
Vol. 24 no. 12 2008, pages 1433–1441
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btn196

Systems biology

Fast grid layout algorithm for biological networks with

sweep calculation
Kaname Kojima, Masao Nagasaki* and Satoru Miyano
Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku,
Tokyo 108-8639, Japan

Received on January 17, 2008; revised on March 7, 2008; accepted on April 16, 2008

Advance Access publication April 18, 2008

Associate Editor: Jonathan Wren

ABSTRACT

Motivation: Properly drawn biological networks are of great help in

the comprehension of their characteristics. The quality of the layouts

for retrieved biological networks is critical for pathway databases.

However, since it is unrealistic to manually draw biological networks

for every retrieval, automatic drawing algorithms are essential. Grid

layout algorithms handle various biological properties such as

aligning vertices having the same attributes and complicated posi-

tional constraints according to their subcellular localizations; thus,

they succeed in providing biologically comprehensible layouts.

However, existing grid layout algorithms are not suitable for real-

time drawing, which is one of requisites for applications to pathway

databases, due to their high-computational cost. In addition, they

do not consider edge directions and their resulting layouts lack

traceability for biochemical reactions and gene regulations, which

are the most important features in biological networks.

Results: We devise a new calculation method termed sweep cal-

culation and reduce the time complexity of the current grid layout

algorithms through its encoding and decoding processes. We con-

duct practical experiments by using 95 pathway models of various

sizes from TRANSPATH and show that our new grid layout algorithm

is much faster than existing grid layout algorithms. For the cost func-

tion, we introduce a new component that penalizes undesirable edge

directions to avoid the lack of traceability in pathways due to the

differences in direction between in-edges and out-edges of each

vertex.

Availability: Java implementations of our layout algorithms are

available in Cell Illustrator.

Contact: masao@ims.u-tokyo.ac.jp

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

For biological pathways such as signal transduction pathways,

gene regulatory networks and metabolic pathways, one of the

crucial techniques for understanding their characteristics is to

use graph representation. Both publicly available (Kanehisa,

2002) and commercial pathway databases (Schacherer et al.

2001) display retrieved pathways in the form of graphs to

facilitate the users’ comprehension of them. Considering the

large numbers of pathways retrieved with various types of

criterion according to biologists’ purposes and the tediousness

of manually drawing graphs, automatic layout algorithms are

strongly required.
There exist rigorous studies in standard graph layout

algorithms including circular, orthogonal or planar drawing,

and force-directed heuristics (Battista et al., 1994; Battista

et al., 1999; Brandenburg et al., 1997). However, none of these

algorithms give satisfactory results when applied to pathway

networks due to insufficient use of biological properties such

as structural characteristics and subcellular localization

information (Becker and Rojas, 2001; Li and Kurata, 2005;

Wegner and Kummer, 2005).

Thus far, several types of drawing algorithms have been

designed for biological pathways and they have been integrated

in biological simulation software (Demir et al., 2002; Dogrusoz

et al., 2006; Doi et al., 2003; Kurata et al., 2003, 2005; Nagasaki

et al., 2003; Shannon et al., 2003).
Karp and Paley (1994) proposed the extraction of biological

topologies such as linear, cyclic and branching pathways and

their utilization as the backbone of the layout. For chemical

reaction networks, the method described by Becker and Rojas

(2001) uses the longest directed cycle drawn as the backbone of

the layout to capture the flow of reactions. On the other hand,

as small cycles are known to participate in important recycling

processes, Wegner and Kummer (2005) proposed the use of

recursively extracted small cycles as the backbone of the layout

and their work has been integrated in Systems Biology Markup

Language (SBML) with layout extensions (Gauges et al., 2006).
Several biological properties are considered in force-directed

approaches. The use of edge directions and simple positional

constraints (Dogrusoz et al., 2004; Genc and Dogrusoz, 2003)

have been proposed for more general metabolic pathways. In

GOlorize (Garcia et al., 2007), the extra attractive force is

applied to vertices belonging to the same Gene Ontology class.

An SBML layout extension, SBWAutoLayout (Deckard et al.,

2006), employs the force-directed approach as its layout

algorithm. However, force-directed approaches are not suitable

for generating compact layouts of complex pathways (Li and

Kurata, 2005). In addition, force-directed approaches have a

difficulty in handling complicated positional constraints such as

arranging some vertices only on a tours-shaped region.*To whom correspondence should be addressed.

� The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 1433

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/12/1433/194907 by guest on 21 August 2022

Grid layout algorithms were originally proposed by Li and
Kurata (2005), in which vertices composing the graph are
mapped to grid points, and are arranged to minimize a cost

function defined over all possible mappings. Cost functions
comprise several components: vertex distances weighed accord-
ing to the graph structure (Li and Kurata, 2005), edge–edge and

vertex–edge crossings (Kato et al., 2005), and biologically
preferable criterion such as aligning vertices having the same
attribute (Kojima et al., 2007). Since even finding the layout

with the minimum edge–edge crossings is NP-hard (Gary and
Johnson, 1983) the basic grid layout algorithm repeatedly
updates the layout by moving vertices one by one under a

greedy search strategy, and a locally optimal layout is obtained
after convergence, while its variants consider vertex position
swappings (Kojima et al., 2007) or restrict the search space

to stochastically chosen adjacents (Barsky et al., 2007). In
addition, grid layout algorithms can deal with complicated
positional constraints and thus they succeed in generating

compact and biologically comprehensible layouts.
In this study, we propose a new grid layout algorithm

intended for applications of biological pathway databases. We

adopt the approach proposed by Kato et al. (2005), termed
CB-grid layout, as the baseline of our algorithm because
CB-grid layout first considers the edge–edge and vertex–edge

crossings, which strongly influence the understandability of
layouts. The CB-grid layout is, however, unsuitable for
applications to pathway databases in the following reasons.

