
Fast Hardware-Software Coverification by Optimistic Execution of Real
Processor

Sungjoo Yoo Jong-Eun Lee Jinyong Jung Kyungseok Rha Youngchul Cho Kiyoung Choi
Design Automation Laboratory
School of Electrical Engineering

Seoul National University
Seoul 151-742, Korea

fysj,jelee,jyjung,contron,rams,kchoig@poppy.snu.ac.kr

Abstract

To achieve fast verification of the software part of embedded
system, we propose to run the target processor optimisti-
cally, which effectively reduces the synchronization over-
head with other simulators. For the optimistic processor
execution, we present a processor execution platform and
state saving/restoration methods. We performed optimistic
execution of ARM710A processor in the coverification of an
IS-95 CDMA cellular phone system and obtained up to or-
ders of magnitude higher performance compared with the
case that the processor runs conservatively.

1. Introduction

Verification of system functionality and timing is one of the
most difficult and important aspects of System on a Chip
(SoC) design. For many system design teams, verification
takes 50% to 80% of the overall system design effort [1].

For fast verification of the hardware part of the sys-
tem being designed, cycle-based simulators and high per-
formance emulation systems have been widely used. For
the verification of the software part, various processor mod-
els such as register transfer models, instruction set archi-
tecture (ISA) models, and bus functional models are being
used. Among them, currently the ISA model is widely used
since it gives fast simulation performance and cycle-level
accuracy (sometimes in cooperation with the bus functional
model of the processor).

However, as the software part of SoC design gets more
and more complex, verification of the complex software
part is becoming a bottleneck to shortening time-to-market.
As a method of fast verification of the software part, run-
ning it on the target processor itself seems to be the best
solution if possible. In fact, there have been many proces-
sor evaluation systems developed by processor vendors or

others [2].

From the viewpoint of coverification, however, such pro-
cessor evaluation systems do not give sufficient coverifica-
tion performance due to the high synchronization overhead
with other simulators. Such overhead is common in the
cases that hardware emulator execution and software sim-
ulator execution are involved in coverification.1 In those
cases, the overhead is reported to yield up to two orders of
magnitude performance degradation [1].

To resolve the synchronization overhead problem be-
tween the real processor execution and the hardware part
simulation2, we apply optimistic simulation concept to the
real processor execution since optimistic simulation reduces
such overhead efficiently [3][4]. In performing optimistic
execution of real processor, one of the crucial issues is how
to implement state saving and restoration of the software
part running on the processor. In this paper, we present a
method of performing optimistic execution of a real proces-
sor including state saving and restoration. We performed
optimistic execution of an ARM710A processor in the cov-
erification of a CDMA cellular phone system based on the
IS-95 specification [5][6].

This paper is organized as follows. In Section 2, we re-
view related work. In Section 3, we describe our motiva-
tion for optimistic execution of real processor. In Section
4, we present a method of optimistic processor execution.
Experimental results are given in Section 5. We conclude in
Section 6.

1In this paper,software simulator executionmeans that a simulator,
which can simulate the software part or the hardware part of the system
being designed, runs on a simulation host.

2In this paper,real processor executionmeans that the target proces-
sor, for the software part of the system being designed, executes the soft-
ware part.Hardware (software) part simulation means that a simulator
simulates the hardware (software) part of the system being designed.

elapsed time

elapsed time

processor
execution

high-level
HW simulation

synchronization
overhead

processor
execution

high-level
HW simulation

synchronization
overhead

(a)

(b)

save processor state,
 external memory

restore processor state,
 external memory

Wopt (e.g. 1000)

1 2 3

1 2 3

1 1000

1 800

1000

Figure 1. Synchronization overhead reduc-
tion by optimistic processor execution.

2. Related Work

As one example of commercial processor evaluation sys-
tems, the ARM Development Board (formerly known as
PID7T) [7] from ARM Ltd. allows designers to run the pro-
totype of application software on the ARM7TDMI proces-
sor. It supports JTAG-based in-circuit emulation functions.
As one of general JTAG-based in-circuit emulation systems,
winIDEA from iSystem GmbH [8] allows software debug-
ging on various types of processors. To facilitate in-circuit
debugging of embedded cores in SoC designs, an embedded
in-circuit emulator synthesizer called ICEBERG [9] inserts
and integrates the in-circuit emulation circuitry into a given
RTL core of a microcontroller.

