
   
 
 

 
Abstract 

 
This paper advances descriptor-based face recognition 

by suggesting a novel usage of descriptors to form an 
over-complete representation, and by proposing a new 
metric learning pipeline within the same/not-same 
framework. First, the Over-Complete Local Binary 
Patterns (OCLBP) face representation scheme is 
introduced as a multi-scale modified version of the Local 
Binary Patterns (LBP) scheme. Second, we propose an 
efficient matrix-vector multiplication-based recognition 
system. The system is based on Linear Discriminant 
Analysis (LDA) coupled with Within Class Covariance 
Normalization (WCCN). This is further extended to the 
unsupervised case by proposing an unsupervised variant 
of WCCN. Lastly, we introduce Diffusion Maps (DM) for 
non-linear dimensionality reduction as an alternative to 
the Whitened Principal Component Analysis (WPCA) 
method which is often used in face recognition. 

We evaluate the proposed framework on the LFW face 
recognition dataset under the restricted, unrestricted and 
unsupervised protocols. In all three cases we achieve very 
competitive results.  
 

1. Introduction 
The Labeled Faces in the Wild (LFW) face recognition 

benchmark [1] is currently the most active research 
benchmark of its kind. It is built around a simple binary 
decision task: given two face images, is the same person 
being photographed in both? The comprehensive results 
tables show a large variety of methods which can be 
roughly divided into two categories: pair comparison 
methods and signature based methods. 

In the pair comparison methods [2, 3, 4], the decision is 
based on a process of comparing the two images part by 
part, oftentimes involving an iterative local matching 
process. In the signature based methods [5, 6, 7, 8, 9], 
each face image is represented by a single descriptor 
vector and is then discarded. To compare two face images, 
their signatures are compared using predefined metric 
functions, which are sometimes learned based on the 
training data. 

The pair comparison methods allow for flexibility in 

representation, based on the actual image pair to be 
compared. On the other hand, the signature based methods 
are often much more efficient. Furthermore, there is a 
practical value in signature based methods in which the 
signature is compact. Such systems can store and retrieve 
face images using limited resources. 

In this paper, we propose an efficient signature based 
method, in which the storage footprint of each signature is 
on the order of a hundred floating point numbers. This 
compares to storage footprints of one to three orders of 
magnitude larger in previous work.  

Our method includes multiple contributions. First, as 
detailed in Section 2, we propose to use over-complete 
representations of the input image. This is shown to 
significantly contribute to the overall performance. 
However, this added accuracy is hidden until 
dimensionality reduction is performed. In Section 3, we 
propose the use of the WCCN [10] metric learning 
technique for face recognition. In Section 4, we propose a 
general scheme for generating labeled data from an 
unlabeled data. In Section 5, we describe in detail our 
proposed recognition system, which is applicable for both 
supervised and unsupervised learning by utilizing the 
scheme described in Section 4. This results in an extension 
of the WCCN metric learning to the unsupervised case. In 
Section 6, the Diffusion Maps technique (DM) [11] is 
introduced as a non-linear dimensionality reduction 
method for face recognition. We investigate it as an 
alternative to WPCA [6] and show that it can improve 
performance over the baseline when being fused with 
WPCA. In Section 7, we evaluate the proposed system on 
the LFW dataset under the restricted, unrestricted and 
unsupervised protocols and report state of the art results 
on these benchmarks. Finally, in Section 8, we conclude 
and discuss future work. 

1.1 Overview of the recognition pipeline 
A unified pipeline is used in order to solve the 

unsupervised case and the two supervised scenarios of the 
LFW benchmark: the restricted and the unrestricted 
protocols.  

First, a representation is constructed from the face 
images. This either uses existing methods, such as LBP 
[9], TPLBP [12] and SIFT [7], or methods which are 
introduced to the fields in this paper, such as the OCLBP 
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and the use of the Scattering transform [13]. Second, a 
dimensionality reduction step takes place. This is either 
WPCA or the Diffusion Maps for the unsupervised case, 
or PCA-LDA or DM-LDA for the two supervised settings. 
Third, WCCN is applied. For the supervised settings, the 
original WCCN method [10] is applied. For the 
unsupervised case, our unsupervised WCCN variant is 
applied. As a last step, cosine similarities based on 
multiple representations and image features are combined 
together using uniform weighting. 

