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Abstract. We present an algorithm for fast global registration of par-
tially overlapping 3D surfaces. The algorithm operates on candidate
matches that cover the surfaces. A single objective is optimized to align
the surfaces and disable false matches. The objective is defined densely
over the surfaces and the optimization achieves tight alignment with
no initialization. No correspondence updates or closest-point queries are
performed in the inner loop. An extension of the algorithm can per-
form joint global registration of many partially overlapping surfaces.
Extensive experiments demonstrate that the presented approach matches
or exceeds the accuracy of state-of-the-art global registration pipelines,
while being at least an order of magnitude faster. Remarkably, the pre-
sented approach is also faster than local refinement algorithms such as
ICP. It provides the accuracy achieved by well-initialized local refine-
ment algorithms, without requiring an initialization and at lower com-
putational cost.

1 Introduction

Registration of three-dimensional surfaces is a central problem in computer
vision, computer graphics, and robotics. The problem is particularly challenging
when the surfaces only partially overlap and no initial alignment is given. This
difficult form of the problem is encountered in scene reconstruction [7,39], 3D
object retrieval [15,29], camera relocalization [13], and other applications.

In order to deal with noisy data and partial overlap, practical registration
pipelines employ iterative model fitting frameworks such as RANSAC [31]. Each
iteration samples a set of candidate correspondences, produces an alignment
based on these correspondences, and evaluates this alignment. If a satisfactory
alignment is found, it is refined by a local registration algorithm such as ICP
[30]. The combination of sampling-based coarse alignment and iterative local
refinement is common in practice and is designed to produce a tight registration
even with challenging input [7,19,39].

While such registration pipelines are common, they have significant draw-
backs. Both the model fitting and the local refinement stages are iterative and
perform computationally expensive nearest-neighbor queries in their inner loops.
Much of the computational effort is expended on testing candidate alignments
that are subsequently discarded. And the inelegant decomposition into a global
alignment stage and a local refinement stage is itself a consequence of the low
precision of global alignment frameworks.

c© Springer International Publishing AG 2016
B. Leibe et al. (Eds.): ECCV 2016, Part II, LNCS 9906, pp. 766–782, 2016.
DOI: 10.1007/978-3-319-46475-6 47



Fast Global Registration 767

In this paper, we present a fast global registration algorithm that does not
involve iterative sampling, model fitting, or local refinement. The algorithm does
not require initialization and can align noisy partially overlapping surfaces. It
optimizes a robust objective defined densely over the surfaces. Due to this dense
coverage, the algorithm directly produces an alignment that is as precise as that
computed by well-initialized local refinement algorithms.

This direct approach has substantial benefits. It accomplishes in a single
stage what is commonly done in two. This single stage optimizes a clear global
objective. The optimization does not require closest-point queries in the inner
loop. As a result, the presented algorithm is more than an order of magnitude
faster than existing global registration pipelines, while matching or exceeding
their accuracy.

Furthermore, we show that the presented algorithm can be extended to direct
global alignment of multiple partially overlapping surfaces. Such joint alignment
is often necessary in applications such as scene reconstruction [7,39]. Existing
approaches to this problem exhaustively produce candidate alignments between
pairs of surfaces and then compute a globally consistent set of poses based on
these intermediate pairwise alignments. In contrast, we show that a joint align-
ment can be produced directly by a single optimization of a global objective.

We evaluate the presented global registration algorithm on multiple datasets.
Extensive experiments demonsrate that the presented approach matches or
exceeds the accuracy of state-of-the-art global registration pipelines, while being
at least an order of magnitude faster. Remarkably, the presented approach is also
faster than local refinement algorithms such as ICP, since it does not need to
recompute correspondences. It provides the accuracy achieved by well-initialized
local refinement algorithms, without requiring an initialization and at lower com-
putational cost.

2 Related Work

Geometric registration has been extensively studied [15,28,36,38]. The typical
workflow consists of two stages: global alignment, which computes an initial
estimate of the rigid motion between two surfaces, followed by local refinement,
which refines this initial estimate to obtain a tight registration [7,12,19,25,27,
37,39]. We review each of these stages in turn.

