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Abstract— Transfer learning based approaches have recently
achieved promising results on the few-shot detection task. These
approaches however suffer from “catastrophic forgetting” issue
due to finetuning of base detector, leading to sub-optimal perfor-
mance on the base classes. Furthermore, the slow convergence
rate of stochastic gradient descent (SGD) results in high latency
and consequently restricts real-time applications. We tackle the
aforementioned issues in this work. We pose few-shot detection
as a hierarchical learning problem, where the novel classes are
treated as the child classes of existing base classes and the
background class. The detection heads for the novel classes are
then trained using a specialized optimization strategy, leading
to significantly lower training times compared to SGD. Our
approach obtains competitive novel class performance on few-
shot MS-COCO benchmark, while completely retaining the
performance of the initial model on the base classes. We further
demonstrate the application of our approach to a new class-
refined few-shot detection task.

I. INTRODUCTION

Few-shot object detection [14], [36], [33], [11] is an
important computer vision problem with practical applica-
tions in robotics. For instance, it can be used to deploy
an autonomous agent in a new environment with unseen
objects, without having to collect large amount of training
data. Alternatively a user may want a robot to detect new
objects by showing just a few examples. Few-shot object
detection is an especially challenging problem since a model
should learn to both classify an object and localize it using
sparse data. This is further complicated in the generalized
few-shot detection case [33], where the model should retain
the ability to detect a set of pre-learned base classes, while
learning to detect novel classes.

One of the popular paradigms for the few-shot detection
task is the use of transfer learning. These approaches [33],
[17] aim to exploit general object detection knowledge learnt
over a large dataset containing annotation for a set of base
classes. Here, a detection model is first trained on the data-
abundant base classes. The final few layers of this model
are then finetuned to jointly detect both the base and novel
classes, using a few-shot dataset. While achieving promising
results, especially on the novel classes, the transfer learning
based methods suffer from two key limitations. Firstly, the
finetuning of the base model on the few-shot dataset leads
to a significant drop in the base class performance. This
issue, termed as “catastrophic forgetting”, is undesirable in
practical applications where we may want a robot to detect
new classes on the fly, while not forgetting the old knowl-
edge. Secondly, the base model is finetuned using stochastic
gradient descent, which takes long time to converge. This
prohibits the use of the method for real-time applications.
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Fig. 1: Transfer learning based approaches finetune a base de-
tector to jointly detect both base and novel classes. However,
this results in a drop in base class performance of the detector
due to “catastrophic forgetting”. Our approach instead detects
novel classes in a hierarchical manner. This preserves the
base class performance, while also enabling detecting child
classes of existing base classes in a few-shot manner.

In this work, we propose a novel few-shot detection
approach to address the aforementioned issues. Our approach
is based on the idea of posing few-shot detection as a
hierarchical learning problem. We consider a general few-
shot learning setting where we may wish to extend a detector
to detect novel classes which are either a child class of
an existing base class, or completely unrelated to the base
classes. For example, given a model which detects “animal”
and “car” classes, we may wish to additionally detect the
animal types, e.g. “cat”, “dog”, or “fox”, as well as unrelated
novel classes “apple” and “sofa”. To achieve this, we build
a class hierarchy wherein the original base classes constitute
a set of super-classes, which are then sub-divided into novel
child classes. Specifically, the novel classes which are unre-
lated to any of the base classes are set as descendants of the
“other/background” super-class. With such a hierarchy, we
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can first apply the base detector to detect the leaf base class
objects (“car”), as well as the candidates for the base super-
classes (“animal” and “other”). These candidates are then
processed by separately trained novel predictors to detect
the novel classes. See Figure 1 for an illustration.

Our hierarchical approach decouples the weights of the
novel class predictors from the base detector. As a result,
our approach retains the performance of the pre-trained
detector on the base classes by design, addressing the “catas-
trophic forgetting” issue. Furthermore, we also introduce
a specialized optimization strategy, based on the Newton’s
method, to speed up the learning of the novel predictors.
By exploiting second-order information, our approach can
adapt to detect the novel classes using only 30 update steps.
Consequently, our approach obtains over 10× speed-up in
computation time, compared to our transfer learning based
baseline TFA [33].

Our contributions can thus be summarized as follows:
• We propose a simple yet effective hierarchical detection

approach which completely alleviates the “catastrophic
forgetting” on base classes, while obtaining competitive
results on the novel classes.

• We present a Newton’s method based optimization
strategy which achieves mush faster convergence than
traditional gradient descent.

• We introduce a new class-refined few-shot detection
task where a method should also be able to learn fine-
grained classification for existing base classes.

II. RELATED WORK

Few-Shot Object Detection: Existing literature mainly
adopt two paradigms to tackle the few-shot object detection
problem: meta learning-based approach [14], [23], [10], [36]
and transfer learning-based approach [8], [33], [17], [11],
[24]. For meta learning-based approach, researchers leverage
the meta-learned task-level knowledge to the detection task
with limited training data. MetaYOLO [14] meta learned
a feature learner module to extract the generic features of
novel objects and a reweighting module to make predictions
provided these features. Fan et al. [10] proposed Attention-
RPN and Multi-Relation Detector to learn a metric space
to measure the similarity of object pairs for detection. Meta-
DETR [36] meta learned an encoder-decoder transformer for
the few-shot detection.

For transfer learning-based approach, LSTD [8] is one of
the early works that adapted the detector learned on data-
abundant objects to the target domain of few-shot novel
objects. Wang et al. [33] proposed the two-stage fine-tuning
approach TFA. In the first stage, a base predictor was
trained for data-abundant base objects. The final layers of
the detector were then tuned in the second stage, on a
balanced few-shot dataset containing both base and novel
classes. This tuning-based approach is simple yet effective,
and outperformed previous methods using meta-learning.
Compared to TFA, LEAST [17] fine-tuned more layers on
novel classes, leading to a better novel class performance,
albeit with a deterioration on the base class performance.

