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Abstract

The complexity of human detection increases signifi-

cantly with a growing density of humans populating a scene.

This paper presents a Bayesian detection framework us-

ing shape and motion cues to obtain a maximum a poste-

riori (MAP) solution for human configurations consisting

of many, possibly occluded pedestrians viewed by a station-

ary camera. The paper contains two novel contributions

for the human detection task: 1. computationally efficient

detection based on shape templates using contour integra-

tion by means of integral images which are built by oriented

string scans; (2) a non-parametric approach using an ap-

proximated version of the Shape Context descriptor which

generates informative object parts and infers the presence

of humans despite occlusions. The outputs of the two de-

tectors are used to generate a spatial configuration of hy-

pothesized human body locations. The configuration is it-

eratively optimized while taking into account the depth or-

dering and occlusion status of the hypotheses. The method

achieves fast computation times even in complex scenarios

with a high density of people. Its validity is demonstrated

on a substantial amount of image data using the CAVIAR

and our own datasets. Evaluation results and comparison

with state of the art are presented.

1. Introduction

Reliable human detection is a key algorithmic compo-

nent of many application-oriented computer vision systems,

for instance in automated visual surveillance, automotive

safety, human-computer interaction and multimedia pro-

cessing. High detection rates and low false alarm rates

are essential for achieving robustness in higher level vi-

sion tasks such as tracking or activity recognition. While

many human detection methods perform quite well for spa-
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Figure 1. A sample input frame (left) and corresponding detection

output generated by the proposed method (right).

tially separated, unoccluded humans in more-or-less con-

trolled environments, nevertheless, they undergo an un-

graceful degradation of detection performance when facing

a high density of humans (see Figure 1), clutter and varying

illumination conditions. These problems have been recog-

nized by the scientific community and substantial amount

of research has been recently carried out to extend the op-

erational domain of human detection frameworks beyond

simple scenarios. Devising an adequate representation for

humans seen in images still remains a challenging task since

such a representation must meet requirements of specificity,

generality and computational efficiency at the same time.

Previous methods of human detection can be grouped ac-

cording to the following criteria: shape-based approaches

and motion-based methods. Approaches which employ a

model-based representation can be further categorized as

monolithic (full-body) and part-based detectors.

Shape-based monolithic detectors have been designed

using hierarchically structured edge templates [7], learned

edge-based models [6] or classifiers in combination with

shape-encoding features [5, 8]. While these methods work

well in cluttered scenes, their detection rates drop signifi-

cantly in presence of occluded humans.

Motion-based approaches based on change detection and

statistical modelling of the background [20, 16] have been

popular due to their simplicity and computational efficiency,

enabling systems applicable to simple scenarios with few
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persons. Nevertheless, foreground segmentation errors and

detection errors become evident with increasing density of

humans and clutter.

A recent shift of focus towards part-based representa-

tions has resulted in detection methods capable to detect

parts of humans and perform occlusion reasoning based

on the part-detection results. Zhao et al. [23] employ a

multiple-part human model in conjunction with a global op-

timization step within the multi-object configuration space,

but the outcome of the method strongly depends on the

quality of motion-based foreground segmentation. Leibe et

al. [9] present a generative approach where multiple-part as-

semblies are hypothesized from local features and a valida-

tion step based on global features selects optimum hypothe-

ses along with a greedy optimization of occlusion states.

Given the data-driven voting mechanism the detector gener-

alizes well, but it generates many false alarms in presence of

clutter, therefore validations steps are required. Rodriguez

et al. [13] use Shape Context descriptors [2] to build a code-

book of local shape distributions which vote for human lo-

cations in an image. Zhao et al. [22] use hierarchically orga-

nized contour templates coupled with color-based segmen-

tation to delineate human hypotheses. Lin et al. [10] also

propose a hierarchical contour template matching scheme

combined with motion detection and human inter-occlusion

analysis. Template-based search, despite of its hierarchi-

cal structure, represents a computationally intensive opera-

tion when performing a dense scan across the image. Wu

et al. [21] introduce discriminatively learned edgelet-based

part detectors which are used to infer presence of humans

by analyzing individual detector responses and occlusion

states. Similarly, Shet et al. [14] combine discriminatively

learned part detectors with a logical occlusion reasoning ap-

proach. In these cases the learning process of part detectors

for multiple poses and views typically becomes complex

and the required high level of generalization necessitates a

hierarchical multi-view detector.

