obtaining accurate and informative object models

is essential for precise manipulation and grasping. Addition-

ally, although the acquired data is discrete and represents

only a few samples of the underlying scanned surfaces, it

quickly becomes expensive to store and work with. It is

therefore imperative to find ways to address this dimension-

ality problem and group clusters of points sampled from

surfaces with similar geometrical properties together, or in

some sense try to “classify the world”. Achieving the latter

annotates sensed 3D points and geometric structures with

higher level semantics and will greatly simplify research in

the aforementioned topics (e.g. manipulation and grasping).

In general, at the 3D point level, there are two basic

alternatives for acquiring these annotations:

1) use a powerful, discriminative 3D feature descriptor,

and learn different classes of surface or object types

either by supervised or unsupervised learning, and then

use the resultant model to classify newly acquired data;

2) use geometric reasoning techniques such as point cloud

segmentation and region growing, in combination with

robust estimators and non-linear optimization tech-

niques to fit linear (e.g. planes, lines) and non-linear

(e.g. cylinders, spheres) models to the data.

Both approaches have their advantages and disadvantages,

but in most situations machine learning techniques – and

thus the first approach, will outperform techniques purely

based on geometric reasoning. The reason is that while linear

models such as planes can be successfully found, fitting more

complicated geometric primitives like cones becomes very

difficult, due to noise, occlusions, and irregular density, but

also due to the higher number of shape parameters that need

to be found (increased complexity). To deal with such large

solution spaces, heuristic hypotheses generators, while being

unable to provide guarantees regarding the global optimum,

can provide candidates which drastically reduce the number

of models that need to be verified.

Fig. 1. An ideal 3D point based classification system providing two
different point labels: geometry (L1) and object class (L2).

Additionally, we define a system able to provide two

different hierarchical point annotation levels as an ideal

point classification system. Because labeling objects lying

on a table just with a class label, say mug versus cereal

box, is not enough for manipulation and grasping (because

different mugs have different shapes and sizes and need to be

approached differently by the grasp planner), we require the

classification system to annotate the local geometry around

each point with classes of 3D geometric primitive shapes.

This ensures that besides the object class, we are able to

reconstruct the original object geometry and also plan better

grasping points at the same time. Figure 1 presents the two

required classification levels for 3 points sampled on separate

objects with different local geometry.

This paper concentrates on the first annotation approach,

and introduces a novel 3D feature descriptor for point clouds:

the Fast Point Feature Histograms (FPFH). Our descriptors

are based on the recently proposed Point Feature Histograms

(PFH) [1] and robustly encode the local surface geometry

around a point p using multi-value histograms, but reduce

the original PFH computational complexity from O(N2) to



O(N) while retaining most of their discriminative power.

The FPFH descriptors cope well with noisy sensor data

acquired from laser sensors and are independent of pose or

sampling density. We present an in-depth analysis on their us-

age for accurate and reliable point cloud classification, which

provides candidate region clusters for further parameterized

geometric primitive fitting.

By defining classes of 3D geometric surfaces, such as:

planes, edges, corners, cylinders, spheres, etc, and making

use of contextual information using discriminative undirected

graphical models (Conditional Random Fields), our system

is able to successfully segment and label 3D points based

on the type of surfaces the points are lying on. We view

this is as an important building block which speeds up and

improves the recognition and segmentation of objects in real

world scenes.

As an application scenario, we will demonstrate the pa-

rameterization and usage of our system for the purpose of

point classification for objects lying on tables in indoor

environments. Figure 2 presents a classification snapshot

for a scanned dataset representing a table with objects in

a kitchen environment. The system outputs point labels for

all objects found in the scene.

Fig. 2. Top: raw point cloud dataset acquired using the platform in Figure 7
containing approximatively 22000 points; bottom: classification results for
points representing the table and the objects on it. The color legend is:
dark green for planar, mid green for convex cylinders, yellow for concave
cylinders, light green for corners, pink for convex edges and brown for
convex tori. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

The remainder of the paper is organized as follows. We

address related work on similar initiatives in the next section,

and describe the Fast Point Feature Histograms (FPFH) in

Section III. The classes of 3D primitive geometric shapes

used for learning the model are presented and analyzed in

Section IV. We introduce our variant of Conditional Random

Fields in Section V and discuss experimental results in

Section VI. Finally we conclude and give insight into our

future work in Section VII.