To mitigate this catastrophic forgetting, they further applied
knowledge distillation and the clustered exemplars of base
objects. DeFRCN [24] fine-tuned the entire detector of Faster
R-CNN by jointly training it with two auxiliary modules
to improve novel class performance. Fan et al. [11] pro-
posed Retentive R-CNN, which inherited the tuning approach
of TFA with an auxiliary consistency loss to distill the
knowledge of the base detector. Retentive R-CNN achieved
competitive performance on novel classes, while maintaining
the performance of the pre-trained detector on base classes.
In this paper, we propose an alternate hierarchical detection
approach which can achieve similar results to Retentive R-
CNN, while being much simpler and general.
Incremental Learning and Refined Classification: Incre-
mental learning aims to incrementally learn new knowledge
from a stream of data while preserving its previous knowl-
edge [18], [27], [13], [25], [30], [34], [35], [7]. A real-world
scenario which is often neglected is that over time, humans
learn not only new entities, but also refined granularity of
previously learned entities. Abdelsalam et al. [1] propose the
Incremental Learning and Refined Classification (IIRC) setup
related to this scenario. Here, each class has two granularity
levels of labels to simulate the process of incremental learn-
ing from coarse-grained categories to fine-grained categories.
Following the IIRC setup, Wang et al. [32] proposed HCV
to learn the fine-grained categories while retaining previous
knowledge. HCV aims to identify hierarchical relationship
between classes and exploit this knowledge for the IIRC task.
Hierarchy for few-shot learning: Li et al. [16] perform
large-scale few-shot learning by using class hierarchy which
encodes semantic relations between base and novel classes.
The prior knowledge from class hierarchy is used to learn
transferrable visual features. Liu et al. [21] use class hi-
erarchy to perform coarse-to-fine classification. In contrast
to these works, we show that the idea of hierarchy can be
effectively used to address the “catastrophic forgetting” issue
in few-shot detection.
Optimization Methods for Few-Shot Learning: Bertinetto
et al. [4] noted that updating only the parameters sensitive
to specific classes for few-shot classification task leads to a
shallow learning problem. This enables developing adapta-
tion strategies that are more efficient than standard gradient
descent. Consequently, they proposed ridge and sigmoid
regression based classifiers with closed-form solutions to
achieve fast convergence for the meta-learning-based few-
shot classification. Lee et al. [15] meta-learn representations
for few-shot classification using discriminative linear classi-
fiers. Several works have utilized the steepest-descent opti-
mization strategy to train shallow learners for tackling few-
shot learning problem arising in object tracking [9], [29], [5],
video object segmentation [6] and classification [31]. A few
works [2], [3] have employed conjugate gradient (CG) as a
black box optimization tool for object detection. In this work,
we develop a specialized optimization strategy based on CG
to perform efficient few-shot detection. By running extensive
experiments, we show that our optimization approach obtains
similar performance to SGD while being much faster.



III. METHOD

In this work, we propose a few-shot detection approach
that can learn to efficiently detect novel classes, while fully
retaining the performance of the original detector on the
base classes. This is achieved by i) introducing a hierarchical
detection approach which preserves the performance on the
base classes by design, while obtaining competitive results on
the novel classes, and ii) utilizing a specialized optimization
approach which leads to faster model adaptation on novel
classes. Our approach is detailed in subsequent sections.

A. Problem statement

We tackle the generalized few-shot learning setting em-
ployed in previous works [33], [11]. Here, a method is given
a large base dataset Db containing annotated samples for a
set of base object classes Cb, which can be used to learn a
base detection model Mb. Next, given a small dataset Dn

for a set of novel classes Cn, the goal is to adapt the base
model Mb to detect the novel classes Cn, in addition to the
original base classes Cb. The novel dataset Dn is assumed to
contain only K examples (K < 30) per class. Furthermore,
the method is only allowed to access a small K-shot subset
D′b of the base dataset Db when adapting the base model
to detect the novel classes. Thus the method should be able
to easily adapt to detect the novel classes Cn using a small
dataset Dn ∪ D′b, while still retaining the ability to detect
the base classes Cb. Furthermore, for practical applications
in e.g. robotics, the adaptation to novel classes is expected
to be fast in order to ensure real-time performance.

B. Motivation

We base our approach on the recently introduced Two-
stage Fine-tuning Approach (TFA) [33]. TFA is a trans-
fer learning approach for few-shot object detection which
has obtained promising results. TFA employs the Faster-
RCNN [26] as the detector architecture. Faster-RCNN con-
sists of a convolutional neural network (CNN) module for ex-
tracting generic image features, a Regional Proposal Network
(RPN) to generate proposals for potential objects, a Region
of Interest (ROI) feature extractor to compute features from
the sampled proposals, and a predictor head to output the
detections, given the ROI features. The predictor P = {C,R}
consists of two separate linear layers: a classifier C to predict
object class for each proposal and a bounding box regressor
R to localize each proposal.

TFA proposes to first train a Faster-RCNN model on
the data-abundant Db to obtain a base detector Mb, with
predictor Pb. Next, when provided the novel dataset Dn in
the second stage, TFA extends the predictor Pb to also output
detections for the novel classes. This extended predictor,
denoted as Pn, is then fine-tuned on the combined dataset
Dn ∪ D′b by minimizing a loss L = Lcls + Lloc using the
stochastic gradient descent optimizer. Here, Lcls is the cross
entropy loss for classifier C while Lloc is the smooth L1

loss for box regressor R. We refer to the detector using the
finetuned predictor Pn as Mn.

Base 1-shot 2-shot 3-shot 5-shot 10-shot

bAP 39.2 34.1 34.7 34.7 34.7 35.0

TABLE I: Average precision of TFA [33] on base classes
(bAP) over different shots on MS-COCO dataset [20]. TFA
suffers from a significant drop in bAP, compared to the pre-
trained base model, due to “catastrophic forgetting”.

The two-stage training strategy allows TFA to leverage
the strong backbone feature extractor and the RPN modules
trained on the larger base dataset Db to obtain improved
performance on the data-scarce novel categories Cn. How-
ever, it suffers from two significant issues which limits its
applicability to practical applications.
Catastrophic forgetting: In the second stage, TFA finetunes
the predictor on a small balanced dataset containing both
novel and base categories to obtain the detector Mn. This
finetuning can lead to a significant drop in the base class
performance, compared to the base detector Mb which was
trained on a much larger dataset Db. This “catastrophic
forgetting” problem is illustrated in Tab. I. Compared to
the pretrained base detector Mb, the finetuned detector Mn

obtains much lower average precision score on the base
classes (bAP), even in the 10-shot case (39.2 vs 35.0). This
is undesirable in cases when the performance on base classes
is equally important as the performance on novel classes.
Slow convergence: TFA uses the Stochastic Gradient De-
scent (SGD) to finetune the predictor Pn in the second stage.
While SGD is computationally cheap for each iteration, it
suffers from slow convergence. Thus, a large number of SGD
iterations is required to adapt the base detector Mb for novel
classes, leading to high computational times.

In this work, we address the aforementioned issues with
TFA by proposing a novel few-shot detection framework.

C. Hierarchical Detection Approach

Here, we present our Hierarchical Detection Approach
(HDA) for generalized few-shot detection (see Fig. 2). We
note that the base model Mb is pre-trained on a large
dataset Db containing abundant examples of base classes Cb.
Thus, the detector Mb should already achieve high detection
performance on the base classes. Finetuning it further on a
smaller subset Dn∪D′b, as in TFA, is likely to only reduce the
base class performance due to overfitting. Furthermore, the
base dataset Db also contains a large number of background
objects not belonging to Cb. Consequently, the base detector
Mb should be able to classify most of the unseen object
classes, including the novel classes, as background. Under
these settings, we can pose generalized few-shot detection
as a hierarchical detection problem, as described next.

