
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3094277, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Fast Hopping Discrete Sine Transform
VITALY KOBER, (Member, IEEE)
Center of Scientific Research and Higher Education of Ensenada, Ensenada, BC 22860, Mexico

Corresponding author: Vitaly Kober (e-mail: vkober@hotmail.com).

ABSTRACT Discrete sine transform (DST) is widely used in digital signal processing such as image
coding, spectral analysis, feature extraction, and filtering. This is because the discrete sine transform is
close to the optimal Karhunen–Loeve transform for first-order Markov stationary signals with low
correlation coefficients. Short-time (hopping) discrete sine transform can be employed for time-frequency
analysis and adaptive processing quasi-stationary data such as speech, biomedical, radar and
communication signals. Hopping transform refers to a transform computed on the signal of a fixed-size
window that slides over the signal with an integer hop step. In this paper, we first derive a second-order
recursive equation between DST spectra in equidistant signal windows, and then propose two fast
algorithms for computing the hopping DST based on the recursive relationship and input-pruned DST
algorithm. The performance of the proposed algorithms with respect to computational costs and execution
time is compared with that of conventional sliding and fast DST algorithms. The computational complexity
of the developed algorithms is lower than any of the existing algorithms, resulting in significant time
savings.

INDEX TERMS Discrete sine transform, hopping algorithm, short-time transform, sliding algorithm,
signal processing

I. INTRODUCTION

Discrete sine transform (DST) was first introduced for the
processing of long-term stationary data [1], and later various
versions of this transform were proposed [2], [3]. Unlike the
Karhunen–Loeve transform, the DST is data independent and
possesses a fast algorithm. The DST has found widespread use
in digital signal processing such as data compression [4],
adaptive digital filtering [5], image restoration [6], and
interpolation [7], [8]. The performance of the DST is
comparable to that of the discrete cosine transform (DCT) and,
therefore, can be seen as a good alternative to the DCT. For
signals with the correlation coefficient close to one, the DCT
yields much better results than the DST. On the other hand, the
DST performs better when the correlation coefficient is in the
interval (-0.5, 0.5) [2].
Signal processing in the short-time domain [9] is a suitable

technique for carrying out time-frequency analysis and
processing of quasi-stationary signals. It can be applied to
ECG signal processing [10], spectral analysis and speech
processing [11], adaptive digital filtering [12], [13], radar
emitter recognition [14], spectral analysis of biological signals
[15], heart sound classification [16], time-frequency analysis
of high-rate dynamic systems [17], etc. Short-time processing

in the orthogonal transform domain can be realized by
processing the signal in a window moving along the signal
with an integer step. To obtain a reasonable spectral resolution,
the window size must be large enough and, at the same time,
the window size must be small enough so that the signal
processed in the window is approximately stationary. In this
case, short-time (hopping) transform [18] is a time series of
equidistant windowed signal transforms. Recently, fast
algorithms have been proposed to compute Hartley [19] and
DCT [20] short-time transforms. The DST is an important
orthogonal transform for time sequence analysis and may
serve as an appropriate hopping transform for processing time-
varying signals. Computing the DST in a window moving with
one sample step on the signal is computationally expensive, so
fast algorithms were proposed to compute four types of the
transform using recursive equations [21], [22].
In this paper, two fast hopping DST algorithms with an

arbitrary hop step are proposed. The algorithms can adjust the
time hop between successive DST outputs. The work has the
following contributions:
• Exploiting the z-transform technique, a recursive second-

order equation is obtained for computing the hopping
DST.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3094277, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

• Two fast hopping DST algorithms are proposed by
employing the recursive equation and input-pruned DST
algorithm.

• Computational cost and running time of the proposed
algorithms are compared with those of known fast and
sliding DST algorithms. The computational complexity of
the proposed algorithms is the lowest among existing fast
and sliding DST algorithms.

Organization of the paper is as follows. Section II introduces
the notation and derives the relationship between three
adjacent equidistant DST spectra. Two fast hopping DST
algorithms are proposed in Section III. These algorithms are
analyzed and discussed in Section IV. We conclude in Section
V.

