
 Open access Proceedings Article DOI:10.1109/IROS.2013.6696417

Fast HOG based person detection devoted to a mobile robot with a spherical
camera — Source link

Alhayat Ali Mekonnen, Cyril Briand, F. Lerasle, Ariane Herbulot

Published on: 01 Nov 2013 - Intelligent Robots and Systems

Topics: Histogram of oriented gradients, Object detection, Detector and Cascading classifiers

Related papers:

 HOG based fast human detection

 Histograms of oriented gradients for human detection

 Automatic detection and classification of obstacles with applications in autonomous mobile robots

 Fast Cyclist Detection by Cascaded Detector and Geometric Constraint

 Real-time pedestrian detection in urban scenarios

Share this paper:

View more about this paper here: https://typeset.io/papers/fast-hog-based-person-detection-devoted-to-a-mobile-robot-
1m7tjf60zi

https://typeset.io/
https://www.doi.org/10.1109/IROS.2013.6696417
https://typeset.io/papers/fast-hog-based-person-detection-devoted-to-a-mobile-robot-1m7tjf60zi
https://typeset.io/authors/alhayat-ali-mekonnen-3l9enxfbvq
https://typeset.io/authors/cyril-briand-3mw10tftnh
https://typeset.io/authors/f-lerasle-3awcrcxj8c
https://typeset.io/authors/ariane-herbulot-za1pefa6aj
https://typeset.io/conferences/intelligent-robots-and-systems-y4ymjudi
https://typeset.io/topics/histogram-of-oriented-gradients-12xi6iek
https://typeset.io/topics/object-detection-1qpdjzi0
https://typeset.io/topics/detector-2b69t42r
https://typeset.io/topics/cascading-classifiers-2u18kpr9
https://typeset.io/papers/hog-based-fast-human-detection-mc6fh6zuqb
https://typeset.io/papers/histograms-of-oriented-gradients-for-human-detection-3nteinziuq
https://typeset.io/papers/automatic-detection-and-classification-of-obstacles-with-4q82tcwaro
https://typeset.io/papers/fast-cyclist-detection-by-cascaded-detector-and-geometric-4j16kz7zho
https://typeset.io/papers/real-time-pedestrian-detection-in-urban-scenarios-z3qsr2gnsm
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/fast-hog-based-person-detection-devoted-to-a-mobile-robot-1m7tjf60zi
https://twitter.com/intent/tweet?text=Fast%20HOG%20based%20person%20detection%20devoted%20to%20a%20mobile%20robot%20with%20a%20spherical%20camera&url=https://typeset.io/papers/fast-hog-based-person-detection-devoted-to-a-mobile-robot-1m7tjf60zi
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/fast-hog-based-person-detection-devoted-to-a-mobile-robot-1m7tjf60zi
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/fast-hog-based-person-detection-devoted-to-a-mobile-robot-1m7tjf60zi
https://typeset.io/papers/fast-hog-based-person-detection-devoted-to-a-mobile-robot-1m7tjf60zi

HAL Id: hal-02024549
https://hal.archives-ouvertes.fr/hal-02024549

Submitted on 19 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast HOG based person detection devoted to a mobile
robot with a spherical camera

Alhayat Ali Mekonnen, Cyril Briand, Frédéric Lerasle, Ariane Herbulot

To cite this version:
Alhayat Ali Mekonnen, Cyril Briand, Frédéric Lerasle, Ariane Herbulot. Fast HOG based person detec-
tion devoted to a mobile robot with a spherical camera. 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Nov 2013, Tokyo, Japan. pp.631-637, ฀10.1109/IROS.2013.6696417฀.
฀hal-02024549฀

https://hal.archives-ouvertes.fr/hal-02024549
https://hal.archives-ouvertes.fr

Fast HOG based Person Detection devoted to a Mobile Robot with a

Spherical Camera

A. A. Mekonnen1, C. Briand1, F. Lerasle1, A. Herbulot1

Abstract— In this paper, we present a fast Histogram of
Oriented Gradients (HOG) based person detector. The detector
adopts a cascade of rejectors framework by selecting discrimi-
nant features via a new proposed feature selection framework
based on Binary Integer Programming. The mathematical
programming explicitly formulates an optimization problem to
select discriminant features taking detection performance and
computation time into account. The learning of the cascade
classifier and its detection capability are validated using a
proprietary dataset acquired using the Ladybug2 spherical
camera and the public INRIA person detection dataset. The
final detector achieves a comparable detection performance as
Dalal and Triggs [2] detector while achieving on average more
than 2.5x - 8x speed up depending on the training dataset.

