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ABSTRACT Discrete sine transform (DST) is widely used in digital signal processing such as image 
coding, spectral analysis, feature extraction, and filtering. This is because the discrete sine transform is 
close to the optimal Karhunen–Loeve transform for first-order Markov stationary signals with low 
correlation coefficients. Short-time (hopping) discrete sine transform can be employed for time-frequency 
analysis and adaptive processing quasi-stationary data such as speech, biomedical, radar and 
communication signals. Hopping transform refers to a transform computed on the signal of a fixed-size 
window that slides over the signal with an integer hop step. In this paper, we first derive a second-order 
recursive equation between DST spectra in equidistant signal windows, and then propose two fast 
algorithms for computing the hopping DST based on the recursive relationship and input-pruned DST 
algorithm. The performance of the proposed algorithms with respect to computational costs and execution 
time is compared with that of conventional sliding and fast DST algorithms. The computational complexity 
of the developed algorithms is lower than any of the existing algorithms, resulting in significant time 
savings. 

INDEX TERMS Discrete sine transform, hopping algorithm, short-time transform, sliding algorithm, 
signal processing 

 
I. INTRODUCTION 

Discrete sine transform (DST) was first introduced for the 
processing of long-term stationary data [1], and later various 
versions of this transform were proposed [2], [3]. Unlike the 
Karhunen–Loeve transform, the DST is data independent and 
possesses a fast algorithm. The DST has found widespread use 
in digital signal processing such as data compression [4], 
adaptive digital filtering [5], image restoration [6], and 
interpolation [7], [8]. The performance of the DST is 
comparable to that of the discrete cosine transform (DCT) and, 
therefore, can be seen as a good alternative to the DCT. For 
signals with the correlation coefficient close to one, the DCT 
yields much better results than the DST. On the other hand, the 
DST performs better when the correlation coefficient is in the 
interval (-0.5, 0.5) [2].  
Signal processing in the short-time domain [9] is a suitable 

technique for carrying out time-frequency analysis and 
processing of quasi-stationary signals. It can be applied to 
ECG signal processing [10], spectral analysis and speech 
processing [11], adaptive digital filtering [12], [13], radar 
emitter recognition [14], spectral analysis of biological signals 
[15], heart sound classification [16], time-frequency analysis 
of high-rate dynamic systems [17], etc. Short-time processing 

in the orthogonal transform domain can be realized by 
processing the signal in a window moving along the signal 
with an integer step. To obtain a reasonable spectral resolution, 
the window size must be large enough and, at the same time, 
the window size must be small enough so that the signal 
processed in the window is approximately stationary. In this 
case, short-time (hopping) transform [18] is a time series of 
equidistant windowed signal transforms. Recently, fast 
algorithms have been proposed to compute Hartley [19] and 
DCT [20] short-time transforms. The DST is an important 
orthogonal transform for time sequence analysis and may 
serve as an appropriate hopping transform for processing time-
varying signals. Computing the DST in a window moving with 
one sample step on the signal is computationally expensive, so 
fast algorithms were proposed to compute four types of the 
transform using recursive equations [21], [22]. 
In this paper, two fast hopping DST algorithms with an 

arbitrary hop step are proposed. The algorithms can adjust the 
time hop between successive DST outputs. The work has the 
following contributions: 
• Exploiting the z-transform technique, a recursive second-

order equation is obtained for computing the hopping 
DST.  
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• Two fast hopping DST algorithms are proposed by 
employing the recursive equation and input-pruned DST 
algorithm. 

• Computational cost and running time of the proposed 
algorithms are compared with those of known fast and 
sliding DST algorithms. The computational complexity of 
the proposed algorithms is the lowest among existing fast 
and sliding DST algorithms. 

Organization of the paper is as follows. Section II introduces 
the notation and derives the relationship between three 
adjacent equidistant DST spectra. Two fast hopping DST 
algorithms are proposed in Section III. These algorithms are 
analyzed and discussed in Section IV. We conclude in Section 
V.  
 