Most global alignment methods operate on candidate correspondences. Some
pipelines use point-to-point matches based on local geometric descriptors [16,40],
others define correspondences on pairs or tuples of points [1,8,26,29]. Once can-
didate correspondences are collected, alignment is estimated iteratively from
sparse subsets of correspondences and then validated on the entire surface. This
iterative process is typically based on variants of RANSAC [1,19,26,29,34] or
pose clustering [8,26,35]. When the data is noisy and the surfaces only par-
tially overlap, existing pipelines often require many iterations to sample a good
correspondence set and find a reasonable alignment.

Another approach to global registration is based on the branch-and-bound
framework [10,12,18,23,42]. These algorithms systematically explore the pose
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space in search of the optimal solution. The branch-and-bound framework is
appealing due to its theoretical optimality guarantees. However, the systematic
search can be extremely time-consuming. In practice, the sampling-based frame-
works described earlier outperform the branch-and-bound approaches when large
datasets are involved.

Local refinement algorithms begin with a rough initial alignment and produce
a tight registration based on dense correspondences. Most such methods are based
on the iterative closest point (ICP) algorithm and its variants [30,33]. In its basic
form, ICP begins with an initial alignment and alternates between establishing
correspondences via closest-point lookups and recomputing the alignment based
on the current set of correspondences. ICP can produce an accurate result when
initialized near the optimal pose, but is unreliable without such initialization. A
long line of work has explored various approaches to increasing the robustness of
ICP. Fitzgibbon [11] introduced nonlinear least-squares optimization to develop
a robust error function that increases the radius of convergence. Bouaziz et al. [5]
introduced sparsity inducing norms to deal with outliers and incomplete data.
Other works explored the utility of relaxed assignments [14,24,32], distance field
representations [6], and mixture models [21,41] for increasing the robustness of
local registration. Nevertheless, these approaches still rely on a satisfactory ini-
tialization. Our work demonstrates that the accuracy achieved by well-initialized
local refinement algorithms can be achieved reliably without an initialization, at a
computational cost that is more than an order of magnitude lower than the coarse
global alignment algorithms described earlier.

Joint global registration of multiple partially overlapping surfaces has also
been considered [7,20,39]. However, existing approaches to joint global regis-
tration first align many pairs of surfaces and then optimize the joint global
alignment based on these intermediate pairwise results. This indirect approach
incurs significant computational overhead. In contrast, we show that joint global
alignment of many partially overlapping surfaces can be optimized for directly.

3 Pairwise Global Registration

3.1 Objective

Consider two point sets P and Q. Our task is to find a rigid transformation
T that aligns Q to P. Our approach optimizes a robust objective on corre-
spondences between P and Q. These correspondences are established by rapid
feature matching that is performed before the objective is optimized. The cor-
respondences are not recomputed during the optimization. For this reason, it
is critical that the optimization be able to deal with very noisy correspondence
sets. This is illustrated in Fig. 1.

Let K = {(p,q)} be the set of correspondences collected by matching points
from P and Q as described in Sect. 3.3. Our objective is to optimize the pose T

such that distances between corresponding points are minimized, while spurious
correspondences from K are seamlessly disabled. The objective has the following
form:
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(a) Shape (b) A pair of surfaces with correspondences

Fig. 1. An illustration with 2D point sets. (a) A latent shape. (b) Two partially over-
lapping surfaces and a set of point-to-point correspondences. The blue correspondences
are genuine, the red correspondences are erroneous. For fast and accurate registration,
the erroneous correspondences must be disabled without sampling, validation, pruning,
or correspondence recomputation. (Color figure online)

E(T) =
∑

(p,q)∈K

ρ (‖p − Tq‖) . (1)