I. INTRODUCTION

For decades it has been demonstrated that the autonomy of

an autonomous mobile robot highly depends on its environ-

ment perception capabilities. For example, if one considers

autonomous robot navigation, the success depends on the

robot’s ability to perceive its surrounding well and its ability

to distinguish obstacles from free paths. With such consider-

ation, an omnidirectional camera is the quintessential sensor.

An omnidirectional camera usually provides a 360o Field Of

View (FOV) in the horizontal direction and sometimes even

cover more than 120o in the vertical plane, pretty much the

essential surrounding. As a consequence, they are gaining

much appreciation and use in robotic applications, including

but not limited to: robot localization, mapping, ground robot

navigation, etc., [15]. One such application is detection of

people in the vicinity of a mobile robot be it for active

interaction or social considerations during navigation in

crowded environments. With a complete horizontal FOV, the

robot is appraised of any activity in its complete surrounding

which allows it to be better reactive and considerate [9], [22].

(a) (b)

Fig. 1: Ladybug2 camera and a stitched, and unwrapped image.

Contrary to their amenities, omnidirectional cameras are

not trivial to use. The actual technique used to cover wide

FOV governs the added difficulty. Currently, there are three

1 CNRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse, France
Univ de Toulouse, UPS, LAAS, F-31400 Toulouse, France Email:
{aamekonn, cyril.briand, frederic.lerasle, ariane.herbulot}@laas.fr

prevalent types of omnidirectional cameras: dioptric, manage

wide angle coverage via combination of shaped lenses;

catadioptric, those that combine a classical camera with a

shaped mirror; and polydioptric, the kind which use multiple

cameras–with overlapping fields of view–oriented in various

directions. Both dioptric and catadioptric cameras suffer from

pronounced geometric distortions, significantly non-uniform

resolutions, and high sensitivity to illumination changes. On

the other hand, polydioptric cameras provide real omni-

directional view without pronounced geometric, resolution,

and/or illumination artifacts. But, as a result of their make,

they result in a high resolution image that demands high

computational resources for processing. The Ladybug2 is one

such kind of camera manufactured by Point Grey Inc [11].

The Ladybug2 (fig. 1a) is a spherical omnidirectional camera

system that contains six cameras mounted in such a way to

view more than 75% of the full sphere. Each camera has

a maximum resolution of 1024x768 pixels resulting in a

3500x1750 pixels stitched high resolution panoramic image

(fig. 1b). The camera system has an IEEE-1394b (FireWire

800) interface that allows streaming at 30 fps with the drivers

provided by the manufacturer [11].

In this work, we are interested in developing a person de-

tection system to detect people around a mobile robot using a

Ladybug2 camera. As stated previously, this camera does not

suffer from the severe geometric/illumination artifacts as the

other omnidirectional camera families. Clearly, the process-

ing power stipulated by the high resolution images is a major

bottleneck that makes classical person detection approaches

infeasible. Any application that intends to use these cameras

has to take this into consideration. In this paper, we propose

and implement an automated person detection system that not

only tries to optimize over detection performance, but also

optimizes over computation time required by the detector.

We build upon the original Histogram of Oriented Gradients

(HOG) features proposed by Dalal and Triggs [2], features

that have proven useful for almost a decade and are still

used by some of the state-of-the-art person detectors [3]

though at the expense of CPU resources. We formulate

a feature selection problem optimized via Binary Integer

Programming (BIP) [13] taking detection performance and

computation time into consideration to implement a person

detector that has comparable detection performance to the

original detector proposed by Dalal and Triggs and yet on

average is more than 8 times faster on the Ladybug2 images.

This paper is organized as follows: section II discusses

related works briefly, section III presents the overview of

our framework followed by feature pools and details of our

improved classifier learning in sections IV and V respec-

tively. Experiments and results are presented in section VI

and finally, the paper concludes with concluding remarks in

section VII.

II. RELATED WORKS

To date, various perspective camera based person detectors

have been proposed (see comprehensive surveys in [3], [7])

When considering a camera on a moving vehicle, as in a

mobile robot, the detector has to rely on information per

frame and can not rely on stationary or slowly changing

background assumptions/models. In this vein, the first major

successful breakthrough was the work of Dalal and Triggs [2]

which introduced and used HOG features with a linear SVM
classifier. To date, HOG is the most discriminative feature

and no other single feature has been able to supersede it [3].

It has also been successfully used for person detection in 3D

(RGB + D) data [14].

The main downside of HOG based detectors is the asso-

ciated computation time. These features are extracted first

by computing the gradient, then by constructing a histogram

weighted by the gradient in an atomic region called a cell.

