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Abstract—Accurately localizing users in indoor environments 

remains an important and challenging task. The article presents 

new results on room-level indoor localization, using cellular 

Received Signal Strength fingerprints collected with a standard 

cellular handset programmed to perform fast scans of the 900 

and 1800 Megahertz GSM bands as a user explores an indoor 

environment at a normal walking pace. Support Vector Machines 

are used to deal with the high dimensionality of the fingerprints. 

The study demonstrates that an appropriately programmed 

standard cellular handset can provide a simple, inexpensive 

solution for accurate room-level indoor localization. 
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I.  INTRODUCTION 

The inability of GPS receivers to function adequately in 
„urban canyon‟ and indoor environments has prompted a search 
for new techniques of indoor localization that can provide 
seamless and ubiquitous service for mobile users. Accurately 
and reliably locating persons and objects in indoor 
environments is a challenging, but attractive, goal that holds 
promise for a variety of location-based services and 
applications [1]. For many such services, room-level precision, 
in which the localization system discriminates between rooms 
rather than estimating coordinates per se, is an adequate goal; 
this is the approach that will be adopted here. 

A variety of indoor localization techniques have been 
proposed. Methods based on Received Signal Strength (RSS), 
in Wi-Fi and Bluetooth networks, for example, or using 
infrared or acoustic signals, appear promising [2-7]. A 
drawback of these approaches, however, is that they necessitate 
the deployment and maintenance of an infrastructure, which 
can be time consuming and costly.  

In addition to such short-range signals, indoor localization 
based on fingerprints from wide-area radiotelephone networks, 
such as GSM and CDMA, have also been proposed [8-13]. The 
full coverage, near-ubiquity and relative stability of GSM 
networks may provide an attractive alternative for indoor 
localization.  

Recent results have suggested that accurate and efficient 
indoor localization can be achieved using RSS information 

acquired from very large numbers of GSM channels [10-13]. 
Those studies, however, did not represent a genuinely practical 
solution since the RSS scanning devices operated without user 
intervention only at a small number of representative points 
within each room. In this work, we present a more realistic 
solution, in which a user can be localized at room level 
regardless of his exact position in a room. This is achieved 
using a handheld acquisition device – actually a standard 
cellphone with a software modification – that can obtain an 
RSS fingerprint of the entire 900 and 1800 MHz GSM bands in 
only about 300 milliseconds. This enables the collection of 
large amounts of data on a reasonable timescale, at points 
throughout the interiors of the rooms, rather than at only a few 
representative points, while moving at a normal walking pace.  

Our results show that GSM fingerprints acquired in this 
way can be used to differentiate rooms of about 10 square 
meters size in some 94% of cases, indicating that the method 
may indeed be used as part of a simple, practical, inexpensive 
indoor localization system. The data collection procedure 
employed is described in section II, and the room classification 
algorithms in section III. Results are presented in section IV, 
while conclusions and future perspectives appear in the final 
section.  

II. DATA COLLECTION AND DATASETS 

The data used in the experiments was obtained by scanning 
the entire GSM band in 7 rooms of a 4th floor laboratory 
building (steel frame, concrete and plaster walls) in central 
Paris, France. The data acquisition device used was the GSM 
trace mobile “TEMS Pocket”, which is in fact a standard Sony 
Ericsson W995 mobile phone to which network investigation 
software has been added by the manufacturer [14]. In April of 
2012, on a Saturday afternoon from 2pm to 6pm, 5500 scans 
(representing about one half hour of recording per room) were 
recorded in each of the 7 unoccupied rooms and manually 
labeled with the corresponding room numbers, as illustrated in 
Figure 1. Each scan contains the RSS of all 548 carriers in the 
GSM900 and GSM1800 bands, with values ranging from -117 
to -38dBm. All scans were made via “random walks” in the 7 
rooms with the TEMS Pocket handheld by the user. The exact 
positions of the individual scans within a room were not 
recorded; indeed all points in a given room are treated as 



belonging to that room, consistent with the room-level indoor 
localization approach adopted here. 
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Figure 1. Layout of the laboratory where the data set was recorded 

III. CLASSIFICATION ALGORITHMS 

The room-level indoor localization problem is considered 
as a multi-class classification problem, where each room is a 
class. As is usual in data-driven classification problems, the 
algorithm works in a two-stage process. The first stage is off-
line training, in which the equations of the discriminant 
functions are determined using training data with known labels. 
The second stage is on-line testing, in which, given a 
fingerprint that is not present in the training dataset, the 
classifier must provide the label of the room where it was 
measured, using the previously defined separating surfaces. 
Only the first off-line stage may require heavy computations, 
the second stage merely needs to compute the values of the 
discriminant functions. As a starting point for multi-class 
classification, a pairwise (also termed „two-class or „binary‟) 
classifier is introduced first. 