(i) Although at each update step, all the differences in the cost
between a current layout and its candidate adjacents are
calculated efficiently using the calculation results from the

previous step, current grid layout algorithms still require a
high-computational time. In addition, the initial step is cal-
culated inefficiently and has a large computational overhead,

due to the unavailability of previous calculation results. Thus,
current layout algorithms cannot be used for real-time drawing.
(ii) Since the extant grid layout algorithms do not consider the

edge directions, the resulting layouts lack traceability for
biochemical reactions and gene regulations, which are very
important characteristics of biological pathways.

In order to address the first problem, we propose a new
calculationmethod for cost differences termed sweep calculation.
In sweep calculation, costs changed by moving a vertex of

interest are encoded, and then the cost differences corresponding
to the movements are calculated by using the encoded data.
Since both the encoding and decoding processes require less-time

complexities than that of the method used in CB-grid layout,
sweep calculation succeed in reducing the computational time of
CB-grid layout, in particular that of the initial step.

For the second problem, we consider that the lack of
traceability is caused by the differences in direction between
in-edges and out-edges of each vertex. We introduce a new

component to the cost function that employs the negative-inner
product between the in-edges and out-edges on each vertex as
the cost to penalize undesirable directions.

The remainder of this article is organized as follows. In
Section 2, after presenting details of the basic grid layout
algorithm, we describe sweep calculation and how to use this

method for the calculation of the initial step. We also compare
the time complexities of the CB-grid layout and our new grid

layout algorithm. Section 3 introduces a new component of

the cost function, the flow penalizing cost, and describes its

efficient calculation. In Section 4, the performance of our

approach is evaluated by using various pathway models from a

biological pathway database. Section 5 summarizes our study.

2 METHODS

2.1 Grid layout and extant search strategy

Given a graph G ¼ ðV,EÞ with vertices V and edges E and a grid of h

rows and w columns, a layout L ¼ ðV,E,U,PÞ of G comprises the

underlying graph G, w � h grid points U, and a function P : V ! U such

that Pðv�Þ 6¼ Pðv�Þ for any two distinct vertices v�, v� 2 V. Hereafter, we

denote the degree of vertex v as degðvÞ, the cardinality of a set as j � j,

a set of edges connected to vertex v as Ev, a set of vertices adjacent to

vertex v as Vv and an edge between vertices v and v0 as eðv, v0Þ. We define

the following functions:

� Crossei , ej ðLÞ: a binary function that returns 1 if an edge ei crosses an

edge ej and 0 otherwise.

� Crossvi , ej ðLÞ: a binary function that returns 1 if an edge ej crosses a

vertex vi and 0 otherwise.

� Distancevi , vj ðLÞ: a function that returns

wvi , vj �mdðvi, vjÞ if md ðvi, vjÞ � sd ^ wvi , vj50

wvi , vj � sd otherwise

(
, ð1Þ

where wvi , vj is the weight of a pair of vertices vi and vj according to the

graph structure; mdðvi, vjÞ, the Manhattan distance between vi and vj;

and sd, the saturation distance. For details see Li and Kurata (2005).

By using the above functions, the layout cost C(L) of L is defined as

follows:

CðLÞ ¼ Wee

X
ei , ej2E

Crossei , ej ðLÞ þWne

X
vk2V, el2E

Crossvk , el ðLÞ

þWdc

X
vm , vn2V

Distancevm , vn ðLÞ, ð2Þ

where Wee, Wne and Wdc are constant values used to adjust the effect of

each component.

At each step, the algorithm calculates the costs of all layouts that can

be generated by moving one of all vertices to one of all vacant points.

The layout with the minimum cost is selected as a starting layout for the

next step. After convergence, the algorithm outputs a locally optimal

layout. Since inefficiently calculating all possible adjacent layouts

requires a high-time complexity, the CB-grid layout algorithm uses a

�matrix, whose entry�v, p stores the cost difference by moving vertex v

to a vacant point p at the previous step, and reduces the time complexity

at each step from O ðw � h � ðjVj2 þ jEj2Þ to OðjVj2 þ jEj2 þ w � h � jEv� j

ðjVj þ jEjÞÞ, where v� is the vertex moved at the previous step.

In addition, when vertices and grid points in the model hold

subcellular-localization information as positional constraints, CB-grid

layout limits vertices to be mapped to the grid points that satisfy their

subcellular localizations.

In the following subsections, we introduce a new calculation method

termed sweep calculation, which can efficiently calculate the � matrix

without using the previous calculation results, and describe how to

reduce the time complexity of the CB-grid layout.

2.2 Sweep calculation

As mentioned in the previous subsection, at the initial step, the �

matrix is calculated inefficiently and Oðw � h � ðjVj2 þ jEj2ÞÞ time is

required due to the unavailability of the previous calculation results.

1434

K.Kojima et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/12/1433/194907 by guest on 21 August 2022

Sweep calculation can calculate the same operation in Oðminðw, hÞ�

ðjVj2 þ jEj2Þ þ w � hjVjÞ time, i.e. maxðw, hÞ times faster than the

inefficient method, without increasing the space complexity. Below we

show the principle of sweep calculation through Lemmas 1–5, and

prove the time complexity of the above case in Proposition 1.

Assume that an edge e and a vertex v are lying on the grid, as shown

in Figure 1a. We also assume that there exists an edge f connected to the

vertex v. Edge f has a crossing with edge e only when the other end

point of edge f is in the shaded region Re,v shown in Figure 1a. We call

this shaded region Re,v the crossing region.