Histograms of neighboring cells are grouped into a single

block, cross-normalized and concatenated to give a feature

vector per block. The final extracted feature within a given

detection window is the concatenation of the feature vectors

of constituent blocks (in one instance this amounted to a

3780 dimensional vector in [2]). For an arbitrary given image

frame, person detection proceeds by testing all possible

locations (position and scale), a.k.a sliding window approach,

with this high dimensional vector which indeed reduces

the speed significantly. To improve this, Zhu et al. [21],

reformulated the problem as a feature selection procedure

over HOG block size using AdaBoost in an attentional

cascade structure. The cascade structure, pioneered by Viola

and Jones [17], spreads the detection process into various

nodes that reject a majority of negative windows, allowing

only positive windows to progress through the entire cascade.

This speeds up detection drastically. Another alternative

is to parallelize the detection process over multiple pro-

cessors [12], but, this necessitates the use of specialized

Graphical Processing Unit (GPU).

Some works have managed to go beyond Dalal and Triggs

detector. But, they had to either combine HOG with multiple

other features (e.g. with Local Binary Patterns [18], with

edgelets and covariance descriptors [20]) or consider a part

based approach (e.g. [6]). Combining HOG with other fea-

tures has showed advantages over detection performance as

well as speed. Part based approaches, on the other hand, try

to infer the presence of different parts of a person’s body and

aggregate the confidence to detect a person. Comparatively,

these kind of approaches lead to improved results primarily

because they can handle multiple poses and partial occlu-

sions. But consequentially, they incur increased computation

time.

When dealing with panoramic images from omnidirec-

tional cameras in autonomous robots with limited embedded

CPU resources it is impossible to directly use HOG based

detectors. One has to resort to cheap features at the cost

of reduced detection performance or their fusion with other

sensors, for e.g. with Laser Range Finders (LRFs) [22].

Another possibility could be to constrain the region of

interest within the images using hypothesis generated from

other fast modes, e.g. from LRF [10].

In this work we present a person detector with a cascade

configuration similar to Viola and Jones [17]. Each node of

the cascade considers the original HOG features tweaked to

be suited for feature selection (discussed in section IV), BIP

for actual feature selection, and AdaBoost for feature weight-

ing and classification. Contrary to most feature selection

techniques that rely on boosting techniques where important

features are selected taking the error rate into consideration,

we use BIP to select discriminant features that have the least

combined computation time and yet fulfill the False Positive

Rate (FPR) and True Positive Rate (TPR) requirements of

the node. To the best of our knowledge this is new in the

literature. This paper claims three main contributions:

1) We develop and present a mathematical formulation

based on BIP for feature selection taking both compu-

tation time and detection performance into considera-

tion.

2) We present implementation details of a detector based

on the above formulation.

3) We present a thorough and comparative evaluation of

the proposed detector with Dalal and Triggs HOG de-

tector on a proprietary dataset collected with Ladybug2
camera and on the INRIA public person dataset.

Even though this work is presented with emphasis on a

spherical camera, it is equivalently applicable to images from

classical cameras as demonstrated with validation on a public

dataset.

III. FRAMEWORK OVERVIEW

Fig. 2: On-line detector framework.

In this work, we adopt the attentional cascade detector

configuration pioneered by Viola and Jones [16]. Each node

rejects negative windows and passes along potential positive

windows onto the next stage. Only those classified as true

detection by all nodes are considered as true targets. This

structure has gained wide acceptance and has even been

applied in recent part-based approaches [5].

Fig. 2 depicts the final detector applied on live image

streams. The different images from the Ladybug2 cameras

are first projected onto a spherical calibrated mesh [11]. They

are then blended along their overlapping fields of view to

form a stitched sphere. This sphere is finally unwrapped

to form a panoramic view. Candidate windows are then

generated via a sliding window approach and fed to the

attentional cascade classifier. At each stage of the cascade

k, k ∈ {1, 2, ...,K}, a significant proportion of the negative

samples are rejected and only those that make it till the end

are considered as true detections.

A key issue in cascaded detector configuration is how

to select which features to use in each node. Classically,

many authors have resorted to AdaBoost, one variant of the

boosted classifiers family, for feature selection and combi-

nation e.g. [16], [21]. But, this approach, which is quite

suitable when dealing with homogeneous features with the

same computational time, selects features solely based on

their detection performance. When considering features with

varying computation time, it is wise to take this factor into

consideration. To address this, we propose a novel feature

selection and classifier learning scheme illustrated in fig. 3

and detailed in section V.

Fig. 3: Proposed feature selection and classifier learning scheme.

Given positive and negative training samples, Fisher’s

Linear Discriminant Analysis (Fisher LDA) is used to obtain

a projection hyperplane that would maximize the inter-class

scatter while minimizing the intra-class scatter. For each

feature in the feature pool (discussed in section IV) a decision

tree is learned which results in a specific TPR and FPR on

a validation set. Next, taking these two criteria as well as

computation time, Pareto-Front analysis [1] is used to reduce

the number of features considered. This step is employed to

decrease the number of features to a size manageable by the

BIP module. Using this reduced feature set, an optimization

problem is formulated via BIP to select relevant features with

the smallest computation time, that fulfill the TPR and FPR

requirements of the node.