To reduce synchronization overhead in cosimulation, a
concept calledhybrid synchronization has been proposed
in [3][4]. In hybrid synchronization, some simulator(s) run
optimistically to reduce the number of null messages be-
tween the optimistic simulator(s) and the others. In [10],
to reduce the state saving/restoration overhead in optimistic
simulation, task-based state saving methods have been pre-
sented. For the reduction of message communication over-
head in geographically distributed cosimulation, a concept
calledhierarchically grouped messagehas been presented
in [11][12].

3. Motivation

In this section, we assume a case that the software part of
the system is verified by running the real target processor
and the hardware part (and the environment) is simulated
by a high-level simulator, e.g. Ptolemy [13]. The case is
common in the verification of the complex software part
by extensive execution of the application software together

with high-level hardware models having estimated or back-
annotated hardware execution times.

In Figure 1, we assume that the processor execution and
the hardware part simulation start to run concurrently at
time 0. In the figure, blank rectangles and numbers on them
represent respectively workloads and the corresponding lo-
cal times in the processor execution and the hardware part
simulation. Arrows represent messages, i.e. timestamped
events, transferred between the processor and the simu-
lator. Shaded rectangles representsynchronization over-
headcaused by the transfer of such messages.

In the coverification scenario shown in Figure 1 (a), both
the processor and the simulator advance their local times
by one system clock period in a lock step manner and ex-
change (null) messagesto detect the occurrence of events,
especially, interruptstransferred between the software and
hardware parts. In such a coverification scenario, since
(null) messages are inevitably exchanged between the pro-
cessor and the simulator at every clock tick, the synchro-
nization overhead caused by the transfer of messages can
consume most of coverification runtime. Thus, we can
hardly obtain enough performance improvement from real
processor execution instead of software part simulation.

In hybrid synchronization [3][4], the high synchroniza-
tion overhead can be reduced by performing optimistic pro-
cessor execution as shown in Figure 1 (b). In the figure, we
first run the processor optimistically for a time window of
predetermined sizeWopt (e.g. 1000). The processor stops
after the time windowWopt elapses or at a time pointWopt’
(< Wopt) when an event is sent to the simulator, sends a
(null) message to the simulator, and waits for a message
from the simulator. During the processor execution,states
of the software part are stored at checkpoints in prepara-
tion for the potentialrollback .

Then the simulator starts to run until the time point when
the optimistic processor execution has stopped. It may stop
earlier (e.g. at time 800) if it comes to send an event to the
processor. In this case, since the timestamp of the message
sent to the processor is earlier than the time point when the
processor has stopped,the processor execution rolls back
to a checkpoint not later than the timestamp of the mes-
sage. If there is no message from the simulator to the pro-
cessor, then the simulator stops at the time pointWopt (or
Wopt’). After determining a newWopt, the processor starts
to run untilWopt. Then, the coverification continues in this
way. For further details on hybrid synchronization, refer to
[3][4].

As shown in Figure 1 (b), by optimistic processor ex-
ecution, we can reduce synchronization overheadwhile
preserving the timing accuracy of coverification. To
perform optimistic processor execution, we must support
state saving/restoration of the software part and detection of
software-to-hardware events. To do that, we define the state

Processor

External
Memory

Execution
Controller

Optimistic
Processor
Execution
Server@PC

commands
- set bpt/wpt
- run_until
- save/restore state
- read/write events

clock control

rd/wr

detect
SW2HW
events

state queue
managementHardware

Part
Simulator
@WS/PC

- states
- events

exchanging
messages
via socket

Processor Modeler (The Prototyping Board)

PCI bus

Figure 2. An optimistic processor execution
platform.

of the software part running on the processor and propose
a processor execution platform and state saving/restoration
methods in the next section.

4. Optimistic Processor Execution

4.1. A Processor Execution Platform

For optimistic processor execution in hybrid synchroniza-
tion, we use an optimistic processor execution server and a
processor modeler as shown in Figure 2.