In summary, despite the significant advances represented

by the above approaches human detection in crowded situa-

tions with mutual occlusions still poses a challenge. There-

fore we propose two novel generic concepts which com-

plement existing detection approaches: (i) An integral im-

age based concept for contour integration which enables

computationally efficient matching when using sparse con-

tour templates. The proposed matching scheme permits the

computational evaluation of a vast number of shape hy-

potheses with varying translational, rotational and scaling

parameters. Additionally, occlusion analysis can be per-

formed in a simple and fast way given the individual contour

segment probabilities. (ii) An approximated Shape Context

descriptor, called aSC, which is applied to data obtained

by background subtraction, and capable of hypothesizing

object locations in presence of clutter and occlusions. The

Figure 2. Outline of the proposed human detection method. Left:

A set of anisotropically filtered images and a set of shape templates

generate shape-based detection hypotheses. Right: A codebook of

approximated Shape Context descriptors (aSC) is used to gener-

ate local shape-based detection hypotheses in a difference image

(input image - background). The two sets of hypotheses are eval-

uated jointly in a final optimization step.

two computationally efficient approaches combine local and

global shape cues in a similar manner as in [9] and [10].

The paper is organized as follows: Section 2 describes

the outline of the proposed human detection method. Sec-

tion 3 presents the integral image based concept of fast

contour integration. Section 4 demonstrates the concept of

aSC descriptor in the context of motion-based detection,

while section 5 describes the combination between the two

detectors. Section 6 presents and discusses experimental re-

sults and their evaluation. Finally the paper is concluded in

Section 7.

2. Outline of the detection method

Our approach relies on maximum a posteriori estimation

(MAP) of the spatial configuration of humans (c∗) best ex-

plaining the observed image features I:

c∗ = arg max
c

P (c|I), (1)

We combine detection hypotheses generated by contour-

based matching
{

hC
}

(Section 3.2) and local shape esti-

mation
{

hLS
}

(Section 4): c =
{{

hC
}

,
{

hLS
}}

. The

process is illustrated in Figure 2. According to Bayes theo-
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αj = arctan(bj/aj) [aj , bj ]

0◦ [1, 0]
26.57◦ [2, 1]
45◦ [1, 1]
63.43◦ [1, 2]
90◦ [0, 1]
116.57◦ [−1, 2]
135◦ [−1, 1]
153.43◦ [−2, 1]

Table 1. The 8 orientations and corresponding offset components

used in our experiments.

rem the posterior probability is proportional to:

P (c|I) ∝ P (I|c)P (c), (2)

where P (c) denotes the prior probability of human mod-

els with respect to their parameters, which are described in

Section 3.2. P (I|c) is the joint likelihood of a configuration

computed assuming independence between the information

contained in individual cues:

P (I|c) = P (Ic|c) P (Im|c), (3)

where Ic denotes contour-based observation (shape match-

ing using edge probabilities) and Im is motion-based ob-

servation (shape estimation using background difference).

The computations of P (Ic|c) and P (Im|c) are described in

Section 3.2 and Section 4, respectively.

3. Shape-based detection

Template-based matching is a versatile tool for various

pattern matching problems, nevertheless, the measurement

process - given the often existing uncertainties with re-

spect to parameters defining translational, rotational, scal-

ing, shape and other variations - imposes substantial com-

putational requirements. Typical examples are chamfer

matching [7] and edge-based detection approaches [21, 10],

where usually hierarchical search strategies are used to min-

imize computational costs of the process locating the solu-

tion. Our proposed approach for computing line integrals

along contour segments speeds up the measurement process

and it still can be embedded into a hierarchical matching

framework.

3.1. Contour integration by integral images

The integral image concept [4, 15] has been widely used

to speed up the computation of region-based statistical mea-

sures, such as area sums [18], covariance [17] and co-

occurrence [19]. We describe the construction of multiple

integral images by oriented strings scans over the entire im-

age (Figure 3) in order to efficiently compute integrals along

oriented linear contour segments. Efficient integration per-

mits fast evaluation of contour-based features.

Figure 3. Illustration showing the construction of integral images

by oriented string scans for different orientations. Dots represent

starting locations of individual string scans. The bottom right im-

age depicts an example contour template consisting of five line

segments, where line integrals (sum of values at pixels color-coded

according to orientation) can be efficiently computed based on the

integral images.