BIP is a special case of integer programming where

decision variables are required to be 0 or 1 (rather than

arbitrary integers). It aims at minimizing a given linear

objective function f = c.x subject to the constraints that

A.x ≥ b, where x represents the vector of 0-1 variables

(to be determined), c and b are known coefficient vectors,

A is a matrix of coefficients (called constraint matrix). It is

well-known that BIP is NP-hard in the strong sense but,

in practice, branch-and-cut techniques are able to solve huge

binary integer program very fastly [13], [19]. Finally, discrete

AdaBoost takes the features selected by the BIP module and

builds a strong classifier by weighting and combining them.

IV. FEATURE POOL

Fig. 4: Feature
parameterized by
(x, y, w, h).

Description: As it has been mentioned,

no other single feature has been able to

supersede HOG feature [3]. Hence, nat-

urally, we have resorted to use it. HOG
features are extracted first by computing

the gradient, then by constructing a his-

togram weighted by the gradient in an

atomic region called a cell. Histograms of

neighboring cells are grouped into a single

block, cross-normalized and concatenated

to give a feature vector per block. The final

extracted feature within a given detection

window is the concatenation of the vectors from each feature

block (for a detailed explanation please refer to [2]).

In this work, we use the original HOG features pro-

posed by Dalal and Triggs [2] along with their widely

preferred/used computation, i.e. a cell size of 8x8 pixels,

a feature block size of 2x2 cells and an 8 pixel horizontal

and vertical stride. For a given 64x128 image window, this

results in a 7x15 feature block layout (each feature block is

a 36 dimensional vector). Now to get a pool of features, lets

introduce an operator Ω that takes a starting location (x,y),

width (w), and height (h), and concatenates all feature blocks

within this region. Hence, for a specific input, the operator

Ω(x, y, w, h) returns a concatenated feature which makes one

component of our feature pool (fig. 4). Using all possible

values of x, y, w, and h in a given image region made of

HOG feature blocks furnishes the considered feature pool,

̥, represented as a set in eq. 1. With the 7x15 feature block

considered in the work, this results in a total of 1792 features

that make up our feature pool.

̥ = {Ω(x, y, w, h) :0 ≤ x < 7; 0 ≤ y < 15;

1 ≤ w ≤ (7− x); 1 ≤ h ≤ (15− y)}
(1)

In summary, in the works of Dalal and Triggs, all resulting

feature blocks extracted from the 64x128 image window are

concatenated, giving a single high dimensional vector–with

exactly 7x15x36 dimensions–as a final feature. Whereas, in

our case, we end up with a pool of features with dimensions

ranging from 36 (smallest) to 7x15x36 (highest).

Computation Time: The features in our feature pool are

of varying dimensions. Incidentally, the associated time taken

to extract them varies. Since the smallest building unit is a

single HOG feature block, determining the computation time

of each feature obtained using the above defined Ω operator

is straight forward. Each feature obtained using Ω contains

an integral multiple of individual HOG blocks. If it takes τ

milliseconds to compute the feature vector of a single block,

then it takes n.τ milliseconds for a feature made up of n

blocks using the Ω operator. With this, the computations time

for the different features in the pool varies from the smallest,

τ , to the highest, 105.τ milliseconds.

V. CLASSIFIER LEARNING WITH COMPUTATION TIME

CONSIDERATION

In the adopted cascade configuration, each node of the

cascade is influenced by the implementation choice of weak

learners, the weak classifiers that are trained on each distinct

feature of the feature pool; feature selection algorithm, that

chooses a subset of the features taking selected performance

criteria into consideration; feature weighting and combining

algorithm; and data mining techniques that try to robustify

the classification performance of each node.

A. Weak Learners

These are each of the weak classifiers that are trained on

each distinct feature of the feature pool, ̥. Each unique

weak classifier is associated with and trained on a unique

single feature. Recall that, we have chosen to use Fisher

LDA to determine a projection hyperplane to project the

multi-dimensional feature vectors to obtain a scalar value.

Then, a decision tree is learned (equivalent to having multiple

thresholds), per feature, to provide a binary classification

output. Fisher LDA is preferred over complex classifiers like

an SVM because of its comparatively short training duration.

Given the large amount of features in the considered feature

pool, employing SVM would lead to an overwhelming train-

ing period. In addition, Fisher LDA leads to a weak learner

that is easy to integrate with boosting methods. Once a weak

learner is trained on a given training set, it is characterized

by three performance indicator parameters: its True Positive

Rate (TPR), False Positive Rate (FPR) and computation time

(τj ; j ∈ {0, 1, ..., 1791}). Fisher LDA is implemented using

the alglib C++ mathematical library1.