Similar to TFA, we first train a Faster-RCNN base detector
Mb to detect the base classes Cb using the large-scale base
dataset Db. Next, instead of finetuning the predictor Pb in
order to adapt the model for novel classes, we employ an
alternate hierarchical approach. We first apply the detector
to generate object proposals and use the base predictor Pb
to obtain the classification scores and refined boxes for each
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Fig. 2: Left: An overview of our hierarchical approach for generalized few-shot detection. Given object proposals, we use a
base predictor trained on the large base dataset to obtain detections for the base classes. Next, we filter the proposals which
are classified as “other objects” or “background” and pass them through a novel predictor to perform novel class detection.
Right: An extension of our approach to perform class-refined detection. In addition to detecting novel classes which are
unrelated to the base classes, we also learn to detect child classes of existing base classes using few-shot dataset.

of these proposals. Next, we perform the standard post-
processing steps employed in Faster-RCNN to obtain the
predictions for the base classes Cb. As discussed before, this
should provide high quality base class detections, since the
base detector Mb is trained on a large dataset.

Next, among the proposals which were not included in
the base detections, we first select the proposals which are
classified as “other objects/background”. That is, we select
the proposals for which the classification score predicted
by Pb is highest for the background class. Note that these
filtered proposals include both the novel class Cn propos-
als, as well as proposals for other unseen classes and the
background. In order to obtain the novel class detections
from these proposals, we use a Pn, trained to detect only
the novel classes Cn. The novel predictor Pn can be easily
trained using the novel dataset Dn, or the combined dataset
Dn ∪ D′b. By completely decoupling the training of the
novel predictor Pn from the pre-trained base predictor Pb,
our approach completely retains the performance of the pre-
trained detector Db on the base classes. Furthermore, our
novel predictor Pn is trained to only detect the novel classes
Cn, rather than the combined novel and base classes as in
TFA. This simplifies the training of the novel predictor.

D. Class-Refined Hierarchical Detection
In our previous discussion, we assume that the base

detector Mb can reliably classify the novel classes Cn as
background. This is generally the case when novel classes are
semantically distinct from the base classes. However in many
applications, we may wish to extend a base detector to detect
child classes of an existing base class in a few-shot manner,
in addition to detect completely novel classes. For instance,
given a detector which can detect the “animal” class, we
may want to extend it to detect fine-grained classes of “cat”
and “dog” using only a few examples. In such cases, the
base detector is likely to classify instances of cats and dogs
as “animal”, instead of background. However, our approach
can be easily modified to perform such class-refined few-shot
detection, as described next.

Let Cb = {bi}B+1
i=1 denote the set of base classes and

the background class denoted as bB+1. Furthermore, Cn =
{ni}Ni=1 denotes the set of novel classes, some of which
can be semantically related to an existing base class. We
represent this relationship by dividing the set of novel classes
into disjoint subsets Cin = {cj}Ni

j=1, i ∈ {1, 2, . . . , B + 1},
where some of the sets Cin can be empty. Here, the subset
Cin contains the set of novel classes which are semantically
related to the base class bi. Note that such a sub-division
can be set manually, using e.g. WordNet [22] hierarchy.
Alternatively, it can also be obtained automatically using the
output of the base detector Mb on the novel dataset Dn. For
instance, if the base detector frequently classifies a novel
class nj as the base class bi, then the novel class nj can be
assigned to the subset Cin.

Given the sub-division Cin of the novel classes, we can use
a similar hierarchical detection strategy as described in the
previous section to perform few-shot detection. Our approach
is visualized in Fig. 2. We first apply the base detector Mb to
obtain the object proposals, classification scores, and refined
boxes for each of the proposals. Next, for each base class
bi, we select the proposals for which the classification score
corresponding to that class is the highest. Note that these
filtered proposals correspond to both the base class bi, as
well as the set of novel classes Cin which are child classes
of bi. In order to distinguish between them, we train a novel
predictor Pin separately for each subset Cin. The predictor
is trained to classify the proposal into either the base class
bi, or one of the child classes belonging to Cin. Finally, the
standard post-processing steps, e.g. NMS are applied to the
output of the predictor Pin to generate the final detections.

E. Fast Optimization for Few-Shot Detection

Here, we describe our fast optimization approach based
on Newton’s method used to efficiently train the novel
predictor Pn. Recall that our novel predictor only consists
of two separate linear layers C and R for classification and
bounding box regression, respectively. As a result, training



Model AP bAP nAP

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FRCN+ft-full[33] 16.2 15.8 15.0 14.4 13.4 21.0 20.0 18.8 17.6 16.1 1.7 3.1 3.7 4.6 5.5
TFA w/fc[33] 24.0 24.5 24.9 25.6 26.2 31.5 31.4 31.5 31.8 32.0 1.6 3.8 5.0 6.9 9.1
TFA w/cos[33] 24.4 24.9 25.3 25.9 26.6 31.9 31.9 32.0 32.3 32.4 1.9 3.9 5.1 7.0 9.1
LEAST[17] - - - - - 29.5 - - 31.3 31.3 4.2 - - 9.3 12.8
DeFRCN[24] 24.4 25.7 26.6 27.8 29.7 30.4 31.4 32.1 32.6 34.0 4.8 8.5 10.7 13.6 16.8
Retentive R-CNN[11] - - - 31.4 31.8 - - - 39.3 39.2 - - - 7.7 9.5

HDA 30.2 30.6 31.0 31.2 31.8 39.2 39.2 39.2 39.2 39.2 3.0 4.7 5.6 7.1 9.1
HDA-wo-Aug 30.0 30.4 30.7 31.0 31.4 39.2 39.2 39.2 39.2 39.2 2.4 4.1 5.1 6.4 8.0
TFA-Fast 24.2 25.3 26.2 27.3 28.5 31.4 32.4 33.3 34.3 35.2 2.6 4.0 4.9 6.4 8.5
TFA∗ 24.1 24.7 25.0 25.7 26.1 31.5 31.7 31.6 31.8 31.6 2.3 3.8 4.9 6.4 8.3

TABLE II: Generalized few-shot detection performance on MS-COCO [20] dataset. We report the combined average precision
(AP) score, as well as the performance over the base classes (bAP) and novel classes (nAP) for 1, 2, 3, 5, and 10-shot
datasets. The top half provides comparison with recent approaches, while the bottom half provides an ablation comparison.

the novel predictor constitutes a shallow learning problem.
This enables using specialized optimization techniques to
obtain fast convergence when learning the novel predictor.