II. RECURSIVE COMPUTATION OF HOPPING DST  
Let us recall the definition of DST. We use the following 

notation: , ( )sn sinN rs rs
N
π ≡  

 
, 

where r is an integer, N is the transform order, and 
1,... 1.s N= −  Since the normalization factor  2 N  can be 

taken into account in the inverse transform, it is discarded. 
Hopping DST with a hop step p  is defined as 

( ) ( ) ( )( )1

2

1

sn 1
N

s N
n N

y kp x kp n s n N
=−

= + + +∑ , (1) 

where ( ){ }1 1 2 2.., , 1, 0,  1, ,  1.; .k N N N Nx kp = − − + … … +  is 

the input signal; ( ){ },  1,... 1sy kp s N= −  is the discrete sine 

transform at time kp ; 1N  and 2N  are integers; 

1 2 2N N N= + +  is the window size. 
Three consecutive DST spectra are related as follows [22]: 

 
( ) ( ) ( )2 2cs ( 1) ( ) ( )sns N s s s Ny k s y k y k k sδ+ − + + = , (2) 

where ( ) ( ) ( ) ( )1
1 21 2s

s k x k N x k Nδ += − + − + + .  

This is a linear difference inhomogeneous equation that 
converts into a linear difference equation with constant 
coefficients for fixed s . A linear casual time-invariant 
system defined by such an equation can be analyzed with 
the unilateral z-transform [9]. By applying the z-transform 
and then using its shift property, the following expression is 
obtained:  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 10 1 2cs 0

                                                      + sn
s s s N s s

s s N

z Y z y z y s z Y z y

Y z D z s

− − − − −   
=

, (3) 

where ( )sY z  and ( )sD z  are the z-transforms of ( )sy k  and 

( )s kδ , respectively. ( )sY z  is expressed as 

( ) ( ) ( ) ( ) ( ) ( ) ( )1sn 0 2cs 1s s N s N s sY z D z s z y z s y T z− = + − +     , 
(4) 

with 

( ) ( )
1

1 21 2css
N

zT z
s z z

−

− −=
− +

.  

( )sT z  can be represented as follows: 

( ) ( ) ( ) ( ) ( )1 1
1 2 1 21

1 1 1
1 1sT z

q s q s q s z q s z− −

 
= −  − − − 

, (5) 

where ( )1 expq s j s
N
π =  

 
 and ( )2 expq s j s

N
π = − 

 
 are 

the roots of the denominator of ( )sT z . 

The inverse transform of ( )sT z  can be computed as  

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )1 2

1 2

sn
1 1 ,

sn

k k
N

s
N

q s q s ks
t k u k u k

q s q s s
−

= − = −
−

 (6) 

where ( )u k  is defined as 1, for 0k ≥ , and 0, for 0k < . 

Using the convolution and shift properties of the z-transform, 
the inverse transform of (4) is given as 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0

( ) sn 1 1

                      0 1 2cs

k

s N s s s s
r

s s N s

y k s t r k r y t k

y t k s t k

δ
=

= − − +

+ + −  

∑ . (7) 

Taking into account that ( ) 0st k =  for 1,k ≤  

( ) ( )1 2 1,q s q s =  ( ) ( ) ( )1 2 2csNq s q s s+ =  and substituting (6) 

into (7), for 2k ≥  we get 

( ) ( )

( ) ( )( ) ( ) ( )
( )

1

1

( ) sn 1

0 sn 1 y 1 sn
           

sn

k

s N s
r

s N s N

N

y k rs k r

y k s ks
s

δ
−

=

= − −

− −
−

∑
. (8) 

Suppose that (0)sy  and ( )sy p  ( )1p >  are given, we obtain 
(1)sy  from (8) as follows: 

( ) ( )( )
( )

( )
1

1

( )sn (0)sn 1
(1)

sn

                           ( 1)sn

s N N
s

N

p

s N
r

y p s y p s
y

ps

p r rsδ
−

=

+ −
=

− − −∑
. (9) 

Substituting (9) into (8), we express ( )sy k for any integer k
as  

( )( )
( ) ( )

( )
( ) ( )( )

1

1

1

sn
( ) ( 1)sn (0)

sn

sn
            ( ) ( 1)sn

sn

p
N

s s N s
rN

k
N

s s N
r pN

k p s
y k r rs y

ps

ks
y p r k r s

ps

δ

δ

−

=

−

=

−  
= − − 

 

+ + − −

∑

∑
. (10) 

Finally, the relationship between three adjacent equidistant 
DST spectra at times 2 ,  ,  and 0p p is written as 

( ) ( )

( ) ( )