Except for the case where v is on the extension of e, the crossing

region is surrounded by edge e and two half-lines from the end points of

e to the counterside of vertex v, as shown in Figure 1a. Since the size of

the grid is finite in practice, the crossing region is also surrounded

by the boundary of the grid. We define grid points with the same

x-coordinate as vertical grid point set, i.e. ðx, 0Þ, . . . , ðx, h� 1Þ. The

crossing region has a convex form, as shown in Figure 1a, and thus the

intersection of the vertical grid point set and the crossing region can be

represented as ðx, y1Þ, . . . , ðx, y2Þ. We call the two bookending points

ðx, y1Þ and ðx, y2Þ the upper crossing boundary point and lower crossing

boundary point, respectively, and the set of these crossing boundary

points for all x crossing boundary. We denote the crossing boundary

induced by edge e and the edge connected to vertex v as Be,v. Note that

some vertical grid point sets do not intersect the crossing region and

hence have no crossing boundary point.

Each crossing boundary point is obtained in constant time because

a crossing region is surrounded by at most six lines, and for each line, the

y-coordinate value corresponding to a specific x-coordinate value is

calculated in constant time. Without loss of generality, we assume that

w � h, and by following the above fact, we have the following lemma.

LEMMA 1. Crossing boundary Be, v can be obtained in Oðminðw, hÞÞ time.

We introduce the following two functions associated with the

crossing region Re, v and crossing boundary Be, v:

� re, vðx, yÞ: a binary function ½0,w� 1� � ½0, h� 1�� f0, 1g that

returns 1 if ðx, yÞ is in the crossing region Re, v and 0 otherwise.

� be, vðx, yÞ: a function ½0,w� 1� � ½0, h� 1�� f�1, 0, 1g that returns

1 if ðx, yÞ is a upper crossing boundary point in Be;v

�1 if ðx, y� 1Þ is lower crossing boundary point in Be, v

0 otherwise

8><
>: :

Note that re, vðx, yÞ and be, vðx, yÞ represent the same things as crossing

region Re, v and crossing boundary Be, v, respectively. We implement

these two functions as an h� w matrix.

LEMMA 2. re, v can be obtained from be, v in Oðw � hÞ time.

PROOF. Let sðx, yÞ ¼
Py

j¼0 Be, vðx, jÞ. Since re, vðx, yÞ ¼ sðx, yÞ and

sðx, yÞ ¼ sðx, y� 1Þ þ Be, vðx, yÞ, it is evidenced that re, vðx, 0Þ, . . . ,

re, vðx, h� 1Þ can be calculated in O(h) time. Thus, Re, v is obtained

from Be, v in Oðw � hÞ time.

LEMMA 3. A function that returns the same values as
Pn

i¼1 �irei , vi can

be obtained in Oðw � hþ nminðw, hÞÞ time.

PROOF. From the proof of Lemma 2,
Pn

i¼1 �irei , vi ðx, yÞ

¼
Pn

i¼1 �i
Py

j¼0 bei , vi ðx, jÞ ¼
Py

j¼0

Pn
i¼1 �ibei , vðx, y

0Þ. Instead of prepar-

ing bei , vi , by preparing a h� w matrix whose every entry is 0, and

adding non-trivial values to it, which are supposed to be used for each

bei , vi , we obtain a function that returns the same value as
Pn

i¼1 �ibei , v in

Oðw � hÞ time. Thus, by following Lemma 2 as well,
Pn

i¼1 �irei , v can be

obtained in Oðw � hþ n �minðw, hÞÞ time.

LEMMA 4. Difference of the number of edge–edge crossings induced by

moving a vertex v from ðx, yÞ to ðx0, y0Þ can be calculated byX
v02Vv

X
e2EnEv

ðre, v0 ðx
0, y0Þ � re, v0 ðx, yÞÞ:

The calculation of all the differences induced by the movement of v

requires Oðw � hþminðw, hÞ � degðvÞÞ time.

PROOF. The former part of this lemma is obvious. We prove the latter

part. Since
P

v02Vv

P
e2EnEv

re, v0 can be prepared in Oðminðw, hÞdegðvÞÞ

time from Lemma 3 and each movement can be calculated in O(1) time,

Oðw � hþminðw, hÞdegðvÞÞ time is required in total.

We can consider the case of vertex-edge crossings in a similar manner

because in our setting, the regions of vertices are denoted by a rectangle,

and thus we can detect the vertex–edge crossing by checking the

edge–edge crossings between the edge of interest and lines surrounding

the rectangular region of the vertex of interest. Assume that vertex v and

edge e are lying on the grid and e is connected to vertex v0. By moving v0

around, a crossing between v and e occurs when v0 is in some region. On

the other hand, by moving v around, a crossing between v and e occurs

when v is in some different region. As in the case of edge–edge crossings,

we call these regions crossing regions and denote the region in the former

case as Rev
v, v0 , e and the region in the latter case as Rve

v, e. Further, we denote

the crossing boundary for Rev
v, v0 , e as B

ev
v, v0 , e and that for Rve

v, e as B
ve
v, e.

Unfortunately, we cannot directly use the same strategy for the

distance cost because the value of each grid point for the distance from

a vertex v changes gradually with the distance from v until the distance

attains the saturation distance, as shown in Figure 1b. Beyond the

region bounded by the saturation distance, values corresponding to grid

points are set to the same value or the saturation distance. Thus, we

focus on the region bounded by the saturation distance, which we call

the distance region, and introduce the new strategy. For simplicity, we

consider that the distance region is completely contained in the grid.

It is evidenced that the distance region is surrounded by four line

segments induced by the saturation distance. We call these line

segments the distance boundary and denote them as Bd
v . We define

the upper and lower distance boundaries as in the case of crossings.