In order to design our optimization strategy, we first
replace the bounding box regression loss Lloc from smooth-
L1 loss with a L2 loss. This, coupled with the convexity
of the cross-entropy loss employed as the classification loss
Lcls provides us a convex and differentiable objective L =
Lcls + Lloc. Our goal is then to find the optimal weights
w∗ which minimizes the objective L(w), where w denote
the set of trainable weights in the predictor Pn. One well-
known technique to minimize such a formulation is New-
ton’s method, which leverages the second-order information
to iteratively find the optimal solution. In each iteration,
Newton’s method first obtains a quadratic approximation
L̃wi(∆w) ≈ L(wi + ∆w) of the objective at the current
estimate wi,

L̃wi
(∆w) ≈ L(wi) + ∆wTi Jwi

+
1

2
∆wTi Hwi∆wi (1)

Here, Jwi
and Hwi

denote the Jacobian and Hessian, respec-
tively, of the objective L(w) at wi. The next update ∆wi for
the weights w is then obtained by minimizing L̃wi

(∆w) w.r.t.
∆w. This provides a closed-form expression for the update,

∆wi = −H−1wi
· Jwi

(2)

In practice, calculating the inverse of Hessian matrix H−1wi
is

computationally expensive and can be numerically unstable.
However, thanks to the use of cross entropy and least squares
loss in our objective L, the Hessian matrix Hwi

is positive-
definite. As a result, instead of explicitly computing the
inverse of the Hessian, we can obtain the step ∆wi as
the solution of the linear system Hwi

∆wi = −Jwi
. We

use the iterative Conjugate Gradient (CG) algorithm for this
purpose. We refer to [28] for a detailed description of the CG
algorithm. For efficiency, we only compute an approximate
solution of the linear system by running NCG Conjugate
Gradient steps in each Newton iteration.

IV. EXPERIMENTS

We compare our approach with existing methods and
provide a detailed analysis of our approach.

Model Runtime (seconds)

1 2 3 5 10

HDA 10.19 19.84 28.18 45.74 94.18
HDA-wo-Aug 10.32 19.15 28.76 46.74 94.19
TFA-Fast 13.14 24.30 33.44 54.36 107.81
TFA∗ 121.53 245.46 364.83 617.83 1245.94

TABLE III: Comparison of total training time on the few-
shot dataset for the baseline TFA∗ and different variants of
our approach over 1, 2, 3, 5, and 10 shot datasets.

A. Experimental Settings

We evaluate our approach on the generalized few-shot
detection (G-FSD) benchmark based on the MS-COCO [20]
dataset, introduced in [33]. The benchmark uses the same
class splits as in previous few-shot detection works [33], [17],
[11]. We report results on 1, 2, 3, 5, and 10-shot datasets.
For each K-shot setting, the benchmark samples 10 random
datasets, and computes the mean scores over them in order
to obtain a robust evaluation metric. For each method, we
report the combined average precision scores over all classes
(AP), as well as the average precision over the base (bAP)
and novel (nAP) classes, separately. This allows us to analyse
the capability of the model to quickly learn on novel classes,
as well as its ability to retain knowledge on the base classes.
Implementation Details: We use Faster R-CNN [26] as
the detector architecture with ResNet-101 [12] with FPN
[19] as backbone. As our base model Mb, we use the pre-
trained model from TFA [33] which has been trained on
the base dataset Db. The novel class predictor Pn is trained
to detect the novel classes using the proposals classified as
“other/background” by Mb. For training Pn, we initialize
the weights randomly using a zero-mean normal distribution
with standard deviation 0.01. The predictor is trained for 30
Newton iterations, with NCG = 2 CG iterations for every
single Newton iteration. For our SGD based baselines, we
follow the hyper-parameters used in TFA. Since the size
of our few-shot dataset is small and only the predictor
layer is updated during our training, we first extract the
proposals and box features for every training image and
store it in memory. The predictor is then trained directly
on the extracted features, thus avoiding the re-computation



Fig. 3: Convergence plots showing the model performance for 1-shot detection, in terms of AP, bAP, and nAP, for different
training times (in seconds). We exclude the initial time for feature extraction (∼10 seconds for both methods). Note that the
x-axis follows logarithmic scale. Compared to the baseline TFA∗, our approach obtains around 100 times faster convergence
in nAP score, while preserving the bAP of the base model.

of these features and speeding up the training. We perform
simple data augmentation on the extracted box features in
order to mitigate overfitting. For each Newton iteration, we
first make 5 copies of each box features. Next, we apply
zero-mean Gaussian noise with standard deviation 0.1 and
perform dropout with a rate of 0.5.

B. Comparison Experiments

Here, we compare our method HDA with the exist-
ing few-shot detection approaches. We compare with a
baseline FRCN+ft-full that fine-tunes all layers of the
base Faster-RCNN detector on novel classes, as well as
variants of the baseline TFA [33], including TFA w/fc
with the fully-connected layer classifier and TFA w/cos
with the cosine similarity-based classifier. We also compare
with recent transfer learning based approaches LEAST [17],
Retentive R-CNN [11] and DeFRCN [24].

Table II reports the mean average precision (AP, bAP,
and nAP) of previous approaches and our method on dif-
ferent shots. Compared to the baseline TFA, our approach
obtains consistent improvements in novel class performance
(nAP), while being significantly better on the base classes.
DeFRCN achieves the best performance on the novel classes
while suffering from a significant drop on the base classes.
Similarly, LEAST obtains the second best performance on
the novel classes in the 1, 5, and 10 shot settings, thanks
to its aggressive fine-tuning strategy. However, this results
in a significant drop in the base class performance due
to catastrophic forgetting. In contrast, our approach obtains
competitive results on the novel classes, while fully retaining
the performance of the base model on the base classes. Con-
sequently, our approach obtains the best AP score over all
classes, on par with the recent Retentive R-CNN. Note that
this is achieved while being computationally fast, thereby
making our approach more suitable for practical applications.

C. Ablation Study

In this section, we analyze the impact of our contri-
butions by evaluating different variants of our approach.
We start with a variant of the baseline TFA, denoted as,
TFA∗, wherein we replace smooth-L1 loss for bounding box
regression with L2 loss. Furthermore, we run SGD directly
on the extracted box features as in our approach to obtain a

fair runtime comparison. Next, we replace the SGD-based
finetuning in TFA with our fast Newton’s method based
optimization strategy to obtain TFA-Fast. We also evaluate
a variant of our approach HDA-wo-Aug without the data
augmentation strategy (Sec. IV-A) to analyze its impact.

The results of this comparison, in terms of AP, bAP, and
nAP is provided in Table II. The total training times on the
few-shot datasets for each of the methods is additionally
provided in Table III. Note that the runtime for all methods
are obtained using a single TITAN Xp GPU. Replacing the
SGD optimizer in TFA∗ with our fast optimizer leads to ∼
10× speed-up in computation time, while also improving
the AP score. Using our hierarchical detection approach
instead of two-stage fine-tuning addresses the “catastrophic
forgetting” issue in TFA+Fast, leading to a significant 7.8
improvement in bAP while achieving a similar nAP score on
the 1-shot dataset. Additionally employing data augmentation
for training the novel predictor Pn improves the novel class
performance by 0.7 nAP in the 5-shot setting.

