
 Open access  Journal Article  DOI:10.1109/TIP.2007.894233

Fast Global Kernel Density Mode Seeking: Applications to Localization and
Tracking — Source link 

Chunhua Shen, Michael J. Brooks, A. van den Hengel

Institutions: University of Adelaide

Published on: 01 May 2007 - IEEE Transactions on Image Processing (IEEE Trans Image Process)

Topics: Mean-shift, Video tracking, Initialization, Kernel density estimation and Gradient descent

Related papers:

 Kernel-based object tracking

 Mean shift: a robust approach toward feature space analysis

 Ensemble Tracking

 Object tracking: A survey

 Mean shift, mode seeking, and clustering

Share this paper:    

View more about this paper here: https://typeset.io/papers/fast-global-kernel-density-mode-seeking-applications-to-
16elh6oli1

https://typeset.io/
https://www.doi.org/10.1109/TIP.2007.894233
https://typeset.io/papers/fast-global-kernel-density-mode-seeking-applications-to-16elh6oli1
https://typeset.io/authors/chunhua-shen-431r9zhh2y
https://typeset.io/authors/michael-j-brooks-4z7fqnt69p
https://typeset.io/authors/a-van-den-hengel-1pcltqtc5n
https://typeset.io/institutions/university-of-adelaide-3p19hv6c
https://typeset.io/journals/ieee-transactions-on-image-processing-2awu425s
https://typeset.io/topics/mean-shift-2hi0shbc
https://typeset.io/topics/video-tracking-1gcwogmj
https://typeset.io/topics/initialization-1xdv6ot8
https://typeset.io/topics/kernel-density-estimation-3ne7ame7
https://typeset.io/topics/gradient-descent-3n13ulwk
https://typeset.io/papers/kernel-based-object-tracking-2pj4gwhvr7
https://typeset.io/papers/mean-shift-a-robust-approach-toward-feature-space-analysis-o9hxogqbl3
https://typeset.io/papers/ensemble-tracking-2zhrwir7e2
https://typeset.io/papers/object-tracking-a-survey-3706dclxb5
https://typeset.io/papers/mean-shift-mode-seeking-and-clustering-2mzfnll1c8
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/fast-global-kernel-density-mode-seeking-applications-to-16elh6oli1
https://twitter.com/intent/tweet?text=Fast%20Global%20Kernel%20Density%20Mode%20Seeking:%20Applications%20to%20Localization%20and%20Tracking&url=https://typeset.io/papers/fast-global-kernel-density-mode-seeking-applications-to-16elh6oli1
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/fast-global-kernel-density-mode-seeking-applications-to-16elh6oli1
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/fast-global-kernel-density-mode-seeking-applications-to-16elh6oli1
https://typeset.io/papers/fast-global-kernel-density-mode-seeking-applications-to-16elh6oli1


 

 

 

 

 

         

 

       Copyright © 2007 IEEE. Reprinted from  

IEEE Transactions on Image Processing, 2007; 16 (5):1457-1469 

 

This material is posted here with permission of the IEEE. Such 

permission of the IEEE does not in any way imply IEEE endorsement of 

any of the University of Adelaide's products or services.  Internal or 

personal use of this material is permitted. However, permission to 

reprint/republish this material for advertising or promotional purposes or 

for creating new collective works for resale or redistribution must be 

obtained from the IEEE by writing to pubs-permissions@ieee.org. 

 

By choosing to view this document, you agree to all provisions of the 

copyright laws protecting it. 

 
 



Fast Global Kernel Density Mode Seeking with application

to Localisation and Tracking

Chunhua Shen, Michael J. Brooks, Anton van den Hengel

School of Computer Science, University of Adelaide, SA 5005, Australia

{chhshen,mjb,anton}@cs.adelaide.edu.au

Abstract

We address the problem of seeking the global mode of a den-

sity function using the mean shift algorithm. Mean shift, like other

gradient ascent optimisation methods, is susceptible to local max-

ima, and hence often fails to find the desired global maximum.

In this work, we propose a multi-bandwidth mean shift procedure

that alleviates this problem, which we term annealed mean shift,

as it shares similarities with the annealed importance sampling

procedure. The bandwidth of the algorithm plays the same role as

the temperature in annealing. We observe that the over-smoothed

density function with a sufficiently large bandwidth is uni-modal.

Using a continuation principle, the influence of the global peak in

the density function is introduced gradually. In this way the global

maximum is more reliably located.

Generally, the price of this annealing-like procedure is that

more iterations are required. Since it is imperative that the com-

putation complexity is minimal in real-time applications such as

visual tracking. We propose an accelerated version of the mean

shift algorithm. Compared with the conventional mean shift al-

gorithm, the accelerated mean shift can significantly decrease the

number of iterations required for convergence.