Given the spatial discretization of digital images, we use

discrete unit-integer orientations (see Table 1) as termed by

Messom et al. [11]. A unit-integer orientation is an orien-

tation α = arctan(b/a) defined by horizontal and vertical

offset components a and b, such that both components are

integers and at least one of them is 1 or -1. An αj oriented

string scan refers to a spatial sequence of pixels starting

at an image border, oriented according to the components

[aj , bj ] and ending at another image border. Let I denote

an image with a height of M and width of N pixels. Let

{αj}j=1..k
be a set of unit-integer orientations (Table 1).

For each orientation αj we partition I into a set of n scan-

lines {Si}i=1..n, such that their union equals I:

I = S1 ∪ S2 ∪ . . . ∪ Sn . (4)

Each scanline Si is uniquely defined by a set of

parameters. For the set of orientations O1 =
{{0◦ ≤ αj ≤ 45◦} , {135◦ ≤ αj ≤ 180◦}} the x-

coordinates of a scanline are uniquely defined being

x ∈ {1, . . . , N}. For the complementary set of orientations

O2 = {45◦ < αj < 135◦} each pixel of a scanline has a

uniquely assigned y-coordinate, y ∈ {1, . . . , M}. Accord-

ingly, each scanline is defined by slope-intercept forms (see

Figure 3):

yi = F1(x
i, xi

0, y
i
0, αj) if αj ∈ O1 (5)

xi = F2(y
i, xi

0, y
i
0, αj) if αj ∈ O2, (6)

where the functions F1 and F2 are defined as:

F1 (x, x0, y0, a, b) = y0 + sgn (a) (x − x0)

(

b

a

)

, (7)

F2 (x, x0, y0, a, b) = x0 + (y − y0)
(a

b

)

, (8)

sgn is the sign function and
{

xi
0, y

i
0

}

denote the starting

location of the ith scanline. The set of all starting locations
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is defined as:

{x0, y0} =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

{1, 1 . . . M} if αj = 0◦

Qj
1 if 0◦ < αj < 90◦

{1 . . . N, 1} if αj = 90◦

Qj
2 if 90◦ < αj < 180◦,

(9)

where the pixel sets Qj
1 and Qj

2 are defined as:

Qj
1 = {{1, mod(y − 1, bj) = 0} , {mod(x − 1, aj) = 0, 1}}

(10)

Qj
2 = {{N, mod(y − 1, bj) = 0} , {mod(x − 1, aj) = 0, 1}} ,

(11)

and mod denotes the integer modulo operator.

Integral images contain the cumulative sums computed

along each oriented scanline for a given orientation:

ii(x, y, αj) =

⎧

⎪

⎨

⎪

⎩

∑

x′≤x

I (x′, F1 (x′, x0, y0, αj)) if αj ∈ O1

∑

y′≤y

I (F2 (y′, x0, y0, αj) , y′) if αj ∈ O2

(12)

Integral images ii can be built - similarly to integral images

for area-based statistics - in a recursive manner:

ii(x, y, αj) =

{

ii1(x, y, αj) if αj ∈ O1

ii2(x, y, αj) if αj ∈ O2

where ii1 and ii2 are computed as:

ii1(x, y, α) =ii1 (x − 1, F1 (x − 1, x0, y0, α)) +

I (x, F1 (x, x0, y0, α)) (13)

ii2(x, y, α) =ii2 (F2 (y − 1, x0, y0, α) , y − 1) +

I (F2 (y, x0, y0, α) , y) , (14)

and ii1(0, y, α) = 0, ii1(x, 0, α) = 0 and ii2(0, y, α) =
0, ii2(x, 0, α) = 0.

Figure 3 shows the rasterization of scanlines for some

orientations. The bottom image shows an example for a

contour-based template consisting of five line segments.

Using the precomputed integral images ii(x, y, α), the sum

of pixel values along the line segments can be computed as:

s = (ii (A1, α7) − ii (B1, α7)) +

(ii (A2, α6) − ii (B2, α6)) + (ii (A3, α1) − ii (B3, α1)) +

(ii (A4, α6) − ii (B4, α6)) + (ii (A5, α2) − ii (B5, α2))
(15)

Thus, integration of values along one line segment requires

a single arithmetic operation independent of location and

scale.