Here ρ(·) is a robust penalty. The use of an appropriate robust penalty function
is critical, because many of the terms in Objective 1 are contributed by spurious
constraints. To achieve high computational efficiency, we do not want to sample,
validate, prune, or recompute correspondences during the optimization. A well-
chosen estimator ρ will perform the validation and pruning automatically with-
out imposing additional computational costs. We use a scaled Geman-McClure
estimator:

ρ(x) =
µx2

µ + x2
. (2)

Figure 2(a) shows the Geman-McClure estimator for different values of µ. As
can be seen in the figure, small residuals are penalized in the least-squares sense,
while the sublinear growth and rapid flattening out of the estimator neutralize

μ=1
μ=0.25

μ=4

μ=16

(a) Geman-McClure penalty (b) Objective function

Fig. 2. Illustration of graduated non-convexity. As µ decreases, the objective function
for the matching problem in Fig. 1 becomes sharper and the registration more precise.
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outliers. The parameter µ controls the range within which residuals have a sig-
nificant effect on the objective; its setting will be discussed in Sect. 3.2.

Objective 1 is difficult to optimize directly. We use the Black-Rangarajan
duality between robust estimation and line processes [3]. Specifically, let L =
{lp,q} be a line process over the correspondences. We optimize the following
joint objective over T and L:

E(T, L) =
∑

(p,q)∈K

lp,q‖p − Tq‖2 +
∑

(p,q)∈K

Ψ(lp,q). (3)

Here Ψ(lp,q) is a prior, set to

Ψ(lp,q) = µ
(

√

lp,q − 1
)2

. (4)

For E(T, L) to be minimized, the partial derivative with respect to each lp,q

must vanish:

∂E

∂lp,q

= ‖p − Tq‖2 + µ

√

lp,q − 1
√

lp,q

= 0. (5)

Solving for lp,q yields

lp,q =

(

µ

µ + ‖p − Tq‖2

)2

. (6)

Substituting lp,q into E(T, L), Objective 3 becomes Objective 1. Thus optimizing
Objective 3 yields a solution T that is also optimal for the original Objective 1.

3.2 Optimization

The main benefit of the optimization objective defined in Eq. 3 is that the opti-
mization can be performed extremely efficiently by alternating between optimiz-
ing T and L. The optimization performs block coordinate descent by fixing L

when optimizing T and vice versa. Both types of steps optimize the same global
objective (Eq. 3). Thus the alternating algorithm is guaranteed to converge.

When L is fixed, Objective 3 turns into a weighted sum of L2 penalties on
distances between point-to-point correspondences. This objective over T can be
solved efficiently in closed form [9]. However, such closed-form solution does not
extend to joint registration of multiple surfaces, which we are interested in and
will extend the presented approach to in Sect. 4. We therefore present a more
flexible approach. We linearize T locally as a 6-vector ξ = (ω, t) = (α, β, γ, a, b, c)
that collates a rotational component ω and a translation t. T is approximated
by a linear function of ξ:

T ≈

⎛

⎜

⎜

⎝

1 −γ β a
γ 1 −α b

−β α 1 c
0 0 0 1

⎞

⎟

⎟

⎠

Tk. (7)
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Here Tk is the transformation estimated in the last iteration. Equation 3 becomes
a least-squares objective on ξ. Using the Gauss-Newton method, ξ is computed
by solving a linear system:

J⊤
r
Jrξ = −J⊤

r
r, (8)

where r is the residual vector and Jr is its Jacobian. T is updated by applying
ξ to Tk using Eq. 7, then mapped back into the SE(3) group.

When T is fixed, the objective in Eq. 3 has a closed-form solution. It is
minimized when lp,q satisfies Eq. 6.

Graduated Non-convexity. Objective 3 is non-convex and its shape is con-
trolled by the parameter µ of the penalty function (Eq. 2). To set µ and alleviate
the effect of local minima we employ graduated non-convexity [2,4]. From the
standpoint of Eq. 3, µ balances the strength of the prior term and the alignment
term. Large µ makes the objective function smoother and allows many corre-
spondences to participate in the optimization even when they are not fit tightly
by the transformation T. The effect of varying µ is illustrated in Fig. 2. Our
optimization begins with a very large value µ = D2, where D is the diameter
of the largest surface. The parameter µ is decreased during the optimization
until it reaches the value µ = δ2, where δ is a distance threshold for genuine
correspondences.