B. Pareto Front Analysis

Recall that the total number of weak learners or features

considered is 1792. As it will come evident in section

V-C this amount of features is too much for a tractable

optimization. Hence, the number of feature must be pre-

reduced. To do this, Pareto Front Analysis is used to ex-

tract the dominant features–based on their TPR, FPR, and

computation time. A simple algorithm outlined in [1] is

used to select the dominant features that maximize TPR,

and minimize both FPR and computation time. Fig. 5 shows

an exemplary instance of extracted front amongst the whole

depicted feature pool. The exact number of features extracted

depends on their properties (TPR, FPR, and τj), but in our

experiments the retained features never exceeded 200.

C. Binary Integer Programming

The BIP based feature selection makes the core of this

work’s contribution. Provided the BIP is handed a few

number of weak learners or features ̥∗, such that ̥∗ ⊆ ̥,

1ALGLIB Project – http://www.alglib.net/

0.4
0.6

0.8
1

0

0.2

0.4

0

1

2

3

TPRFPR

C
om

pu
ta

tio
n

T
im

e
(m

se
c)

0.4 0.5 0.6 0.7 0.8 0.9 1
TPR

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

FPR

Computation Time (msec)

Fig. 5: Exemplary extracted Pareto Front. Each of the 1792 features are
plotted as a blue dot using their TPR, FPR, and τj values. The extracted
dominant features (that make the Pareto Front) are shown with red triangular
markers. The plot is shown in 3D as well as projected 2D plots to aid
visualization.

the optimization problem to select pertinent features that

satisfy both the node TPR and FPR requirements with the

minimum possible computation time is detailed subsequently.

The parameters of the proposed BIP are:

• N ∈ Z: number of training images/samples;

• M ∈ Z: number of weak learners considered, i.e.|̥∗|;
• yi ∈ {−1, 1}: yi = 1 for positive samples, else yi = −1

(negative samples);

• hi,j ∈ {0, 1}: hi,j = 1 if weak learner j detects sample

i to be positive, else hi,j = 0;

• TPR ∈ [0, 1]: minimum true positive rate required at

the considered node of the cascade;

• FPR ∈ [0, 1]: maximum false positive rate at the node;

• τj ∈ R: computation time of weak learner j.

Decision Variables: The BIP decision variables are the

following.

• uj ∈ {0, 1}: uj = 1 if weak learner j is selected, else

uj = 0;

• ti ∈ {0, 1}: ti = 1 if a positive sample i has been

detected as positive (true positive) by at least one

selected weak learner, else ti = 0;

• fi ∈ {0, 1}: fi = 1 if a negative sample i has been

detected as positive (false positive) by at least one

selected classifier, else fi = 0.

In total, there are (2N + M) binary variables in the BIP,

which is quite compact.

Objective Function and Constraints:

min
∑M

j=1 τjuj (1)

s.t ti ≤
∑M

j=1
1+yi

2 hi,juj , ∀i (2)

fi ≥
1−yi

2 hi,juj , ∀(i, j) (3)
∑N

i=1 ti ≥ (
∑N

i=1
1+yi

2)TPR (4)
∑N

i=1 fi ≤ (N −
∑N

i=1
1+yi

2)FPR (5)

uj , ti, fi ∈ {0, 1} , ∀(i, j) (6)

The objective function (1) aims at minimizing the com-

putation time. Constraints (2)-(5) express that a given rate

of detection quality has to be reached (depending on the

number of true and false positives). Constraints (2) link uj

and ti variables so that ti = 0 if image i has not been

well-recognized.Constraints (3) link uj and fi variables so

that fi = 1 if a negative image i has been recognized as

positive by at least one selected classifier. Constraint (4)

expresses that the rate TPR of true positives, obtained

with the selected classifiers, has to be reached. Similarly,

constraint (5) expresses that the rate FPR of false positives,

obtained with the selected classifiers, must not be exceeded.

The total number of constraints is (N(M + 1) + 2), which

could be huge for large N and M values. This optimization

formulation is implemented using the Gurobi c++ library [8].

D. Discrete AdaBoost

Once the BIP furnishes a set of weak learners/features that

fulfill the requirements set forth on the respective cascade

node, the selected features are weighted and combined to

obtain a strong classifier per node using AdaBoost. In this

work, our implementation of the discrete AdaBoost of Viola

and Jones [16] has been used because of its ease and good

strong classifier construction behavior. Evidently, any other

boosting framework that can accommodate a binary weak

learner could be used.