2. Over-complete representations 
Over-complete representations have been found to be 

useful for improving the robustness of classification 
systems by using richer descriptors [14, 15]. In this work, 
we introduce two new adaptations of descriptors for the 
domain of face recognition. Both of them share the 
property of over-complete representation. In the 
experimental results section, we show that the 
improvement in the accuracy of using over-complete 
representations remains hidden until some dimensionality 
reduction is involved. However, its contribution to the 
final score is significant. 

2.1. Over-complete local binary patterns 

LBP [16] is one of the most successful features for 
texture classification. Specifically, a modified 'uniform' 
version [9] of the original LBP was found to be useful for 
the task of face recognition. Several attempts to extend or 
modify the LBP have been made in [12, 17]. However, 
most of them resulted in new variants of LBP which do 
not necessarily outperform the original one. 

The standard LBP operator for face recognition is 
denoted as  2

,
u
p rLBP  where 2u stands for uniform patterns, 

p  defines the number of points that are uniformly 

sampled over a circle with a radius r . This computation is 
done block-wise and the results from all blocks are 
concatenated to form a final descriptor. For an overview of 
the LBP operator for face recognition we refer the reader 
to [9]. 

 In this work we keep the original form of the LBP as it 
is, but suggest an over-complete representation built on 
top of it. The proposed Over-Complete LBP (OCLBP) 
differs from the original LBP in two major properties. 
First, it is computed with overlapping blocks, similar to 
[18]. The amount of vertical- and horizontal-overlap is 
controlled by the two parameters , [0,1)v h� with 

0h v� �  degenerating to non-overlapping blocks. The 
second difference is in the varied block and radius sizes. 
We repeat the LBP computation for different sizes of 
block and radius, similar to the multi-scale variant in [19]. 
We name the resulting representation as OCLBP. More 
formally, given an input image and a set of configurations

1{( , , , , , )}k
i i i i i i iS a b v h p r �� , we divide the image to blocks 

in a size of i ia b�  with vertical overlap of iv , horizontal 

overlap of ih  and compute a LBP descriptor using the 

operator 2
,i i

u
p rLBP .  We repeat this computation for all 

configurations in S  and concatenate the descriptors to a 
single vector which is the resulting OCLBP descriptor. 

Since the computations of the different configurations 
are independent, the OCLBP descriptor can be easily 
paralleled. 

 We show in Section 7 that the OCLBP descriptor 
achieves the same performance as the standard LBP when 
they are used in their original dimension. However, after 
applying dimensionality reduction, a significant gain in 
accuracy is achieved by the more elaborate scheme. 

2.2. Scattering transform for face recognition 

The Scattering Transform was introduced by Mallat in 
[13]. This work has been extended to various computer 
vision tasks in [20, 21]. As an image representation, a 
scattering convolution network was proposed in [20]. This 
representation leads to an extremely high dimensional 
descriptor that is invariant for small local deformations in 
the image. For texture classification, a Scattering wavelet 
network managed to achieve state of the art results [21]. 

The output of the first layer of a scattering network can 
be considered as a SIFT-like descriptor while the second 
layer adds further complementary invariant information 
which improves discrimination quality. The third layer, 
however, was found to have a negligible contribution for 
classification accuracy while increasing the computational 
cost significantly.  

In this work, we investigate the contribution of the 
Scattering descriptor to our face recognition framework. In 
a similar manner to the OCLBP, we find that the 
Scattering descriptor is much more effective when 
combined with dimensionality reduction. 

We refer the reader to [13] for a detailed description of 
the Scattering transform.  

3. Within class covariance normalization 
Within Class Covariance Normalization (WCCN) has 

been used mostly in the speaker recognition community 
and was first introduced in [10]. The within class 
covariance matrix W is computed as follows: 

1 1

1 1
( )( ) ,

inC
j j T

i i i i
i ji

W x x
C n

� �
� �

� � �� �  

Where C  is the number of different classes, in is the 

number of instances belonging to class i , j
ix  is the jth  

instance of class i  and i� is the mean of class i .  

In a sense, WCCN is similar to the family of methods 
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that down-regulate the contribution of the directions in the 
vector space that account for much of the within class 
covariance. This is often done by projecting the data onto 
the subspace spanned by the eigenvectors corresponding 
to the smallest eigenvalues ofW .  In WCCN, this effect is 
performed in a softer way without performing explicit 
dimensionality reduction: instead of discarding the 
directions that correspond to the top eigenvalues, WCCN 
reduces the effect of the within class directions by 
employing a normalization transform 1/2T W �� . While   
to the best of our knowledge it was previously unused in 
face recognition, we show a clear improvement in 
performance over the state of the art by using the WCCN 
method when applied in the LDA subspace. 