4.1.1 Optimistic Processor Execution Server

The optimistic processor execution server runs on a simu-
lation host to which the processor modeler is connected.3

It controls optimistic execution of the processor by issuing
the processor execution (e.g. set breakpoints/watchpoints
and rununtil) and state saving/restoration commands to the
processor modeler. It manages the saved states of the soft-
ware part in its state queue. It exchanges messages with the
hardware part simulator running on the same host or on a
remote simulation host.

4.1.2 Processor Modeler

The processor modeler consists of a processor, external
memory, and an execution controller. The execution con-
troller receives commands from the optimistic processor
execution server and performs processor execution control
and saving/restoration of software states.

3In our implementation, the optimistic processor execution server runs
on a PC to which the processor modeler (a PCB) is attached via PCI bus.

For processor execution control, the execution controller
sets breakpoints/watchpoints on the external memory ac-
cess from the processor and runs the processor until the
breakpoints/watchpoints or for an amount of clock cycles
(run until function). The execution controller has aclock
counter which registers the total number of clock counts of
the processor. The execution controller saves (restores) the
software state sending (receiving) it to (from) the optimistic
processor execution server.

4.1.3 Detection of Software-to-Hardware Events

To detect events transferred to the hardware part (e.g.
events on the address/data buses and control signal pins of
the processor that occur during loading/storing data items
from/to the hardware part), the optimistic processor execu-
tion server sets watchpoints to all the addresses of the data
items transferred between the processor and the hardware
part. On reaching one of the watchpoints, the execution
controller stops processor execution, then sends the event
to the optimistic processor execution server.

4.2. Definition of Software State

The state of the software part consists of two parts as fol-
lows.

� Processor internal state : the contents of registers (in-
cluding condition code), cache, memory management
unit (MMU), address/write buffers, etc.

� External memory state : the contents of read-
able/writable (RW) data area

The processor internal state is determined by the archi-
tecture of the processor used in the system being designed.
In the case of ARM710A processor [14], the processor in-
ternal state consists of the contents of a total of 37 registers,
8 KB cache, MMU, and address/write buffers.

The external memory state is determined by the applica-
tion software running on the processor. The RW data area
is divided to global data area, heap area and stack area. The
size and range of global data area are determined statically
in the step of linking object codes into the executable image
to be run on the processor. The size of heap area (used for
dynamic memory allocation) varies during the application
software run. In the case of stack area, although its size
varies while the application software is running, it can be
identified at any moment of software execution. In the case
of ARM710A processor, since register R13 is used as the
stack pointer, the stack area is determined by the contents.

4.3. State Saving and Restoration Methods

In this subsection, we present two state saving/restoration
methods.

(2) run until ACKPT

(1) set a breakpoint
 at ACKPT

(13) send the external memory state and
 the processor internal state to
 the optimistic processor execution server
(14) restore the saved contents of clock counter

(3) save the contents of clock counter
(4) save the current AISRT and set AISRT to ASS

(5) set a breakpoint at AISRT

(6) set an interrupt

(7) run until AISRT

ACKPT (8) clear the interrupt
(9) set a breakpoint after the calculation of AISRR

(10) run until the breakpoint : the processor internal
 state is saved to the external memory

(11) set a breakpoint at AISRR

(12) run until AISRR
AISRR

AISRT

Figure 3. An ISR-based state saving method.

4.3.1 Interrupt Service Routine-based Method

In this method, we control the interrupt to the processor for
state saving and restoration. On receiving an interrupt, the
processor is assumed to jump to the interrupt service routine
(ISR) target addressAISRT where the ISR starts. Since the
application software also uses its own ISR’s, this method
requires the execution controller to take control ofAISRT.

Figure 3 shows the state saving flow of the ISR-based
method. To save the state of the software part at a check-
point, the execution controller first sets a breakpoint at the
checkpoint addressACKPT designated by the optimistic
processor execution server and runs the processor until the
breakpoint (step 1 and 2 in the figure). AtACKPT, the exe-
cution controller first saves the contents of the clock counter
(step 3) since the clock counter will count up during the ex-
ecution of ISR. Then, it saves the contents of the current
AISRT, i.e. the ISR target address of the application soft-
ware and setsAISRT to the start address of the subroutine
(ASS) that performs state saving (step 4). After setting a
breakpoint atAISRT (step 5), to force the processor to enter
the ISR subroutine, the execution controller sends an inter-
rupt to the processor (step 6).