We introduce the following functions, which are also implemented as

h� w matrices:

� drvðx, yÞ: a function ½0,w� 1� � ½0, h� 1��Z that returns the

distance between ðx, yÞ and vertex v defined in Equation (1).

� dbvðx, yÞ: a function ½0,w� 1� � ½0, h� 1��Z that returns

�1 if ðx, yÞ is on the upper distance boundary

�1 if ðx, y� 1Þ is on lower distance boundary

2 if vx � sd5x5vx and y ¼ vy

0 otherwise

8>>><
>>>:

Fig. 1. (a) Edge e and vertex v are lying on the grid. A crossing occurs

only when another end point of f opposite to v lies in the shaded region.

The shaded region always forms a convex set. (b) An image of a

distance pattern on the grid. The digit on each grid point denotes the

distance from a vertex v, which is defined in Equation (1).

1435

Fast grid layout algorithm

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/12/1433/194907 by guest on 21 August 2022

where vx and vy are the x and y-coordinate values of the grid point to

which vx is mapped, respectively.

The following lemma shows that drv can be decoded from dbv.

LEMMA 5. drv can be generated from dbv. This operation requires

Oðw � hÞ time.

PROOF. All drvðx, yÞ are set to sd, which requires Oðw � hÞ time. Let

sðx, yÞ ¼
Py

i¼0 dbðx, iÞ and tðx, yÞ ¼
Py

j¼0 sðx, jÞ. When vy � sd5y5vy,

the distance from v is decremented as y is incremented. On the other

hand, when vy5y5vy þ sd, the distance from v is incremented as y is

incremented. Since sðx, yÞ returns the distance between v and ðx, yÞ

subtracted from the distance between v and ðx, y� 1Þ, which satisfies

this law, drvðx, yÞ ¼
Py

i¼0 tðx, iÞ. Since sðx, yÞ ¼ sðx, y� 1Þ þ dbvðx, yÞ,

tðx, yÞ ¼ tðx, y� 1Þ þ sðx, yÞ, and drvðx, yÞ ¼ drvðx, y� 1Þ þ tðx, yÞ, drv
can be generated from dbv in Oðw � hÞ time.

By using the facts from Lemmas 1–5, we present sweep calculation

for the following cases and function initialization, which computes the

initial step of the CB-grid layout using sweep calculation, as shown in

Figure 2 with pseudo-codes.

� setEdgeEdgeðv,E0
v,V

0,WeeÞ: a function that calculates the costs

from the sum of the edge–edge crossings between ev 2 E0
v � Ev and

e 2 e0 for all the mappings of v to a point.

� setEdgeVertexðv,E0
v,V

0,WveÞ: a function that calculates the costs

from the sum of the vertex–edge crossings between ev 2 E0
v � Ev

and v0 2 V0 for all the mappings of v to a point.

� setVertexEdgeðv,E0,WveÞ: a function that calculates the costs from

the sum of the vertex–edge crossings between v and e0 2 E0 for all

the mappings of v to a point.

� setDistanceðv,V0Þ: a function that calculates the sum of the

distance costs between v and v0 2 V0 for all the mappings of v to

a point.

In the pseudo-codes, the following matrices and functions are newly

introduced:

� R: A matrix of h rows and w columns. r(j, i) denotes the ith row and

jth column of R and corresponds to a grid point of the ith row and

jth column. We also use the notation r(p) to denote an element of R

corresponding to grid point p.

� B: A matrix of h� 1 rows and w� 1 columns. b(j, i) denotes the ith

row and jth column of B and corresponds to a grid point of the ith

row and jth column. We also use the notation b(p) to denote an

element of B corresponding to grid point p.

� resetðM, valueÞ: a function that sets all values in matrix M to value.

This function requires Oðw � hÞ time.

Fig. 2. Pseudo-codes of the functions of sweep calculation and the initial step of the CB-grid layout using sweep calculation.

1436

K.Kojima et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/12/1433/194907 by guest on 21 August 2022

� setEdgeEdgeBoundaryðe, v, iÞ: Let ði, yuÞ be an upper boundary

point and ði, yl � 1Þ be a lower boundary point in Be,v. This

function increments bði, yuÞ and decrements bði, ylÞ. This function

requires O(1) time.

� setEdgeVertexBoundaryðv, v0, e, iÞ: Let ði, yuÞ be an upper boundary

point and ði, yl � 1Þ be a lower boundary point in Bev
v, v0 , e. Note that

e must be connected to v0. This function increments bði, yuÞ and

decrements bði, ylÞ. This function requires O(1) time.

� setVertexEdgeBoundaryðv, e, iÞ: Let ði, yuÞ be an upper boundary

point and ði, yl � 1Þ be a lower boundary point in Bve
v, e. This

function increments bði, yuÞ and decrements bði, yl þ 1Þ. This

function requires O(1) time.

� setDistanceBoundaryðv,wv, v0 , iÞ: Let ði, yuÞ be an upper boundary

point and ði, yl � 1Þ be a lower boundary point in Bd
v . This function

subtracts wv, v0 from bði, yuÞ and bði, yl þ 1Þ, and adds 2wv, v0 to

bði, vyÞ. This function requires O(1) time.

In the initialization, for each vertex v 2 V, all the values in R are set

to 0 by resetðR, 0Þ and setEdgeEdge, setEdgeVertex, setVertexEdge and

setDistance are calculated. In setEdgeEdge, B is initialized by resetðB, 0Þ

and the crossing boundaries are recorded in B. The cost from the

edge–edge crossings is then calculated from the crossing boundaries by

following Lemma 3 and it is summed up to R. In setEdgeVertex and

setVertexEdge, the vertex–edge crossings are calculated in a manner

similar to that of setEdgeEdge. In setDistance, all values in B are set to

sd by resetðR, sdÞ and the distance boundaries are recorded in B. The

distance cost is then calculated from the crossing boundaries by

following Lemma 5 and it is summed up to R. After the calculation of

these four functions, the differences of the cost between the current

layout and its adjacents are calculated and stored in the � matrix by

using the values in R. During this process, the function selects the best

movement of vertex vmin to the grid point q and finally returns the best

movement and its corresponding cost difference dmin.