In this work, we also introduce an unsupervised version 
of WCCN, which is shown to be useful in case we lack the 
necessary labeled data. In Section 7, we evaluate our 
proposed method and show that it is an improvement over 
the baseline algorithms. Furthermore, we show that 
although the unsupervised WCCN algorithm does not 
make use of any label information, it is competitive with 
the original supervised WCCN in several scenarios. 

4. Unsupervised labeling 
A common and challenging problem in machine 

learning is the beneficial utilization of successful 
supervised algorithms in the absence of labeled data. In 
this section, we propose a simple unsupervised algorithm 
for generating valuable labels for the pair matching 
problem. 

 Before describing the algorithm, we enumerate our 
two assumptions. First, we assume that we are equipped 
with an unsupervised algorithm that is able to achieve 
some classification accuracy – we consider this algorithm 
as the baseline algorithm. We focus our discussion on 

algorithms that produce a classification score and not just 
binary labels. The second assumption is on the shape of 
the distribution of the classification scores. We assume 
that the score distribution is approximately uni-modal and 
has two tails. If our baseline algorithm manages to achieve 
a reasonable accuracy on the training set, we would expect 
to find many fewer classification mistakes on the tails, 
rather than in the area around the mean score.  

In the case of the "same/not-same" classification, we 
would expect the majority of the scores in one tail to 
belong to pairs that are matched and the majority of the 
scores on the other tail to belong to pairs that are 
mismatched. This behavior leads to the formation of two 
(hopefully) separated sets: one consists mostly of "same" 
pairs and the other consists mostly of "not-same" pairs. 
The size of each cluster is determined by the number of 
pairs we pick from the corresponding tail. This number is 
a parameter that defines a tradeoff between the number of 
desired labels and the confidence that we have in this 
labeling. Therefore, we propose Algorithm 1. 

Note that except for positive and negative labels there 
are also 'unknown' labels. In case we are equipped with an 
algorithm (B) that is designed to handle unlabeled samples 
(i.e., a semi-supervised algorithm), we provide it with this 
information. Otherwise, we provide B exclusively with the 
positive and negative sets of examples. 

The optimal values of the parameters lt  and rt  are 

related to the accuracy of the baseline model A , the shape 
of the score distribution, and the number of labels that we 
want to generate. For example, if we are provided with a 
baseline model which achieves poor accuracy, we should 
expect poor labeling as well. In case the empirical 
distribution is symmetric we can choose l rt t� , otherwise 

we might consider the size of the tails for each tail 
separately. Since the generated labels are used to train a 
new supervised model we can apply Algorithm 1 
iteratively. Another possible extension is to use a set of 
supervised algorithms instead of a single one and to 
determine the final labeling according to a voting scheme. 

5. Fast supervised and unsupervised vector 
multiplication recognition system  

We now describe in detail our proposed recognition 
system, which we call VMRS for Vector Multiplication 
Recognition System. Given two samples, we need to 
decide whether they belong to the same class or not. First, 
each sample is projected to a low dimensional subspace by 
WPCA. Then, we perform an additional supervised 
dimensionality reduction by applying LDA. Finally, we 
perform WCCN to the resultant feature vectors in the low 
dimensional LDA-subspace and produce a score by 
applying cosine similarity. Therefore, the pipeline can be 
reduced to two matrix-vector multiplications followed by 
cosine similarity. We formally denote ,P L and W as the 

Algorithm 1 ( , , , , )l rA B T t t  

Inputs: A - a trained model of the baseline 
unsupervised algorithm, B - supervised algorithm, T
- training set. lt - a threshold on the left tail, rt - a 

threshold on the right tail. 
Output: C - a new trained model. 
1. Compute the pair-wise score matrix S using A

and T . 
2. Assign a label of  1  to all pairs with a score 

above rt .  
3. Assign a label of 1�  to all pairs with a score 

below lt . 

4. Assign a label of 0  to all the other pairs. 
5. Train a new model C using the assigned labels 

and B  
6. Return C  
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WPCA projection matrix, LDA projection matrix and 
Within Class Covariance (WCC) matrix, respectively. 
Thus, given two vectors, �� ����, representing two face 
images, the final score is defined as:  

( ) ( )
( , , )

TMx My
s x y M

Mx My
�  

Where, 1/2M W LP�� . 
The final decision is made according to a prescribed 

threshold that can be set to an Equal Error Rate (EER) 
point, Verification Rate (VR) point, or alternatively, can 
be learned by a SVM [22].  