3.3 Correspondences

To generate the initial correspondence set K, we use the Fast Point Feature
Histogram (FPFH) feature [34]. We have chosen this feature because it can be
computed in a fraction of a millisecond and provides good matching accuracy
across a broad range of datasets [16]. Let F(P) = {F(p) : p ∈ P}, where F(p)
is the FPFH feature computed for point p. Define F(Q) = {F(q) : q ∈ Q}
analogously.

For each p∈P, we find the nearest neighbor of F(p) among F(Q), and for
each q ∈ Q we find the nearest neighbor of F(q) among F(P). Let KI be the
set that collects all these correspondences. This set could be used directly as
the input to our approach. However, in practice KI has a very high fraction of
outliers. We use two tests to improve the inlier ratio of the correspondence set
used by the algorithm.

– Reciprocity test. A correspondence pair (p,q) is selected from KI if and
only if F(p) is the nearest neighbor of F(q) among F(P) and F(q) is the
nearest neighbor of F(p) among F(Q). The resulting correspondence set is
denoted by KII .

– Tuple test. We randomly pick 3 correspondence pairs (p1,q1),
(p2,q2), (p3,q3) from KII and check if the tuples (p1,p2,p3) and (q1,q2,q3)
are compatible. Specifically, we test if the following condition is met:

∀i �= j, τ <
‖pi − pj‖

‖qi − qj‖
< 1/τ, (9)
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where τ = 0.9. Intuitively, this test verifies that the correspondences are com-
patible. Correspondences from tuples that pass the test are collected in a set
KIII . This is the set used by the algorithm: K = KIII .

Algorithm1 summarizes the pairwise registration algorithm used in all subse-
quent experiments.

Algorithm 1. Fast pairwise registration

input : A pair of surfaces (P,Q)
output: Transformation T that aligns Q to P

Compute normals {np} and {nq};
Compute FPFH features F(P) and F(Q);
Build KI by computing nearest neighbors between F(P) and F(Q);
Apply reciprocity test on KI to get KII ;
Apply tuple test on KII to get KIII ;
T ← I, µ ← D2;

while not converged or µ > δ2 do

Jr ← 0, r ← 0;
for (p,q) ∈ KIII do

Compute l(p,q) using equation 6;
Update Jr and r of objective 3;

Solve equation 8 and update T;
Every four iterations, µ ← µ/2;

Verify whether T aligns Q to P;

4 Multi-way Registration

Many applications require aligning multiple surfaces to obtain a model of a large
scene or object. To solve this multi-way registration problem, existing approaches
first compute pairwise alignments between pairs of surfaces and then attempt
to synchronize these alignments to obtain a global registration [7,20,39]. This
has two significant disadvantages. First, the pairwise alignment stage is com-
putationally wasteful because it is not apparent in advance which pairs will be
useful. Second, pairwise registration can yield a suboptimal alignment due to
local minima that could be disambiguated by a global approach that considers
all surfaces jointly.

We develop an alternative approach: to directly align all surfaces based on raw
dense point correspondences. Instead of optimizing separate pairwise alignments
and then synchronizing the results, we can directly optimize a global registration
objective over all surfaces.
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4.1 Objective

Given a set of surfaces {Pi}, our task is to estimate a set of poses T = {Ti}
that aligns the surfaces in a global coordinate frame. We begin by constructing
a set of candidate correspondences Kij for each pair of surfaces (Pi,Qj), i < j.
Objective 1 is extended to the multi-way setting as follows:

E(T) = λ
∑

i

∑

(p,q)∈Ki

‖Tip − Ti+1q‖2 +
∑

i<j

∑

(p,q)∈Kij

ρ(‖Tip − Tjq‖). (10)

This formulation incorporates initial odometry transformations {Ti} between
consecutive surfaces, which are commonly available in surface reconstruction.
The set Ki collects correspondences between surfaces Pi and Pi+1 under the
odometry alignment. When available, the odometry terms are penalized directly
with the L2 norm and serve as a backbone that stabilizes the optimization.