We also provide convergence plots showing the model per-
formance on 1-shot dataset for HDA and TFA∗, in terms of
AP, bAP, and nAP, for different training times in Fig. 6. Note
that we exclude the initial time for feature extraction (around
10 seconds for both methods) and only show the time for
model optimization. Our approach obtains around 100 times
faster convergence in nAP score compared to the baseline
TFA∗. Furthermore, our approach fully preserves the base
class performance (bAP) of the base model. In contrast, the
bAP for baseline TFA∗ fluctuates and is significantly lower
compared to our approach due to catastrophic forgetting.
Qualitative Comparison: Figure 4 provides a qualitative
comparison of our approach with baseline TFA on MS-
COCO test set. Both models are trained on the 10-shot
dataset. Note that the images were selected randomly, while
only ensuring that they had multiple diverse objects. De-
tections that have confidence score greater than 0.5 are
displayed. Images in the first two columns are dominated by
base classes (e.g. laptop, oven, bottle, cup). As can be seen
in the output detection, our approach detects greater number
of base class instances compared to TFA, while being able
to detect novel objects as well (TV and person). Similarly,
in the images dominated by the novel classes e.g. dog, chair
(last two columns), our approach provides similar or better
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Fig. 4: Qualitative comparison with baseline TFA on test images from 10-shot MS-COCO dataset. Our approach provides
better detection performance, compared to TFA, over both the base (laptop, remote) as well as novel classes (TV, person).

Model AP bAP aAP fAP nAP

1 5 10 1 5 10 1 5 10 1 5 10 1 5 10

HDA 21.2 22.4 22.9 39.2 39.2 39.2 6.9 10.5 12.0 4.0 6.4 7.6 0.9 2.7 3.4
HDA-wo-Aug 21.2 22.4 22.9 39.2 39.2 39.2 7.3 10.7 12.2 4.1 6.6 7.5 0.8 2.6 3.4
TFA 16.9 18.4 19.2 30.6 30.9 31.2 7.7 12.3 14.2 4.7 7.5 8.4 0.4 2.2 3.1

TABLE IV: Comparison with TFA on the class-refined few-shot detection in terms of overall AP, performance on novel (nAP)
and base (bAP) classes, as well as the refined detection performance over “animal” (aAP) and “food” (fAP) super-classes.

results compared to TFA.

D. Class-Refined Few-Shot Detection

In Sec. III-D, we present an extension of our hierarchical
detection approach which can be used to detect novel classes
that are semantically related to existing base classes in a few-
shot manner. Here, we evaluate this approach on a new class-
refined few-shot detection setting. We consider a practical
scenario where the goal is to extend a base detector to either
i) detect novel classes unrelated to the base classes, or ii)
detect child classes for an existing base class using only a few
samples. For example, given a base detector trained to detect
“animal” and “vehicle” classes, we may wish to extend the
detector to detect an “apple” class, and additionally detect the
fine-grained type of animal, e.g. “cat”, “dog”, or “elephant”
within the “animal” super class. Note that this setting is
similar to the recently introduced incremental implicitly-
refined classification [1] task.

We introduce a benchmark for the refined few-shot de-
tection task based on the MS-COCO dataset. We note
that the 80 classes in MS-COCO are already divided into
11 super-categories [20]. Among these 11 super-categories,
we choose the “animal” and “food” categories containing
10 child classes each as our super-base classes. Next, the
20 child classes belonging to the “person”, “accessory”,
“vehicle”, and “furniture” super-categories are selected as
the novel classes. The remaining 40 child classes constitute
the standard base classes. Similar to the standard few-shot
detection setting, the method is first provided with a large
base dataset containing annotations for the 40 standard base
classes, as well as the 2 super base classes, which can be
used to learn the base model. Next, in the few-shot adaption

stage, the method is given only K training images containing
annotations for each of the novel classes, as well as the
child classes of the two base super-classes. Given this K-shot
dataset, the method should learn to detect the novel classes
as well as child classes of the base super-classes, while
retaining its performance on the standard base classes. For
each method, we report the combined AP over the 80 classes,
as well as the performance over the 40 base classes (bAP),
and 20 novel classes (nAP). We also report the average
precision over child classes of the two super-classes, namely
“animal” (aAP) and “food” (fAP). The results are aggregated
over 10 random few-shot datasets.

Results: We compare our approach HDA with the baseline
TFA [33] with cosine classifier. For both methods, we first
train a base model to detect the 42 classes in the base dataset,
using the same hyper-parameters as in TFA’s base training.
In order to perform few-shot detection with TFA, we fine-
tune a predictor Pn to make joint detection over all 80
classes. For our approach HDA, we use the class hierarchy
provided in the COCO dataset to establish the relation
between the novel classes and the existing base classes.
Table IV shows the results of this comparison over 1, 5, and
10 shot datasets. Our approach HDA outperforms the TFA
baseline on the novel classes which are unrelated to the base
classes (nAP). The fine-grained detection performance on the
two super classes, namely “animal” (aAP) and “food” (fAP),
is lower for HDA, compared to TFA. On the other hand, our
approach obtains substantial improvement in the base class
performance (bAP) over the baseline TFA. Consequently, in
terms of the combined performance over all classes (AP),
HDA outperforms TFA by over 3.7 points for all shots.
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Fig. 5: Analysis of base model behaviour on novel classes. See Sec. IV-D for details.

Analysis of base detector: The performance of our ap-
proach relies on the ability of the base detector to correctly
classify the novel classes into the correspondng super-class
or background. We analyse the behaviour of our base detector
in Fig. 5. For each novel class (x-axis) in a 10-shot dataset
for class-refined detection, we pass its ground truth proposals
through the base model. We then plot the fraction of times
the base model classifies a novel class object as background,
animal or food super-class, or other base classes. We observe
that in majority of the cases, the base model can correctly
classify the different types of animals and food items as the
animal and food super-class, respectively, while classifying
the unrelated novel classes as background. However we note
that the base model can struggle to classify certain novel
classes (e.g. “airplane”, “orange”).