II. RECURSIVE COMPUTATION OF HOPPING DST
Let us recall the definition of DST. We use the following

notation: , ()sn sinN rs rs
N
π ≡

,

where r is an integer, N is the transform order, and
1,... 1.s N= − Since the normalization factor 2 N can be

taken into account in the inverse transform, it is discarded.
Hopping DST with a hop step p is defined as

() () ()()1

2

1

sn 1
N

s N
n N

y kp x kp n s n N
=−

= + + +∑ , (1)

where (){ }1 1 2 2.., , 1, 0, 1, , 1.; .k N N N Nx kp = − − + … … + is

the input signal; (){ }, 1,... 1sy kp s N= − is the discrete sine

transform at time kp ; 1N and 2N are integers;

1 2 2N N N= + + is the window size.
Three consecutive DST spectra are related as follows [22]:

() () ()2 2cs (1) () ()sns N s s s Ny k s y k y k k sδ+ − + + = , (2)

where () () () ()1
1 21 2s

s k x k N x k Nδ += − + − + + .

This is a linear difference inhomogeneous equation that
converts into a linear difference equation with constant
coefficients for fixed s . A linear casual time-invariant
system defined by such an equation can be analyzed with
the unilateral z-transform [9]. By applying the z-transform
and then using its shift property, the following expression is
obtained:

() () () () () ()
() () ()

2 10 1 2cs 0

 + sn
s s s N s s

s s N

z Y z y z y s z Y z y

Y z D z s

− − − − −
=

, (3)

where ()sY z and ()sD z are the z-transforms of ()sy k and

()s kδ , respectively. ()sY z is expressed as

() () () () () () ()1sn 0 2cs 1s s N s N s sY z D z s z y z s y T z− = + − + ,
(4)

with

() ()
1

1 21 2css
N

zT z
s z z

−

− −=
− +

.

()sT z can be represented as follows:

() () () () ()1 1
1 2 1 21

1 1 1
1 1sT z

q s q s q s z q s z− −

= − − − −

, (5)

where ()1 expq s j s
N
π =

 and ()2 expq s j s

N
π = −

 are

the roots of the denominator of ()sT z .

The inverse transform of ()sT z can be computed as

() () ()
() () () ()

() ()1 2

1 2

sn
1 1 ,

sn

k k
N

s
N

q s q s ks
t k u k u k

q s q s s
−

= − = −
−

 (6)

where ()u k is defined as 1, for 0k ≥ , and 0, for 0k < .

Using the convolution and shift properties of the z-transform,
the inverse transform of (4) is given as

() () () () ()

() () () ()
0

() sn 1 1

 0 1 2cs

k

s N s s s s
r

s s N s

y k s t r k r y t k

y t k s t k

δ
=

= − − +

+ + −

∑ . (7)

Taking into account that () 0st k = for 1,k ≤

() ()1 2 1,q s q s = () () ()1 2 2csNq s q s s+ = and substituting (6)

into (7), for 2k ≥ we get

() ()

() ()() () ()
()

1

1

() sn 1

0 sn 1 y 1 sn

sn

k

s N s
r

s N s N

N

y k rs k r

y k s ks
s

δ
−

=

= − −

− −
−

∑
. (8)

Suppose that (0)sy and ()sy p ()1p > are given, we obtain
(1)sy from (8) as follows:

() ()()
()

()
1

1

()sn (0)sn 1
(1)

sn

 (1)sn

s N N
s

N

p

s N
r

y p s y p s
y

ps

p r rsδ
−

=

+ −
=

− − −∑
. (9)

Substituting (9) into (8), we express ()sy k for any integer k
as

()()
() ()

()
() ()()

1

1

1

sn
() (1)sn (0)

sn

sn
 () (1)sn

sn

p
N

s s N s
rN

k
N

s s N
r pN

k p s
y k r rs y

ps

ks
y p r k r s

ps

δ

δ

−

=

−

=

−
= − −

+ + − −

∑

∑
. (10)

Finally, the relationship between three adjacent equidistant
DST spectra at times 2 , , and 0p p is written as

() ()

() ()

1

1

(2) (1) (2 1) sn (0)

 (1)sn 2cs ()

p

s s s N s
r

s N N s

y p r p r rs y

p ps ps y p

δ δ

δ

−

=

= − + − − −

+ − +

∑ .
(11)

()cs cosN rs rs
N
π ≡

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3094277, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

III. FAST HOPPING DST ALGORITHMS
Let us rewrite (11) for 1p > as follows:

() () ()
1

(2) sn (0) 2cs ()
p

s s N s N s
r

y p A r rs y ps y p
=

= − +∑ , (12)

where () () (){ }1 2 1 ; 1,... 1s s sA r r p r r pδ δ= − + − − = − , and

() ()1s sA p pδ= − . The number of additions per window

required for calculating (){ }; 1,...sA r r p= is 4 2p − . Note

that the calcultion of ()s rδ requires two additions (for even

and odd s), and the coefficients (){ }; 0,... 1s r r pδ = − have

already been calculated and stored at time p.

