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Abstract— We describe a hybrid approach to iterative PET
image reconstruction in which we combine three algorithms:
preconditioned conjugate gradient (PCG), ordered subsets separa-
ble paraboloidal surrogate (OSSPS), and emission reconstruction
incremental optimization transfer (ERIOT). These algorithms
exhibit quite different convergence behavior, e.g. the initial conver-
gence of OSSPS is fast but it soon enters a limit cycle. Conversely,
initial convergence of PCG is slow compared to OSSPS and
ERIOT but its asymptotic behavior is the fastest. The hybrid
approach estimates convergence behavior for each method by
fitting an exponential to the objective function as a function of
iteration number and switches between the algorithms to optimize
the convergence behavior throughout the iterations. This hybrid
approach is compared to each of the component algorithms in
application to simulated PET data demonstrating a reduction
of at least 50% in iterations required for effective convergence
compared to use of PCG alone.

Index Terms—PET Image Reconstruction, Incremental Opti-
mization Transfer, PCG.

I. INTRODUCTION

TATISTICALLY based PET image reconstruction algo-
S rithms can achieve superior image quality when compared
with conventional analytic reconstruction methods. However,
they require iterative optimization algorithms and computa-
tional times for fully 3D reconstruction can limit the practical
use of these algorithms. Consequently, in recent years many
algorithms have been proposed to reduce the complexity and
number of iterations required for effective convergence. These
algorithms range from general purpose gradient based optimiza-
tion methods to the use of incremental gradient or subset based
methods and optimization transfer techniques.

Conjugate gradient methods have been widely used for iter-
ative reconstruction of PET images [1], [2], [5]. The diagonal
EM-based preconditioner [4] and nondiagonal Fourier based
preconditioners [5] can significantly improve convergence rates
for conjugate gradient methods, however initial convergence
tends to be slow so that several 10’s of iterations are often
required for effective convergence.

Ordered Subset (OS) methods use subsets of the data rather
than the entire data set to update the image at each itera-
tion. Since computation cost is dominated by forward and
backprojection, the use of subsets methods reduces cost per
iteration by a factor equal to the number of subsets used. The
ordered subsets expectation maximization (OSEM) algorithm
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applies this subset approach to the EM algorithm [8] and
produces significant acceleration in the initial convergence be-
havior relative to the original EM algorithm. However, OSEM
eventually reaches a limit cycle rather than converging to a
maximum of the likelihood function [8], [21]. While the EM
and OSEM algorithms were originally developed and applied to
maximum likelihood estimation for PET image reconstruction,
these approaches are readily extended to allow maximization
of a penalized likelihood function, or equivalently to compute
a maximum a posteriori (MAP) image estimate, which is the
problem we address here.

To avoid the limit cycle and ensure convergence, the OSEM
algorithm can be modified to use a reduced step size at
each iteration. Methods that employ a relaxed update scheme
include block sequential regularized expectation maximization
(BSREM) [6], modified BSREM [21], relaxed Ordered Subset
Separable Paraboloidal Surrogate (OS-SPS) [21], and row-
action maximum likelihood algorithm (RAMLA) [7]. An al-
ternative way to achieve convergence is to gradually reduce
the number of subsets during reconstruction [9].

The convergent relaxed OS algorithms require the user to
specify relaxation parameters, which can have a significant
effect on convergence rate; however there is no theoretical basis
for selection of the optimal parameter. The closely related class
of incremental EM algorithms [10], [11], [12] and incremental
aggregated gradient algorithms [13] use the OS concept without
requiring user specified parameters. Ahn and Fessler general-
ized incremental EM algorithms to an incremental optimiza-
tion transfer method [16] by using the optimization transfer
principles [14] and successfully applied them to transmission
PET reconstruction [16]. Here we apply this incremental op-
timization transfer method to emission reconstruction using a
quadratic surrogate function. Using the same framework, Hsiao
et al. developed Complete-data OSEM (COSEM) and applied
it to emission tomography using EM (rather than quadratic)
surrogates [11], [12].

The early convergence behavior of the above algorithms
often differs from their asymptotic behaviour: while incre-
mental gradient methods show rapid initial convergence, their
asymptotic behavior can be slower than that of full gradient
methods. Here we examine the relative behavior of four fast
algorithms: (i) the PCG algorithms as described in [2]; (ii) the
OSSPS described in [20]; (iii) Relaxed OSSPS proposed in
[21]; and (iiii) Emission Reconstruction Incremental Optimiza-
tion Transfer (ERIOT) described in Section IV. Based on a
comparison of their respective convergence rates we propose a
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fast and convergent hybrid algorithm that takes advantage of the
properties of different algorithms to minimize the total number
of iterations.

In Section II we describe penalized maximum likelihood
PET image reconstruction; we then review PCG and (relaxed)
OSSPS in Section III, and describe the new ERIOT algorithm
in Section IV. In Section V we compare the convergence
rate of ERIOT with the other three methods. Based on the
comparison, we propose a hybrid algorithm that combines
OSSPS, ERIOT and PCG in Section VI; we also describe an
automated procedure to decide at which point to switch between
algorithms.