V. CONCLUSION

We propose a hierarchical approach for few-shot detection
which addresses the “catastrophic forgetting” on the base
classes. The detection head for the novel classes is trained
using a specialized optimization strategy, leading to signif-
icantly lower training times, compared to stochastic gradi-
ent descent. Our approach obtains competitive novel class
performance on few-shot COCO benchmark, while retaining
the performance of the base model on the base classes. We
further demonstrate the application of our approach to a new
class-refined few-shot detection task.
Limitation and future work: The performance of our
approach relies on the availability of a strong base detector.
Our approach will fail if the base detector cannot generate
proposals for certain novel objects. Addressing this limitation
by e.g. finetuning the base detector is an interesting future
work. Extending our approach for incremental learning set-
ting is another possible future work.
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Supplementary Material
In this supplementary material, we provide additional details and analysis of our approach. First, we describe a variant

of our optimization algorithm utilizing mini-batches in Section I. Additional implementation details about the training and
inference of our approach is provided in Section II. Detailed results and runtime analysis is provided in Section III

I. FAST OPTIMIZATION WITH MINI-BATCHES

Our Newton’s method based fast optimization strategy presented in Section III-E in the main paper computes the update
step 2 using all available data. While such a strategy is well suited to the few-shot detection scenario with a moderate
number of classes, it suffers from GPU memory limitations if the number of classes is high, or the GPU memory available
is low. Thus, here we present a variant of our optimization approach which uses mini-batches. Similar to stochastic gradient
descent, we randomly sample a mini-batch with 16 images in each iteration and compute the weight updates using these
images. Note that as the update step 2 is estimated using a subset of training samples, it can be noisy and hence lead to
training instabilities. To avoid this, we add an additional L2 regularization term to our quadratic approximation 1 to obtain,

L̃wi
(∆w) ≈ L(wi) + ∆wTi Jwi

+
1

2
∆wTi Hwi

∆wi +
λ

2
∆wTi ∆wi (3)

Here, λ is the regularization factor. Consequently, the update step is obtained as,

∆wi = −(Hwi + λI)−1 · Jwi (4)

Here, I is the identity matrix. The regularization term prevents instabilities in the inversion of the Hessian matrix Hwi
. Note

that by using a high regularization factor, the update step 4 will be approximately equal to the vanilla gradient descent step
with a learning rate of 1

λ . We set the regularization factor λ = 0.5 in all our experiments. For every batch, we run 1 Newton
iteration with NCG = 2 CG iterations.

II. ADDITIONAL IMPLEMENTATION DETAILS

In this section, we provide details about the weight initialization strategy used when training the novel predictor Pn, as
well as the proposal filtering strategy used in our approach HDA.

A. Weight Initialization

Here, we describe the strategy used to initialize the weights of the novel predictor Pn for our experiments in Section IV.
TFA∗: We follow the approach used by the original authors [33] when evaluating TFA∗ on the MS-COCO based generalized
few-shot detection benchmark in Section IV-B and IV-C. That is, we first pretrain the novel class weights on a few-shot
dataset which only contains novel classes. The pretrained novel class weights are then concatenated with the weights of
pretrained base predictor Pb to obtain the initial weights for Pn. When evaluating on the class-refined few-shot detection
benchmark in Section IV-D, we initialize the classifier and bounding box regressor weights for the novel classes randomly,
using a zero-mean Gaussian with standard deviation 0.01. The classifier weights for the child classes of existing base super-
classes are also initialized randomly in an identical manner. For the bounding box regressor of the child classes, we assign
the pretrained base predictor weights of corresponding base super-class as the initial weights. These novel and child class
weights are then concatenated with the pretrained weights of the standard base classes to obtain the initial weights for the
novel predictor Pn
TFA-Fast: For evaluation on the generalized few-shot detection benchmark in Section IV-B and IV-C, we initialize the
weights for novel classes randomly using a zero-mean normal distribution with standard deviation 0.01. These weights are
then concatenated with the weights of the pretrained base predictor Pb to obtain the initial weights for Pn.
HDA: The base predictor of HDA have the weights same as the base model. For evaluation on the generalized few-shot
detection benchmark in Section IV-B and IV-C, we initialize the weights for the novel predictor randomly using a zero-
mean normal distribution with standard deviation 0.01. For evaluation on the class-refined few-shot detection benchmark in
Section IV-D, we initialize the novel predictor weights, as well as the classifier weights for the child classes of existing base
super-classes in an identical manner. For the bounding box regressor of the child classes, we assign the pre-trained base
predictor weights of corresponding base super-class as the initial weights.

B. Proposal Filtering in HDA

For both training and inference in HDA, we follow the same procedure of proposal filtering. The proposals and associated
box features are first passed to the base predictor to do inference for base classes. The inference follows the standard process
of Faster R-CNN and uses the same hyper-parameters as our TFA baseline, wherein the threshold for classification scores is
0.05, threshold for Non-Maximum Suppression is 0.5 and top 100 detections per image are output. Then from the remaining
proposals that are not inferred as base detections, we select proposals and associated box features that have the maximum
class scores of each super base class or “other/background” as the input for corresponding predictor head.



III. DETAILED RESULTS

A. Generalized few-shot detection

In this section, we provide detailed results and runtime analysis on the generalized few-shot detection benchmark used in
Section IV-B and IV-C in the main paper.
Results: In Table II of the main paper, we report the results of our approach on the MS-COCO generalized few-shot
detection benchmark. Here, we provide further detailed results in Table V. We compare our approach HDA with the baselines
TFA∗, TFA-Fast, and HDA-wo-Aug introduced in the main paper. Additionally, we also report results of a variant of our
approach HDA-wo-Aug-mb employing the optimization strategy with mini-batches introduced in Section I, without any data
augmentation. For each method, we report the mean AP score, as well as the average precision scores at overlap thresholds
0.5 (AP50) and 0.75 (AP75) over all classes, base classes, and novel classes. For each metric, we report the average score
as well as the 95% confidence interval computed over 10 random few-shot datasets. Compared to TFA∗, our approach
obtains superior novel class performance (nAP), as well as overall AP, across all shots. Furthermore, note that our approach
HDA-wo-Aug-mb employing mini-batches obtains results comparable to the standard HDA.
Runtime comparison: We provide a detailed runtime comparison of our approach HDA with baseline TFA∗, as well as the
variants TFA-Fast and HDA-wo-Aug introduced in the main paper in Section IV-C. For each method, we report in Table VI
the total time spent on feature extraction (Tfeat), total time spent on optimization (Toptim), the time per optimization iteration
(t) and the total number of iterations (n). For TFA∗, we report the time for both the pre-training of the novel class weights, as
well as the joint finetuning of novel and base class weights. Our Newton’s method based optimization strategy takes higher
time per iteration compared to stochastic gradient descent (SGD) due to the computation of the Hessian matrix Hwi and the
Conjugate Gradient iterations involved in the computation of the update step. However, only 30 iterations are sufficient to
obtain good performance with our approach, compared to 80000 iterations needed by SGD for the 5-shot case. Consequently,
our approach obtains over 200 times speedup in total optimization time, compared to SGD, on the 5 shot dataset.