The proposed contour integration scheme has an addi-

tional appealing property. A line segment with an orienta-

tion αj can be rotated arbitrarily by an angle β to generate

Figure 4. Illustration depicting a contour template (center image)

and its rotated variants (left and right). Rotations of the contour

template create a new set of edge segments, whose orientations

are elements of the original set of discrete unit-integer orientations

(see text for more details).

an approximated, unit-integer-oriented rasterized line seg-

ment:

αj ± β ≈ αl ∈ {α} . (16)

This property is visualized in Figure 4, where rotations of

a contour template result in rasterized line segments, whose

orientations are again unit-integer orientations for which in-

tegral images are available, as indicated by the color coding.

This means that by using a set of integral images obtained

by oriented string scans, contour templates and its rotated

variants (although approximations of the original shape) can

be used for template matching. The distinct advantage of

the proposed contour based integration is that translated, ro-

tated and scaled shape templates can be matched efficiently.

3.2. Human detection by sparse contour templates

We employ contour models incorporating typical shape

variations by adopting a parametric shape model based on

the Point Distribution Model [3]. For each image loca-

tion multiple scaled contour templates are generated off-line

with a scaling driven by an estimated height model prior.

Model of projected human height: We assume that

pedestrians stand upright on a common ground plane. Sim-

ilar to works [12] using stationary cameras, we perform an

off-line calibration step estimating a model H(y) of the pro-

jected 2D human height in the scene. The prior probability

of human height at a given image location is computed by

P (Hi) = Hi (y)P (hi), where P (hi) is a Gaussian distri-

bution N
(

µh, σ2
h

)

(µh=1.0, σh= 0.08).

Generating sparse contour templates: 120 pedestrian

images of the INRIA dataset [5] were manually annotated

by adjusting a prototype contour set consisting of 13 ori-

ented line segments to the human shapes seen in the train-

ing images. Annotated shapes - obtained for frontal and

side views - were registered into a common space using foot

and head locations on a common vertical human axis. The

dimensionality of the vector space - spanned by the seg-

ment end point coordinates - is reduced using PCA and 11

eigenvectors are retained explaining 95% of the total vari-

ance in the training set. By considering only the principal

modes of variation, we generate kT (kT =30) shape samples

{Ti}i=1..kT
. The shape set is scaled for each y-position
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of the image given P (Hi) and line segment coordinates

are approximated such that orientation of the line segments

matches the nearest unit-integer orientation of Table 1.

Template matching: Using a filter bank of steerable

Gaussian first derivative filters (σ=0.5), the input image is

filtered along the unit-integer orientations of Table 1 and

filter responses are thresholded to obtain edge probability

maps, Ie. Contour-based likelihood at a given image lo-

cation x is computed by matching head-shoulder (HS) and

full-body (FB) templates in a dense scan:

P (Ic |x ) =w1PHS (Ie |x, T ∗
HS(x) ) +

w2PFB (Ie |x, T ∗
FB(x) ) , (17)

where T ∗
HS(x) and T ∗

FB(x) denote the locally best match-

ing head-shoulder and full-body templates, w1 and w2 are

importance weights.

Computational complexity: The computational complex-

ity in terms of number of arithmetic operations can be mea-

sured against the case of using conventional shape tem-

plates consisting of a chain of contour pixels. In our

case computation of integral images requires approximately

8(M−1)(N−1) operations and integration for a single tem-

plate needs 2nt − 1 operations, where nt is the number of

contour segments in the employed model. Straightforward

integration along the contour of a given template requires

np−1 operations, where np is the number of contour pixels.

Computational savings were quantified for our specific ex-

perimental settings (template scaling, sampling density) of

Section 6. The proposed use of sparse contour templates re-

quires 1500-2000 times less arithmetic operations than the

use of conventional contour templates.

4.Detection using approximated Shape Context

We propose a method which uses a simple but informa-

tive local shape descriptor to infer human locations in im-

ages of absolute background difference obtained by motion

detection [16]. Generating reliable shape cues by a data-

driven process is inherently difficult given the high amount

of ambiguity associated with extracted low-level motion

features. Segmentation is one possible generative step lead-

ing to shapes, but obtaining a global high-quality segmen-

tation is difficult.