At AISRT, i.e. ASS, the execution controller clears the
interrupt (step 8). The ISR return addressAISRR, to which
the ISR will return and where the application software con-
tinues to run, is calculated in the ISR.4 The execution con-
troller sets a breakpoint at an instruction which resides just
after the code block ofAISRR calculation in the ISR (step
9). It runs the processor until the breakpoint. During the
processor execution, the contents of the processor internal
state (e.g. contents of registers) are saved into the external
memory (step 10). At the breakpoint, the execution con-

4In the cases of pipelined processors,AISRR can be different from
ACKPT depending on the instruction being executed when the processor
fetches the instruction atACKPT.

troller can set a new breakpoint atAISRR (step 11). It runs
the processor until the breakpoint (step 12).

At AISRR, the execution controller reads the external
memory state and the processor internal state (previously
saved at step 10) from the external memory and sends them
to the optimistic processor execution server (step 13). As
the last step, it restores the contents of the clock counter to
the one saved in step 3. IfAISRR is different fromACKPT,
the number of clock cycles to be elapsed betweenACKPT

andAISRR in the normal execution (without the ISR exe-
cution) is calculated and added to the contents of the clock
counter.

The restoration of software state is performed in a sim-
ilar way to the state saving. Comparing the state saving in
Figure 3, in the state restoration, step 3 (in the figure) is not
performed and the contents of the processor internal state
and the external memory state are restored at step 10 and
13, respectively.

4.3.2 JTAG-based Method

For the processors which support in-circuit emulation func-
tions based on JTAG boundary scan (IEEE Std. 1149.1 -
1990), the state of the software part can be saved and re-
stored during thedebug statewhere the processor internal
state and the external memory state can be examined. In the
debug state, the processor internal state is examined via a
JTAG serial interface, which allows instructions to be seri-
ally inserted into the processor without using the external
data bus. Thus, in the debug state, a sequence of single
load/store instructions or block load/store instructions can
be inserted to the processor and they will read/write the con-
tents of the processor registers. These data can be serially
shifted out via the JTAG serial interface.

In the JTAG-based method, the external memory state
can be saved/restored by the execution controller as per-
formed in the ISR-based method.

4.3.3 Limitation in the State Saving and Restoration

The accessibility to the processor internal state is de-
termined by the processor architecture. For example,
ARM7TDMI enables access to the internal state of MMU
while ARM710A does not. But, neither of two processors
enable access to the internal state of cache. Thus, the use-
fulness of optimistic processor execution depends on the ac-
cessibility to the internal states of target processors.

5. Experiment

5.1. Coverification Environment

We use a prototyping board [15] as the processor mod-
eler. The board consists of an ARM710A processor, 2 MB

SRAM, a XC4085 FPGA, and a PCI bus chip. It is con-
nected to a PC (Pentium II, 500 MHz) where the optimistic
simulation server runs. In our experiment, we run Ptolemy
[13] on an UltraSparc I (143 MHz) as the high-level hard-
ware simulator which does not perform optimistic simu-
lation.5 The optimistic simulation server and Ptolemy ex-
changes messages via Windows and Unix sockets.

We implement the simulation controller on the FPGA.
We use the ISR-based method for state saving and restora-
tion since ARM710A does not support JTAG-based emula-
tion functions. Since the contents of cache and MMU can
not be accessed in the ISR routine, we turned off the cache
and MMU of ARM710A processor in our experiments. The
simulation controller consumes 7% of CLB’s in XC4085.

5.2. An IS-95 CDMA Cellular Phone System

We use a CDMA cellular phone system based on the IS-95
specification [5][6][16]. The IS-95 system consists of one
mobile station, one base station, and air channel models.
The mobile station consists of six CDMA modems (there
are four channel types for the forward link6 and two channel
types for the reverse link7), a QCELP (Qualcomm Code Ex-
cited Linear Prediction) vocoder, and a call processor which
performs system initialization, paging, call initiation, etc.