We also provide a runtime comparison between our approach HDA-wo-Aug-mb using mini-batches and TFA employing
stochastic gradient descent. For both approaches, we use the same mini-batch size and extract the features in each iteration.
The total runtime (T ), the time per iteration (t), and the total number of iterations (n) are reported in Table VII. Our approach
obtains over 150 times speedup compared to TFA in the 5-shot setting.
Convergence plots: In the main paper, we provide convergence plots comparing the performance of HDA and TFA∗ for
different training time for the 1-shot dataset. Here, we additionally provide similar convergence plots for 2, 3, 5, and 10-shot
datasets in Figure 6. Our approach HDA obtains substantially convergence in terms of nAP score across all datasets.

B. Class-refined few-shot detection

Here, we report detailed results on the class-refined few-shot detection benchmark introduced in Section IV-D in the main
paper. In Table VIII, we report the performance in terms of AP, AP50, and AP75 over all classes, the novel classes, the
standard base classes, as well as the child classes of the animal and food super-classes. For each metric, we report the
average score as well as the 95% confidence interval computed over 10 random dataset splits. The results are reported for
1, 2, 3, 5, and 10-shot datasets.



Shots Method Overall Base class Novel class

AP AP50 AP75 bAP bAP50 bAP75 nAP nAP50 nAP75

1

HDA 30.2±0.1 46.2±0.2 32.7±0.1 39.2±0.0 59.3±0.0 42.8±0.0 3.0±0.4 6.8±0.7 2.3±0.5
HDA-wo-Aug 30.0±0.1 45.8±0.2 32.6±0.1 39.2±0.0 59.3±0.0 42.8±0.0 2.4±0.3 5.2±0.6 1.9±0.4
HDA-wo-Aug-mb 30.1±0.1 45.9±0.2 32.7±0.1 39.2±0.0 59.3±0.0 42.8±0.0 2.9±0.4 5.8±0.7 2.5±0.5
TFA-Fast 24.2±0.6 40.5±0.6 25.3±1.0 31.4±0.7 52.2±0.6 33.0±1.2 2.6±0.4 5.4±0.5 2.3±0.5
TFA∗ 24.1±0.5 40.3±0.5 25.4±0.9 31.4±0.6 52.2±0.6 33.2±1.0 2.3±0.3 4.4±0.4 2.1±0.4

2

HDA 30.6±0.1 47.1±0.2 33.0±0.1 39.2±0.0 59.3±0.0 42.8±0.0 4.6±0.4 10.4±0.8 3.6±0.5
HDA-wo-Aug 30.4±0.1 46.6±0.2 32.9±0.1 39.2±0.0 59.3±0.0 42.8±0.0 4.1±0.4 8.7±0.7 3.4±0.3
HDA-wo-Aug-mb 30.6±0.1 46.8±0.2 33.1±0.1 39.2±0.0 59.3±0.0 42.8±0.0 4.5±0.4 9.2±0.7 4.0±0.4
TFA-Fast 25.3±0.5 41.8±0.6 27.0±0.6 32.4±0.6 53.0±0.7 34.9±0.8 3.9±0.4 8.1±0.9 3.5±0.4
TFA∗ 24.7±0.6 40.5±0.7 26.4±0.8 31.6±0.7 51.5±0.8 34.1±0.9 3.8±0.4 7.5±0.7 3.4±0.4

3

HDA 30.8±0.1 47.5±0.2 33.2±0.1 39.2±0.0 59.3±0.0 42.8±0.0 5.6±0.4 12.0±0.8 4.6±0.4
HDA-wo-Aug 30.7±0.1 47.1±0.3 33.2±0.1 39.2±0.0 59.3±0.0 42.8±0.0 5.1±0.5 10.3±1.0 4.5±0.5
HDA-wo-Aug-mb 30.8±0.1 47.1±0.3 33.3±0.1 39.2±0.0 59.3±0.0 42.8±0.0 5.4±0.6 10.6±1.1 4.9±0.6
TFA-Fast 26.2±0.4 42.7±0.6 28.3±0.5 33.3±0.4 53.7±0.5 36.2±0.6 4.9±0.5 9.8±1.1 4.5±0.5
TFA∗ 25.0±0.6 40.6±0.8 27.0±0.6 31.6±0.6 51.0±0.9 34.5±0.7 4.9±0.6 9.4±1.1 4.6±0.6

5

HDA 31.2±0.1 48.2±0.2 33.6±0.1 39.2±0.0 59.3±0.0 42.8±0.0 7.1±0.5 14.9±0.9 6.0±0.6
HDA-wo-Aug 31.0±0.2 47.7±0.3 33.5±0.2 39.2±0.0 59.3±0.0 42.8±0.0 6.4±0.6 12.8±1.1 5.8±0.7
HDA-wo-Aug-mb 31.1±0.2 47.8±0.3 33.6±0.2 39.2±0.0 59.3±0.0 42.8±0.0 6.8±0.6 13.3±1.0 6.2±0.7
TFA-Fast 27.3±0.3 44.1±0.5 29.7±0.4 34.3±0.3 54.6±0.4 37.6±0.3 6.4±0.5 12.5±1.0 6.0±0.6
TFA∗ 25.4±0.6 41.3±0.8 27.6±0.6 31.8±0.6 50.9±0.7 34.8±0.6 6.4±0.6 12.6±1.1 6.0±0.7

10

HDA 31.7±0.1 49.1±0.2 34.1±0.1 39.2±0.0 59.3±0.0 42.8±0.0 9.0±0.4 18.3±0.9 7.9±0.4
HDA-wo-Aug 31.4±0.2 48.3±0.3 34.0±0.2 39.2±0.0 59.3±0.0 42.8±0.0 7.9±0.6 15.2±1.2 7.5±0.6
HDA-wo-Aug-mb 31.6±0.2 48.6±0.3 34.1±0.2 39.2±0.0 59.3±0.0 42.8±0.0 8.6±0.6 16.5±1.2 8.2±0.6
TFA-Fast 28.5±0.3 45.6±0.4 31.0±0.2 35.2±0.2 55.4±0.2 38.6±0.2 8.4±0.6 16.1±1.2 8.1±0.5
TFA∗ 25.8±0.4 42.3±0.7 27.8±0.4 31.6±0.4 50.9±0.6 34.5±0.5 8.3±0.5 16.4±1.0 7.7±0.5

TABLE V: Generalized few-shot detection performance on MS-COCO [20] dataset. We report the mean AP score, as well
as the average precision scores at overlap thresholds 0.5 (AP50) and 0.75 (AP75) over all classes (overall), base classes,
and novel classes. For each metric, we report the average score as well as the 95% confidence interval computed over 10
random few-shot datasets.