The proposed algorithm is applied to the problems of visual

tracking and object localisation. We empirically show on various

data sets that the proposed algorithm can reliably find the true

object location when the starting position of mean shift is far away

from the global maximum, in contrast with the conventional mean

shift algorithm that will usually get trapped in a spurious local

maximum.

1. Introduction & Motivation

Kernel-based density estimation techniques for com-

puter vision have recently attracted a great deal of attention.

One example is the mean shift technique which has been ap-

plied to image segmentation and visual tracking [1–6], etc.

Mean shift is a versatile nonparametric density analysis tool

introduced in [7–9]. In essence, it is an iterative mode detec-

tion algorithm in the density distribution space. The mean

shift algorithm uses kernels to compute the weighted aver-

age of the observations within a smoothing window. This

computation is repeated until convergence is attained at a

local density mode. This way the density modes can be el-

egantly located without explicitly estimating the density.

Cheng [8] notes that mean shift is fundamentally a gra-

dient ascent algorithm with an adaptive step size. Recently

Fashing et al. show the connection between mean shift and

the Newton-Raphson optimisation algorithm [10]. They

also discover that mean shift is actually a quadratic bound

optimisation both for stationary and evolving sample sets

[10]. Mean shift is also a fixed-point iteration procedure.

Since Comaniciu et al. first introduced mean shift based

object tracking [2], it has proven to be a promising alterna-

tive to popular particle filtering based trackers. Incremental

research has been reported in the literature. In [3] the selec-

tion of kernel scale via linear search is discussed. Elgammal

et al. reformulate the tracking framework as a general form

of joint feature-spatial distributions [4, 6]. Compared with

the approach of Comaniciu et al. [2], the advantage is that

spatial structure information of the tracked region is incor-

porated into the measure.

In [5] multiple spatially distributed kernels are adopted

to accurately capture changes in the target’s orientation and

scale. Another approach is developed in [11] for the same

purpose. Furthermore Fan et al. present a theoretical anal-

ysis of similarity measure and arrive at a criterion, leading

to kernel design strategies with prevention of singularity in

kernel visual tracking [12]. All of these trackers adopt mean

shift or similar optimisation strategies to achieve tracking.

Despite successful applications, mean shift trackers require

that the displacement of the tracked target in consecutive

frames is small. If this is not the case, they are likely to be-

come trapped in spurious local maxima of the multi-modal

density distribution space1. This happens because mean

shift is a purely local optimisation method.

Fundamentally, mean shift has two important inherent

drawbacks. First of all, it can only be used to find local

modes. Being trapped in a local maximum/minimum is

a common problem for traditional nonlinear optimisation

algorithms. Simulated annealing is a well-known strategy

which aims to achieve global optimisation. It starts by ini-

tially sampling with a reduced sensitivity to the underly-

1In contrast, particle filtering based trackers (e.g. [13]) perform better

in this situation. However weak dynamical modelling also presents chal-

lenges to particle filters.
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ing modes (on a flattened cost function surface) and then

progressively increasing the sensitivity to drive samples to-

wards peaked cost regions [14]. Recently the idea of anneal-

ing has been merged into importance sampling, yielding an-

nealed importance sampling [15] and it has been introduced

to 3D articulated tracking [16].

Motivated by the success of both simulated annealing

and annealing importance sampling, we propose a novel

multi-bandwidth mean shift procedure, termed annealed

mean shift (ANNEALEDMS). It shares similarities with the

annealed importance sampling procedure in the sense that it

also gradually smooths the cost function surface and gen-

tly introduces the influence of the global peak. We ob-

serve that the over-smoothed density function with a suf-

ficiently large bandwidth2 hM is uni-modal. Then, with a

continuation principle, we slowly decrease the bandwidth

h = hM > hM−1 > · · · > h0 and, at each bandwidth,

we maximise the density (cost) function with mean shift,

starting from the convergence position of the previous run.

This multi-bandwidth mean shift iteration process is sim-

ilar to the multi-layered annealing procedure of annealed

importance sampling. The main differences are: (1) In AN-

NEALEDMS, it is the degree of smoothness of the cost func-

tion that is annealed, while in annealed importance sam-

pling, it is the degree of flatness of the cost function; (2)

Most importantly, in ANNEALEDMS, the number and po-

sitions of the modes evolve slowly while in the annealed

importance sampling, the temperature does not change the

number of modes or their positions.

In theory, as long as the change of the bandwidth is suf-

ficiently slow, the global maximum can usually be found

successfully.3 We provide technical details later.