Define a line process L = {lp,q}. The objective can now be reformulated as
follows:

E(T, L) = λ
∑

i

∑

(p,q)∈Ki

‖Tip − Ti+1q‖2

+
∑

i<j

(

∑

(p,q)∈Kij

lp,q‖Tip − Tjq‖2 +
∑

(p,q)∈Kij

Ψ(lp,q)
)

. (11)

The prior term Ψ(lp,q) is defined as in Eq. 4.

4.2 Optimization

We again use alternating optimization to solve the minimization problem. In each
iteration, E(T, L) is first minimized with respect to the line process variables L.
This has a closed-form solution:

lp,q =

(

µ

µ + ‖Tip − Tjq‖2

)2

. (12)

Next, E(T, L) is minimized with respect to all poses T. Let Tk
i denote the i-th

transformation estimated in the previous iteration. Ti can be locally linearized
with a 6-vector ξi = (ωi, ti) = (αi, βi, γi, ai, bi, ci):

Ti ≈

⎛

⎜

⎜

⎝

1 −γi βi ai

γi 1 −αi bi

−βi αi 1 ci

0 0 0 1

⎞

⎟

⎟

⎠

Tk
i . (13)

Let Ξ be a 6|T|-vector that collates {ξi}. E(T, L) becomes a least-squares objec-
tive on Ξ. It is minimized by solving the linear system

J⊤
r
JrΞ = −J⊤

r
r (14)
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and updating Ti accordingly. Here Jr and r are the Jacobian matrix and the
residual vector, respectively.

Note that the correspondences are never updated. Each iteration performs
only two steps: evaluate a line process variable for each point correspondence,
then build and solve a linear system with 6|T| variables. Both steps are very
efficient.

5 Results

5.1 Pairwise Registration

We evaluate the presented pairwise registration algorithm on synthetic range
data, the UWA benchmark [27], and the global registration benchmark of Choi
et al. [7]. We compare our algorithm with a number of prior global registration
methods. GoICP is the algorithm of Yang et al. [42]. GoICP-Trimming is its trim-
ming variant that supports partial overlap. We use a 10% trimming percentage
and use only 1,000 data points, as suggested by Yang et al. [42]. Without down-
sampling, GoICP and GoICP-Trimming take hours to run on our point clouds.
Super4PCS is the algorithm of Mellado et al. [26]. OpenCV is a recent OpenCV
implementation of the surface registration algorithm of Drost et al. [8]. PCL is a
Point Cloud Library implementation of the algorithm of Rusu et al. [19,34]. CZK
is the variant of Rusu’s algorithm used by Choi et al. [7].

We also conduct controlled comparisons with local registration algorithms.
PCL ICP is a Point Cloud Library implementation of the ICP algorithm [19].
Sparse ICP is the algorithm of Bouaziz et al. [5]. We tested these algorithms
with both point-to-point and point-to-plane distance measures [33].

All execution times are measured using a single thread on an Intel Core
i7-5960X CPU clocked at 3.00 GHz.

Synthetic Range Data. We begin by performing a series of controlled exper-
iments on synthetic data. The availability of precise ground truth enables a
detailed evaluation. To conduct controlled experiments, we used three well-
known models from the AIM@SHAPE repository (Bimba, Dancing Children,
and Chinese Dragon), the Berkeley Angel dataset [22], and the Stanford Bunny.
For each model, we synthesized five pairs of partially overlapping range images
and then corrupted these range images with 3D Gaussian noise. We used three
noise levels, defined by setting the standard deviation of the Gaussian distrib-
ution to σ = 0 (no noise), σ = 0.0025, and σ = 0.005. The unit of σ is the
diameter of the surface. For each noise level, there are 25 partially overlapping
global registration tests in total. The number of points in each range image varies
between 8,868 and 19,749. The overlap ratio varies between 47% and 90%.