A. FAST ALGORITHM BASED ON PROPERTIES OF
DISCRETE SINUSOIDAL FUNCTIONS
Let us analyze the symmetry property of
{ }sn (); 1,... 1, 1,...N rs s N r p= − = . Suppose that rg is the

greatest common factor of r and N. Table 1 shows the
special values of the discrete functions; here , and N r l are
arbitrary integers.

TABLE I
SPECIAL VALUES OF SINUSOIDAL FUNCTIONS

FUNCTION
S

VALUES
0 1 -1

()Nsn rs Ns l
r

=
()1 4

2
lNs

r
+

=

()1 4
2

lNs
r

− +
=

()Ncs rs ()2 1

2
Ns l
r

= +

2Ns l
r

= ()2 1Ns l
r

= +

For fixed r , the number of ones and zeros of the function is
equal to rg and 1rg − , respectively (first line of Table I).
The quantity of zeros of (){ }; 1,... 1Ncs ps s N= − is equal to

pg (second line of Table I). Let us calculate the integers:

r rr r g= and .r rN N g= The discrete function

()(){sn () sn ; 1,... 1
r r r rN Nrs r N s s N= − = − , }1,... rr r=

has symmetry about the point ()1 2.rN − In addition, for

rg >1 the function is periodic with a period of rN ; that is,

()(){sn () sn ;
r r rN Nrs r s lN= + 1,... 1, 1,... 1r rs N l g= − = −

, }1,... rr r= . Assume that N is even and r is fixed. For even

rN , from periodicity and symmetry of the functions:

()(){sn () sn ,
r r rN Nrs r lN s= ± () ()1 1 ,r

s lN s±− = −

() ();
r

s lN s
A r A r

±
= 1,... 1,rl g= − 1,... ,r r= } 1,... 1rs N= − ,

one can estimate the number of multiplications required to

calculate the first term of (12) as 1
2

r r
MUL

NC −
=

. Here

[]/x y is the integer quotient. For odd rN , from periodicity

and symmetry of the functions:

()(){sn () sn 2 ,
r r rN Nrs r lN s= ± () ()21 1 ,r

s lN s±− = −

() ()
2

 ; 1,... 1,
r

s rlN s
A r A r l g

±
= = − }1,... , 1,... 1rr r s N= = − ,

the quantity of multiplications is estimated as 1r
MUL rC N= −

. For odd N and fixed r , the number of multiplications is
1r

MUL rC N= − . Thus, the total number of multiplications per
window for computing the hopping DST can be estimated
as

()
 1

1 .
p

r
MUL MUL p

r
C N C g

=

= − + −∑ (13)

The total number of additions per window is equals to

 () () ()
 1

1 (1) 4 2 1 .
p

ADD r p
r

C N p p g g
=

= − + + − − − −∑ (14)

Additional costs are required to calculate the initial p
coefficients. We call this algorithm ALG-1. Note that the
window size for the proposed algorithm is any integer
determined by the characteristics of the processed signal.

Next, we give a simple example for computing the
hopping DST coefficients for 1 22, 7, 7p N N= = = and

 16N = . In other words, the output DST coefficients
(){ }2 , 1,...15sy p s = are computed at time 2 p . We borrow

two coefficients 1 7 9 1 7 9; x x x x+ −
− −= + = −

 from time p
and pre-calculate the auxiliary data:

2 6 10 2 6 10 3 5 11 3 6 11; ; ; x x x x x x x x+ − + −
− − − −= + = − = + = −

1 3 1 3; A A+ + + − − −= ∆ + ∆ = ∆ − ∆

1 2 3 40.1951 ; 0.3827 ; 0.5556 ; 0.7071S A S A S A S A+ − + −= = = =

5 6 30.8315 ; 0.9239 ; 0.9808S A S A S A+ − += = =

1 2 2 2 3 2Q 0.3827 ; Q 0.7071 ; Q 0.9239+ − += ∆ = ∆ = ∆
The DST coefficients are calculated as follows:

() () ()1 1 1 1 12 0 1.8478y p S y y p Q= − + +

() () ()2 2 2 2 22 0 1.4142y p S y y p Q= − + +

() () ()3 3 3 3 32 0 0.7654y p S y y p Q= − + +

() ()4 4 4 22 0y p S y −= − + ∆

() () ()5 5 5 5 32 0 0.7654y p S y y p Q= − − +

() () ()6 6 6 6 22 0 1.4142y p S y y p Q= − − +

() () ()7 7 7 7 12 0 1.8478y p S y y p Q= − − +

() () ()8 8 82 0 2y p A y y p−= − −

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3094277, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

() () ()9 7 9 9 12 0 1.8478y p S y y p Q= − − −

() () ()10 6 10 10 22 0 1.4142y p S y y p Q= − − −

() () ()11 5 11 11 32 0 0.7654y p S y y p Q= − − −

() ()12 4 12 22 0y p S y −= − − ∆

() () ()13 3 13 13 32 0 0.7654y p S y y p Q= − + −

() () ()14 2 14 14 22 0 1.4142y p S y y p Q= − + −

() () ()15 1 15 15 12 0 1.8478y p S y y p Q= − + − .

One can observe that the algorithm complexity is 23
multiplications and 48 additions.

B. FAST ALGORITHM BASED ON PRUNED DST

Let us define the first term of (12) as follows:

() ()
1

() sn , 1,2,... 1
p

N s N
r

X s A r rs s N
=

= = −∑ . (15)

It can be seen that only a subset of the input coefficients for
1p N< − is employed to compute the output DST. This

method is referred to as input-pruned DST. Suppose that
(){ }0, sA r r p= > , 1p > , and N is of a power of 2, then

the decimation-in-time radix-2 algorithm [23] recursively
splits the DST into two half-length DSTs of the even-
indexed and odd-indexed time samples as follows:

/2 /2

/2 /2

() () ()
, 1,2,..., 2 1

() () ()

o e
N N N

o e
N N N

X s X s X s
s N

X N s X s X s
= +

= −
− = −

, (16)

where

() () ()() ()

() ()

1

2

/2 /2
1

/2 /2
1

1() 2 1 2 1 sn
2cs

() 2 sn

L
o
N s s N

rN

L
e
N s N

r

X s A r A r rs
s

X s A r rs

=

=

= − + +

=

∑

∑
, (17)

with 1,2,..., 2 1s N= − , and

() ()
1

/2 /2
0

(/ 2) 2 1 1
L

r
N N

r
X N A r

=

= + −∑ , (18)

here ()1 1 / 2 1L p= + − and []2 / 2L p= .

The decomposition is used recursively, and the transform
size is halved each time. Note that the fast input-pruned
DST algorithm is defined by a simple structured recursive
matrix factorization of the transform matrix and represented
by a regular signal flow graph. Fig. 1 shows the flow graph
for 16N = and 7p = . Solid lines with arrows represent
unity transfer factors while dashed lines (red color)
represent transfer factors of −1. A circle represents addition
if there is more than one input line to the left. ↓ means
multiplication by the corresponding factor

()16

1 , 1, 2,...7
2cssC s

s
 = =

For 2 1p µ= − (µ is integer and 1µ >), the complexity
of the input-pruned DST algorithm in terms of additions and
multiplications can be estimated as

() () () ()1 2
, 1 4 6

1ADD

p
DST N p N p

p
µ

µ
+ −

= + + − +
+

 and

(), / 2MULDST N p N pµ= − , respectively.

FIGURE 1. Flow graph for the input-pruned DST computation, N=16
and p=7.