A second drawback of mean shift is that in many cases it

converges slowly. The proposed ANNEALEDMS involves

even more iterations, and especially when it is applied to

localisation, in which case we have no knowledge of where

to start searching. It is imperative that the computational

complexity is minimal in real-time applications such as vi-

sual tracking. To our knowledge, few attempts have been

made to speed up the convergence to mean shift. In [1] lo-

cality sensitive hashing is used to reduce the computational

complexity of finding the nearest neighbours of a sample

point involved in mean shift. Although a dramatic decrease

in the execution time is achieved for high-dimensional clus-

tering, this technique is not that attractive for relatively low-

dimensional problems such as visual tracking. The speedup

of [1] is not obtained by reducing the iteration steps. In

this paper, we advance an accelerated version of the mean

shift algorithm. Compared with the conventional mean shift

2By a sufficiently large bandwidth, we mean a bandwidth which is

much larger than the optimal bandwidth with the minimum asymptotic

mean integrated square error (AMISE).
3For continuous variables, the assertion of success is probabilistic.

algorithm, it can significantly decrease the number of itera-

tions to convergence. The accelerated mean shift is inspired

by the successful accelerated variants of bound optimisa-

tion algorithms such as Expectation Maximisation (EM).

An over-relaxed strategy is then adopted to accelerate the

convergence. Much effort has been expended to improve

the efficiency of bound optimisation algorithms (e.g. EM,

[17–19]). A theoretical analysis of the convergence proper-

ties for a class of bound optimisation algorithms has been

given in [19], and is used as the basis for a novel adaptive

over-relaxed scheme. Our proposal is inspired by this ap-

proach. Based on the findings in [10], which bridge the

gap between mean shift and general bound optimisation al-

gorithms, we promote an adaptive over-relaxed mean shift

algorithm which is simple to implement yet significantly

more efficient than the standard counterpart.

As applications of the proposed fast, globally mode-

seeking mean shift, a fast ANNEALEDMS based object lo-

caliser and a visual tracker are developed. Substantially

more promising results have been achieved over the con-

ventional mean shift based algorithms. In summary, our

key contributions comprise:

1. Development of a novel annealed mean shift algorithm

which can reliably find the global mode of a density

distribution. This is introduced in Section 3.

2. Reinterpretation of the mean shift algorithm, resulting

in a faster version of mean shift. We discuss these is-

sues in Section 4.

3. Application of ANNEALEDMS to the problem of vi-

sual tracking using kernel-weighted colour histogram

features. Given a target model, the tracker is able to

initialise automatically. It also has the capability to

recover from tracking failures caused by occlusions,

drastic illumination changes, etc., in that the tracker

itself can also be a localiser. In contrast, conven-

tional mean shift trackers lack these desirable proper-

ties. These developments, including experimental re-

sults, are presented in Sections 5.1 and 5.2.

A brief review of the standard mean shift algorithm is

presented in Section 2. We conclude the paper in Section 6

with a discussion of some important issues.

2. Mean Shift Analysis

We first review the basic concepts of the mean shift algo-

rithm with notation similar to [9]. One of the most popular

nonparametric density estimators is kernel density estima-

tion. Given n data points xi, i = 1, · · · , n, drawn from a

population with density function f(x), x ∈ IR
d, the general

multivariate kernel density estimate at x is defined by

f̂K(x) =
1

n

n∑

i=1

KH(x − xi), (1)
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Figure 1: Multi-bandwidth density estimate on 1D galaxy velocity data.

(left) Curves from outside to inside indicate the annealing process with

successively decreasing bandwidths. In this case, the optimal bandwidth

is h0 = 450. The evolution of the modes is clearly shown: with a multi-

bandwidth mean shift mode detection, it is possible to find the global max-

imum without being distracted by local modes. (right) Convergence posi-

tions at each bandwidth are marked with circles in the last curve. Note that

the unit of the vertical axis is arbitrary.

where KH(x) = |H|−
1
2 K(H−

1
2 x). Here K(·) is a ker-

nel function (or window) with a symmetric positive defi-

nite bandwidth matrix H ∈ IR
d×d. A kernel function is

bounded with support satisfying the regularity constraints

as described in [8, 9]. For simplicity one usually assumes

an isotropic bandwidth which is proportional to the identity

matrix, i.e. H = h2
I. Employing the profile definition, the

kernel density estimator becomes

f̂K(x) =
ck

nhd

n∑

i=1

k

(∥∥∥∥
x − xi

h

∥∥∥∥
2
)

, (2)

where k(·) is the profile of the kernel K(·) and ck is a nor-

malisation constant. The optimisation problem of seeking

the local modes is solved by setting the gradient equal to

zero. Thus we have

∇̂fK(x)
def

=∇f̂K(x) =
2ck

h2cg

f̂G(x) · mG(x) = 0, (3)

where

f̂G(x) =
cg

nhd

n∑

i=1

g

(∥∥∥∥
x − xi

h

∥∥∥∥
2
)

, (4)

mG(x) =

∑n
i=1 xig

(∥∥x−xi

h

∥∥2
)

∑n
i=1 g

(∥∥x−xi

h

∥∥2
) − x, (5)

and g(x) = −k′(x). Here k(·) is defined to be the shadow

of the profile g(·) [10], and mG(x) is the mean shift vector.