The following proposition concludes the time and space complexity

of the initialization.

PROPOSITION 1. Initialization requires Oðminðw, hÞ � ðjVj2 þ jEj2Þþ

ðw � hÞjVjÞ time and Oðw � hÞ space.

PROOF. First, we focus on vertex v and show the time complexity

corresponding to vertex v at each step. Since setEdgeEdgeBoundary,

setEdgeVertexBoundary, setVertexEdgeBoundary and setDistance

Boundary require constant time and reset requires Oðw � hÞ time,

setEdgeEdge, setEdgeVertex, setVertexEdge and setDistance require

Oðminðw, hÞ � jEj � degðvÞ þ w � hÞ, Oðminðw, hÞ � jVj � degðvÞ þ w � hÞ, and

Oðminðw, hÞ � jVj þ w � hÞ time, respectively. In addition, the calculation

of all cost differences requires Oðw � hÞ time, and the time complexity

required for vertex v amounts to Oðminðw, hÞ � ðjVj þ jEjÞ�

ðdegðvÞ þ 1Þ þ w � hÞ time.

Thus, by summing up Oðminðw, hÞ � ðjVj þ jEjÞ � ðdegðvÞ þ 1Þ þw � hÞ

time with respect to v, we observe that the initialization requires

Oðminðw, hÞðjVj2 þ jEj2Þ þ ðw � hÞjVjÞ time, where we use the fact thatP
v2V degðvÞ ¼ 2jEj.

Since Oðw � hÞ space is required to store the data of R and B, sweep

calculation requires Oðw � hÞ space.

2.3 Grid layout algorithm with sweep calculation

The previous subsection shows the efficient calculation of the initial

step in the CB-grid layout using sweep calculation. At the update step,

the time complexity is mainly dependent on the crossings related to a

vertex of interest v and a vertex moved at the previous step v�, which

cannot be calculated by the � matrix:

� edge–edge crossing between ev 2 Ev and ev� 2 Ev� : OðjEvjjEv� jÞ time

for each movement.

� vertex–edge crossing between ev 2 Ev and v�: OðjEvjÞ time for each

movement.

� vertex–edge crossing between ev� 2 Ev� and v: OðjEv� jÞ time for each

movement.

� edge–edge crossing between edge eðv, v�Þ and E n fEv [Ev� g and

vertex-edge crossing between edge eðv, v�Þ and V n fv, v�g if edge

eðv, v�Þ exists: OðjEjÞ and OðjVjÞ time for each movement.

The calculations for these cases require a total time of

Oðw � h � degðv�ÞjEjÞ at each step. Sweep calculation can be applied to

these calculations and it reduces the time complexity to

Oðminðw, hÞ � degðv�ÞjEjÞ.

However, when the vertex is moved to the point to which v� was

mapped at the previous step, the cost difference is calculated inefficiently

since the cost difference for the point was not calculated at the previous

step. Thus, this case requires a total time of OðjEj2Þ at each step.

As is done in Kojima et al. (2007) by defining the cost differences

corresponding to occupied points, this case can be efficiently calculated

as well. This is because when two vertices are mapped to the same point,

we can calculate the cost in the same manner as a layout in which no

two vertices are mapped to the same point, and the cost differences

corresponding to the occupied points are also defined in the same

manner as those for vacant points. Note that if an edge passes

sufficiently close to a grid point to which two vertices are mapped to

and the edge makes crosses with both vertices, the number of crossings

is counted as two.

Due to its definition, we observe that the cost differences obtained by

sweep calculation include the cases of occupied points, and thus we can

use the cost differences obtained by sweep calculation directly to update

the cost differences for the occupied points.

By summarizing the above definition and properties, we show the

new grid layout algorithm, CBS-grid layout (CB-grid layout with sweep

calculation), with the pseudo-code in Figure 3.

The next proposition gives the time complexity of the CBS-grid

layout.

PROPOSITION 2. At each step, the CBS-grid layout shown in Figure 3

calculates all the cost differences as in the case of the CB-grid layout in

Oðminðw, hÞ � degðv�Þ � jEj þ w � h � jVjÞ time.

PROOF. As discussed abov, since sweep calculation requires

Oðminðw, hÞ � degðv�Þ � jEj þ w � h � jVjÞ time and by using the data

from the � matrix and sweep calculation, the calculation of each cost

difference requires a constant time, as shown in Figure 3, the CB-grid

layout with sweep calculation requires Oðminðw, hÞ � degðv�Þ � jEjþ

w � h � jVjÞ time.

2.4 Comparison of time complexities

We compare the time complexities of the CB and CBS-grid layouts. It is

assumed that jVj � jEj, w � h is proportional to jVj, and all vertices are

equally selected to update the layout on average. At each step, the

CB-grid layout requires OðjVj2 þ jEj2 þ w � h � degðEv� ÞðjVj þ jEjÞÞ,

where v� is the vertex moved at the previous step (Kato et al., 2005;

Kojima et al., 2007), while the CBS-grid layout requires

Oðminðw, hÞjEjðjVj þ jEjÞ þðw � hÞjVjÞ time.