II. MAXIMUM A POSTERIORI IMAGE RECONSTRUCTION

Given data y and an image x, penalized maximum likelihood
or MAP image reconstruction estimates the image by maximiz-
ing the log posterior density:

N
X" = argr;lgg;Li(yz'IX) — BU(x) (1

where () is the nonnegativity constraint set defined as 2 =
{x|z; > 0,Vj}, and N, is the number of detector pairs. The
constant 3 is the hyper-parameter for a Gibbs prior. Here we
use a Gaussian form for the Gibbs energy:

Ux)=>" > wir(z; — )% @)
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where IN; denotes the set of neighbors of voxel j, and wjy, is
a weight for voxel j and its neighbor voxel & which varies as
a function of the Euclidean distance between them. Assuming
Poisson data, the log likelihood for the data y; is given by

Li(yi|x) = yilog i (x) — 9i(x) (3)

with 7;(x) = > ; Pijx;+1; where r; includes the randoms and
scatter contribution; p;; is the ij*" element of the projection
matrix that represents the probability of a positron emission
from voxel j being detected at detector pair i.

III. OPTIMIZATION ALGORITHMS

The Preconditioned Conjugate Gradient (PCG) algorithm
with a Newton-Raphson bent line search is used in this study
[2]. We use the Polak-Ribiere format of updating equation
with an expectation maximization (EM) type preconditoner
described in [2].

Separable Paraboloidal Surrogate (SPS) methods maximize
a quadratic surrogate function at each iteration. The surrogate
function is chosen in such a way as to guarantee monotonicity
in the MAP objective function [18], [19]. Its ordered subsets
version, OS-SPS (called OSTR in the context of transmission
tomography [20]), achieves an order-of-magnitude acceleration
relative to the ordinary SPS algorithm [20]. However, OS-SPS
does not converge to a maximizer of the objective function but
to a limit cycle in the same way that ordinary OS methods do.
However, by introducing suitable relaxation parameters, one

can make OS-SPS converge to a maximizer [21]. The relaxed
OS-SPS algorithm is written as follows:

Xn’erl _ [Xn,m _‘_ancflvq)m(xn,M)}Jr (@)

where n and m denote the iteration and the subiteration (subset)
index respectively, ®,, denotes the mth subobjective function
corresponding to the mth subset, «,, represents the relaxation
parameter, and [x]; denotes the orthogonal projection onto
the nonnegative orthant and is computed componentwise as
(x]+); = max{z;,0}. C is a diagonal matrix whose jth
diagonal element is given by

>
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where p; = >, pi; and

G = { 1/ max{y;, 1},

Yi/17,
The ¢; is called “precomputed curvature” and is an approximate
Newton curvature for the marginal log-likelihood function in
the sense that & = —h; (1) where h; (1) = y; log(l+r) — (I47;)
and [ = arg max;>o h;(l) (see [20] for details).
In this study, we use o, = #’;’)—Fl as the step-size function,
where g and ~ are relaxation parameters. Note that if we

choose ap = 0, then relaxed OS-SPS becomes OS-SPS.

if [y; —ri]4 >0

1V. EMISSION RECONSTRUCTION INCREMENTAL
OPTIMIZATION TRANSFER (ERIOT)

Incremental optimization transfer is a convergent ordered-
subset type algorithm, which was developed and applied to
transmission tomography in [22]. By construction, it converges
to a maximum of the objective function and its convergence
rate is usually faster than its nonincremental counterpart. The
incremental optimization transfer method effectively achieves
fast convergence rates particularly when an ordered subset
algorithm gets stuck or close to a limit cycle [22]. We adapt
the incremental optimization transfer method to emission re-
construction following the development in [22] for the trans-
mission case to yield the following algorithm, which refer to
as Emission Reconstruction Incremental Optimization Transfer
(ERIOT):

For initial variables &1, . .
subsets:
forn=0,...

form=1,...,M

., &, Where M is the number of

M -1 M +
Ty = [Z Ck(@k)] . Z [Cr(Zr)Zr + VOir(21)](7)
k=1 k=1
end
Xn+1 — a_:M
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end
where C), is a diagonal matrix whose jth diagonal element
Cmj 1S given by

>

k>j, kEN;

5 8
Cmj = Max Z PijDiCi + —ﬁ Wik, € ()

1€ESm
for some small € > 0 to ensure ¢,,; > 0, where ¢; is defined
in (5). Note the similarity between (5) and (8) (for only one
subset (M = 1) they are equivalent).