Clearly ∇̂fK(x) = 0 ❀ mG(x) = 0, and the incremental

iteration scheme is obtained immediately:

x ←

∑n
i=1 xig

(∥∥x−xi

h

∥∥2
)

∑n
i=1 g

(∥∥x−xi

h

∥∥2
) . (6)

1. Determine the set of values for hm, (m = M · · · 0)
(a.k.a. the annealing schedule).

2. Randomly select an initial starting location for the

first annealing run and get the convergence location of

f̂hM ,K(·), which is x̂
(M), using mean shift.

3. for each m = M − 1, M − 2, · · · , 0, run mean shift

to get the convergence position x̂
(m) with the initial

position x̂
(m+1), i.e., the convergence position from

the previous bandwidth. x̂
(0) is then the final global

mode.

Figure 2: The ANNEALEDMS algorithm.

3. Annealed Mean Shift

Let hm(m = M, M − 1, · · · , 0) be a monotonically de-

creasing sequence of bandwidths such that h0 is the op-

timal bandwidth for the considered data set and usually

hM ≫ h0.4 A series of kernel density functions f̂hM ,K(·),

f̂hM−1,K(·), · · · , f̂h0,K(·) are applied to the sample data,

where the subscripts of f̂h,K(·) denote the bandwidth and

kernel type respectively.

Figure 1 illustrates a 1D example5, where M = 6. With

a large bandwidth, the function f̂hM ,K(·) is uni-modal,

merely representing the overall trend of the density func-

tion. Thus the starting point of the first annealing run does

not affect the mode detection.

The ANNEALEDMS algorithm is given in Figure 2.

3.1. Remarks

1. Apparently the annealing schedule is a trade off be-

tween efficiency and efficacy: slow annealing is more

likely to find a global maximum, but could also be pro-

hibitively expensive.

2. A justification of why ANNEALEDMS works is that

the number of modes of a kernel density estimator with

a Gaussian kernel is monotonically non-increasing

[22]. In order to convey convergence information,

the monotonicity of number of modes with respect to

bandwidths is compulsory. Note that the monotonicity

result only applies to the Gaussian kernel: compactly

supported kernels such as the Epanechnikov kernel

may not have this property. However, as pointed out

in [22], the lack of monotonicity happens only for rel-

atively very small bandwidths. The notion of a crit-

ical bandwidth6 for the popular kernels such as the

4There is a tremendous amount of literature on how to select the opti-

mal bandwidth in order to produce a minimum AMISE estimate (see, e.g.,

[20, 21].) In this work, we assume h0 can be obtained by existing tech-

niques.
5The 1D galaxy velocity data set is also used in [10].
6The smallest bandwidth above which the number of modes is mono-

tone.
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Epanechnikov kernel is still well defined. Moreover,

“just as in the Gaussian case, the critical bandwidth is

of the same size as the bandwidth (h0) that minimises

mean square error of the density estimator” [22]. This

conclusion serves as one of the theoretical bases of

our ANNEALEDMS: we are not interested in the band-

width under h0. Rather, we only take advantage of

the property of over-smoothness at bandwidths above

h0. Therefore, for the applications we are interested

in, e.g., visual localisation and tracking, the problem

of nonmonotonicity does not arise. We have also em-

pirically shown this important proposition.

3. Unless otherwise specified, in our examples the (trun-

cated) Gaussian kernel is used because it is well

suited to fast computation [6, 23]. When Gaussian

kernel is adopted, the mechanism is related with the

well-developed multi-scale theory [24, 25]. The over-

smoothed kernel density is essentially a Gaussian

smoothed version of the true density, via convolution

with extra Gaussians.