We model the QCELP vocoder in CGC (Code Genera-
tion in C) domain of Ptolemy [13] and generate C code for
the software implementation. We model the call processor
in Esterel and generate C code using Polis [17]. We run the
call processor and QCELP vocoder of the mobile station on
the ARM710A processor of the processor modeler and the
other parts (mobile station modems, the base station, and air
channel models) in Ptolemy.

We run a scenario of the IS-95 system run where the base
station initiates a call to the mobile station and the two sta-
tions proceed a call initiation procedure exchanging paging,
access, and forward traffic and reverse traffic channel mes-
sages. After the call initiation, the two stations start conver-
sation.

Since the call processor and vocoder do not perform dy-
namic memory allocation, the heap area is not considered in
the experiment. The executable image of the call processor
and vocoder has size of 61.59 KB for code and read only
data and 78.74 KB for readable/writable global data. The
stack area is determined at runtime and saved (restored) by
the state saving (restoring) ISR.

5The simulation on the Ptolemy side is not necessarily for hardware
only.

6There are pilot channel, sync channel, paging channel, and forward
traffic channel for the forward link from the base station to the mobile
station.

7There are access channel and reverse traffic channel for the reverse
link from the mobile station to the base station.

Table 1. Runtimes and the number of mes-
sages in the IS-95 system coverification

cons. 710A opt. 710A
No. messages 32,000,000 136,820
runtime (sec.) 12,066 53

5.3. Results

Table 1 shows runtimes taken for the coverification of the
IS-95 system. In the table, opt. (cons.) ARM710A repre-
sents the case that the ARM710A processor performs (does
not perform) optimistic execution at 16 MHz clock fre-
quency. The table shows that the optimistic processor exe-
cution enables 99.57% reduction in the number of messages
transferred between the processor and Ptolemy as explained
in Section 3. Such a significant reduction in the number of
messages yields 228 times performance improvement com-
pared to the runtime of the case that the optimistic processor
execution is not used.

By analyzing the coverification runtime, it turned out
that communication overhead between ARM710A proces-
sor and Ptolemy dominates coverification runtime. To an-
alyze the effect of communication overhead, the runtimes
were measured varying the clock frequency of the prototyp-
ing board. Figure 4 (a) shows the change of runtimes as the
clock frequency increases. In the figure, HGM represents an
optimization method calledhierarchically grouped mes-
sagewhich reduces synchronization overhead by reduc-
ing the number of event-carrying messages [12][11]. As
shown in the figure, HGM concept gives about two times
more performance improvement in our experiments of op-
timistic processor execution. As the frequency increases,
the decrease of runtime saturates. Figure 4 (b) shows the
reason. In the figure, as the frequency increases, the por-
tion of ARM710A execution and communication overhead
decreases. The communication overhead consists of two
portions : (1) overhead of the optimistic processor execu-
tion server accessing the execution controller on the FPGA
and (2) overhead of transferring messages between PC and
workstation over LAN. As the clock frequency increases,
the first portion in the communication overhead decreases.
However, the other portion of communication overhead and
the portion of Ptolemy run in total runtime does not change.
Thus, the decrease of runtime saturates as the clock fre-
quency reaches 16 MHz.8

Table 2 shows comparison of total coverification run-
times between the case that a commercial ARM simulator,
ARMulator runs on the Ultra I workstation together with
Ptolemy and the case that the ARM710A processor is used

8The ARM710A processor can run at maximum 25 MHz with 3.3 V
supply voltage.

[[

][][

[[

a[a[

c[c[

\[[\[[

[[`̀ \[\[\`\`][][

[

][

_[

a[

c[

\[[

\]Y_`ba _ c \a

Frequency (MHz)

Runtime (sec)

Runtime (sec)

w/o HGM

w/ HGM

ARM710A communication overhead

Ptolemy

Frequency (MHz)

(a)

(b)

Figure 4. Runtime change v.s. clock fre-
quency : (a) effect of HGM concept and (b)
decomposition of runtimes w/ HGM.