Figure 3 shows the accuracy achieved by the different global registration algo-
rithms on the 25 tests at each noise level. For each algorithm and each RMSE
level α, the figure plots the α-recall, defined as the fraction of tests for which
the method achieved an RMSE < α. (Higher is better.) The RMSE is com-
puted on the distances between ground-truth correspondences after alignment.
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Fig. 3. Controlled experiments on synthetic data. α-recall is the fraction of tests for
which a given method achieves an RMSE < α. Higher is better. The RMSE unit is the
diameter of the surface. Our algorithm is more robust to noise and is more accurate
than prior approaches, while being more than an order of magnitude faster.

Table 1 summarizes the average and maximal RMSE for each method. (Lower
is better.) For synthetic data with no noise, our method, PCL, and CZK produce
tight alignment in 100% of the tests. (RMSE ≤ 0.005.) The accuracy of OpenCV
and Super4PCS is worse by a multiplicative factor of at least 3, presumably
due to their reliance on matching tuples of points rather than optimizing for
fully dense surface registration. GoICP-Trimming produces accurate alignment
in many cases but suffers from poor accuracy on others, presumably because its
computational costs necessitate operation on downsampled point clouds.

Table 1. Average and maximal RMSE achieved by global registration algorithms on
synthetic range images with noise level σ. Maximal RMSE is the maxumum among
the 25 RMSE values obtained for individual pairwise registration tests. Our approach
outperforms other methods by a large margin when noise is present. Specifically, for
σ = 0.005, the average RMSE of our approach is more than 2 times lower than the
lowest average RMSE of any prior approach, and the maximal RMSE of our approach
is 5.6 times lower.

σ = 0 σ = 0.0025 σ = 0.005

Average
RMSE

Maximal
RMSE

Average
RMSE

Maximal
RMSE

Average
RMSE

Maximal
RMSE

GoICP [42] 0.029 0.130 0.032 0.133 0.037 0.127

GoICP-Trimming [42] 0.035 0.473 0.039 0.475 0.044 0.478

Super 4PCS [26] 0.012 0.019 0.014 0.029 0.017 0.095

OpenCV [8] 0.009 0.013 0.018 0.212 0.032 0.242

PCL [19,34] 0.003 0.005 0.009 0.061 0.111 0.414

CZK [7] 0.003 0.005 0.008 0.022 0.035 0.274

Our approach 0.003 0.005 0.006 0.011 0.008 0.017
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On noisy data, our method is much more robust and accurate than others.
For σ = 0.005, the average RMSE of our approach is more than 2 times smaller
than the lowest average RMSE of any prior approach, and the maximal RMSE
of our approach is 5.6 times smaller than the lowest maximal RMSE among
prior approaches. This is presumably because our approach optimizes over dense
correspondences rather than matching point tuples. A qualitative comparison
with GoICP-Trimming and PCL is provided in Fig. 4.

0

0.05

(a) Input range scans (b) GoICP result (c) PCL result (d) Our result

Fig. 4. Visual comparison with GoICP-Trimming and PCL. Our method operates on
dense point clouds and produces a tight alignment with RMSE 0.004 on clean data (top
row) and RMSE 0.007 on noisy data (bottom row, σ = 0.005). In contrast, the prior
approaches break down in the presence of noise: RMSE 0.129 for GoICP-Trimming
and 0.326 for PCL in the bottom row. Error magnitude is coded by color, with black
indicating error above 0.05. (Color figure online)

The major benefit of our approach is that it is faster by more than an order
of magnitude than prior approaches. Table 2 shows the average computation
time of each global registration method on each object. Our method improves
registration speed by a factor of 50 relative to the fastest prior global registration
algorithm (CZK). While previous methods require tens of seconds, our method
takes 0.2 s on average. This is because our method avoids expensive nearest-
neighbor lookups in the optimization loop.
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We further analyze the computational
requirements of our approach by varying
the size (i.e., the point count) of the syn-
thesized range images and measuring the
execution time of individual components
of our algorithm. The results are shown
on the right. The majority of the time is
spent on computing the FPFH features
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Table 2. Running times of global registration methods, measured in seconds. GoICP
and its trimming variant operate on point clouds downsampled to 1,000. All other
methods operate on full-resolution point clouds. Our algorithm is 50 times faster than
the fastest prior global registration method.