We note that, in the statistics literature, [24] has pro-

posed an algorithm SiZer to explore the significant modes

in an estimated curve across multiple scales. SiZer employs

a similar principle. In computer vision, a similar strategy,

variable-bandwidth density-based fusion (VBDF), has also

been adopted to find the most significant mode of a density

function in the context of information fusion for multiple

motion estimation [26]. However, there are no theoreti-

cal details given in [26]. We independently develop AN-

NEALEDMS mainly inspired by simulated annealing and

annealed importance sampling. We have shown a con-

nection between ANNEALEDMS and these annealing tech-

niques. Furthermore, we use it in a novel way to solve some

problems in robust visual localisation and tracking.

3.2. Numerical Examples

1D example. Figure 1 shows a simple 1D example on

the galaxy data [10]. Because of the density estimator’s

uni-modal property at a large bandwidth (hM ), the start po-

sition at hM has no effect on the final convergence. Figure 1

shows that the global maximum is successfully located with

a rough seven-step annealing schedule. For this particular

case, actually only two steps are needed to locate the global

mode.

2D example. For this example, the data are drawn

from a Gaussian mixture 0.1 · N
(
[−1, 0]⊤, 0.13I

)
+ 0.2 ·

N
(
[1, 2]⊤, I

)
+ 0.7 · N

(
[1,−2]⊤, I

)
. A four-step AN-

NEALEDMS with bandwidths {2, 1.02, 0.66, 0.45} is used

to locate the global mode. Figure 3 depicts the annealing

process. Again due to the uni-modal property, no mat-

ter from which initial position ANNEALEDMS starts, the

global mode is always obtained eventually. A video se-
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Figure 3: Multi-bandwidth density estimate on 2D artificial Gaussian mix-

ture data. A four-step annealing schedule is employed to find the global

mode. The modes found by mean shift across bandwidths are marked with

circles. See the sequence GMM2D.avi which demonstrates a slower evo-

lution across bandwidths.

quence (GMM2D.avi)7 is also generated to show the mode

evolution process more elaborately.

For these two examples, we do not assume any prior in-

formation about the distribution structure of the data. The

only information needed is the approximate range of the

data, which is usually available.

4. Fast Mean Shift

Generally, the price of global convergence of AN-

NEALEDMS is that more iterations are required. This is

the case particularly when the start point is far away from

the convergence position. It is imperative that the computa-

tional complexity is minimal in real-time applications such

as visual tracking. We introduce an adaptive over-relaxed

accelerated mean shift in this section.

4.1. Adaptive Over-Relaxed Mean Shift

The following two theorems serve the bases of the adap-

tive over-relaxed mean shift algorithm.

Theorem 4.1 (Cheng [8]): Mean shift with kernel G(·)
finds the modes of the density estimate with kernel K(·),

i.e. f̂K(·), where K(·) is the shadow of the kernel G(·).

With the analysis in Section 2, Theorem 4.1 is evident.

Theorem 4.2 (Fashing et al. [10]): Mean shift with kernel

K(·) is a quadratic bound optimisation over a density esti-

mate with a continuous shadow of K(·).

7The videos mentioned in this paper can be accessed at http://www.cs.

adelaide.edu.au/∼vision/demo/index.html.
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These two theorems show that mean shift is actually a

bound maximisation. One step of the mean shift procedure

of Equation (6) finds the exact maximum of the lower bound

of the objective function f̂K(x(κ)).8 From Equation (3) we

have mG(x) ∝ ∇̂fK(x)

f̂G(x)
, which means mean shift is a gradi-

ent ascent algorithm with adaptive step size. Hence its con-

vergence rate is better than conventional fixed-step gradient

algorithms. As we will see, however, from the viewpoint of

bound optimisation, the learning rate can be over-relaxed to

make its convergence faster.

It is well known that, in order to guarantee increas-

ing the cost function at each iteration, bound optimisation

methods must usually build conservative bounds, leading to

slow convergence [17, 19]. A lot of work has been carried

out to speed up bound optimisation methods, especially for

the EM algorithm due to its popularity [18]. In [19] it is

shown that by over-relaxing the step size, acceleration can

be achieved. Denote the bound function as ρ(x,x(κ)), then

the over-relaxed bound optimisation iteration becomes:

x
(κ+1) = x

(κ) + β
[
arg max

x
ρ(x,x(κ)) − x

(κ)
]
. (7)

Apparently when the learning rate β = 1, over-relaxed op-

timisation reduces to the standard bound optimisation al-

gorithm. It is easily seen that when β > 1 acceleration

is realised. Nevertheless by simply assigning a fixed value

to β, no convergence is secured and it seems quite diffi-

cult, if not impossible, to obtain the optimal value for β.