Since from the above assumptions, degðEv� Þ equals to

avedeg � jEj=jVj and w � h ¼ CjVj, where C is a constant, the time

complexities of the CB and CBS-grid layouts are Oðavedeg2 � jVj2 � CÞ

and Oðavedeg2 � jVj3=2C1=2 þ CjVj2Þ, respectively. Thus, for the case

where avedeg � ðC � jVjÞ1=4, the second term of the time complexity

of the CBS-grid layout dominates and the CBS-grid layout is

avedeg2 times faster than the CB-grid layout, and
ffiffiffiffiffiffiffiffiffiffi
CjVj

p
times faster

otherwise.

1437

Fast grid layout algorithm

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/12/1433/194907 by guest on 21 August 2022

Since the CB-grid layout calculates the cost differences inefficiently

at the initial step, its time complexity is Oðw � h � jEj2Þ, while CBS-grid

layout requires Oðminðw, hÞ � jEj2ÞÞ. Arranging these time complexities

by using the above assumptions, we observe that the CBS-grid layout isffiffiffiffiffiffiffiffiffiffi
CjVj

p
times faster than the CB-grid layout at the initial step.

The method counting edge–edge and vertex–edge crossings in

CB-grid layout is naı̈ve one. In the supplementary file, we compare

the time complexity of sweep calculation with those of algorithms

studied in computational geometry (Akman et al., 1989; Chazelle et al.,

1986; Cheng et al., 1991; Palazzi and Snoeyink, 1993; Tunkelang et al.,

1994). Here, we just give the conclusion of the comparison. If the

average degree of the model can be bounded by Oð
ffiffiffiffiffiffiffi
jVj

p
Þ, sweep

calculation is the most efficient of all them. In general, this assump-

tion is reasonable for biological networks due to their small average

degree.

3 FLOW PENALIZATION AND ITS CALCULATION

In biological pathways, edges have directions that represent the

biochemical reactions and gene regulations. Consider the

layout shown in Figure 4a. In general, we can easily trace the

directions of edges in the layout since edges connected to a

vertex have similar directions. In contrast, when edges have

completely different directions as compared to each other, we

may face a difficulty in tracing the directions, as shown in

Figure 4b. Thus, considering these properties, as a component

for the cost function, we define the new function that penalizes
undesirable edge directions, as shown in Figure 4b:

FlowvðLÞ ¼ �
X

ein2Ein
v , eout2E

out
v

5
ein
�!
j ein
�!

j
,
eout
�!
jeout
�!

j
4, ð3Þ

where Ein
v and Eout

v are sets of in-edges and out-edges connected

to v, respectively; e!, a vector associated with edge e; operation
5 � , �4, the inner product; and j e!j, the length of vector e!.
Note that for edge e of length 0, let e!=j e!j be 0. By using this

function, we redefine the cost function given in Equation (2) as:

CfðLÞ ¼ CðLÞ þWfl

X
v2V

FlowvðLÞ, ð4Þ

where Wfl is a constant value called the flow penalizing weight.
The movement of vertex v changes Flowv and Flowv0 related

to edge eðv, v0Þ, where v0 is each adjacent vertex of v. Since
Equation (4) can be rearranged as

FlowvðLÞ ¼ �
X

ein2Ein
v

ein
�!
j ein
�!

j
,

X
eout2Eout

v

eout
�!
jeout
�!

j

* +
, ð5Þ

if
P

ein2Ein
v
ein
�!=j ein

�!
j and

P
eout2Eout

v
eout
�!=jeout

�!
j are pre-

calculated, this type of change requires OðdegðvÞÞ for Flowv

and O(1) for Flowv0 . Thus, the cost difference for Flow is
calculated in Oðw � h �

P
v degðvÞÞ ¼ Oðw � h � jEjÞ time at each

step. However, the calculation method for Flow still increases
the time complexity, and thus we cache flow penalizing costs

corresponding to each movement of a vertex and change only
the costs influenced by the update of the layout to reduce the

time complexity. When v� was moved at the previous step, the
cached flow penalizing costs to be updated are corresponding

to v�, vertices adjacent to v� and vertices adjacent to v0 2 Vv� ,
where Vv� is the set of vertices adjacent to v�. Therefore, the

time complexity of the update for the cached flow penalizing
cost amounts to Oðw � h � avedeg2Þ and hence it does not

increase the time complexity of the grid layout algorithm. We
call the CBS-grid layout with the cost function given in

Equation 4 the CBSF-grid layout.

4 EXPERIMENTAL RESULTS

We use 95 pathway models of various sizes from TRANSPATH

pathway database (Schacherer et al., 2001) to compare the

Fig. 3. Pseudo-code of CBS-grid layout.

Fig. 4. Examples of (a) rational edge directions and (b) undesirable

edge directions. In (a) edges connected to vertex v have similar

directions, and we may easily capture the flow represented by the

directions, while the example shown in (b) lacks the traceability of flows

due to the different directions.

1438

K.Kojima et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/12/1433/194907 by guest on 21 August 2022

performance of the CB-grid, CBS-grid and CBSF-grid layouts.

The largest model contains 316 vertices and 592 edges. For each

model, we set the numbers of rows w and columns h of a grid

to 2
ffiffiffiffiffiffiffi
jVj

p
and 3

ffiffiffiffiffiffiffi
jVj

p
, respectively. These pathway models do not

hold subcellular localization information.

From repeated trials, we empirically decided the weights for

the cost function: Wdc ¼ 100, Wee ¼ 100, Wve ¼ 150, and

Wfl ¼ 100.