5.1. Unsupervised pipeline 

The pipeline described above is supervised and requires 
labeled data. However, in many real-world scenarios we 
lack labels. In such cases we can apply Algorithm 1 
(Section 4) in order to generate artificial labels for the 
training set. Specifically, we use the WPCA model as a 
baseline A  and generate new labels according to the 
distribution of the scores of pairs in the training set. We 
then use these labels to estimate the within class 
covariance matrix (note that we do not apply LDA in this 
case, since it is unsupervised). Since WCCN computation 
is based on pairs from the same class, we only choose 
scores from one of the two tails (the 'same' tail). Then we 
treat each pair in the 'same' group as a single class and 
merge classes that share the same samples, i.e., we  utilize 
strongly connected components in the connectivity graph 
induced by the similar pairs.  

In our experiments, we selected the parameter �	
 so that 
the pairs with distances in the bottom 15% of the distances 
of all possible pairs will constitute the “same” pairs. This 
value was determined once, when performing a limited 
investigation of View 1 of the LFW benchmark (intended 
for parameter fitting) and remained fixed. In Section 7, we 
show that this approach improves over the baseline WPCA 
system. 

As already mentioned in Section 4, one can iterate 
between generating new labels, using them for training a 
new supervised model, and generating new scores. 
However, we did not find that performing multiple 
iterations improves performance. Hence, Algorithm 1 is 
employed only once. With the introduction of this 
unsupervised variant of WCCN,  the proposed system is 
suitable for both the supervised and the unsupervised 
scenarios. 

 It is important to clarify that our proposed system, 
excluding the feature extraction phase, is extremely 
efficient in the sense of computational complexity. The 
most demanding computation which takes place during the 
test phase is the linear transformation M on the pair of 
original feature vectors ,x y . This has a great advantage 

over "lazy" learning approaches such as [22] which make 

an explicit use of the training set during the test phase. The 
complexity of the training phase is dominated by the 
complexity of the computation of the eigen-problems that 
are encountered in WPCA and LDA and the computation 
of the matrix square root of 1W � . 

6. Diffusion Maps 
Many of the state of the art face recognition systems 

incorporate a dimensionality reduction component. The 
aim of dimensionality reduction is twofold. First, learning 
in high dimensional vector spaces is computationally 
demanding. Second, in some cases and especially when 
the high dimensionality stems from over-complete 
representations, there is a large amount of redundancy in 
the data. Dimensionality reduction techniques attempt to 
solve both of these problems by exploring meaningful 
connections between the data points and discover the 
geometry that best represents that data. Most of the work 
done so far in face recognition applied linear 
dimensionality reduction. One of the problems with linear 
dimensionality reduction is the implicit assumption that 
the geometric structure of data points is well captured by a 
linear subspace. It has been shown [23] that real world 
signals, in most cases, have non-linear structures and 
reside over a manifold.  

We propose to use a non-linear dimensionality 
reduction technique called Diffusion Maps (DM). We 
introduce a whitened variant of the conventional DM 
framework and show how to deal with the out-of-sample 
extension problem, which occurs in the test phase. In 
Section 7, we show that by incorporating the DM 
framework into the proposed recognition system of 
Section 5, we achieve results which are on a par with the 
state of the art. Finally, we show that by combining DM 
and WPCA we are able to get an additional improvement 
in accuracy.  

We will briefly describe the main steps of DM (for a 
fully rigorous mathematical derivation we refer the reader 
to [11]).  

In the DM framework, we are provided with a training 
set  ������

� � �� and affinity kernel ( , )k � � . A commonly 

used kernel is the Gaussian kernel: 
2( , )

( , ) exp i j
i j

c x x
k x x

	


 �
� �� � 

� �
 

Where ( , )c � �  is a metric and 	  is a parameter which 

determines the size of the neighborhood over which we 
trust our local similarity measure. Using the affinity 
kernel, we compute a pair-wise affinity matrix K  . Then, 
we convert K to a transition Markov matrix P by 
normalizing each row in K by its sum: � � ����, where 
D is a diagonal matrix normalizing the rows of K. 
Therefore, tP is a matrix, in which the entry ,

t
i jP  is the 
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probability of transition from node ix  to node jx  in t  

steps. A diffusion distance after t  steps is defined by:

2
, ,

1

( , ) ( )
n

t t
t i j i k j k

k

D x x P P
�

� �� . Since the diffusion distance 

computation requires the evaluation of the distances over 
the entire training set, it results in an extremely complex 
operation. Fortunately, the same distance can be computed 
in a much simpler way: By spectral decomposition of P , 
we get a complete set of eigenvalues 0 11 ... n� � �� � � �  

and left and right eigenvectors satisfying:  i i iP� ��� . We 

then define a mapping 1:{ }n
t i iH x V� �  according to:

1 1( ) ,...,
Tt t

t i i l liH x � � � �� �� � � , where ki�  indicates the i -th 

element of the k -th eigenvector of P and l is the 
dimension of the diffusion space V . It has been shown 
[11] that for 1l m� �  the following equation holds:

2

2
( ) ( ) ( , )t i t j t i jH x H x D x x� � . This result justifies the 

use of squared Euclidean distance in the diffusion space. 
In practice, one should pick 1l m� � according to the 

decay of 1( )n
i i� � . This decay is related to the complexity of 

the intrinsic dimensionality of the data and the choice of 
the parameter	 . 

6.1. Uniform scaling 

Inspired by WPCA, we propose to weigh all coordinates in 
the diffusion space uniformly. We do that by simply 
omitting the eigenvalues when computing the embedding. 
Therefore, we change the mapping H to 

� �1( ) ,...,
T

i i liH x � ��  . 

While originally inspired by the relation between PCA and 

WPCA, this modification results in a significant 
improvement when applying it to DM framework. We 
hypothesize that this improvement occurs because DM, as 
an unsupervised algorithm, holds little information in its 
eigenvalues regarding the actual discrimination capability. 
Confounding factors, such as illumination, can be 
associated with some of the leading eigenvectors. 

6.2. Out of sample extension 

Since the domain of H is defined only on the training 
set, we cannot compute the embedding for a new test 
sample. A trivial solution would be to re-compute the 
spectral decomposition on the whole training data and the 
new test sample from scratch. However, this solution is 
extremely costly in the sense of computation time. Thus, 
we propose a simpler solution: Our approach assumes that 
the training data is sufficiently diverse in order to capture 
most of the variability of the face space. In this case, we 
would expect the embedding of a new test sample to be 
approximated well by a linear combination of embeddings 
of the training samples in the low dimensional diffusion 
space. A natural choice is to set the coefficient for each 
training sample as the probability of moving from it to the 
new test sample. Thus, for a new test sample 1nx � we 

compute the transition probabilities 1,n jP � , 1 j n� � �  and 

define its embedding to be

1 1, 1 1,
1 1

( ) ,...,

T
n n

n n j j n j lj
j j

H x P P� �� � �
� �

� �
� �  

� �
� �  . As a result we 

get an extended mapping 1
1:{ }n

i iH x V�
� � , which includes 

1nx �  as well. 

Our proposed extension is quite similar to the Nystrom 
method [24] that has been used in spectral graph theory. 

Table 1 LBP OCLBP TPLBP SIFT SCATTERING 

Unsupervised SQRT SQRT  SQRT SQRT SQRT 
RAW  72.48 ± 0.49 72.48 ± 0.49 72.78 ± 0.39 72.78 ± 0.39 73.91 ± 0.57 73.91 ± 0.57 68.43 ± 0.49 68.43 ± 0.49 66.83 ± 0.63 66.83 ± 0.63 
WPCA  77.90 ± 0.59 80.55 ± 0.38 80.21 ± 0.35 82.78 ± 0.41 78.06 ± 0.45 79.71 ± 0.48 78.80 ± 0.32 79.43 ± 0.30 80.01 ± 0.50 80.61 ± 0.48 

DM 77.30 ± 0.60 79.56 ± 0.44 79.26 ± 0.42 82.20 ± 0.49 77.56 ± 0.40 78.55 ± 0.62 77.75 ± 0.33 78.96 ± 0.40 79.37 ± 0.56 81.13 ± 0.52 
WPCA+WCCN 78.81 ± 0.73 82.48 ± 0.35 81.90 ± 0.42 86.66 ± 0.30 78.35 ± 0.52 80.2 ± 0.51 80.96 ± 0.43 81.88 ± 0.36 81.78 ± 0.49 82.50 ± 0.55 

DM+WCCN  78.75 ± 0.58 82.43 ± 0.22 81.13 ± 0.40 85.46 ± 0.40 79.36 ± 0.43 81.33 ± 0.57 80.70 ± 0.35 81.91 ± 0.29 80.10 ± 0.55 81.36 ± 0.56 