Xu proves that in the case of the Gaussian Mixture Model

(GMM) parameter estimation with EM, convergence can be

guaranteed using this method when we are close to a lo-

cal maximum and 0 < β < 2 [17]. This conclusion is

generalised to the case of general bound optimisation meth-

ods in [19]. Based on this important proposition, a simple

adaptive over-relaxed bound optimisation is readily avail-

able: the learning rate β can be adjusted by evaluating the

cost function. When one observes for some β > 1 that the

cost function becomes worse, then β has been set too large

and needs to be reduced. By simply setting β = 1 imme-

diately, convergence can be achieved. By regarding mean

shift as a special case of bound optimisation, these theoret-

ical conclusions also apply to mean shift.

The accelerated mean shift algorithm obtained in this

way is shown in Figure 4. One can easily check that the

following relation holds (up to a translation and a scale fac-

tor):

f̂K(x(κ+1)) = ρ(x(κ+1),x(κ+1)) ≥ ρ(x(κ+1),x(κ))

≥ ρ(x(κ),x(κ)) = f̂K(x(κ)).

Note that in the above analysis we do not take the mean shift

with a weight function into consideration, but the acceler-

ated algorithm also applies for the weighted case, because

8κ = 1, 2, · · · , denotes the iteration index.

1. Initialisation:

Set the iteration index κ = 1, the learning rate β = 1,

and the step parameter α > 1.

2. Iterate until convergence condition is met:

(a) Calculate x̃
(κ+1) with Equation (6). Calculate

the mean shift mG(x(κ+1)) = x̃
(κ+1) − x

(κ).

(b) x
(κ+1) = x

(κ) + β · mG(x(κ+1)).

(c) if f̂K(x(κ+1)) > f̂K(x(κ)),
Accept x(κ+1) and β = α · β;

else

Reject x(κ+1), x(κ+1) = x̃
(κ+1), and β = 1.

(d) Set κ = κ + 1. Start a new iteration.

Figure 4: The over-relaxed adaptive mean shift algorithm.

the two theorems concerned are derived from the weighted

mean shift [8,10]. The only overhead is the evaluation of the

cost function. However, we will see that for the (truncated)

Gaussian kernel, its special structure means that comput-

ing the mean shift iteration with Equation (6) also results in

evaluation of the cost function f̂K(x). Because the shadow

of the Gaussian kernel is itself, we have f̂K(x) = f̂G(x).

A question naturally arises, what if a kernel other than

a Gaussian, e.g., Epanechnikov, is adopted? The obser-

vation that we can reliably judge the behaviour of f̂K(x)

through the estimate f̂G(x) is only satisfied when these two

kernel functions generate density estimates of the same de-

gree of smoothness. For different kernels, as long as the

bandwidths are adjusted accordingly, all the kernels are

asymptotically equivalent under the AMISE error criterion.

Therefore the kernel type is not of importance in mean

shift analysis but the bandwidth plays a critical role. For

a non-Gaussian kernel, the shadow is different from itself

(f̂K(x) �= f̂G(x)). The smoothness of two kernel den-

sity estimates with the same bandwidth but different kernels

might be quite different. As a consequence, usually we can-

not reuse the density f̂G(x) calculated in Equation (6) and

an extra evaluation of the cost function f̂K(x) needs to be

made.

In fact, if the bandwidths of two different kernels hA, hB

satisfy hA

hB
=

δ0,A

δ0,B
, where δ0 is a kernel’s canonical band-

width, then the density estimates based on these two kernels

have the same degree of smoothness [27]. Utilising this

knowledge, in practice, if the canonical bandwidths asso-

ciated with a kernel and its shadow kernel are comparable,

we still can reuse f̂G(x). Although no details on this topic

are presented in this paper, we have validated this conclu-

sion with numerical experiments. However, one should be

aware that the measurement of comparable is application

dependent.
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4.2. Numerical Experiments

We compare the performance of the proposed acceler-

ated mean shift algorithm with the standard mean shift algo-

rithm on both synthetic data and real application data sets.

Note that rejected iterations are also counted for the accel-

erated mean shift algorithm.

Due to limited space, the detailed description of the data

sets is omitted, which can be found in [23]. In all the

tests, we use α = 1.25 and the convergence tolerance

ε = f̂K(xκ+1)−f̂K(xκ)

f̂K(xκ)
= 0.001. The resulting mode lo-

cations found by the two algorithms are so close that the

difference is negligible. We run the comparison with three

arbitrarily selected start points on each data set. The exper-

iment results are reported in Table 4.2. The proposed algo-

rithm is significantly more efficient than the standard mean

shift. The evaluation results are promising: a speedup by a

factor of about 2 ∼ 5 can be achieved in these evaluations.

We have also developed an accelerated mean shift tracker,

which outperforms the conventional mean shift tracker [23].

