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Abstract: Hydrogen storage in Mg/MgH2 materials is still an active research topic. In this work, a
mixture of Mg-15wt.% VCl3 was produced by cryogenic ball milling and tested for hydrogen storage.
Short milling time (1 h), liquid N2 cooling, and the use of VCl3 as an additive produced micro-flaked
particles approximately 2.5–5.0 µm thick. The Mg-15wt.% VCl3 mixture demonstrated hydrogen
uptake even at near room-temperature (50 ◦C). Mg-15wt.% VCl3 achieved ~5 wt.% hydrogen in
1 min at 300 ◦C/26 bar. The fast hydriding kinetics is attributed to a reduction of the activation
energy of the hydriding reaction (Ea hydriding = 63.8± 5.6 kJ/mol). The dehydriding reaction occurred
at high temperatures (300–350 ◦C) and 0.8–1 bar hydrogen pressure. The activation energy of
the dehydriding reaction is 123.11 ± 0.6 kJ/mol. Cryomilling and VCl3 drastically improved the
hydriding/dehydriding of Mg/MgH2.

Keywords: hydrogen storage; magnesium; VCl3 additive; cryogenic ball milling; fast kinetics

1. Introduction

Hydrogen as an energy vector can be of interest [1,2] because it can be used in a
wide range of energy generators, from turbines to fuel cells [3]. Hydrogen is also an
important industrial (chemical and petrochemical) reagent. Other applications include
its use in heat storage systems [4]. However, all applications have in common the need
for suitable hydrogen storage systems. Mg/MgH2 is an interesting hydrogen storage
system due to the reversibility of hydriding/dehydriding reactions without extreme loss
of storage capacity, relatively low cost of Mg, high hydrogen content, etc. [5,6]. Ideally,
low temperature dehydriding of MgH2 must be achieved for many applications. However,
the lower temperature of the dehydriding reaction is dictated by the thermodynamics of
MgH2, i.e., by the MgH2 formation enthalpy [7,8]. Using additives or special processing
techniques has proven to be of little help in modifying the thermodynamics of MgH2.
Thus, MgH2 is restrained to high-temperature (300–350 ◦C) applications. Nowadays, the
research on hydrogen storage using Mg/MgH2 systems is still of interest to surpass kinetic
limitations [5,6].

MgH2 has a total hydrogen content of 7.6 wt.%; however, only in a few cases full-
capacity release/storage is achieved. Reaction temperature, pressure and time, surface
oxide conditions of Mg/MgH2 particles, additives, and sample processing such as ball
milling tremendously influence the hydrogen uptake level and kinetics. To date, several
materials have been tried as additives or catalysts using different processing techniques.
The list of additives or catalysts includes but is not limited to oxides such as Nb2O5 [9,10],
intermetallics such as Mg2Ni [11], metallic alloys such as NiMn9.3Al4.0Co14.1Fe3.6 [12],
transition metals [10,13], transition metals halides [14–16], metallic nanoparticles such as
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Ni [17], sulfides [18], co-catalysts of different substances [11,14], and many other com-
pounds. The role of the catalyst is to enhance the dissociation and recombination rate of
hydrogen and to improve H diffusion as a “hydrogen pump” [19].

V-containing compounds are interesting catalysts because of their affinity towards
electrons due to unoccupied d orbitals [20]. VF4 added to Mg99Ni was proposed to form
VH0.91 and MgF2 during mechanical milling [15]. In that work, the VH0.91 was acting
as a hydrogen pump [15]. Other V-containing compounds have improved the hydrid-
ing/dehydriding of Mg/MgH2 [15,21–23]. In particular, the addition of VCl3 [24–26]
resulted in quick sorption kinetics [27–29]. A survey on the Web of Science on the topics Mg
or MgH2, VCl3, and hydrogen storage produced only 12 published papers. Of them, three
used VCl3 as a co-catalyst; and in the other three, the MgH2 was mixed with other hydrogen
storage materials. Of the papers on MgH2-VCl3 [24–29], the information on kinetics or
thermodynamics is incomplete, as we detail in the discussion section. In comparison, a
survey in the same database of MgH2, Nb2O5, and hydrogen storage produced 272 papers.
This indicates the need for more studies of VCl3 as an additive, exploring new preparation
conditions aimed at better kinetic results.