II. RELATED WORK

The area of 3D point-based surface classification has seen

significant progress over time, but more in recent years due

to advances in electronics which fostered both better sensing

devices as well as personal computers able to process the data

faster. Suddenly algorithms for 3D feature estimation which

were intractable for real world applications a few years ago

became viable solutions for certain well-defined problems.

Even so however, most of the work in 3D feature estimation

has been done by the computer graphics community, on

datasets usually acquired from high-end range scanners.

Two widely used geometric point features are the under-

lying surface’s estimated curvature and normal [2], which

have been also investigated for noisier point datasets [3].

Other proposals for point features include moment invariants

and spherical harmonic invariants [4], and integral volume

descriptors [5]. They have been successfully used in ap-

plications such as point cloud registration, and are known

to be translation and rotation invariant, but they are not

discriminative enough for determining the underlying surface

type. Specialized point features that detect peaks, pits and

saddle regions from Gaussian curvature thresholding for the

problem of face detection and pose estimation are presented

in [6]. Conformal factors are introduced by [7], as a measure

of the total curvature of a shape at a given triangle vertex.

In general, descriptors that characterize points with a

single value are not expressive enough to make the necessary

distinctions for point-surface classification. As a direct conse-

quence, most scenes will contain many points with the same

or very similar feature values, thus reducing their informative

characteristics. Alternatively, multiple-value point features

such as curvature maps [8], or spin images [9], are some

of the better local characterizations proposed for 3D meshes

which got adopted for point cloud data. However, these

representations require densely sampled data and are not able

to deal with the amount of noise usually present in 2.5D

scans.

Following the work done by the computer vision commu-

nity which developed reliable 2D feature descriptors, some

preliminary work has been done recently in extending these

descriptors to the 3D domain. In [10], a keypoint detector

called THRIFT, based on 3D extensions of SURF [11] and

SIFT [12], is used to detect repeated 3D structure in range

data of building facades, however the authors do not address

computational or scalability issues, and fail to compare their

results with the state-of-the art. In [13], the authors propose

RIFT, a rotation invariant 3D feature descriptor utilizing

techniques from SIFT, and perform a comparison of their

work with spin images, showing promising results for the

problem of identifying corresponding points in 3D datasets.

We extend our previous work presented in [1] by com-

puting fast local point feature histograms for each point

in the cloud. We make an in-depth analysis of the points’

signatures for different geometric primitives (i.e. planes,

cylinders, toruses, etc) and show classification results using



two different machine learning methods: Support Vector

Machines (SVM) and Conditional Random Fields (CRF).

The work in [14], [15] is similar to our labeling approach,

as they too use probabilistic graphical models for the problem

of point-cloud classification. In both, sets of simple point-

based 3D features are defined, and a model is trained to

classify points with respect to object classes such as: chairs,

tables, screens, fans, and trash cans [15], respectively: wires,

poles, ground, and scatter [14]. The main difference of our

framework is that we do not craft sets of simpler 3D features

for individual problems to solve, but propose the usage of a

single well defined 3D descriptor for all.

III. FAST POINT FEATURE HISTOGRAMS (FPFH)

The computation of a Fast Point Feature Histogram

(FPFH) at a point p relies on the point’s 3D coordinates

and the estimated surface normal at that point. As shown

by [1], the PFH formulation is sufficient for capturing the

local geometry around the point of interest, but if needed, is

extensible to the use of other local properties such as color,

curvature estimates, 2nd order moment invariants, etc.

The main purpose of the FPFH formulation is to create

a feature space in which 3D points lying on primitive

geometric surfaces (e.g. planes, cylinders, spheres, etc) can

be easily identified and labeled. As a requirement then, the

discriminating power of the feature space has to be high

enough so that points on the same surface type can be

grouped in the same class, while points sampled on different

surface types are assigned to different classes. In addition,

the proposed feature space needs to be invariant to rigid

transformations, and insensitive to point cloud density and

noise to a certain degree.