1

1

(2 ) ( 1) (2 1) sn (0)

                         ( 1)sn 2cs ( )

p

s s s N s
r

s N N s

y p r p r rs y

p ps ps y p

δ δ

δ

−

=

= − + − − −

+ − +

∑ .  
(11) 

( )cs cosN rs rs
N
π ≡  
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III. FAST HOPPING DST ALGORITHMS  
Let us rewrite (11) for 1p >  as follows: 

( ) ( ) ( )
1

(2 ) sn (0) 2cs ( )
p

s s N s N s
r

y p A r rs y ps y p
=

= − +∑ , (12) 

where ( ) ( ) ( ){ }1 2 1 ;  1,... 1s s sA r r p r r pδ δ= − + − − = − , and 

( ) ( )1s sA p pδ= − . The number of additions per window 

required for calculating ( ){ };  1,...sA r r p=  is 4 2p − . Note 

that the calcultion of ( )s rδ  requires two additions (for even 

and odd s ), and the coefficients ( ){ };  0,... 1s r r pδ = −  have 

already been calculated and stored at time p. 

A. FAST ALGORITHM BASED ON PROPERTIES OF 
DISCRETE SINUSOIDAL FUNCTIONS 
Let us analyze the symmetry property of 
{ }sn ( ); 1,... 1,  1,...N rs s N r p= − = . Suppose that rg  is the 

greatest common factor of r  and N.  Table 1 shows the 
special values of the discrete functions; here ,   and N r l  are 
arbitrary integers.  
 

TABLE I 
SPECIAL VALUES OF SINUSOIDAL FUNCTIONS 

FUNCTION
S 

VALUES 
0 1 -1 

( )Nsn rs  Ns l
r

=  
( )1 4

2
lNs

r
+

=

 

( )1 4
2

lNs
r

− +
=

 
( )Ncs rs  ( )2 1

2
Ns l
r

= +

 

2Ns l
r

=  ( )2 1Ns l
r

= +  

 
For fixed r , the number of ones and zeros of the function is 
equal to rg  and 1rg − , respectively (first line of Table I). 
The quantity of zeros of ( ){ };  1,... 1Ncs ps s N= −  is equal to 

pg  (second line of Table I). Let us calculate the integers: 

r rr r g=  and .r rN N g= The discrete function 

( )( ){sn ( ) sn ; 1,... 1
r r r rN Nrs r N s s N= − = − , }1,... rr r=  

has symmetry about the point ( )1 2.rN −  In addition, for 

rg  >1 the function is periodic with a period of rN ; that is, 

( )( ){sn ( ) sn ;
r r rN Nrs r s lN= +  1,... 1,  1,... 1r rs N l g= − = −

, }1,... rr r= . Assume that N is even and r is fixed. For even 

rN , from periodicity and symmetry of the functions:

( )( ){sn ( ) sn ,
r r rN Nrs r lN s= ± ( ) ( )1 1 ,r

s lN s±− = −  

( ) ( );
r

s lN s
A r A r

±
= 1,... 1,rl g= − 1,... ,r r= }  1,... 1rs N= − , 

one can estimate the number of multiplications required to 

calculate the first term of (12) as 1
2

r r
MUL

NC − 
=  
 

. Here 

[ ]/x y  is the integer quotient. For odd rN , from periodicity 

and symmetry of the functions: 

( )( ){sn ( ) sn 2 ,
r r rN Nrs r lN s= ± ( ) ( )21 1 ,r

s lN s±− = −

( ) ( )
2

 ;  1,... 1,  
r

s rlN s
A r A r l g

±
= = − }1,... ,  1,... 1rr r s N= = − ,  

the quantity of multiplications is estimated as 1r
MUL rC N= −

. For odd N and fixed r , the number of multiplications is 
1r

MUL rC N= − . Thus, the total number of multiplications per 
window for computing the hopping DST can be estimated 
as  

( )
    1

1 .
p

r
MUL MUL p

r
C N C g

=

= − + −∑  (13) 

The total number of additions per window is equals to  

        ( ) ( ) ( )
    1

1 ( 1) 4 2 1 .
p

ADD r p
r

C N p p g g
=

= − + + − − − −∑    (14)  

Additional costs are required to calculate the initial p  
coefficients. We call this algorithm ALG-1. Note that the 
window size for the proposed algorithm is any integer 
determined by the characteristics of the processed signal. 