Table 2 LBP OCLBP TPLBP SIFT SCATTERING 

Restricted SQRT SQRT  SQRT SQRT 
PCALDA 83.30 ± 0.59 85.23 ± 0.37 85.10 ± 0.46 87.85 ± 0.69 82.71 ± 0.54 83.88 ± 0.62 83.30 ± 0.59 85.23 ± 0.37 85.10 ± 0.46 87.85 ± 0.69 
DMLDA 81.53 ± 0.66 84.73 ± 0.50 84.68 ± 0.84 87.73 ± 0.58 80.13 ± 0.56 82.08 ± 0.62 81.53 ± 0.66 84.73 ± 0.50 84.68 ± 0.84 87.73 ± 0.58 
WPCA 82.03 ± 0.59 84.86 ± 0.37 83.66 ± 0.50 87.23 ± 0.38 81.45  ± 0.61 82.91 ± 0.53 82.03 ± 0.59 84.86 ± 0.37 83.66 ± 0.50 87.23 ± 0.38 

DM 81.91 ± 0.59 84.53 ± 0.33 83.76 ± 0.56 87.08 ± 0.33 80.05 ± 0.58 81.81 ± 0.59 81.91 ± 0.59 84.53 ± 0.33 83.76 ± 0.56 87.08 ± 0.33 

Table 3 LBP OCLBP TPLBP SIFT SCATTERING 
Unrestricted SQRT SQRT  SQRT SQRT SQRT 

PCALDA 84.40 ± 0.68 85.96 ± 0.58 86.78 ± 0.58 88.75 ± 0.59 83.91 ± 0.67 85.38 ± 0.67 86.61 ± 0.44 88.06 ± 0.19 87.00 ± 0.70 87.96 ± 0.70 
DMLDA 83.23 ± 0.66 85.26 ± 0.59 85.71 ± 0.56 88.66 ± 0.60 82.91 ± 0.55 84.11 ± 0.59 86.80 ± 0.40 87.06 ± 0.36 85.88 ± 0.73 86.21 ± 0.73 
WPCA 81.91 ± 0.63 84.53 ± 0.43 84.56 ± 0.45 87.30 ± 0.52 81.13 ± 0.70 83.31 ± 0.64 84.01 ± 0.58 84.85 ± 0.25 84.25 ± 0.60 84.89 ± 0.65 

DM  81.11 ± 0.54 83.76 ± 0.48 83.61 ± 0.38 86.96 ± 0.53 81.58 ± 0.62 83.01 ± 0.58 82.93 ± 0.43 83.85 ± 0.34 83.87 ± 0.53 84.43 ± 0.62 

Tables 1-3: Classification accuracy (± standard error) of various combinations of classifiers and descriptors in the unsupervised, 
restricted and unrestricted settings, respectively. See text for details regarding the classifiers and descriptors. 
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The main difference in our formulation is that we ignore 
the eigenvalues due to the modification described above. 

7. Experimental setup and results 
We evaluate the methods described above on the LFW 

dataset [1]. As is customary, we test the effect of the 
various contributions on the 10 folds of view 2 of the 
LFW dataset. 

There are three benchmarks that are commonly used, 
and we provide very competitive results on all three.  The 
most popular supervised benchmark is the "image-
restricted training''. This is a challenging benchmark 
which consists of 6,000 pairs, half of which are “same” 
pairs. The pairs are divided into 10 equally sized sets. The 
benchmark experiment is repeated 10 times, where in each 
repetition, one set is used for testing and nine others are 
used for training. The task of the tested method is to 
predict which of the testing pairs are matched, using only 
the training data (in all three benchmarks, the decision is 
done one pair at a time, without using information from 
the other testing pairs). The second supervised benchmark, 
constructed on top of the LFW dataset, is the 
"unrestricted'' benchmark. In this benchmark, the persons’ 
identities within the nine training splits are known, and the 
systems are allowed to use this information. For example, 
in this benchmark, the original WCCN method can be 
used directly since the training set is divided into identity-
based classes. Last, the unsupervised benchmark uses the 
same training set. Here, however, all the training images 
are given as one large set of images without any pairing or 
label information. The evaluation task remains the same as 
before – distinguish between matching ("same'') and non-
matching ("not-same'') pairs of face images. 

7.1. Front-end 

Our system makes no use of training data outside of the 
LFW dataset, except for the implicit use of outside 
training data through trained facial feature detectors that 
are used to align the images, since we use the aligned 
LFW-a [22] set of images. The aligned images were 
cropped to 150 80�  pixels as suggested in [6]. In contrast 
to other leading contributions [5, 25, 26], we did not apply 
any further type of preprocessing that utilizes pose 
estimators or 3D modeling. 