For other values of p , the complexity can be estimated
using the recursive equations (13)-(18). For example, for

2p = , the quantity of multiplications and additions is

given as (), 3 / 4 2MULDST N p N= − and

(), 2ADDDST N p N= − , respectively. The total number of

multiplications per window for computing the hopping DST
is estimated as

() ()1 , .MUL MUL pC N DST N p g= − + − (19)

The total number of additions per window is equal to

() () ()2 1 4 2 , .ADD ADD pC N p DST N p g= − + − + − (20)

Additional costs are required to calculate the initial p
coefficients. We refer to this algorithm as ALG-2.
 A pseudo-code of the proposed HDFT algorithms is given
in Table II. The algorithms require 2N -2 memory locations
to store the DST coefficients computed at times p and 0.
Since recursive computation of the output DST are carried
out “in-place” using the memory originally occupied by the
DST computed at time 0, no additional memory is s
required to store the output data. Step 1 requires
()1 6 2N p p− + − additional memory locations for storing

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3094277, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

()s kδ , ()sA r coefficients and trigonometric weighting
factors. Step 2 requires 3 / 2 2N − additional memory
locations to store ()NX s and sC coefficients. Step 3 does
not require additional memory.

TABLE II
PSEUDO-CODE OF THE PROPOSED HDST ALGORITHMS

Input: input samples ()x k and DST outputs ()sy p and ()0sy at

times p and 0, respectively; 1 2 2N N N= + + is the window size, 1N

and 2N are integers; p is the hop step.

Output: DST output ()2sy p at time 2p.
/* Step 1: setup */
for s=1 : N-1 do
 for r=1 : p-1 do

 ()sn , sinN r s rs
N
π =

 end for

 ()cn 2 2cosN s ps
N
π =

end for
for s=1 : 2 do
 for k=0 : 2p-2 do
 () () () ()1

1 2, 1 2sk s x k N x k Nδ += − + − + +
 end for
 for r=1 : p-1 do
 () () (), 1, 2 1,A r s r s p r sδ δ= − + − −
 end for
 () (), 1,A p s p sδ= −
 end for

/*Step 2: input-pruned radix 2 DST (N is of a power of 2) */
for s=1 : 2 1N − do

 ()
1

2cosC s s
N
π

−
 =

end for
for k=1 : 2log N do

 Compute ()NX s using equations (16), (17) and (18).
end for

/*Step 3: recursive computation */
for s=1 : N-1 do
 Compute ()2sy p using equation (12). For N is of a power of 2,

 the first term of (12) is replaced by ()NX s .
 end for

return ()2sy p

IV. SIMULATION RESULTS
In this section, we analyze the algorithms presented in the
paper with respect to computational costs and execution
time. The most popular among fast DST algorithms are fast
radix-2 [24], [25]. The sliding DST algorithm [22] is
executed p times to calculate the equidistant DST spectra.
For 2p = and varying N , Tables III and IV show the
performance in terms of multiplications and additions,
respectively, the following tested algorithms: FDST is the

fast algorithm [24], SDST is the sliding algorithm [22],
ALG-1 and ALG-2 are the proposed algorithms.

TABLE III
PERFORMANCE OF ALGORITHMS IN TERMS OF MULTIPLICATIONS, P=2,

N=2M.
ALGORITHMS NUMBER OF

OPERATIONS
N - LENGTH OF HOPPING WINDOW

16 32 64 128 256 512
FDST MN/2-N+1 17 49 129 321 769 1793

SDST (3N/2-2)P 44 92 188 380 764 1532

ALG-1 EQ. (13) 23 51 107 219 443 891

ALG-2 EQ. (19) 23 51 107 219 443 891

TABLE IV

 PERFORMANCE OF ALGORITHMS IN TERMS OF ADDITIONS, P=2, N=2M.
ALGORITHMS NUMBER OF

OPERATIONS
N - LENGTH OF HOPPING WINDOW

16 32 64 128 256 512
FDST 3MN/2-2N-M+2 62 173 444 1083 2554 5881

SDST (3N/2-2)P 64 128 256 512 1024 2048

ALG-1 EQ. (13) 48 96 192 384 768 1536

ALG-2 EQ. (19) 48 96 192 384 768 1536

Note that the proposed algorithms have the same
complexity, and for 16N > outperform the fast and sliding
DST algorithms. The execution times for floating point
addition and multiplication in modern processors are
comparable. Therefore, the algorithm complexity can be
estimated by the number of flops (real multiplications and
additions). Comparison of the tested algorithms in terms of
flops for 256N = and varying p is given in Table V.

TABLE V
PERFORMANCE OF ALGORITHMS WITH RESPECT TO FLOPS, N=256.