On the other hand, the reported amount of VCl3 added to MgH2 spans from 5 wt.%
to 23.9 wt.% (i.e., up to 5 mol%) [25,26,29–31]. In the present work, we explored the use
of a relatively high amount of VCl3, but in between the amounts reported [25,26,29–31]:
15 wt.% (or 2.65 mol%). It represents a primary component in the mixture intended for
extensive interaction with Mg and MgH2 while maintaining an acceptable theoretical hy-
drogen capacity (6.46 wt.%). The use of high amounts of additives is rather common in
the hunt for improving hydrogen storage kinetics [32]. For example, 2 mol% of heavy
substances such as NbF5 or Nb2O5 in MgH2 corresponds to 12.7 and 16.7 wt.%, respec-
tively [10,33]. Additionally, we remark that the starting material in most of the referenced
papers is MgH2. Here, we explored the use of Mg as the starting material because, in many
countries such as ours, the commerce of MgH2 is forbidden.

The most popular processing techniques of hydrogen storage materials include but
are not limited to mechanical milling, reactive milling, cold rolling, high-pressure torsion,
etc. [5,34]. Cryomilling is not as popular as room-temperature milling. However, cry-
omilling of ductile materials such as Mg can have advantages such as the reduction of cold
welding and quick reduction of particle size [34]. A survey on the Web of Science on the
topics “cryomilling” and “hydrogen storage” reported 18 papers, seven of them related to
Mg/MgH2 catalyzed or co-catalyzed with different materials [10,32,33,35–38], and in none
of them, the catalyst is VCl3. Here, we used cryogenic ball milling to obtain a Mg-VCl3
mixture as a new approach to improve Mg kinetics for hydrogen storage.

2. Materials and Methods
2.1. Mixtures Preparation

High purity VCl3 (Aldrich, anhydrous, 99.998% purity), and Mg powder (Alfa-Aesar,
−325 mesh, 99.86 purity), were used as received. Then, 0.85 g of Mg and 0.15 g of VCl3
were weighed and deposited in a cryomilling vial. Next, 1 g of the powder mixture was
milled with 20 g of balls. Specifically, 6 yttria-stabilized zirconia balls of 1 cm diameter were
used in a stainless-steel cryomilling vial of 50 mL volume. The cryomilling vial was closed
under an argon atmosphere of a glove box and transferred to the cryogenic mill (Retsch®,
Haan, Germany). Then, the milling vial was fixed inside a chamber of the mill. The liquid
N2 circulates between the exterior of the milling vial and the interior of the chamber. The
liquid N2 circulates both in pre-cooling mode and when the chamber is moving (milling).
The cryogenic mill of Retsch® is a fully automatized machine that allows programming
cycles of pre-cooling, milling, and pauses with agitation rates between 5 and 40 Hz [39]. The
cryomilling vial, loaded with Mg, VCl3 and the balls, was pre-cooled for 10 min in a liquid
N2 flow with a movement of the vial of 5 Hz (300 rpm). Once reached −196 ◦C, the powders
were milled in 6 cycles of 10 min at 25 Hz (1500 rpm) agitation rate, and 1 min at 5 Hz
(300 rpm) agitation rate. During the milling process, a constant flow of liquid N2 cooled
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the milling vial. The cryomilled mixture of Mg and VCl3, hereafter Mg-15wt.% VCl3, was
recovered and characterized both in as-milled and hydrided forms. All materials were handled
and stored in a protective argon atmosphere inside a Vigor®-glove box (less than 5 ppm O2 and
H2O). For comparison, pure Mg was cryomilled in the same conditions as the Mg-15wt.%VCl3
mixture. Characterization of cryogenically milled Mg was performed and presented in the
next sections as needed. In addition, for comparison, a mixture of Mg-15wt.% VCl3 was milled
in similar conditions of time, agitation rate, etc., but at room temperature (i.e., not cryogenic
cooling). Hereafter that sample is named Mg-15wt.% VCl3-RT.