The accelerated mean shift’s performance with fewer

convergence iterations has proven commensurate with its

standard counterpart. In theory when the start point is ex-

tremely close to the local maximum, the rejection in the

proposed accelerated mean shift procedure might happen

frequently, resulting in a resource waste. In practice these

cases are very rare. Moreover one can devise smarter step-

size adjustment strategies to survive in this extreme case.

data set initial
number of iterations

fast mean shift mean shift

data set #1

−0.8 13 51
1.5 16 77
3.6 11 33

data set #2

9800 12 49
−1005 8 15
3200 10 31

data set #3

(−5, 20) 12 34
(−10, 16) 11 29
(20, 10) 13 35

data set #4

(1,−1.4) 29 119
(1.5, 0.4) 17 65
(0.3, 0.3) 12 36

Table 1: Comparison of number of iterations for convergence. The initial

location for each run is shown in the second column.

5. Fast Annealed Mean Shift Based Visual Lo-

calisation and Tracking

In this section we apply the two improvements on mean

shift to visual localisation and tracking. In all the locali-

sation and tracking experiments we use RGB colour his-

tograms, consisting of 16 × 16 × 16 bins. The tracking

framework presented in [2] is adopted, but we use an an-

(1)
(2)

(3)

(4)(5)

(6)

(1)

(2)

(3)

(4)
(5)

(6)

(1)

(2)

(3)
(4)

(5)

(6)

(1)

(2)

(3)

(4)

(5)

(6)

Figure 5: We locate a specified human face (left top) beside two spuri-

ous faces, the STARBUCKS logo (right top), a CD (left bottom) and a book

cover (right bottom) under cluttered backgrounds. The ANNEALEDMS

is started at arbitrarily selected positions. Dashed lines indicate the mean

shift searching trajectories for each run. Dots indicate the start and conver-

gence positions of mean shift for each bandwidth. See the accompanying

videos localiser{1, 2, 3, 4}.avi for an intuitive demonstration on the an-

nealing convergence processes.

nealing procedure for global mode seeking.

5.1. Visual Localisation

Up to date, mean shift has typically been used for

tracking motions with small displacements due to its lack

of global mode seeking capability. Armed with AN-

NEALEDMS, it is possible to locate a target no matter from

which initial position the mean shift localiser starts, given

the target template.

In our experiments, the ANNEALEDMS localiser starts

at arbitrarily selected positions. All result on successful lo-

cation of the target. Six runs for each example are marked

in Figure 5. Four objects are located successfully in dif-

ferent environments. For the first example, the bandwidths

are {60, 40, 20, 10}. We plot the cost functions of this ex-

ample in Figure 6 to explore how ANNEALEDMS works in

this case. The influence of the most significant peak is in-

troduced gradually, which guides search towards the global

mode. One can see that even at h1 = 20, there have been

plenty of local modes which can easily make the search stop

prematurely. At h0 = 10, there are three major modes cor-

responding to the three faces in the figure. Note that mean

shift does not converge to the exact modes in Figure 6 due

to the Taylor approximation [2]. However it converges to a

position close to the true mode. For localisation and track-

ing, this accuracy loss is negligible.

The other three examples begin at h4 = 80 and a five-

step annealing guarantees a global mode in these cases. For
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Figure 6: The cost functions (corresponding to the first example in Fig-

ure 5) at different bandwidths: 60, 40, 20, and 10, are plotted as contours

of 2D translations. The true mode is marked with a square.

the CD and book cover localisation, we take the template

models from other images with large geometry and slight

illumination differences. The success proves that the colour

histogram is a robust feature. It is straightforward to include

other features, e.g., intensity gradient, to make the localiser

more robust. Without the annealing procedure, most runs

stop at a local maximum—only when the initial positions

are located in the small area close to the global mode, can

standard mean shift find the target. When no prior knowl-

edge is available about the global maximum we are seeking,

it is always beneficial to employ a relatively broad band-

width mean shift procedure, which can provide a coarse lo-

cation of the global mode. In the experiments, although

we do not carefully design the annealing schedule, global

modes are achieved.

5.2. Visual Tracking

Many tracking algorithms fail to perform well in prac-

tice. They have several fundamental drawbacks: (1) They

work well only when the displacements between consec-

utive frames are relatively small; (2) Usually they cannot

self-start; (3) They are not robust to occlusions and are un-

able to recover from momentary tracking failures. Standard

mean shift trackers are no exception. Our ANNEALEDMS

tracker alleviates these weaknesses by incorporating an ef-

ficient bottom-up localisation functionality.