Model Tfeat (s) Toptim (s) t (s) n

1 5 10 1 5 10 1 5 10 1 5 10

HDA 9.56 43.27 89.41 0.63 2.47 4.77 0.0211 0.0822 0.1589 30 30 30
HDA-wo-Aug 9.75 44.53 89.97 0.57 2.21 4.22 0.0191 0.0737 0.1407 30 30 30
TFA-Fast 9.36 37.53 74.42 3.78 16.83 33.39 0.0378 0.1683 0.3339 100 100 100
TFA∗ (pretraining) 3.03 10.38 19.58 2.75 8.25 11.60 0.0055 0.0055 0.0058 500 1500 2000
TFA∗ (finetuning) 8.55 39.20 78.76 107.20 560.00 1136.00 0.0067 0.0070 0.0071 16000 80000 160000

TABLE VI: Runtime analysis on the generalized few-shot detection benchmark. For each method, we report the total time
for feature extraction (Tfeat), total time for optimization (Toptim), time per optimization iteration (t) and the total number
of optimization iterations (n). All times are reported in seconds.

Model T (s) t (s) n

1 5 10 1 5 10 1 5 10

HDA-wo-Aug-mb 413.56 672.51 882.00 2.0678 2.2417 2.2050 200 300 400
TFA 21041.60 105832.00 211440.00 1.3151 1.3229 1.3215 16000 80000 160000

TABLE VII: Runtime comparison between HDA-wo-Aug-mb employing our fast optimization strategy with mini-batches,
and original TFA employing stochastic gradient descent. We report the total runtime (T ), and the time per optimization
iteration (t) including the time take to extract the mini-batch. We also report the total number of iterations (n) employed
for each method. All times are in seconds.



Fig. 6: Convergence plots showing the model performance, in terms of AP, bAP, and nAP, for different training times (in
seconds), for 1, 2, 3, 5, and 10-shot datasets. We exclude the initial time for feature extraction. Note that the x-axis follows
logarithmic scale.



Shots Method Overall Base class Animal super class Food super class Novel class

AP AP50 AP75 bAP bAP50 bAP75 aAP aAP50 aAP75 fAP fAP50 fAP75 nAP nAP50 nAP75

1
HDA 21.2±0.1 32.9±0.1 23.0±0.2 39.2±0.0 59.8±0.0 43.0±0.0 6.9±0.5 12.3±0.8 7.1±0.7 4.0±0.7 6.7±1.0 4.2±0.8 0.9±0.2 2.6±0.4 0.4±0.1
HDA-wo-Aug 21.2±0.1 32.9±0.2 23.1±0.1 39.2±0.0 59.8±0.0 43.0±0.0 7.3±0.5 12.3±0.8 7.6±0.6 4.1±0.6 6.8±1.0 4.4±0.7 0.8±0.2 2.2±0.4 0.5±0.1
TFA 16.9±0.3 28.5±0.4 17.9±0.5 30.6±0.6 52.0±0.7 32.2±1.1 7.7±0.6 11.5±0.8 8.8±0.7 4.7±0.8 6.6±1.2 5.4±1.0 0.4±0.2 0.9±0.4 0.3±0.2

2
HDA 21.7±0.1 33.9±0.1 23.5±0.1 39.2±0.0 59.8±0.0 43.0±0.0 8.3±0.7 14.1±1.3 8.6±0.7 5.2±0.5 8.7±0.8 5.5±0.6 1.7±0.2 4.5±0.5 1.0±0.2
HDA-wo-Aug 21.7±0.1 33.8±0.2 23.6±0.1 39.2±0.0 59.8±0.0 43.0±0.0 8.6±0.7 14.2±1.2 9.1±0.8 5.2±0.4 8.5±0.7 5.5±0.5 1.6±0.2 4.0±0.5 1.0±0.2
TFA 17.6±0.3 28.8±0.5 19.1±0.3 30.8±0.6 50.9±1.0 33.4±0.7 9.5±0.6 13.9±1.0 10.8±0.6 5.9±0.4 8.4±0.5 6.6±0.4 0.9±0.1 2.0±0.2 0.7±0.2

3
HDA 22.0±0.1 34.4±0.1 23.7±0.1 39.2±0.0 59.8±0.0 43.0±0.0 8.9±0.6 15.1±1.1 9.5±0.7 5.6±0.7 9.3±1.0 6.0±0.7 2.1±0.2 5.5±0.3 1.3±0.2
HDA-wo-Aug 21.9±0.1 34.2±0.2 23.8±0.1 39.2±0.0 59.8±0.0 43.0±0.0 9.1±0.6 14.9±1.1 9.8±0.7 5.6±0.6 9.3±0.9 5.9±0.6 2.0±0.2 5.0±0.3 1.3±0.2
TFA 18.0±0.4 29.1±0.6 19.7±0.4 30.9±0.7 50.4±1.0 33.9±0.8 10.7±0.7 15.5±1.0 12.2±0.9 6.5±0.4 9.4±0.6 7.3±0.4 1.5±0.2 3.2±0.4 1.3±0.2

5
HDA 22.4±0.1 35.2±0.1 24.1±0.1 39.2±0.0 59.8±0.0 43.0±0.0 10.5±0.6 17.9±1.0 10.9±0.7 6.4±0.5 10.7±0.8 6.7±0.6 2.7±0.2 7.0±0.5 1.7±0.1
HDA-wo-Aug 22.4±0.1 35.2±0.2 24.2±0.1 39.2±0.0 59.8±0.0 43.0±0.0 10.7±0.6 17.8±1.0 11.3±0.7 6.6±0.6 10.9±0.8 7.0±0.7 2.6±0.2 6.6±0.5 1.7±0.1
TFA 18.4±0.3 29.9±0.5 20.2±0.3 30.9±0.6 50.2±0.9 33.8±0.6 12.3±0.7 18.0±1.2 14.0±0.8 7.5±0.5 10.9±0.7 8.4±0.5 2.2±0.2 4.6±0.4 1.8±0.2

10
HDA 22.9±0.1 36.2±0.1 24.6±0.1 39.2±0.0 59.8±0.0 43.0±0.0 12.0±0.5 20.3±0.9 12.6±0.5 7.6±0.5 12.7±0.8 8.0±0.6 3.4±0.2 8.4±0.4 2.2±0.2
HDA-wo-Aug 22.9±0.1 36.1±0.1 24.7±0.1 39.2±0.0 59.8±0.0 43.0±0.0 12.2±0.6 20.5±1.0 13.0±0.6 7.5±0.5 12.8±0.6 7.8±0.7 3.4±0.1 8.1±0.3 2.4±0.2
TFA 19.2±0.2 31.2±0.4 20.9±0.2 31.2±0.5 50.6±0.8 34.2±0.6 14.2±0.8 21.0±1.2 16.2±1.0 8.4±0.4 12.7±0.5 9.3±0.4 3.1±0.1 6.5±0.4 2.5±0.2

TABLE VIII: Class-refined few-shot detection performance on MS-COCO [20] dataset.
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