To formulate the FPFH computational model, we introduce

the following notations:

• pi is a 3D point with {xi, yi, zi} geometric coordinates;

• ni is a surface normal estimate at point pi having a

{nxi, nyi, nzi} direction;

• Pn = {p1,p2, · · · } is a set of nD points (also repre-

sented by P for simplicity);

• Pk is the set of points pj , (j ≤ k), located in the k-

neighborhood of a query point pi;

• ‖ · ‖x is the Lx norm (e.g. ‖ · ‖1 is the Manhattan or L1

norm, ‖ · ‖2 is the Euclidean or L2 norm).

Using the above formulation, the estimation of a FPFH

descriptor includes the following steps: i) for each point pi,

the set of Pk neighbors enclosed in the sphere with a given

radius r are selected (k-neighborhood); ii) for every pair of

points pi and pj (i 6= j) in Pk, and their estimated normals

ni and nj (pi being the point with a smaller angle between

its associated normal and the line connecting the points), we

define a Darboux uvn frame (u = ni, v = (pj − pi) ×
u, w = u×v) and compute the angular variations of ni and

nj as follows:

α = v · nj

φ = (u · (pj − pi))/||pj − pi||2

θ = arctan(w · nj , u · nj)

(1)

Then, for all sets of computed < α, φ, θ > values in Pk,

a multi-value histogram is created as described in [1]. We

call this the SPFH (Simplified Point Feature Histogram) as

it only describes the direct relationships between a query

point pi and its k neighbors. To capture a more detailed

representation of the underlying surface geometry at Pk, in

a second step we refine the final histogram (FPFH) of pi by

weighting all the neighboring SPFH values:

FPFH(pi) = SPFH(pi) +
1

k

k∑

i=1

1

ωk

· SPFH(pk) (2)

where the weight ωk is chosen as the distance between the

query point pi and a neighboring point pk in some metric

space (Euclidean in our formulation), but could just as well

be selected as a different measure if necessary. To understand

the importance of this weighting scheme, Figure 3 presents

the influence region diagram for a Pk set centered at pq. The

SPFH connections are illustrated using red lines, linking pi

with its direct neighbors, while the extra FPFH connections

(due to the additional weighting scheme) are shown in black.
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Fig. 3. The influence region diagram for a Fast Point Feature Histogram.
Each query point (red) is connected only to its direct k-neighbors (enclosed
by the gray circle). Each direct neighbor is connected to its own neighbors
and the resulted histograms are weighted together with the histogram of the
query point to form the FPFH. The thicker connections contribute to the
FPFH twice.

The number of histogram bins that can be formed in a fully

correlated FPFH space is given by qd, where q is the number

of quantums (i.e. subdivision intervals in a feature’s value

range) and d the number of features selected (e.g. in our

case dividing each feature interval into 5 values will result

in 53 = 125 bins). In this space, a histogram bin increment

corresponds to a point having certain values for all its 3

features. Because of this however, the resulting histogram

will contain a lot of zero bins, and can thus contribute to a

certain degree of information redundancy. A simplification

of the above is to decorrelate the values, that is to simply

create d separate histograms, one for each feature dimension

in Equation 1, and then concatenate them together to create

the FPFH.

In contrast to our PFH formulation [1], the FPFH de-

scriptors reduce the computational complexity from O(N2)



to O(N). In the next section we analyze if the FPFH

descriptors are informative enough to differentiate between

points sampled on different 3D geometric shapes.

IV. 3D GEOMETRIC PRIMITIVES AS CLASS LABELS

A straightforward analysis of the FPFH discriminating

power can be performed by looking at how features com-

puted for different geometric surfaces resemble or differ from

each other. Since the FPFH computation includes estimated

surface normals, the features can be separately computed and

grouped for both two cases of convex and concave shapes.