HOP

STEP P
ALGORITHMS

FDST SDFT ALG-1 ALG-2
2 3323 1788 1211 1211
3 3323 2682 1599 1439
4 3323 3576 1880 1563
5 3323 4470 2272 1610
6 3323 5364 2591 1736
7 3323 6258 2979 1868

15 3323 13410 5719 2316
31 3323 27714 11183 2796
63 3323 56322 22091 3380

One can observe that for 1p > the proposed algorithms are
faster than the sliding DST algorithm. The algorithm ALG-
1 is more efficient than the fast DST algorithm when 7.p ≤
It can be seen that for 63p < the algorithm ALG-2 is
superior to the fast DST algorithm. The algorithm ALG-2
becomes faster than the algorithm ALG-1 when 2.p > As
the window size increases, the boundary step values at

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3094277, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

which the fast DST algorithm is still no better than the
proposed algorithms also increase.

We implemented all tested algorithms on a laptop with
Intel Core i7-2630QM and 8 GB of RAM using MATLAB
R2016a. To guarantee statistically correct results, we
repeated all experiments 100 times and calculated the
average runtime result for each algorithm. Fig. 2 shows the
runtime performance of the algorithms.

FIGURE 2. Flow graph for the input-pruned DST computation
Measured running time (milliseconds) of the algorithms per
window for N= 256 and varying p.

It can be noted that the theoretical results are in good
accordance with the experimental results presented in Table
V.

There are several types of DST [2], [3], which are
suitable for processing different signal models. In this
paper, fast hopping DST algorithms have been suggested
for only one type of discrete sine transform (DST-I). The
same approach can be used to design fast hopping
algorithms for other types of DST, which will efficiently
handle different signal models.

V. CONCLUSION
Recursive equation between three adjacent equidistant DST
spectra was obtained with the help of the z-transform. Using
the recursive equation, input-pruned DST and properties of
sinusoidal functions, two fast hopping DST algorithms have
been proposed. The complexity of the hopping algorithms
was compared with that of known fast and sliding DST
algorithms. For the proposed algorithm ALG-1, the length
of the hopping window can be arbitrary, determined by the
characteristics of the processed signal. For the window
length of a power of 2, the algorithm ALG-2 outperforms
fast and sliding DST algorithms in a wide range of
parameters. It was also shown that the obtained theoretical
results are in good agreement with the presented
experimental results.

REFERENCES
[1] A. K. Jain, “A fast Karhunen-Loeve transform for a class of random

processes,” IEEE Trans. Commun., vol. 24, no. 9, pp. 1023-1029,
Sept. 1976. DOI: 10.1109/TCOM.1976.1093409.

[2] A. K. Jain, “A sinusoidal family of unitary transforms,” IEEE
Trans. Patt. Anal. Machine Intell., vol. PAMI-I, pp. 356-365, Sept.
1979. DOI: 10.1109/TPAMI.1979.4766944.

[3] Z. Wang and B. Hunt, “The discrete W transform,” Applied Math
Computat., vol. 16, pp. 19-48, Jan. 1985. DOI: 10.1016/0096-
3003(85)90008-6.

[4] K. Rose, A. Heiman, and I. Dinstein, "DCT/DST alternate-
transform image coding,” IEEE Trans. Commun, vol. 38, no. 1, pp.
94-101, Jan. 1990. DOI: 10.1109/26.46533.

[5] J. Lee and C. Un, "Performance of transform-domain LMS
adaptive digital filters," IEEE Trans. Acoust., Speech, Signal
Process., vol. 34, no. 3, pp. 499-510, June 1986. DOI:
10.1109/TASSP.1986.1164850.

[6] S. Cheng, “Application of the sine transform method in time of
flight positron emission image reconstruction algorithms,” IEEE
Trans. Biomed. Eng., vol. BME-32, no. 3, pp. 185-192, March
1985. DOI: 10.1109/TBME.1985.325527.

[7] Z. Wang and L. Wang, “Interpolation using the fast discrete sine
transform,” Signal Process., vol. 26, pp. 131-137, Jan. 1992. DOI:
10.1016/0165-1684(92)90059-6.

[8] M. Kim and Y.-L. Lee, “Discrete sine transform-based
interpolation filter for video compression,” Symmetry, vol. 9, no.
11, p. 257, Nov. 2017. DOI: 10.3390/sym9110257.

[9] A. V. Oppenheim and R. W. Schafer, Discrete-time signal
processing, 3rd ed., Upper Saddle River, NJ, USA: Prentice-Hall,
2009.