Table 2. Comparison of total coverification
runtimes

ARMulator opt. 710A
w/o HGM w/ HGM w/o HGM w/ HGM

99 85 53 26

instead of ARMulator. Comparing the runtimes of ARMu-
lator case and ARM710A case when HGM concept is ap-
plied, 3.27 (=85

26
) times performance improvement could be

obtained by running the real processor.
To investigate the overhead of the ISR-based state sav-

ing/restoration method, we measure the runtime of a sin-
gle state saving/restoration by averaging total 10,000 runs
of state saving/restoration of the IS-95 system. The state
saving and restoration consume 61 msec and 38 msec, re-
spectively.

6. Conclusion

In this paper, we present a method that reduces the syn-
chronization overhead in coverification by performing opti-
mistic processor execution. We obtained significant perfor-

mance improvement by optimistic execution of ARM710A
processor in the coverification of an IS-95 CDMA cellular
phone system.

Our future work includes developing a new processor
modeler that supports much faster state saving and restora-
tion. For extensive application of optimistic processor ex-
ecution, researches on efficient access to processor internal
state such as cache, MMU, address/write buffers, etc. can
be one of future directions.

References

[1] M. Keating and P. Bricaud,Reuse Methodology Manual, Kluwer
Academic Publishers, 1999.

[2] ARM Ltd., “ARM Development Boards”, available at
http://www.arm.com/DevSupp/Boards/.

[3] S. Yoo and K. Choi, “Synchronization Overhead Reduction in Timed
Cosimulation”,Proc. IEEE International High Level Design Valida-
tion and Test Workshop, pp. 157–164, Nov. 1997.

[4] S. Yoo and K. Choi, “Optimizing Timed Cosimulation by Hybrid
Synchronization”, to appear in Design Automation for Embedded
Systems, Kluwer Academic Publishers.

[5] TIA/EIA-95A, “Mobile Station-Base Station Compatibility Standard
for Dual-Mode Wideband Spread Spectrum Cellular Systems”, 1995.

[6] S. Yoo, J. Lee, J. Jung, K. Rha, Y. Cho, and K. Choi, “Fast Proto-
typing of an IS-95 CDMA Cellular Phone : a Case Study”,Proc. the
6th Conference of Asia Pacific Chip Design Languages, Oct. 1999.

[7] ARM Ltd., “The ARM Development Board - ARM7TDMI Version”,
available at http://www.arm.com/DevSupp/Boards/pid7t.html.

[8] iSystem GmbH, “winIDEA”, available at http://www.isystem.com/
Products/FProducts.htm.

[9] I. Huang and T. Lu, “ICEBERG: An Embedded In-Circuit Emulator
Synthesizer for Microcontrollers”,Proc. Design Automation Conf.,
pp. 580–585, June 1999.

[10] S. Yoo and K. Choi, “Optimistic Distributed Timed Cosimula-
tion Based on Thread Simulation Model”,Proc. Int. Workshop on
Hardware-Software Codesign, pp. 71–75, Mar. 1998.

[11] S. Yoo and K. Choi, “Optimizing Geographically Distributed Timed
Cosimulation by Hierarchically Grouped Messages”,Proc. Int.
Workshop on Hardware-Software Codesign, pp. 100–104, May 1999.

[12] S. Yoo, K. Choi, and D. Ha, “Performance Improvement of Ge-
ographically Distributed Cosimulation by Hierarchically Grouped
Messages”,to appear in IEEE Transactions on VLSI Systems.

[13] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: a
framework for simulating and prototyping heterogeneous systems”,
Int. Journal of Computer Simulation, special issue on Simulation
Software Development, vol. 4, pp. 155–182, Apr. 1994.

[14] LG Semicon Co., Ltd., “32-bit-microprocessor GMS30C710A Data
Book”, LGSARM DDI 0001A, Apr. 1997.

[15] D. Lim, K. Na, and S. Yoo, “Design Automation Lab. Prototyping
Board”, available at http://poppy.snu.ac.kr/Codesign/DALP98A/.

[16] Qualcomm, Inc., “CDMA System Engineering Training Handbook”,
1993.

[17] F. Balarin et al.,Hardware-Software Co-Design of Embedded Sys-
tems, Kluwer Academic Publishers, 1997.