Figure 4 presents examples of FPFH signatures for points

lying on 5 different convex surfaces, namely a cylinder, an

edge, a corner, a torus, and finally a plane. To illustrate that

the features are discriminative, in the left part of the figure we

assembled a confusion matrix with gray values representing

the distances between the mean histograms of the different

shapes (a low distance is represented with white, while a

high distance with black), obtained using the Histogram

Intersection Kernel [16]:

d(FPFH1, FPFH2) =

N∑

i=1

min(FPFHi
1, FPFH

i
2) (3)
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Fig. 4. Example of Fast Point Feature Histograms for points lying on
primitive 3D geometric surfaces.

The results show that if the computational parameters are

chosen carefully (i.e. the scale), the features are informative

enough to differentiate between points lying on different

geometric surfaces.

V. CONDITIONAL RANDOM FIELDS

Generative graphical models, like Naive Bayes or Hidden

Markov Models, represent a joint probability distribution

p(x, y), where x expresses the observations and y the classi-

fication label. Due to the inference problem this approach is

not well applicable for fast labeling of multiple interacting

features like in our case. A solution is to use discriminative

models, such as Conditional Random Fields, which represent

a conditional probability distribution p(y|x). That means

there is no need to model the observations and we can

avoid making potentially erroneous independence assump-

tions among these features [17]. The probability p(y|x) can

be expressed as:

p(y|x) =
p(y, x)

p(x)
=

p(y, x)∑
y′ p(y′, x)

=
1
Z

∏
c∈C ψc(xc, yc)

1
Z

∑
y′

∏
c∈C ψc(xc, y′c)

(4)

Therefore we can formulate a CRF model as:

p(y|x) =
1

Z(x)

∏

c∈C

ψc(xc, yc) (5)

where Z(x) =
∑

y′

∏
c∈C ψc(xc, y

′). The factors ψc are

potential functions of the random variables vC within a

clique c ∈ C [18].

According to this mathematical definition, a CRF can be

represented as a factor graph (see Figure 5). By defining

the factors ψ(y) = p(y) and ψ(x, y) = p(x|y) we get an

undirected graph with state and transition probabilities.

Fig. 5. Graphical representation of a CRF, as a factor graph (left), and as
an undirected graph (right).

The potential functions ψc can be split into edge potentials

ψij and node potentials ψi as follows:

p(y|x) =
1

Z(x)

∏

(i,j)∈C

ψij(yi, yj , xi, xj)

N∏

i=1

ψi(yi, xi) (6)

where the node potentials are

ψi(yi, xi) = exp{
∑

L

(λL
i xi)y

L
i } (7)

and the edge potentials are

ψij(yi, yj , xi, xj) = exp{
∑

L

(λijxixj)y
L
i y

L
j } (8)

Learning in a Conditional Random Field is performed

by estimating the node weights λi = {λ1
i , . . . , λ

L
i } and

the edge weights λij = {λ1
ij , . . . , λ

L
ij}. The estimation is

done by maximizing the log-likelihood of p(y|x) [19]. One

way for solving this nonlinear optimization problem is by

applying the Broyden-Fletcher-Goldfarb-Shannon (BFGS)

method. Specially Limited-memory BFGS gains fast results

by approximating the inverse Hessian Matrix.

The given problem of labeling neighbored laser-scanned

points motivates the exploitation of the graphical structure of

CRFs. In our work, each conditioned node represents a laser-

scanned point and each observation node a calculated feature.

Figure 6 shows a simplified version of our model. The output

nodes are connected with their observation nodes and the

observation nodes of their surrounding neighbors, and each

observation node is connected to its adjacent observation

nodes.
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Fig. 6. Simplified version of our Conditional Random Field model

VI. DISCUSSIONS AND EXPERIMENTAL RESULTS

To validate our framework, we have performed several

experiments of point cloud classification for real world

datasets representing table scenes. The 3D point clouds were

acquired using a SICK LMS400 laser scanner, mounted on

a robot arm and sweeped in front of the table (see Figure 7).

The average acquisition time was ≈1 s per complete 3D point

cloud, and each dataset comprises around 70000 − 80000
points. In total we acquired 10 such datasets with different

objects and different arrangements (see Table II).