Face tracking example. The tracked target moves fast

hence leading to large displacements between consecutive

frames. An annealing schedule {60, 30, 18} is used by AN-

NEALEDMS. The ANNEALEDMS tracker is automatically

started by a localisation process, while the mean shift tr-

acker is manually started. As in mean shift tracking, AN-

Figure 7: The face tracking sequence with standard mean shift (top) and

ANNEALEDMS (bottom). Frames #5, #14, #22 and #25 are shown. The

object is accurately detected and tracked by ANNEALEDMS despite large

displacements. In contrast, mean shift is more likely to trap into local

modes and gives inaccurate results (#5, #14 and #22) or even fails com-

pletely (#25). See the video facetracker.avi for details.

NEALEDMS also starts at the position of the previous frame.

Unless otherwise noted, in all the tracking experiments, the

convergence tolerance is the l2-norm distance between two

iterations ε = 0.2 pixels. Figure 7 summarises the track-

ing results. The ANNEALEDMS tracker is more robust and

accurate than the standard mean shift tracker: When the dis-

placement is large, the standard mean shift tracker becomes

easily stuck in spurious modes.

Implementation issues. Mean shift might get stuck at

false modes caused by discrete colour values of pixels.

Wang et al. observe this phenomenon in grey image his-

togram clustering [28]. Their analysis also applies to colour

image histograms. We avoid this problem by simply ceiling

the mean shift step ⌈mG(x)⌉ (Equation (5)). This modifi-

cation increases the size of shift steps, hence leading to a

quicker convergence. The drawback is that it might lose ac-

curacy. We use the original step by Equation (5) at the last

bandwidth h0. Because we are only interested in the last

convergence position, accuracy is retained. Both in loca-

lisation and tracking, it has been observed that this simple

treatment results in satisfactory convergence without accu-

racy loss. We compare the number of convergence iterations

per frame for the face tracking video in Figure 8.9 One can

see that in this example, their convergence speeds are sim-

ilar. In many frames, ANNEALEDMS is even faster. The

reason is that mean shift at the first few bandwidths (hM...1)

can move close to the mode quickly. However, larger band-

widths of ANNEALEDMS mean that slightly more compu-

tation might be needed to build histograms. We also have

implemented the proposed accelerated mean shift algorithm

(Section 4) into tracking, and a considerable speedup has

been achieved [23].

Basketball tracking example. This example shows the

ANNEALEDMS tracker’s ability to recover from temporal

failures. The original sequence is down sampled by a fac-

tor of 2 to make the target’s displacements larger. The mean

9Only frames #1...22 are compared because from #23 on, the mean

shift tracker fails. For ANNEALEDMS, we count the sum of iterations at

each bandwidth.
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Figure 8: Comparison of the number of iterations per frame: mean shift

(marked with circles) vs. ANNEALEDMS (marked with squares), for the

face tracking sequence.

shift tracker fails as early as at Frame #6. Therefore we only

show the tracking results of ANNEALEDMS in Figure 9.

ANNEALEDMS tracks across bandwidths {30, 15, 8} and

works successfully. It is not always necessary to perform

a global search in tracking. In ANNEALEDMS the hierar-

chical bandwidths control the size of the searching area in

the cost function. For this video, the first bandwidth is not

set very large because a global search might not be desired.

At #18, ANNEALEDMS loses the target due to illumination

changes. However, it recovers immediately at #19. It drifts

slightly because of the basket’s occlusions at #20 and re-

covers at the next frame. Again we observe ANNEALEDMS

tracking is efficient: only an average 8.1 iterations per frame

is needed.

Weetbix box tracking example. We track a part of a weet-

bix box, which is recorded by an extremely unstable cam-

era. ANNEALEDMS shows its robustness over the mean

shift tracker again. See weetbixbox.avi for tracking results.

Figure 9: The basketball tracking results with ANNEALEDMS. Frames

#18, #20 and #29 are shown. See basketball.avi for details.

6. Conclusion

We have presented a new global mode seeking mean

shift, termed ANNEALEDMS. Improvements are achieved

over the standard mean shift when the density has mul-

tiple peaked modes. We have also introduced the new

ANNEALEDMS strategy into localisation and tracking.

Promising results have been obtained in both applications,

even with simple annealing schedules, which are not care-

fully designed.

An adaptive over-relaxed mean shift is also advanced to

accelerate the convergence speed. Compared with the stan-

dard mean shift algorithm, the number of convergence iter-

ations is almost always significantly decreased. It provides

an additional speedup to existing techniques such as locality

sensitive hashing [1] and fast Gaussian transformation [6].

Future work will explore the effects of annealing sched-

ule design on the localisation and tracking performances.

Other discriminative features will be adopted for better lo-

calisation and tracking performances, rather than relying

solely on simple colour histograms.
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