OS-SPS uses only the partial gradient V®,,, for each update
in (4); this greedy approach leads to fast initial convergence
rates but when unrelaxed it usually does not achieve global
convergence, which requires information about the whole gra-
dient V& = Zm V®,, in view of the first-order necessary
optimality condition. In contrast, ERIOT uses all V&’s for
each update in (7), although the gradients are not computed at
the current iterate. The initial convergence rate of ERIOT is
usually slower than OS-SPS due to the conservative approach
of ERIOT. However, it was found in the context of transmission
tomography in [22] that if OS-SPS is switched to the incremen-
tal optimization transfer algorithm when OS-SPS is stuck at
the limit cycle, the incremental optimization transfer algorithm
increases the objective function significantly, partly due to its
built-in averaging of the limit cycle points [see the first term
on the right hand side in (7)]. Therefore, ERIOT is particularly
effective if one switches to it from OS algorithms when the OS
algorithm approaches a limit cycle.

V. THE COMPARISON OF CONVERGENCE RATES

For OS methods, there are many parameters that can affect
the convergence rate. We compared the convergence rates for
reconstruction with different parameter combinations by simu-
lation, found the best parameter combination and used these in
the comparisons that follow. For the PCG algorithm, the step-
size was selected using a Newton-Raphson bent line search.
The ERIOT algorithm requires no user specified relaxation
parameter.

We simulated a 4 ring small animal PET scanner with the
transaxial physical parameters of a Concorde F220 scanner. A
128x128x4 subset of the 3D Hoffman brain phantom with voxel
size 0.4mm was used to generate simulated sinogram data of
total size 288x252x13 with an average of 30 counts/LOR. One
section of the Hoffman brain phantom is shown in figure 1. All
results shown below were initialized with two iterations of 3D
OSEM.

We define the normalized objective function as: (®(x*) —
O(x"))/(P(x*) — ®(x°)) where xV is the initial image and the
optimal image x* is approximated by 500 iterations of the PCG
algorithm. We compared the normalized objective function vs.
iteration for the OSSPS, relaxed OSSPS, ERIOT and PCG
algorithm, and the results are shown in figure 2. Fig. 2 reflects
our general observations: the OSSPS exhibits the fastest initial
convergence rate; ERIOT exhibits a fast convergence rate for
the first few iterations after the switch from OSSPS at iteration

Fig. 1. One section of the Hoffman brain phantom.

7, and PCG exhibits faster asymptotic convergence behavior.
Based on this observation, we developed the hybrid algorithm
described below.

0
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Fig. 2. Normalized objective function vs. iteration number for OSSPS,
relaxed OSSPS, ERIOT and PCG following initialization with two iterations
of 3D OSEM. All methods other than PCG used M=63 subsets. One iteration
represents a single pass through the complete data.

VI. THE HYBRID ALGORITHM

The OSSPS, ERIOT and PCG algorithms have different
advantages and disadvantages at different stages of the re-
construction. Our hybrid algorithm attempts to combine the
advantages of these algorithms. We begin with OSSPS, once
the OSSPS reaches its limit cycle we switch to ERIOT. Finally,
as the convergence rate of ERIOT reduces, we switch to PCG.
An example of the convergence behavior of this approach is
shown in Fig. 3. We achieve similar behavior in about 12-15
iterations of the hybrid algorithm as with 30 iterations of PCG.

To optimize the performance of this hybrid algorithm it
is important to switch between algorithms at the appropriate
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Fig. 3. Normalized objective function vs. iteration number for PCG,
OSSPS+ERIOT and OSSPS+ERIOT+PCG following initialization with two
iterations of 3D OSEM. For OSSPS, ERIOT: M=63 subsets.

iteration. To automatically select this point we fit the following
exponential function to the objective values:

fn)=ax(1- 67(”71)”’) +c. 9)

and estimate the parameters a, b, and ¢ by:
N
min (®(x") = f(n))?

a,b,c

n:No

(10)

where ®(x™) is the objective value at iteration n, Ny is the
iteration at which the current algorithm started and N is the
current iteration number. Observing that max ®(x") is (a + c¢),
we move to the next algorithm when the objective value for
the current iteration is greater than 98% of (a + ¢).

Because in the OSSPS and ERIOT algorithms the calculation
of ®(x™) requires an additional full forward projection, which
is time consuming, we use the following approximation:

®(x) ~ M x Z Li(yilx) — BU (x)

Yi€Sm

(1)

where M is the subset number and S,,, is the m*" subset. Since
> y.es,, Li(yilx) is computed as part of the image update
procedure for OSSPS and ERIOT, there is little additional cost
in performing these computations. Fig. 4 shows an example of
this approximation resulting in the same switching iterations as
the exact values for different thresholds.

VII. CONCLUSIONS

We describe a new convergent incremental optimization
transfer method, ERIOT, for PET image reconstruction which
exhibits guaranteed convergence and has no user selected
parameters. We have also proposed a hybrid method for com-
bining different iterative algorithms to minimize the total itera-
tions required for effective convergence. This hybrid approach
was based on the a comparison of the convergence rates of
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Fig. 4.  Top figure: ®(x™) and its corresponding f(n); Bottom figure:
approximation of ®(x"™) using data of subset 63 and its corresponding f(n).

the OSSPS, ERIOT and PCG algorithms. Through automatic
selection of the point at which we switch between these three
algorithms we achieve superior performance at each iteration
compared to the use of any one of these algorithms alone.
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