7.2. Descriptors and parameters 

We evaluate 5 different descriptors: LBP, Three Patch 
LBP (TPLBP), OCLBP, SIFT and the Scattering 
descriptor. For LBP we used the same parameters that 
were used in [6] while for TPLBP we used the parameters 
reported in [12]. We used the SIFT descriptors computed 
by [7].  For the OCLBP descriptors, we used View 1 in 
order to determine the following set of configurations (see 

Section 3.1 for a detailed description of the OCLBP 
parameters): 

1 1 1 1 1 1
{(10,10, , ,8,1), (14,14, , ,8,2), (18,18, , ,8,3)}

2 2 2 2 2 2
S �  

Note that in all three scales, the horizontal and vertical 
overlap parameters are both set to half. 

For the Scattering descriptor we used the Scattering 
Toolbox release from [27]. We set it to use the Gabor 
wavelet and the values suggested in [27]: a scattering 
order of 2, maximum scale of 3 and 6 different 
orientations. 

The original descriptor dimensions are 7080, 40887, 
9216, 3456 and 96520 for the LBP, OCLBP, TPLBP, 
SIFT and Scattering, respectively. 
 
7.3. System parameters 

We used View 1 of the dataset to determine the 
parameters of the system. The WPCA dimension is set to 
500, the DM dimension is also set to 500 and the Gaussian 
kernel parameter is fixed at 4	 � . In the unrestricted and 
restricted benchmarks, we used LDA dimensions of 100, 
100, 100, 30 and 70 for the LBP, OCLBP, TPLBP, SIFT 
and Scattering descriptors, respectively. As already 
mentioned in Section 6, we chose the threshold in the 
unsupervised WCCN algorithm such that the number of 
generated 'same' labels is 15% of all pairs. 

7.4. Results 

We evaluate the proposed system for each feature and 
its square root version under the restricted, unrestricted 
and unsupervised protocols. The experimental results are 
presented in Tables 1-6, and depict the mean classification 
accuracy û and standard error of the mean SE.  

The unsupervised results for the individual face 
descriptors are depicted in Table 1. The table shows the 
progression from the baseline "raw" descriptors, before 
any learning was applied, through the use of 
dimensionality reduction (WPCA or DM) to the results of 
applying unsupervised WCCN (Section 6.1) on the 
dimensionality reduced descriptors. As can be seen, the 
suggested pipeline improves the recognition quality of all 
descriptors significantly, in both the dimensionality 
reduction step and in the unsupervised WCCN step. No 
clear advantage to either WPCA or DM is observed. 

The results obtained by combining the facial 
descriptors together (excluding the original LBP 
descriptor) are reported in Table 4. This combination, here 
and throughout all fusion results in this paper, is done by a 
simple summation of the similarity scores using uniform 
weights. The table also shows, for comparison, the results 
of solely employing OCLBP and the best results obtained 
by previous works. While our face description method is 
considerably simpler than I-LPQ* [28], which is currently 
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the state of the art in this category, it outperforms it, even 
with the usage of a single descriptor. 

 Results in the supervised-restricted benchmark are 
reported in Table 2 for the individual features and in Table 
5 for the combined features. In Table 2, we present four 
possibilities which differ by the dimensionality reduction 
algorithm used: PCA followed by LDA (PCALDA), DM 
followed by LDA (DMLDA), WPCA or DM. WCCN, is 
then applied in all four cases. As a usual trend, it seems 
that employing LDA in between the unsupervised 
dimensionality reduction (PCA or DM) and the WCCN 
method improves results. It is important to clarify that 
both LDA and WCCN were applied in a restricted manner 
by using only pairs information, i.e. no explicit 
information about the identities was used and each pair 
formed a mini-class of its own. 

Table 5 presents the combined results of all the 
descriptors, excluding the original LBP descriptor (due to 
the use of OCLBP).  The combined method ("DM+WPCA 
fusion") includes the four descriptors (with and without 
square root) and both PCA+LDA+WCCN and 
DM+LDA+WCCN (a total of 16 scores). It is evident that 
combining the DM based method together with the PCA 
based method improves performance over using PCA or 
DM separately. 

In comparison to previous methods, our method 
outperforms the state of the art by a large margin. The 
only exception is the "Tom-vs-Pete" [5] method which 
uses an external labeled dataset, which is much bigger 
than the LFW dataset, and employs a much more 
sophisticated face alignment method. Our system 
considerably outperforms the accuracy of 90.57% 
obtained by [3] in the case of a similarity-based alignment 
as used by LFW-a, in spite of the fact that our method 
does not use the added external data.  