2.2. Hydriding and Dehydriding Reactions

Temperature-programmed hydriding (TPH), temperature-programmed dehydriding
(TPD), and isothermal hydriding/dehydriding experiments were carried out in a Sievert’s
type apparatus of our design and construction [40]. The apparatus combines the feature of
double (twin) lines (sample and reference) to eliminate small thermal effects on the reservoir
and sample-holder volumes, with a ∆p = ∆psample − ∆preference approach [40]. Hydriding
and dehydriding reactions were worked in pairs, i.e., in a cycle. Then, 0.3–0.5 g of samples
were transferred to/from the Sievert’s-type reactor without oxygen contact within a sample
holder with a closing (isolation) valve. Then, the system was purged by successive cycles
of evacuation and high-purity argon flushing. Calibration and operation details were
performed as reported elsewhere [40]. In brief, the calibration was performed to know the
total void volume of the sample holder. This is undertaken by expanding a high-purity
argon aliquot from the reservoir (well-known volume) to the sample holder (unknown
void volume) at a constant initial temperature. After data collection for calibration, the
argon was evacuated.

For the reference materials Mg and Mg-15wt.% VCl3-RT, an activation process was
needed before the first hydriding reaction. The activation was performed by heating from
room temperature up to 350 ◦C, 5 ◦C/min, in a dynamic vacuum for 2 h. After that, the
sample was cooled to room temperature and kept in a vacuum overnight until the next
hydriding experiment.

For TPH, the initial hydrogen pressure was fixed in the reservoirs and sample holders.
After that, the sample was heated to the test temperature with a heating ramp of 5 ◦C/min.
The TPH experiments were performed by heating up to 350 ◦C/26 bar or 350 ◦C/12 bar.
After hydriding, the sample holder was quickly cooled to room temperature. Then, the
remaining hydrogen was released and the pressure of the next TPD experiment was fixed.
TPD experiments were performed by heating up to 350 ◦C/0.8 bar hydrogen pressure. After
dehydriding experiments, the complete release of hydrogen from the sample was forced
by applying dynamic vacuum for 30 min at 350 ◦C. In this way, we ensured a completely
hydrogen-free material in the next experiment. One data set (pressure of reference, pressure
of sample, temperature of reservoirs, and temperature of the sample) was collected every
5 s and processed as reported elsewhere [40] to obtain hydrogen uptake/release in wt.%.
Data were processed as indicated in [40], and the hydrogen was treated as a real gas.

Isothermal hydriding and dehydriding experiments were performed by first calibrat-
ing the apparatus. Then, for hydriding experiments, the sample was heated to the test
temperature in the vacuum. After reaching a stable isothermal condition, the expansion of
a calculated aliquot of hydrogen from the reservoir into the sample holder was performed.
The hydriding experiments were performed at 50 ◦C, 100 ◦C, 150 ◦C, 200 ◦C, 250 ◦C, and
300 ◦C at 26 bar; or 320 ◦C/12 bar. After hydriding, the remaining hydrogen pressure was
released up to the testing pressure, the sample holder valve was closed, and the sample was
quickly heated to 350 ◦C (20 ◦C/min). Once 350 ◦C was reached, the sample holder valve
was opened. Dehydriding experiments were performed at 350 ◦C/0.8 bar, 350 ◦C/0.15 bar,
and 320 ◦C/1 bar. One data set was collected every 1 or 0.5 s during the isothermal hydrid-
ing/dehydriding reactions, i.e., it was adjusted accordingly to the observed kinetics. At the
end of dehydriding, the complete release of hydrogen was forced by applying dynamic
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vacuum for 30 min at 350 ◦C. Thus, we ensure a completely hydrogen-free material in the
next experiment.