Average # GoICP GoICP- OpenCV Super PCL CZK [7] Our

of points [42] Trimming [42] [8] 4PCS [26] [19,34] approach

Bimba 9, 416 19.3 19.4 41.0 311.4 18.2 12.8 0.13

Children 11, 148 21.0 19.2 136.3 238.2 4.8 6.6 0.20

Dragon 11, 232 94.1 38.4 57.7 483.7 8.6 11.9 0.23

Angel 12, 072 21.0 20.4 80.9 171.5 8.7 11.3 0.26

Bunny 13, 357 74.7 72.4 12.3 283.8 55.6 12.7 0.28

Average 11, 445 46.0 34.0 65.6 297.7 19.2 11.1 0.22

and building the input correspondences. These operations are performed only
once, before the optimization, and the correspondences are never updated. The
optimization itself is extremely fast. Its execution time is below 30 milliseconds
even for point clouds with more than 20,000 points. In addition, our method
performs validation only once, after optimization has converged. This one-time
validation consumes on average 3.3% of our computation time. In contrast,
sampling-based methods such as PCL perform validation thousands of times in
the RANSAC loop.

We also compare our global registration algorithm with local refinement
methods such as ICP and its variants. To perform a controlled evaluation, we
varied the accuracy of the initial transformation provided to the local methods.
The results are shown in Fig. 5. We performed two sets of experiments. In one,
the local algorithms were initialized with the ground-truth translation and vary-
ing degrees of rotation. In the other, the local algorithms were initialized with the
ground-truth rotation and varying degrees of translation. As shown in Fig. 5, our
algorithm matches the accuracy of the local refinment methods in the idealized
case when these methods are initialized with the ground-truth transformation.
However, the accuracy of the local methods degrades when the initialization
deviates sufficiently from the ground-truth pose: 5 degrees in rotation or 5–10 %
of the point cloud diameter in translation. In contrast, our algorithm does not
use an initialization and yields the same accuracy in all conditions.

We further compare the computational costs of our algorithm and the local
refinement methods. The results are shown in Table 3. Remarkably, our global
registration algorithm is 2.8 times faster than a state-of-the-art implementa-
tion of ICP. The key reason is that our algorithm does not need to recompute
correspondences.

UWA Benchmark. Next, we evaluate our method on the UWA dataset [27].
This dataset has 50 scenes. Each scene has multiple objects that can be aligned to
it. In total, the dataset contains 188 pairwise registration tests. Figure 6(a) shows
a scene with objects aligned to it by our approach. This dataset is challenging
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Fig. 5. Controlled comparison with local methods. Local registration algorithms are
initialized with a transformation generated by adding a perturbation in rotation (left)
or translation (right) to the ground-truth alignment. The plots show the mean (bold
curve) and standard deviation (shaded region) of the RMSE of each method. Lower
is better. Our algorithm matches the accuracy achieved by the local algorithms when
they are initialized near the ground-truth pose, but does not require an initialization.

Table 3. Timing comparison with local algorithms, measured in seconds. Our global
algorithm is 2.8 times faster than a state-of-the-art implementation of ICP.