Our approach follows a similar strategy as [13], however,

we do not rely on segmented foreground and our descriptors

can be easier turned into prototypical representations of lo-

cal shape. Our approach is performed in two steps:

Training: In the training step we derive a pool of local

shapes - in form of discretized binary foreground segments,

which we call the approximated Shape Context (aSC) -

along the boundary of humans. A small set (in our case 10

images) of manually segmented binary images of humans

are used. The aSC descriptors are built as follows: A set of

human contour locations are sampled and at each sampled

Figure 5. The training step (top) and the codebook-based detec-

tion step (bottom) hypothesizing human locations in an image of

absolute differences.

location an ng×ng local grid centered on the location is de-

fined (see Figure 5, top). The size of the grid D is defined

to be proportional to the human height H: D = zH . Let

{Ci}i=1..(ng)2 denote the set of cells constituting the local

grid. The number of cells are independent of grid scaling

(in our case ng=3). For each cell we compute the attributes

Ci = (si, li), where si denotes the number of foreground

pixels relative to the total number of pixels in the ith cell.

li denotes a binary label indicating the status of the cell Ci

(0 = background, 1 = foreground). li is computed sim-

ply as:

li =

{

1 if si > T

0 otherwise,
(18)

using a threshold T . The aSC is formed by the obtained

vector of binary values l and encodes the local shape at a

coarse level. After having sampled many locations, the ob-

tained pool of aSC signatures can be simply clustered us-

ing binning and the spatial locations (foot position) of hu-

mans p (x |l ) - relative to the sampled location - are stored

as a unit-normalized distribution in form of a codebook

{l, p (x |l )} (see Figure 5, middle).

Detection: The learned codebook is used to find the best

fitting codebook entry at sampled locations in an image I ,

where I is in our case an image of absolute differences

obtained by background subtraction and normalized to the

range [0, 1].

First, we sample multiple locations with large-valued im-

age gradients, locations which are assumed to be situated

along potential object boundaries. The matching cost of a
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given codebook entry evaluated locally is defined as

Ct (l | I ) =
1

AF

∑

{x,y∈C|l=1}

I(x, y) −

1

AB

∑

{x,y∈C|l=0}

I(x, y), (19)

where AF denotes the foreground area, AB the background

area within the local grid, defined by the cells belonging to

foreground and background, respectively.

The best matching codebook entry maximizes the den-

sity within the hypothesized foreground region, while min-

imizing the density in the hypothesized background region:

l
∗ = arg max

l

Ct (l |I ) . (20)

The codebook entry meeting the above condition best ex-

plains the local structure of underlying distribution in the

difference image.

Equation 19 can be evaluated and l
∗ can be determined

very efficiently, since sums can be precomputed by integral

image-based area sum computation for each grid cell only

once and all foreground-background combinations (in our

case 34) defined by the codebook entries can be efficiently

formed using the precomputed cell sums. Thus all code-

book entries at all sampled locations are evaluated and the

best matching codebook entries vote - in a similar manner as

in [9], [13] - for the hypothesized human locations yielding

the motion-based likelihood of human presence:

P (Im |x ) =
∑

i

p (x |li ) p (li |I ), (21)

where p (x |li ) denotes the learned spatial distribution of the

best matching codebook entry and p (li |I ) = Ct (li | I ) is

its likelihood.

The presented concept of aSC-based shape estimation

has several advantages: despite of ambiguous structures in

the underlying distribution - the image of absolute differ-

ences is cluttered and textured due to textured foreground

and background -, human locations hypothesized by the

ensemble of local shape descriptors are associated with

significantly less ambiguity. In addition, due to the non-

parametric nature of the descriptor estimation step, the ob-

tained aSC descriptors are to a great extent invariant with

respect to linear intensity scaling of the underlying distribu-

tion, therefore local estimation is feasible at locations where

otherwise thresholding would remove all information.

5. Detector combination, optimization

The two detector outputs are combined in a similar

manner as in [10]. We select local maxima and perform

non-maxima suppression on the computed likelihood maps

P (Ic |x ) and P (Im |x ), generating two sets of hypotheses

Figure 6. Sample detection results obtained for the CAVIAR se-

quence using (a) contour templates, (b) codebook of aSC descrip-

tors and (c) combination of the two detectors.