4.1 Comparison of running time

We generate 10 layouts for each model by randomly mapping

vertices to the grid without their overlaps and positional

violations. These are preprocessed by the Eades grid layout

algorithm (Kojima et al., 2007) with 100 iterations and they are

then used as initial layouts for the grid layout algorithms. Note

that the Eades grid layout on average requires51s even for the

largest model.
For the comparison of the running time, we evaluate the CB,

CBS and CBSF-grid layouts. All the algorithms were imple-

mented in Java and experiments were performed on Xeon 3.6

GHz with 4GB RAM.
The running time of each grid layout algorithm is summar-

ized in Figure 5a. These running time results include the time

consumed by the Eades grid layout and are averaged over the

10 layouts for each model. From the comparison, we observe

that the CB-grid layout is significantly slower than any other

grid layout algorithm. The CBS-grid layout is the fastest among

them, but since the CBS and CBSF-grid layouts have the same

time complexity, there is no large gap among them in terms of

running time.
We show the ratio of the running time of the CB and CBS-

grid layouts (CB/CBS in Figure 5b) and the ratio of the running

time of the CB-grid layout normalized by the average degree of

each model and the running time of the CBS-grid layout

(CB(norm)CBS in Figure 5b). For small models containing530

vertices, the CB and CBS-grid layouts do not have large

differences, while the CBS-grid layout is more than 10 times

faster than the CB-grid layout for relatively large models

containing more than 200 vertices. This is because the overhead

time dominates in the case of a short-running time.

For the case of CB(norm)/CBS, we observe that as the size of

the model increase, its ratio becomes constant. Since biological

pathway models are known to have relatively small degrees,

from the discussion in Section 2.4, the running time of the

CB-grid layout normalized by the squared average degree of

each model is expected to be proportional to that of the CBS-

grid layout. This assessment agrees with the experimental

results.

4.2 Effect of flow penalization

We say that a vertex has undesirable direction edges if no line

passing through the vertex can divide the edges connected

to the vertex into in-edges and out-edges. Note that in

this definition vertices of degree 54 never have undesirable

direction edges. We count the number of vertices having

undesirable direction edges in the resulting layouts of CBS

and CBSF-grid layout obtained through the previous section

process. From the comparison shown in Figure 6, we observe

that flow penalizing cost reduces the number of vertices

with undesirable direction edges all over the models from

TRANSPATH.

(a) (b)

0 50 100 150 200 250 300

0
20

0
40

0
60

0
80

0

of Vertices

T
im

e
[s

]

CB
CBS
CBSF

0 50 100 150 200 250 300

5
10

15
20

of vertices

R
at

io

CB/CBS
CB(norm)/CBS

Fig. 5. Comparison of the running time of each grid layout algorithm. (a) The running time of the CB, CBS and CBSF-grid layouts for pathway

models of various sizes. (b) The ratio of the running time of the CB and CBS-grid layouts (CB/CBS) and the ratio of the running time of the CB-grid

layout normalized by the squared average degree of each model and that of the CBS-grid layout (CB(norm)/CBS).

0 50 100 150 200 250 300

0
20

40
60

80
10

0

of Vertices

of

 v
er

tic
es

 w
ith

 u
nd

es
ira

bl
e

di
re

ct
io

n
ed

ge
s

CBS
CBSF

Fig. 6. Comparison of the numbers of vertices having undesirable

directions edges between CBS and CBSF-grid layouts. We count the

number of vertices having undesirable direction edges in the resulting

layouts of CBS and CBSF-grid layouts.

1439

Fast grid layout algorithm

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/12/1433/194907 by guest on 21 August 2022

4.3 Comparison with a force-directed approach

We compare our approach with a force-directed approach

termed Jiggle proposed by Tunkelang (1998). Following
settings are used in Jiggle:

� Conjugate-gradient method is selected as the optimization
process due to its efficiency.

� Iteration count is restricted to 1000 since according to the

stopping criterion in Tunkelang (1998) Jiggle iterates

around 1000 times for the largest model we use.

Figures 7a, b, respectively shows the layouts of CBSF-grid

layout and Jiggle for endothelial cell model (Pober et al., 2002),

which consists of 318 vertices and 371 edges. Note that
subcellular localizations are removed in the resulting layout

of Jiggle since Jiggle, does not use them.
As stated in Li and Kurata (2005), due to the definition of

distance cost, vertex clusters are formed according to the

topological structure of the model in the layout of CBSF-grid
layout, thus facilitate to capture the relationship among these

topologically decided clusters. In addition, consideration of

subcellular localizations and edge directions helps understand

the system of the model.
We also compare the running time of CBS and CBSF-grid

layouts and Jiggle as in Figure 8 using TRANSPATH models
under the same condition of subsection Comparison of the

running time. From the comparison our methods are compe-

titive with Jiggle for models of 5250 vertices. Although for
models of4250 vertices our methods take more running time

than Jiggle, their running time is sustainable in practical use.
In the supplementary file we also give the layouts of CBSF-

grid layout and Jiggle for Caenorhabditis elegans cell-fate

model (Saito et al., 2006).

5 CONCLUSION

For the purpose of applications to pathway databases, we

develop grid layout algorithms and address two issues:

computational time and traceability of the flow. We devise

sweep calculation and reduce the time complexity of existing

grid layout algorithms, although for brevity, our description

was limited to the CB-grid layout. Experiments using various

models from an actual pathway database prove that our new

grid layout algorithm is much faster than the existing grid

layout algorithm, and is sufficiently fast for the real-time

drawing of models containing 5300 vertices. By using flow

penalization, we reduce undesirable edge directions that cause a

difficulty in tracing the flow of biochemical reactions and gene

regulations.

Conflict of Interest: none declared.

Fig. 7. Comparison of CBSF-grid layout and Jiggle using the endothelial cell model. (a) A resulting layout of CBSF-grid layout. (b) A resulting

layout of Jiggle. Since Jiggle does not use subcellular localizations, they are removed from the layout in (b).

0 50 100 150 200 250 300

0
10

20
30

40
50

of Vertices

T
im

e
[s

]

CBS
CBSF
Jiggle

Fig. 8. Comparison of the running time of CBS and CBSF-grid layouts

and Jiggle.