Next, we give a simple example for computing the 
hopping DST coefficients for 1 22,   7,   7p N N= = =  and 

 16N = .  In other words, the output DST coefficients 
( ){ }2 ,  1,...15sy p s =  are computed at time 2 p . We borrow 

two coefficients 1 7 9 1 7 9; x x x x+ −
− −= + = − 

 from time p  
and pre-calculate the auxiliary data: 

2 6 10 2 6 10 3 5 11 3 6 11; ;  ; x x x x x x x x+ − + −
− − − −= + = − = + = −   

 

1 3 1 3;  A A+ + + − − −= ∆ + ∆ = ∆ − ∆  

1 2 3 40.1951 ;  0.3827 ;  0.5556 ;  0.7071S A S A S A S A+ − + −= = = =

5 6 30.8315 ;  0.9239 ;  0.9808S A S A S A+ − += = =  

1 2 2 2 3 2Q 0.3827 ;  Q 0.7071 ;  Q 0.9239+ − += ∆ = ∆ = ∆  
The DST coefficients are calculated as follows: 

( ) ( ) ( )1 1 1 1 12 0 1.8478y p S y y p Q= − + +  

( ) ( ) ( )2 2 2 2 22 0 1.4142y p S y y p Q= − + +  

( ) ( ) ( )3 3 3 3 32 0 0.7654y p S y y p Q= − + +  

( ) ( )4 4 4 22 0y p S y −= − + ∆  

( ) ( ) ( )5 5 5 5 32 0 0.7654y p S y y p Q= − − +  

( ) ( ) ( )6 6 6 6 22 0 1.4142y p S y y p Q= − − +  

( ) ( ) ( )7 7 7 7 12 0 1.8478y p S y y p Q= − − +  

( ) ( ) ( )8 8 82 0 2y p A y y p−= − −  
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( ) ( ) ( )9 7 9 9 12 0 1.8478y p S y y p Q= − − −  

( ) ( ) ( )10 6 10 10 22 0 1.4142y p S y y p Q= − − −  

( ) ( ) ( )11 5 11 11 32 0 0.7654y p S y y p Q= − − −  

( ) ( )12 4 12 22 0y p S y −= − − ∆  

( ) ( ) ( )13 3 13 13 32 0 0.7654y p S y y p Q= − + −  

( ) ( ) ( )14 2 14 14 22 0 1.4142y p S y y p Q= − + −  

( ) ( ) ( )15 1 15 15 12 0 1.8478y p S y y p Q= − + − . 

One can observe that the algorithm complexity is 23 
multiplications and 48 additions. 

B. FAST ALGORITHM BASED ON PRUNED DST 

Let us define the first term of (12) as follows: 

( ) ( )
1

( ) sn ,  1,2,... 1
p

N s N
r

X s A r rs s N
=

= = −∑ . (15) 

It can be seen that only a subset of the input coefficients for 
1p N< −  is employed to compute the output DST. This 

method is referred to as input-pruned DST. Suppose that 
( ){ }0,  sA r r p= > , 1p > , and N is of a power of 2, then 

the decimation-in-time radix-2 algorithm [23] recursively 
splits the DST into two half-length DSTs of the even-
indexed and odd-indexed time samples as follows: 

/2 /2

/2 /2

( ) ( ) ( ) 
,  1,2,..., 2 1

( ) ( ) ( ) 

o e
N N N

o e
N N N

X s X s X s
s N

X N s X s X s
= +

= −
− = −

, (16) 

where  

( ) ( ) ( )( ) ( )

( ) ( )

1

2

/2 /2
1

/2 /2
1

1( ) 2 1 2 1 sn
2cs

( ) 2 sn

L
o
N s s N

rN

L
e
N s N

r

X s A r A r rs
s

X s A r rs

=

=

= − + +

=

∑

∑
, (17) 

with 1,2,..., 2 1s N= − , and  

( ) ( )
1

/2 /2
0

( / 2) 2 1 1
L

r
N N

r
X N A r

=

= + −∑ , (18) 
 

here ( )1 1 / 2 1L p= + −    and [ ]2 / 2L p= .  