E. Cascade Construction

The complete cascade structure of the final detector is

built at the end of the training process. The training process

involved is trivial. It relies on a labeled positive and negative

sets first to learn the set of relevant features and then to

use these features to train the AdaBoost classifier in each

node of the cascade. To include vast number of negative

training samples, the mining technique presented by Viola

and Jones [17] is adopted. First, the node is constructed

using a provided positive and negative samples. Once this

is done, the trained nodes of the cascade (up to the current

node) are subjected to a lot of negative samples (in hundreds

of thousands). The mislabeled negative samples are kept for

training consequent nodes of the cascade and the process

continues until a tractable amount of negative samples have

been tested.

VI. EXPERIMENTS AND RESULTS

A. Evaluation metrics

To evaluate the detection performance, we have chosen to

use the Pascal Visual Object Classification (VOC) evaluation

metrics [4] as it is the well established and commonly used

metrics in object detection/classification tasks. The evalua-

tion involves a Precision-Recall curve and a single scalar

quantity called Average Precision (AP), which is basically

the area under the Precision-Recall curve. To determine these

values the True Positives, False Positive, True Negative, and

False Negatives of the test set are determined via a per-

window approach [3]. The per-window approach relies on

cropped labeled positive and negative train and test set. The

training is performed using these cropped images and the

test likewise (please refer [3] for details).

Computation time taken by the cascaded detector–relative

to Dalal and Triggs detector–is another parameter taken

into account. Since number of person containing candidate

windows are relatively very small compared to the number of

total candidate windows generated from person free zones,

the total number of windows tested by cascade is highly

influenced by the FPR. This means, if there are Nw candidate

windows, it is safe to assume only Nw∗FPR windows will

pass onto the next stage. With this, if the total computation

time taken by node k to evaluate a single candidate window is

represented by ζk, the total computation time for a cascade

with K nodes, ζK , is: ζK =
∑k=K

k=1 Nw(FPR)(k−1).ζk. If

we represent the time taken by Dalal and Triggs HOG to

evaluate a single window to be ζHOG, the average speed up

with respect to Dalal and Triggs detector would be given by

eq. 2.

Average Speed Up =
ζHOG

∑k=K

k=1 (FPR)(k−1) ∗ ζk
(2)

But, recall that ζHOG and ζk are both integral multiples

of τ , the time taken to evaluate a single HOG feature block.

This simplifies the computation further and it becomes a ratio

of number of constituent HOG feature blocks weighted by

the cumulative FPR in the denominator.

B. Dataset

Experiments are carried out using two different sets of

datasets. The first one is the public INRIA person detection

dataset [2]. The training set for this dataset consists of 2416

cropped positive instances and 1218 images free of persons

(out of which many negative train/test cropped windows

could be generated). The test set contains 1132 positive

instances and 453 person free images for testing purposes.

This is the most widely used dataset for person detector

validation and comparative performance analysis.

Fig. 6: Sample positive (the first four) and negative (the last four) images
taken from the Ladybug2 dataset

The second dataset is our proprietary dataset acquired

using Ladybug2 camera mounted on a mobile robot (referred

as Ladybug Dataset henceforth2). It contains 1990 positive

samples annotated by hand. It also contains 50 person free

full resolution images acquired from our robotic and other

rooms in the laboratory. Some 10000 negative windows

are randomly sampled from these images. Sample cropped

positive and negative instances are shown in fig. 6. The test

set contains 1000 manually cropped positive samples and 30

person free images.

C. Results

Validation: In this framework the parameters that need to

be specified are per node TPR and FPR and the depth of the

decision tree to use. Another factor is the Fisher LDA weight

computation. The Fisher LDA weights could be computed

once using a subset of the training set and then the same

weights will be used in all the cascade nodes. The other

alternative is to do the weight computation specifically on

2Please visit http://homepages.laas.fr/aamekonn/iros_
2013/ for more illustrations

each node. To validate all this, the Ladybug Dataset training

set is divided into a 60% training and 40% validation set and

various train-validation cycles are performed to determine the

effect of each parameter.

First, it is observed that computing Fisher LDA weights

per each node makes the classifier overfit on the training

set leading to a very deteriorated performance on the val-

idation set. Hence, Fisher LDA is computed once, and the

same weights are used throughout the cascade construction.

Second, using a decision tree of depth of 2 showed better

performance on the validation set (0.16% higher than the

next best) as can be seen from the precision-recall curve

in fig. 7. Third, varying the FPR showed little variation in

AP but slightly better (≈ 0.1% higher) results are obtained

when using an FPR of 0.4 and 0.6 during training. Evidently,

higher FPR paves way to more number of cascade nodes but

does not necessary result in more computation time.