The results for the supervised-unrestricted benchmark 
are depicted in Tables 3 and 6. The classical form of 
WCCN [10] applies directly to this setup. Two systems  
outperform ours in this category. The first is CMD+SLBP 
(aligned) which is a commercial system [29]. The second 
[30] has a few distinguishing characteristics, which can be 
further utilized to improve our results. First, a different 
alignment method was used. Second, features were 
extracted on facial landmarks. Finally, their proposed 
algorithm operated in a much higher-dimensional feature 
space, which requires more computational resources. 

In all three experiments, OCLBP achieves a very 
competitive accuracy as a single feature. For example, as 
can be seen in Table 5, in the restricted case it achieves an 
accuracy which is much better than the current best 
reported accuracy obtained by [6]. The Scattering 
transform based description (Section 3.2), however, does 
not seem to improve over descriptors of lower 
dimensionality by a significant margin. Nevertheless, it 
plays a crucial role in increasing performance in fusion.  

One can also notice that the unsupervised WCCN in 
some of the cases achieves an accuracy which is not far 
away from the accuracy obtained by the original 
supervised WCCN. For example, for the OCLBP 
descriptor, WPCA + supervised WCCN achieves an 
accuracy of  87.2% for the restricted case while the 
WPCA + unsupervised WCCN pipeline achieves an 
accuracy of 86.7 %. 
 
8. Conclusions 

We propose an effective method that seems to be 
unique in that it addresses all three benchmarks in a 
unified manner. In all three cases, very competitive results 
are achieved. The method is heavily based on 
dimensionality reduction algorithms, both supervised and 
unsupervised, in order to utilize high dimensionality 
representations. Necessary adjustments are performed in 
order to adapt methods such as WCCN and DM to the 
requirements of face identification and of the various 
benchmark protocols. 

From a historical perspective, our method is 
"reactionary". The emergence of the new face recognition 
benchmarks has led to the abandonment of the classical 
algebraic methods such as Eigenfaces and Fisherfaces. 
However, both PCA and LDA play important roles in our 
pipeline, even though these methods are not applied 

Table 5: Comparison of classification accuracy (± standard 
error) for various systems operating in the restricted setting. 

System Accuracy 
I-LPQ*, aligned [28] 86.20 ± 0.46 

OCLBP 86.66 ± 0.30 
WPCA fusion 88.00 ± 0.36 

DM fusion 87.87 ± 0.41 
DM+WPCA fusion 88.57 ± 0.37 

Table 4: Comparison of classification accuracy (± standard 
error) for various systems operating in the unsupervised setting. 

System Accuracy 
LBP + CSML, aligned [6] 85.57 ± 0.52 
CSML + SVM, aligned [6] 88.00 ± 0.37 

High-Throughput BIF, aligned [14] 88.13 ± 0.58 
Associate-Predict [3] 90.57 ± 0.56 

Tom-vs-Pete + Attribute [5] 93.30 ± 1.28 
OCLBP 87.85 ± 0.69 

PCA fusion 90.61 ± 0.56 
DM fusion 90.26 ± 0.55 

DM+PCA fusion 91.10 ± 0.59 

System Accuracy 
LBP PLDA, aligned [26] 87.33 ± 0.55 

combined PLDA [26] 90.07 ± 0.51 
face.com r2011b [25] 91.30 ± 0.30 

CMD + SLBP, aligned [29] 92.58 ± 1.36 
combined Joint Bayesian [31] 90.90 ± 1.48 

high-dim LBP [30] 93.18 ± 1.07 
OCLBP 88.75 ± 0.60 

DM fusion 91.56 ± 0.45 
PCA fusion 91.56 ± 0.54 

DM+PCA fusion 92.05 ± 0.45 

Table 6: Comparison of classification accuracy (± standard 
error) for various systems operating in the unrestricted setting. 

19661966



   
 
 

directly to image intensities. WCCN, which is a major 
contributing component to our pipeline, was borrowed and 
adapted from the speaker recognition domain. However, it 
is closely related to other algebraic dimensionality 
reduction methods. In contrast to recent contributions such 
as CSML [6] or the Ensemble Metric Learning method 
[29] that are influenced by modern trends in metric 
learning, our method demonstrates that classical  face 
recognition methods can still be relevant to contemporary 
research. 
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