The decomposition is used recursively, and the transform 
size is halved each time. Note that the fast input-pruned 
DST algorithm is defined by a simple structured recursive 
matrix factorization of the transform matrix and represented 
by a regular signal flow graph. Fig. 1 shows the flow graph 
for  16N =  and 7p = . Solid lines with arrows represent 
unity transfer factors while dashed lines (red color) 
represent transfer factors of  −1. A circle represents addition 
if there is more than one input line to the left. ↓ means 
multiplication by the corresponding factor

( )16

1 , 1, 2,...7
2cssC s

s
  = = 
  

  

For 2 1p µ= − ( µ is integer and 1µ > ), the complexity 
of the input-pruned DST algorithm in terms of additions and 
multiplications can be estimated as 

( ) ( ) ( ) ( )1 2
, 1 4 6

1ADD

p
DST N p N p

p
µ

µ
+ −

= + + − +
+

 and

( ), / 2MULDST N p N pµ= − , respectively. 

 
FIGURE 1.  Flow graph for the input-pruned DST computation, N=16 
and p=7. 

For other values of p , the complexity can be estimated 
using the recursive equations (13)-(18). For example, for 

2p = , the quantity of multiplications and additions is 

given as ( ), 3 / 4 2MULDST N p N= −  and 

( ), 2ADDDST N p N= − , respectively. The total number of 

multiplications per window for computing the hopping DST 
is estimated as  

( ) ( )1 , .MUL MUL pC N DST N p g= − + −  (19) 

The total number of additions per window is equal to  

( ) ( ) ( )2 1 4 2 , .ADD ADD pC N p DST N p g= − + − + −  (20) 

Additional costs are required to calculate the initial p  
coefficients. We refer to this algorithm as ALG-2. 
 A pseudo-code of the proposed HDFT algorithms is given 
in Table II. The algorithms require 2N -2 memory locations 
to store the DST coefficients computed at times p and 0. 
Since recursive computation of the output DST are carried 
out “in-place” using the memory originally occupied by the 
DST computed at time 0, no additional memory is s 
required to store the output data.  Step 1 requires 
( )1 6 2N p p− + −  additional memory locations for storing 
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( )s kδ , ( )sA r  coefficients and trigonometric weighting 
factors.  Step 2 requires 3 / 2 2N −  additional memory 
locations to store ( )NX s  and sC coefficients. Step 3 does 
not require additional memory.  
 

TABLE II 
PSEUDO-CODE OF THE PROPOSED HDST ALGORITHMS 

Input: input samples ( )x k  and DST outputs ( )sy p  and ( )0sy at 

times p and 0, respectively; 1 2 2N N N= + +  is the window size, 1N  

and 2N  are integers; p is the hop step. 

Output: DST output ( )2sy p at time 2p. 
/* Step 1: setup */ 
for s=1 : N-1 do 
        for r=1 : p-1 do 

             ( )sn , sinN r s rs
N
π =  

 
 

         end for 

    ( )cn 2 2cosN s ps
N
π =  

 
 

end for 
for s=1 : 2 do 
          for k=0 : 2p-2 do 
              ( ) ( ) ( ) ( )1

1 2, 1 2sk s x k N x k Nδ += − + − + +  
           end for 
          for r=1 : p-1 do 
            ( ) ( ) ( ), 1, 2 1,A r s r s p r sδ δ= − + − −  
        end for 
     ( ) ( ), 1,A p s p sδ= −  
  end for 
 
/*Step 2: input-pruned radix 2 DST (N is of a power of 2) */ 
for s=1 : 2 1N −  do 

            ( )
1

2cosC s s
N
π

−
  =   

  
 

end for 
for k=1 : 2log N do 

      Compute ( )NX s using equations (16), (17) and (18). 
end for 
 
/*Step 3: recursive computation */ 
for s=1 : N-1 do 
       Compute ( )2sy p using equation (12). For N is of a power of 2,  

       the first term of (12) is replaced by ( )NX s . 
 end for 
 
return ( )2sy p  

 
IV. SIMULATION RESULTS 
In this section, we analyze the algorithms presented in the 
paper with respect to computational costs and execution 
time. The most popular among fast DST algorithms are fast 
radix-2 [24], [25]. The sliding DST algorithm [22] is 
executed p  times to calculate the equidistant DST spectra. 
For 2p =  and varying N , Tables III and IV show the 
performance in terms of multiplications and additions, 
respectively, the following tested algorithms: FDST is the 

fast algorithm [24], SDST is the sliding algorithm [22], 
ALG-1 and ALG-2 are the proposed algorithms.  
 