0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

Tree Depth 1, AP 0.9838

Tree Depth 2, AP 0.9858

Tree Depth 3, AP 0.9842

Tree Depth 5, AP 0.9571

Tree Depth 10, AP 0.8683

Tree Depth 15, AP 0.8520

Fig. 7: Precision-Recall curve for various tree classifier depths.

Ladybug Dataset: Three different cascade classifiers are

learned using FPR of 0.4, 0.5, and 0.6 but with fixed decision

tree depth of 2. The results obtained are summarized in

table I.

TABLE I: Comparative summary of learned cascade classifiers on
Ladybug Dataset with varying FPR and Dalal and Triggs detector.

Method K (No. of Cas-

cade Nodes)

Average Speed Up

over [2]

Average

Precision

Cascade with FPR = 0.4 6 8.72x 0.9956

Cascade with FPR = 0.5 9 9.22x 0.9951

Cascade with FPR = 0.6 11 9.68x 0.9927

Dalal and Triggs [2] – 1.0x 0.9987

As can be clearly seen from the table, with a less than

0.5% detection performance loss (AP loss), our cascade

detector resulted in an 8.72x speed up on Dalal’s detector and

with a less than 1% loss resulted in a 9.68x speed up. Dalal

and Triggs detector performance is obtained by training their

open-sourced 3 detector with the Ladybug dataset training

data. Fig. 8 show the precision-recall curve corresponding

to the runs in table I. The features selected in the first four

nodes of the cascade structure obtained using an FPR of 0.4
are shown in fig. 9 superimposed on an average gradient

image of the positive data.

INRIA Person Dataset: Tests on this dataset are carried

out to see the performance of our cascaded classifier on a

3available here: http://pascal.inrialpes.fr/soft/olt/

0.88 0.9 0.92 0.94 0.96 0.98 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

Cascade FPR = 0.40, AP 0.9956

Cascade FPR = 0.50, AP 0.9951

Cascade FPR = 0.60, AP 0.9927

Dalal and Triggs HOG, AP 0.9987

Fig. 8: Comparative Precision-Recall curve for selected cascade detector
and Dalal and Triggs detector on the Ladybug Dataset.

(a) (b) (c) (d)

Fig. 9: Illustration of Selected HOG features of the first four

cascade nodes using FPR of 0.4 and decision tree depth of

2. Clearly, the features become more computationally time

consuming as one progresses down the nodes of the cascade.

public dataset and eventually compare its performance with

Dalal and Triggs given the dataset has a lot of intra-class

and inter-class variation. Again with this dataset, a decision

tree depth of 2 is used. Three different cascade structures

are learned using an FPR of 0.5, 0.6, and 0.7. Table II

summarizes the results obtained.

TABLE II: Comparative summary of learned cascade classifiers on
INRIA Dataset with varying FPR and Dalal and Triggs detector.

Method K (No. of Cas-

cade Nodes)

Average Speed Up

over [2]

Average

Precision

Cascade with FPR = 0.5 8 2.46 0.9066

Cascade with FPR = 0.6 11 2.98 0.9133

Cascade with FPR = 0.7 13 4.01 0.9198

Dalal and Triggs [2] – 1.0x 0.9826

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

Cascade FPR = 0.50, AP 0.9066

Cascade FPR = 0.6, AP 0.9133

Cascade FPR = 0.7, AP 0.9198

Dalal and Triggs HOG, AP 0.9826

Fig. 10: Comparative Precision-Recall curve on INRIA person dataset.

Even on the challenging INRIA dataset, our cascaded

detector resulted in a 4x speed up with a less than 7% AP

loss with a node FPR of 0.7. The corresponding Precision-

Recall plot is shown in fig. 10.

D. Comments

The results obtained from both datasets show there is

an average speed up by using out cascade framework in

all cases. Of course, for difficult dataset, more features are

required to attain the fixated detection performance. This in

turn decreases the overall all speed gain as shown by the

results from the INRIA dataset. This detector is ported on

a B21R mobile robot called Rackham with an onboarded

Ladybug2 camera, the detector detects people running at

a little less than 2 fps on a PIII 850 MHz PC4. Fig. 11

shows sample detection on a Ladybug2 image. The results are

shown as they are without any post-processing (grouping of

overlapping detection). The learning/training phase is carried

Fig. 11: Sample person detection on the Ladybug2 image.

out on a core i7 PC with an 8 GB of RAM. The two

major time consuming parts are the Fisher LDA weight

computation at the beginning and the BIP optimization

(specially when huge data is considered). But, no cascade

configuration that confirms to the current adopted scheme

exceeded a 24h training period.