A. Pairwise Classifier 

Since the number of variables is very large and the size of 
the training set is relatively limited, Support Vector Machine 
(SVM) classifiers were deemed appropriate because of their 
built-in regularization mechanism [15]. 

Consider a set of M examples of items belonging to either 
of two classes A and B, each example being described by a p-

dimensional vector xi. Further assume that the examples are 
linearly separable, i.e. that there are, in descriptor space, linear 
surfaces of equation f(x) = 0 that separate all examples without 
error: f(xi) > 0 for all examples i belonging to class A and f(xi) 
< 0 otherwise. It can be proved that f(x) can be written under 
the form 
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where the i (i = 0..M) are parameters whose values are 
estimated from the examples, yi = +1 if example i belongs to 

class A and yi = 1 otherwise. 

A linear SVM is a linear classifier such that the minimum 
distance between the separation surface f(x) = 0 and the 
examples that are closest to it (called support vectors) is 
maximum, thereby guaranteeing the best generalization given 

the available data. The values of the parameters i of such a 
classifier are obtained by solving a quadratic optimization 
problem under linear inequality constraints. The support 

vectors are the only examples whose i are nonzero. 

If the examples are not linearly separable, one resorts to 
nonlinear SVMs, whereby the separation surface is of the form 
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where K(x, y) is a kernel function that must be such that the 
(M, M) matrix of general term K(xi, xj) is positive semi-

definite. As for linear SVMs, the i are obtained by solving a 
quadratic optimization problem under constraints. If the 
constraints can be satisfied only if a large proportion of 
examples are support vectors, i.e. if the classifier has a large 
number of nonzero parameters, the constraint that all examples 
are classified without error and lie outside the margin can be 
relaxed; that “soft-margin” approach reduces the complexity 
of the classifier by performing a tradeoff between accuracy of 
classification of the training examples and ability to 
generalize; the price to pay is the introduction of a 
“regularization” constant whose value must be chosen 
appropriately. 

There exists a repertoire of valid kernel functions, among 
which the RBF kernel  

  (3) 

with appropriate width , is used in the present study. The 

values of  and the regularization constant are chosen by cross-
validation 

To summarize, a GSM environment described by the 
fingerprint x is assigned to room A or room B according to the 
sign of f(x), defined by (1) or (2) depending for linear or 
nonlinear SVM classification respectively. xi is the fingerprint 
dataset entry i, i.e. row i of RSS, GSM900 or GSM1800 
depending on the fingerprint used by the classifier. 

The SVMs used in our study, both with linear and RBF 
kernels, were implemented using the Spider toolbox [16]. 



In order to obtain a “baseline” result, nearest neighbor (1-
NN) and k-nearest neighbor (k-NN) classifiers using the 
Euclidean distance in RSS-space were also implemented. The 
hyper parameter k was determined by the same cross-validation 
procedure as for the hyper parameters of SVMs. 

B. Decision Rules for Multiclass Discrimination 

When the discrimination problem involves more than two 
classes, it is necessary, for pairwise classifiers such as SVM, to 
define a method that allows combining multiple pairwise 
classifiers into a single multiclass classifier. This can be done 
in two ways: one-vs-one and one-vs-all. 

1) One-vs-one 
This approach decomposes the multiclass problem into the 

set of all possible one-vs-one problems. Thus, for an n-class 

problem,  classifiers must be designed. Figure 2 

illustrates the architecture associated with this method. 

The decision rule in this case is based on a vote. First, the 
outputs of all classifiers are calculated. Now let Cij be the 
output of the classifier specializing in separating class i from 
class j. If Cij is 1, the tally for class i is increased by 1; if it is  
-1, the class tally of class j is increased by 1. Finally, the class 
assigned to the example is that having the highest vote tally. 

A disadvantage of the one-vs-one technique is of course the 
increase in the number of classifiers required as compared to 
one-vs-all discussed below. In our case of seven classes, 21 
classifiers are required, which still remains manageable. 
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Decision 
Rule

Predicted Class

RSS of the example to be localized
 

Figure 2. One-vs-one classification 

2) One-vs-all 
The one-vs-all approach consists of dividing the n-class 

problem into an ensemble of n pairwise classification problems, 
each of which is specialized in separating one class from all 
others. Figure 3 illustrates the procedure. In the first stage, each 
of the n classifiers is trained separately, and in the second stage, 
the following decision rule is applied : the outputs of all n 
classifiers are first calculated and, following the conventional 
procedure, the predicted class is taken to be that of the 
classifier with the largest magnitude of f(x) (relation (1) or (2)) 

[17]. The one-vs-all technique is advantageous from a 
computational standpoint, in that it only requires a number of 
classifiers equal to the number of classes, in our case, 7. 
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Figure 3. One-vs-all classification 

IV. RESULTS 

The performance of each classifier is presented as the 
percentage of correctly classified test examples. In our dataset, 
in each room, the first 3000 examples are used off-line for 
training the classifiers (quadratic optimization under 
constraints) and finding the appropriate values of the hyper 
parameters by cross-validation.  The final 2500 of the 5500 
scans make up the test set. Testing involves the computation of 
the sign of f(x) from relations (1) or (2), which is very fast. 