K.Kojima et al.

1440

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/12/1433/194907 by guest on 21 August 2022

REFERENCES

Akman,V. et al. (1989) Geometric computing and uniform grid technique.

Comput. Aided Des., 21, 410–420.

Barsky,A. et al. (2007) Cerebral: a Cytoscape plugin for layout of and interaction

with biological networks using subcellular localization annotation.

Bioinformatics, 23, 1040–1042.

Battista,D.G. et al. (1994) Annotated bibliography on graph drawing algorithms.

Comput. Geom. Theor. Appl., 4, 235–282.

Battista,D.G. et al. (1999) Graph Drawing: Algorithms for the Visualization of

Graphs. Prentice Hall, New Jersey.

Becker,M.Y. and Rojas,I. (2001) A graph layout algorithm for drawing metabolic

pathways. Bioinformatics, 17, 461–467.

Brandenburg,F.-J. et al. (1997) Algorithmenzum automatischen Zeichnen von

Graphen. Inform. Spektrum, 20, 199–207.

Chazelle,B. (1986) Reporting and counting segment intersections. J. Comput.

Syst. Sci., 32, 156–182.

Cheng,S.W. and Janardan,R. (1991) Space-efficient ray-shooting and intersection

searching: algorithms, dynamization, and applications. In Proceedings of the

second annual ACM-SIAM symposium on Discrete algorithms. Society for

Industrial & Applied, San Francisco, USA, pp. 7–16.

Deckard,A. et al. (2006) Supporting the SBML layout extension. Bioinformatics,

22, 2966–2967.

Demir,E. et al. (2002) PATIKA: an integrated visual environment for

collaborative construction and analysis of cellular pathways. Bioinformatics,

18, 996–1003.

Dogrusoz,U. et al. (2004) A compound graph layout algorithm for biological

pathways. In Proceedings of the 12th International Symposium on Graph

Drawing. Springer-Verlag, New York City, USA, pp. 442–447.

Dogrusoz,U. et al. (2006) PATIKAweb: a Web interface for analyzing biological

pathways through advanced querying and visualization. Bioinformatics, 22,

374–375.

Doi,A. et al. (2003) Genomic Object Net: II. Modelling biopathways by hybrid

functional Petri net with extension. Appl. Bioinformatics, 2, 185–188.

Genc,B. and Dogrusoz,U. (2003) A constrained, force-directed layout algorithm

for biological pathways. In Proceedings of the 11th International Symposium

on Graph Drawing. Springer-Verlag, Rerugia, Italy, pp. 314–319.

Garcia,O. et al. (2007) GOlorize: a cytoscape plug-in for network visualization

with Gene Ontology-based layout and coloring. Bioinformatics, 23, 394–396.

Gary,M.R. and Johnson,D.S. (1983) Crossing number is NP-complete. SIAM J.

Algebra. Discr., 4, 312–316.

Gauges,R. et al. (2006) A model diagram layout extension for SBML.

Bioinformatics, 22, 1879–1885.

Kanehisa,M. (2002) The KEGG database. Novartis Found Symp., 247, 91–101.

Karp,P.D. and Paley,S.M. (1994) Automated drawing of metabolic pathways.

In Proceedings of the 3rd International Conference on Bioinformatics

and Genome Research. World Scientific Pub. Co. Inc., Florida, USA,

pp. 225–238.

Kato,M. et al. (2005) Automatic drawing of biological networks using cross cost

and subcomponent data. Genome Inform., 16, 22–31.

Kojima,K. et al. (2007) An efficient grid layout algorithm for biological networks

utilizing various biological attributes. BMC Bioinformatics, 8, 1–16.

Kurata,H. et al. (2003) CADLIVE for constructing a large-scale biochemical

network based on a simulation-directed notation and its application to yeast

cell cycle. Nucleic Acids Res., 31, 4071–4084.

Kurata,H. et al. (2005) CADLIVE dynamic simulator: direct link of biochemical

networks to dynamic models. Genome Res., 15, 590–600.

Li,W. and Kurata,H. (2005) A grid layout algorithm for automatic drawing of

biochemical networks, Bioinformatics, 21, 2036–2042.

Nagasaki,M. et al. (2003) Genomic Object Net: I. A platform for modelling and

simulating biopathways. Appl. Bioinformatics, 2, 181–184.

Palazzi,L. and Snoeyink,J. (1993) Counting and reporting red/blue segment

intersections. CVGIP: Graph. Model. Im., 56, 304–310.

Pober,J.S. (2002) Endothelial activation: intercellular signalizng pathways.

Arthritis Res., 4, S109–S116.

Saito,A. et al. (2006) Cell fate simulation model of gustatory nuerons with

microRNAs double-negative feedback loop by hybrid functional Petri net

with extension. Genome Inform., 17, 100–111.

Schacherer,F. et al. (2001) The TRANSPATH signal transduction database: a

knowledge base on signal transduction networks. Bioinformatics, 17,

1053–1057.

Shannon,P. et al. (2003) Cytoscape: a software environment for integrated models

of biomolecular interaction networks. Genome Res., 13, 2498–2504.

Tunkelang,D. (1994) A practical appraoch to drawing undirected graphs.

Technical Report CMUCS-94-161. Carnegie Mellon University, School of

Computer Science.

Tunkelang,D. (1998) JIGGLE: Java interactive graph layout environment. In

Proceedings of the 6th International Symposium on Graph Drawing. Springer-

Verlag, Montréal, Canada, pp. 412–422.

Wegner,K. and Kummer,U. (2005) A new dynamical layout algorithm for

complex biochemical reaction networks. BMC Bioinformatics, 6, 1–12.

Fast grid layout algorithm

1441

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/12/1433/194907 by guest on 21 August 2022