Average # PCL ICP PCL ICP Sparse Sparse ICP Our

of points point-to-point point-to-plane point-to-point point-to-plane approach

[5] [5]

Bimba 9,416 0.73 0.31 3.1 11.8 0.13

Children 11,148 0.75 0.46 3.9 15.0 0.20

Dragon 11,232 0.99 0.47 3.6 13.8 0.23

Angel 12,072 0.81 1.01 4.9 18.5 0.26

Bunny 13,357 2.10 1.70 9.2 10.3 0.28

Average 11,445 1.08 0.79 4.9 13.9 0.22

due to clutter, occlusion, and low overlap. The lowest overlap ratio in the dataset
is only 21%. As shown in Fig. 6(b), many prior global registration algorithms
perform poorly on this dataset. Our algorithm achieves a 0.05-recall of 84%,
comparable with PCL and CZK (82 % and 78 %, respectively). OpenCV achieves
52 % and the other algorithms are all below 7 %.

Table 4 compares the speed of our approach with the other global registration
methods on the UWA benchmark. Our approach is an order of magnitude faster
than the fastest prior methods.

Scene Benchmark. We now evaluate on the scene benchmark provided by
Choi et al. [7]. This benchmark has 4 datasets. Each dataset consists of 47
to 57 fragments of a scene. These fragments contain high-frequency noise and
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Fig. 6. Global registration results on the UWA benchmark [27]. (a) Our result on one
of the 188 tests. The scene is colored white and objects aligned to the scene have
distinct colors. (b) α-recall plot comparing our method and prior global registration
algorithms. (Higher is better.) (Color figure online)

Table 4. Average running times of global registration methods on the 188 tests from
the UWA dataset, measured in seconds.

GoICP
[42]

GoICP-
Trimming
[42]

OpenCV
[8]

Super
4PCS
[26]

PCL [19,34] CZK [7] Our app-
roach

Average time 18.7 18.6 17.6 77.4 8.2 8.7 0.5

low-frequency distortion that simulate scans created by consumer depth cameras.
Global pairwise registration is performed on every pair of fragments from a given
scene. Table 5 compares recall and precision (as defined by Choi et al.), and
average running times.

Table 5. Evaluation on the scene benchmark of Choi et al. [7]. Our approach has
the highest precision and the second highest recall, while being at least an order of
magnitude faster.

OpenCV [8] Super 4PCS [26] PCL [19,34] CZK [7] Our approach

Recall (%) 5.3 17.8 44.9 59.2 51.1

Precision (%) 1.6 10.4 14.0 19.6 23.2

Avg. time (sec) 10 62 3 8 0.2

5.2 Multi-way Registration

We evaluate the multi-way extension of our algorithm on the Augmented ICL-
NUIM dataset [7,17]. The dataset contains four sequences, each of which consists
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of 47 to 57 scene fragments. We apply the multi-way registration algorithm pre-
sented in Sect. 4 to these fragments. (The same parameter λ = 2 was used for all
experiments.) Our method produces a global alignment of all fragments. We inte-
grate these aligned fragments and report the mean distance of the reconstructed
surface to the ground-truth model. Table 6 reports the resulting accuracy and
running time. The reconstruction accuracy yielded by our direct multi-way reg-
istration algorithm matches the accuracy of the registration approach of Choi
et al. [7]. However, our algorithm solves for the joint global alignment directly,
without exhaustive intermediate pairwise alignments. It is therefore 60 times
faster than the approach of Choi et al.

Table 6. Evaluation of multi-way registration on the Augmented ICL-NUIM dataset [7,
17]. Our multi-way registration algorithm matches the accuracy of the state-of-the-art
multi-way registration pipeline of Choi et al., but is 60 times faster.

Mean error (meters) Time (seconds)

Choi et al. [7] Ours Choi et al. [7] Ours

Living room 1 0.04 0.05 8,940 131

Living room 2 0.07 0.06 3,360 81

Office 1 0.03 0.03 4,500 69

Office 2 0.04 0.05 4,080 48

Average 0.05 0.05 5,220 82

6 Conclusion

We have presented a fast algorithm for global registration of partially overlapping
3D surfaces. Our algorithm is more than an order of magnitude faster than prior
global registration algorithms and is much more robust to noise. It matches
the accuracy of well-initialized local refinement algorithms such as ICP, without
requiring an initialization and at lower computational cost. The algorithm may
be broadly applicable in computer vision, computer graphics, and robotics.
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