Experimental results are shown in Table I. The soft margin 

parameter C and RBF kernel parameter  are selected through 
cross-validation, giving C = 10-4 in linear one-vs-one and linear 

one-vs-all classifiers, C = 10-4 and  = 100 in RBF one-vs-one 
and one-vs-all classifiers. Results for 1-NN and k-NN 
classifiers are also given for comparison, where the parameter k 
was optimized by cross validation. 

TABLE I.  PERCENTAGE OF CORRECT CLASSIFICATION ON TEST SET 

Classifier 
Fingerprint Type 

GSM900 GSM1800 Both Bands 

1-NN 56.2% 54.4% 62.7% 

k-NN 62.4%( k=77) 61.2%( k=21) 67.9%(k=14) 

Linear 1-vs-1 86.3% 83.2% 93.9% 

Linear 1-vs-rest 87.1% 85.0% 94.2% 

RBF 1-vs-1 85.5% 84.6% 93.0% 

RBF 1-vs-rest 87.2% 85.7% 94.1% 

 

As can be seen in the table, the SVM room classifiers give 
correct results about 94% of the time with no significant 
difference between linear and nonlinear kernels. As expected, 
results from nearest-neighbor classifiers are significantly 



poorer. We also note that the GSM900 (174 carriers) and 
GSM1800 (374 carriers) bands are complementary in that 
better localization accuracy is obtained when both bands are 
present in the fingerprint. In Figure 4 we also show how the 
accuracy improves with fingerprint size, for the linear one-vs-
all algorithm, by increasing the number of carriers in steps of 
50, according to the ordered sequence numbers of the GSM 
carriers. 

 

Figure 4. Classification results as a function of fingerprint size 

In figure 5 we examine the effect of increasing the number 
of training examples for each of the 7 rooms, again using the 
linear one-vs-one algorithm. The figure plots the percentage of 
correct room classifications as a function of the training set size. 
We see that a rather substantial reduction in training set size 
gives only a very moderate degradation in performance. For 
example, 93% of the test examples were correctly classified 
using only 1000 training examples. This is a very interesting 
result as far as acquisition time is concerned, as the TEMS 
Pocket requires less than 10 minutes to record 1000 training 
examples. 

 

Figure 5. Classification results as a function of training set size  

Table II presents the confusion matrix for the case of the 
linear one-vs-one algorithm, showing how the mis-classified 

examples are distributed. It can be seen that most confusions 
occur between adjacent rooms, as could be expected. Rooms 
located on opposite sides of the corridor are easily 
discriminated. 

TABLE II.  CONFUSION MATRIX FOR 7 ROOMS CLASSIFICATION 

Predicted 

Class 

True Class 

1 2 3 4 5 6 7 

1 91.1% 4.7% 4.2% 0% 0% 0% 0% 

2 3.9% 94.9% 1.2% 0% 0% 0% 0% 

3 2.6% 1.7% 95.7% 0% 0% 0% 0% 

4 0% 0% 0% 96% 1.1% 0% 2.9% 

5 0% 0% 0% 0.8% 97.1% 0.5% 1.6% 

6 0% 0% 0% 0% 0% 99.9% 0.1% 

7 0% 0.6% 0% 4.1% 4.3% 3% 88% 

 

V. CONCLUSIONS AND PERSPECTIVES 

We have presented an approach for indoor localization 
based on the use of RSS with very large numbers of GSM 
carriers, which has been tested on a dataset acquired in a 
laboratory building under realistic conditions. Data was 
collected in such a way as to explore the entire surface area of a 
room, using a standard cellular handset as the acquisition 
device. Experimental results demonstrate that out of a total of 
17500 (2500*7) test fingerprints, the correct room label was 
obtained 94% of the time, thus indicating that the method can 
indeed serve as the basis for a simple, inexpensive indoor 
localization system.  

Future tests will involve studying how performance evolves 
over longer periods of time, as well as experimenting with 
different methods for combining the scans from the two GSM 
bands used, and investigating whether W-CDMA network data 
or other types of variables can also be incorporated into our 
scans. Also, the experiments reported here were performed 
during a weekend, so that the presence of people in the 
environment will need to be investigated. We note that only 
one TEMS pocket device was used in these tests; in the future, 
will want to perform tests with several terminals, to verify 
device independence of our results. Finally we intend to try 
integrating a priori information and notions of physical 
trajectories into our location estimation algorithms, via particle 
or other types of filters. Such an approach will allow 
considering the entire indoor environment, not only rooms. 
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