Fig. 7. Left: the robot used in our experiments; right: an example of one
of the scanned table scenes.

Since we are only interested in classifying the points be-

longing to the objects on the table, we prefilter the raw point

clouds by segmenting the table surface and retaining only the

individual clusters lying on it. To do this, we assumed that the

objects of interest are lying on the largest (biggest number of

inliers) horizontal planar component in front of the robot, and

we used a robust estimator to fit a plane model to it. Once

the model was obtained, our method estimates the boundaries

of the table and segments all object clusters supported by it

(see Figure 8). Together with the table inliers, this constitutes

the input to our feature estimation and surface classification

experiments, and accounts for approximatively 22000-23000

points (≈ 30% of the original point cloud data).

Fig. 8. Left: raw point cloud dataset; right: the segmentation of the table
(green) and the objects supported by it (random colors) from the rest of the
dataset (black).

TABLE I

FEATURE ESTIMATION, MODEL LEARNING, AND TESTING RESULTS FOR

THE DATASET IN FIGURE 2. THE METHOD INDICES REPRESENT THE

TYPE OF FEATURES USED: PFH (1) AND FPFH (2). ALL COMPUTATIONS

WERE PERFORMED ON A CORE2DUO @ 2 GHZ WITH 4 GB RAM.

Feature Model Model
Method Estimation Training Testing Accuracy

(pts/s) (s) (pts/s)

CRF1 331.2 0.32 18926.17 89.58%

SVM1 331.2 1.88 1807.11 90.13%

CRF2 8173.4 0.091 76996.59 97.36%

SVM2 8173.4 1.98 4704.90 89.67%

To learn a good model, we used object clusters from 3 of

the data sets, and then tested the results on the rest. This is in

contrast to our previous formulation in [1] where we trained

the classifiers with synthetically noisified data. The training

set was built by choosing primitive geometric surfaces out of

the data sets, like corners, cylinders, edges, planes, or tori,

both concave and convex. Our initial estimate is that these

primitives account for over 95% data in scenes similar to

ours.

We used the training data to compute two different models,

using Support Vector Machines and Conditional Random

Fields. Since ground truth was unavailable at the data ac-

quisition stage, we manually labeled two scenes to test the

individual accuracy of the two machine learning models

trained. Additionally, on the same datasets, we estimated

and tested two extra SVM and CRF models based on PFH

features. Table I presents the computation time spent for both

the feature estimation, and model training and testing parts.

As shown, the FPFH algorithm easily outperforms the

PFH algorithm in computation performance. It calculates

point histograms over 20 times faster while still gaining

an edge in CRF classification accuracy. The training error

curves for the CRF models for both PFH and FPFH are

shown in Figure 9. Since the error norm becomes very small

after approximatively 50 iterations, we stopped the model

training there. Table II presents visual examples of some

of the classified table scenes with both the SVM and CRF

models.
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TABLE II

A SUBSET OF 4 DIFFERENT DATASETS USED TO TEST THE LEARNED MODELS. THE IMAGES (TOP TO BOTTOM) REPRESENT: GRAYSCALE INTENSITY

VALUES, CLASSIFICATION RESULTS OBTAINED WITH THE SVM MODEL, AND CLASSIFICATION RESULTS OBTAINED WITH THE CRF MODEL.

Scene 1 Scene 2 Scene 3 Scene 4

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented FPFH (Fast Point Feature

Histogram), a novel and discriminative 3D feature descriptor,

useful for the problem of point classification with respect

to the underlying geometric surface primitive the point is

lying on. By carefully defining 3D shape primitives, and

making use of contextual information using probabilistic

graphical models such as CRFs, our framework can robustly

segment point cloud scenes into geometric surface classes.

We validated our approach on multiple table setting datasets

acquired in indoor environments with a laser sensor. The

computational properties of our approach exhibit a favorable

integration for fast, real time 3D classification of laser data.

As future work, we plan to increase the robustness of the

FPFH descriptor against noise to be able to use it for point

classification in datasets acquired using stereo cameras or

other sensors less precised than laser scanners.
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