[10] R. R. Sharma, M. Kumar, and R. B. Pachori, “Joint time-frequency
domain-based CAD disease sensing system using ECG signals,"
IEEE Sensors J., vol. 19, no. 10, pp. 3912-3920, May 2019,
10.1109/JSEN.2019.2894706.

[11] M. Portnoff, "Short-time Fourier analysis of sampled speech," IEEE
Trans. Acoust., Speech, Signal Process., vol. 29, no. 3, pp. 364-373,
June 1981. DOI: 10.1109/TASSP.1981.1163580.

[12] J. Shi, J. Zheng, X. Liu, W. Xiang, and Q. Zhang, "Novel short-time
fractional Fourier transform: theory, implementation, and
applications," IEEE Trans. Signal Process., vol. 68, pp. 3280-3295,
May 2020. DOI: 10.1109/TSP.2020.2992865.

[13] V. Kober, “Robust and efficient algorithm of image enhancement,”
IEEE Trans. Consum. Electron., vol. 52, no. 2, pp. 655–659, May
2006. DOI: 10.1109/TCE.2006.1649693.

[14] X. Wang, G. Huang, Z. Zhou, W. Tian, J. Yao, and J. Gao, “Radar
emitter recognition based on the energy cumulant of short-time
Fourier transform and reinforced deep belief network,” Sensors, vol.
18, bo. 9, p. 3103, August 2018. DOI: 10.3390/s18093103.

[15] Y. Wang, K. C. Veluvolu, “Time-frequency analysis of non-
stationary biological signals with sparse linear regression based
Fourier linear combiner,” Sensors, vol. 17, no. 6, p. 1386, Jun.
2017, doi:10.3390/s17061386.

[16] A. Thalmayer, S. Zeising, G. Fischer, J. Kirchner, “A robust and
real-time capable envelope-based algorithm for heart sound
classification: validation under different physiological conditions,”
Sensors. Vol 20, no. 4, p. 972, Jun. 2020, doi: 10.3390/s20040972

[17] J. Yan, S. Laflamme, P. Singh, A. Sadhu, J.A. Dodson,
“Comparison of time-frequency methods for real-time application to
high-rate dynamic systems,” Vibration, vol. 3, no. 3, pp. 204-216,
Aug. 2020, doi:10.3390/vibration3030016.

[18] C. Park and S. Ko, "The hopping discrete Fourier transform," IEEE
Signal Process. Mag., vol. 31, no. 2, pp. 135-139, Mar. 2014. DOI:
10.1109/MSP.2013.2292891.

[19] V. Kober, “Fast recursive computation of sliding DHT with
arbitrary step,” Sensors, vol. 20, no. 19, p. 5556, Sept. 2020, doi:
10.3390/s20195556.

[20] V. Kober, “Recursive algorithms for computing sliding DCT with
arbitrary step,” IEEE Sensors, vol. 21, no. 10, pp. 11507-11513,
May 2021, doi: 10.1109/JSEN.2020.3023892.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3094277, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

6 VOLUME XX, 2017

[21] V. Kober, “Fast recursive algorithm for sliding discrete sine
transform”, Electron. Lett., vol. 38, no. 25, pp. 1747-1748, Dec.
2002. DOI: 10.1049/el:20021098.

[22] V. Kober, “Fast algorithms for the computation of sliding discrete
sinusoidal transforms,” IEEE Trans. Signal Process., vol. 52, no. 6,
pp. 1704–1710, Jun. 2004. DOI: 10.1109/TSP.2004.827184.

[23] P. Yip and K. R. Rao, “Fast decimation-in-time algorithms for a
family of discrete sine and cosine transforms”, Circuits, Syst.,
Signal Process., vol. 3, pp. 387-408, Dec. 1984. DOI:
10.1007/BF01599167.

[24] Z. Wang, “Fast discrete sine transform algorithms,” Signal Process.,
vol. 19, no. 2, pp. 91-102, Feb. 1990. DOI:10.1016/0165-
1684(90)90033-U.

[25] A. Gupta and K. R. Rao, “A fast recursive algorithm for the discrete
sine transform”, IEEE Trans. Acoust., Speech, Signal Process., vol.
38, no. 3, pp. 553–557, Mar. 1990. DOI: 10.1109/29.106875.