VII. CONCLUSIONS AND PERSPECTIVES

In conclusion, a person detection framework that makes

use of the proven discriminant HOG features in a cascade

configuration has been presented. A new feature selection

technique based on mathematical programming has been

devised to select features with good detection performance

and less computation time. The complete final learning

system has been validated on a proprietary dataset acquired

using Ladybug2 camera, a sensor which is interesting but

surprisingly marginally used in the robotics community–

perhaps due to the time consumption with the associated high

resolution images. The methodology is also quite suitable for

conventional cameras (see our evaluation on public dataset).

The final results show comparable detection performance

to that of Dalal and Triggs detector while speeding up the

detection by more than 8x on the Ladybug2 images.

In the near future, we will use this detector in a tracking-

by-detection framework to track all passers-by in the robot

surrounding when navigating in crowds. The tracking infor-

mation will then be used to realize a socially acceptable

human aware navigation via control law based on visual

servoing techniques.

4Please see http://homepages.laas.fr/aamekonn/iros_
2013/ for a video of the live run on the robot.

ACKNOWLEDGMENT

This work was supported by a grant from the French National
Research Agency (ANR) under grant number ANR-12-CORD-
0003.

REFERENCES

[1] E. K. P. Chong and S. H. Zak. Multi-objective optimization. In
An Introduction to Optimization, Third Edition, pages 541–563. John
Wiley & Sons, Inc., 2008.

[2] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’05), San Diego, CA, USA, Jun. 2005.

[3] P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection:
An evaluation of the state of the art. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 34(4):743–761, 2012.

[4] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The pascal visual object classes (VOC) challenge.
International Journal of Computer Vision, 88(2):303–338, 2010.

[5] P.F. Felzenszwalb, R.B. Girshick, and D. McAllester. Cascade object
detection with deformable part models. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR’10), San Francisco,
CA, USA, Jun. 2010.

[6] P.F. Felzenszwalb, R.B. Girshick, D. McAllester, and D. Ramanan.
Object detection with discriminatively trained part-based models.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
32(9):1627–1645, 2010.

[7] D. Geronimo, A.M. Lopez, A.D. Sappa, and T. Graf. Survey of pedes-
trian detection for advanced driver assistance systems. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 32(7):1239–1258,
2010.

[8] Gurobi Optimization Inc. Gurobi optimizer reference manual, 2012.
[9] M. Kobilarov, G. Sukhatme, J. Hyans, and P. Bataria. People tracking

and following with a mobile robot using an omnidirectional camera
and a laser. In International Conference on Robotics and Automation
(ICRA’06), Orlando, FL, USA, May 2006.

[10] A. A. Mekonnen, F. Lerasle, and I. Zuriarrain. Multi-modal person
detection and tracking from a mobile robot in crowded environment. In
International Conference on Computer Vision Theory and Applications
(VISAPP’11), Algarve, Portugal, Mar. 2011.

[11] Point Grey Inc. Ladybug2. http://www.ptgrey.com/
products/ladybug2/ladybug2_360_video_camera.
asp, 2012. [Online; accessed 29-January-2013].

[12] V. Prisacariu and I. Reid. fasthog - a real-time GPU implementation of
hog. Technical Report 2310/09, Department of Engineering Science,
Oxford University, 2009.

[13] T. J. Van Roy and L. A. Wolsey. Valid inequalities for mixed 0-1
programs. Discrete Applied Mathematics, 14(7):199–213, 1986.

[14] L. Spinello and K. O. Arras. People detection in rgb-d data. In
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS’11), San Francisco, CA, USA, Sept. 2011.

[15] Editorial board. Robotics and Autonomous Systems, 58(6):IFC –, 2010.
Omnidirectional Robot Vision.

[16] P. A. Viola and M. J. Jones. Rapid object detection using a boosted
cascade of simple features. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR’01), Kauai, HI, USA, Dec. 2001.

[17] P. A. Viola and M. J. Jones. Robust real-time face detection.
International Journal of Computer Vision, 57(2):137–154, 2004.

[18] X. Wang, T.X. Han, and S. Yan. An HOG-LBP human detector
with partial occlusion handling. In IEEE International Conference
on Computer Vision (ICCV’09), Kyoto, Japan, Oct. 2009.

[19] L. A. Wolsey. Strong formulations for mixed integer programs: valid
inequalities and extended formulations. Mathematical Programming,
97(7):423–447, 2003.

[20] B. Wu and R. Nevatia. Optimizing discrimination-efficiency tradeoff in
integrating heterogeneous local features for object detection. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’08),
Anchorage, AK, USA, Jun. 2008.

[21] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan. Fast human
detection using a cascade of histograms of oriented gradients. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’06),
New York, NY, USA, Jun.

[22] Z. Zivkovic and B. Krose. Part based people detection using 2D range
data and images. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS’07), San Diego, CA, USA, Nov. 2007.