TABLE III 
PERFORMANCE OF ALGORITHMS IN TERMS OF MULTIPLICATIONS, P=2, 

N=2M. 
ALGORITHMS NUMBER OF 

OPERATIONS 
N - LENGTH OF HOPPING WINDOW 

16 32 64 128 256 512 
FDST MN/2-N+1 17 49 129 321 769 1793 

SDST (3N/2-2)P 44 92 188 380 764 1532 

ALG-1 EQ. (13) 23 51 107 219 443 891 

ALG-2 EQ. (19) 23 51 107 219 443 891 

 
TABLE IV 

 PERFORMANCE OF  ALGORITHMS IN TERMS OF ADDITIONS, P=2, N=2M. 
ALGORITHMS NUMBER OF 

OPERATIONS 
N - LENGTH OF HOPPING WINDOW 

16 32 64 128 256 512 
FDST 3MN/2-2N-M+2 62 173 444 1083 2554 5881 

SDST (3N/2-2)P 64 128 256 512 1024 2048 

ALG-1 EQ. (13) 48 96 192 384 768 1536 

ALG-2 EQ. (19) 48 96 192 384 768 1536 

 

Note that the proposed algorithms have the same 
complexity, and for 16N >  outperform the fast and sliding 
DST algorithms. The execution times for floating point 
addition and multiplication in modern processors are 
comparable. Therefore, the algorithm complexity can be 
estimated by the number of flops (real multiplications and 
additions). Comparison of the tested algorithms in terms of 
flops for 256N =  and varying p  is given in Table V.  

TABLE V 
PERFORMANCE OF ALGORITHMS WITH RESPECT TO FLOPS, N=256. 

HOP 

STEP P 
ALGORITHMS 

FDST SDFT ALG-1 ALG-2 
2 3323 1788 1211 1211 
3 3323 2682 1599 1439 
4 3323 3576 1880 1563 
5 3323 4470 2272 1610 
6 3323 5364 2591 1736 
7 3323 6258 2979 1868 

15 3323 13410 5719 2316 
31 3323 27714 11183 2796 
63 3323 56322 22091 3380 

 
One can observe that for 1p >  the proposed algorithms are 
faster than the sliding DST algorithm. The algorithm ALG-
1 is more efficient than the fast DST algorithm when 7.p ≤  
It can be seen that for 63p < the algorithm ALG-2 is 
superior to the fast DST algorithm. The algorithm ALG-2 
becomes faster than the algorithm ALG-1 when 2.p >  As 
the window size increases, the boundary step values at 
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which the fast DST algorithm is still no better than the 
proposed algorithms also increase.  

We implemented all tested algorithms on a laptop with 
Intel Core i7-2630QM and 8 GB of RAM using MATLAB 
R2016a. To guarantee statistically correct results, we 
repeated all experiments 100 times and calculated the 
average runtime result for each algorithm. Fig. 2 shows the 
runtime performance of the algorithms. 

 
FIGURE 2. Flow graph for the input-pruned DST computation 
Measured running time (milliseconds) of the algorithms per 
window for N= 256 and varying p. 

It can be noted that the theoretical results are in good 
accordance with the experimental results presented in Table 
V. 

There are several types of DST [2], [3], which are 
suitable for processing different signal models. In this 
paper, fast hopping DST algorithms have been suggested 
for only one type of discrete sine transform (DST-I). The 
same approach can be used to design fast hopping 
algorithms for other types of DST, which will efficiently 
handle different signal models. 

V. CONCLUSION 
Recursive equation between three adjacent equidistant DST 
spectra was obtained with the help of the z-transform. Using 
the recursive equation, input-pruned DST and properties of 
sinusoidal functions, two fast hopping DST algorithms have 
been proposed. The complexity of the hopping algorithms 
was compared with that of known fast and sliding DST 
algorithms. For the proposed algorithm ALG-1, the length 
of the hopping window can be arbitrary, determined by the 
characteristics of the processed signal. For the window 
length of a power of 2, the algorithm ALG-2 outperforms 
fast and sliding DST algorithms in a wide range of 
parameters. It was also shown that the obtained theoretical 
results are in good agreement with the presented 
experimental results.  
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