{

hC
}

and
{

hLS
}

. The hypothesis sets are combined by

merging spatially coinciding hypotheses. The spatial con-

figuration of hypotheses is optimized in a greedy manner

using the posterior probability and considering the occlu-

sion status of individual hypotheses. Match scores for vis-

ible (unoccluded) contour segments are retrieved by table

lookups and the final optimum configuration estimate is typ-

ically reached efficiently in a few iterations.

6. Experiments and discussion

Detection experiments were performed on a sequence

of the CAVIAR dataset [1] (OneStopMoveEnter1cor) and

on two of our datasets (RailwayStation-A (RS-A) and

RailwayStation-B (RS-B)). During evaluation following

evaluation criteria have been taken into account: (i) a one-

to-one match was enforced between all ground truth and

detection instances with more than 50% overlap using a

bounding box approximation of their spatial extent; (ii) per-
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Figure 7. Sample detection results obtained for the Railway Station datasets (dataset A - left and center coloumns, dataset B - right coloumn)

using the proposed combined algorithm. Top row shows original image content, the row below shows detection results by superimposed

contour models.

Figure 8. ROC curves obtained by evaluation on a subset of the

CAVIAR dataset (200 images with 1800 humans) and compared

to the results of Lin et al. [10].

sons with less than 50% visibility at image boundaries and

sitting persons of the RS-A dataset were not used in the

evaluation process.

Detection results on the CAVIAR dataset: We evaluated

detection results obtained for 200 frames (frames 800-1000,

grayscale images of 384×288 pixels) of the dataset contain-

ing 1800 humans. Sample detection results for the proposed

two algorithmic components (contour-based detection in-

cluding occlusion reasoning when applied solely) and for

their combination are shown in Figure 6, while a quantita-

tive comparison of detection performance is given in Fig-

ure 8. The ROC-plot shows also results of Lin et al. [10]

obtained on this dataset. As can be seen, contour-based de-

tection and detection using the codebook of aSC descrip-

tors - when applied independently - occasionally miss cer-

tain humans and produce false alarms in presence of clutter.

Figure 9. Detection performance of individual detectors and their

combination evaluated on the Railway Station A dataset.

Small-sized contour templates produce many false alarms -

due to loss of specificity at small scales - given the clutter

in the scene background. The combined detectors, however,

achieve a detection performance comparable to the results

obtained by Lin et al., but at a lower computational cost.

The combined detection approach achieves real-time

performance. Our algorithm evaluates 30 shape templates

in an exhaustive manner at every second pixel (along each

image dimension). Contour-based detection is performed

on graphics hardware, yielding approx. 22 fps on a low-

end card (Nvidia 9800GT) and approx. 60 fps on a mid-

range card (Nvidia GTX260) for a video resolution of

720×576 pixels. The codebook-based detection approach

is implemented in a non-optimized form for the CPU (3.6

GHz). First tests show that framerates of at least 20 fps are

possible for the complete detection system when processing
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videos with the above resolution.

Detection results on the RS-A and RS-B datasets: Us-

ing an extensive annotation of the RS-A dataset (image res-

olution 640×480 pixels, 2982 frames containing 87373 an-

notated humans) we performed experiments using the in-

dividual algorithmic components and their combination, in

the same manner as in the previous experiment. The indi-

vidual ROC curves are shown in Figure 9. As can be seen,

contour-based detection and codebook-based detection both

produce good results for this difficult dataset containing fre-

quent occlusions and substantial clutter. The combination

of the two algorithms produces considerable improvement

achieving detection rates around 90% with a small num-

ber of false alarms. A total of 6545 frames of the RS-A

dataset were processed and some results are shown in Fig-

ure 7. In addition, 3500 frames of the RS-B dataset (res-

olution 720×576 pixels, interlaced) were processed and a

sample result is shown in Figure 7.

7. Conclusions

We have presented two approaches and their combina-

tion for fast human detection in crowded scenarios. First,

we have introduced an integral image based contour in-

tegration concept which (i) significantly speeds up sparse

contour-based template matching and subsequent occlusion

analysis and (ii) generates a segmentation of detected hu-

mans. A second simple detection concept based on an ap-

proximated form of a shape context is presented. The shape

descriptor is estimated non-parametrically and generates re-

liable human hypotheses in presence of occlusions. The

joint use of the two algorithms combines local and global

shape cues and demonstrates highly accurate detection per-

formance in complex scenes without using any temporal

continuity information. C-implementation of the algorithms

demonstrates real-time performance for scene complexities

comparable to those of the presented datasets.
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