Pressure-Composition Isotherms (PCI) were performed in an isorb-100 machine of
Quantachrome. Measurements of the isorb-100 machine of Quantachrome are based on
the difference in pressure between a reference and the sample holder. A sample of about
0.75 g of as-milled materials was transferred to the machine without air contact utilizing
a sample holder with an isolation valve. The calibration for void volume was performed
with ultrahigh purity helium. Once at stable isothermal conditions, hydriding reactions
were performed by a progressive increase (in about 25 steps) of the hydrogen pressure
from 0.01 to 20 bar. Dehydriding reactions were performed by a progressive decrease
(in about 25 steps) of the hydrogen pressure from 20 to 0.01 bar. PCI curves must be
performed in equilibrium conditions, this translates to long testing times for real-world
experiments. The equilibrium condition was assumed when the sample pressure presented
a variation smaller than 0.1 × 10−3 bar during 12 min, or a maximum time of 240 min
duration for each step. Reaching the equilibrium directed the change to the next step. The
rigorous equilibrium condition criteria directed the total time employed at each experiment,
normally between 4 and 6 days per whole hydriding/dehydriding curve. The experiments
were performed at 295 ◦C, 300 ◦C, and 315 ◦C. Each experiment was performed with fresh
samples of the same batch.

The hydrogen used during experiments (TPH, TPD, isothermal, and PCI) was of
chromatographic purity. All the reported pressures correspond to the absolute pressure
scale, 0.8 bar being the average atmospheric pressure in our location.

2.3. Physicochemical Characterization of the Materials

After TPH, TPD, isothermal hydriding/dehydriding, or PCI experiments, the sam-
ples were cooled down to room temperature and the remaining pressure was released.
Afterward, the samples were recovered and characterized.

Differential Scanning Calorimetry (DSC) experiments were performed using SETARAM®

SENSYS EVO equipment. Samples of about 5–10 mg of hydrided (at 350 ◦C, 26 bar, 4th
hydriding step) Mg-15wt.% VCl3 were placed in alumina crucibles and introduced into the
DSC apparatus. Next, 20 mL/min of ultra-high purity Argon was used as a carrier gas.
Heating ramps of 1, 5, and 10 ◦C/min were used in the tests. DSC data were extracted with
Calisto software V1. The DSC apparatus works under a protective argon atmosphere inside a
Vigor®-glove box (less than 10 ppm O2 and H2O).

X-ray diffraction (XRD) was performed in a D2 Phaser diffractometer of Bruker with a
Cu tube (Kα = 1.540598 Å). The powders were compacted in a dedicated sample holder and
covered with Kapton® tape for protection against ambient oxygen and moisture during
XRD data collection. Crystalline phase identification was performed with the help of
Match! Software V1 and crystallographic databases: Inorganic Crystal Structure Database-
Karlsruhe (ICSD) and Crystallography Open Database (COD).

SEM images of selected samples were collected in a JSM-IT300 microscope. Samples
were dispersed on carbon tape inside the argon glove box and transferred to the SEM
chamber minimizing the air exposure by using a glove bag. SEM images were obtained
with secondary and backscattered electrons with 20 kV of acceleration voltage. Elemental
mapping was performed by an SDD X-MaxN EDS detector of Oxford Instruments attached
to the microscope.

3. Results
3.1. Hydriding and Dehydriding Reactions of Cryogenically Milled Mg-15wt.% VCl3

Hydrogen storage in Mg typically requires an activation procedure to initiate the
hydrogen uptake [41]. The activation process normally involves heating in a vacuum
or in a hydrogen atmosphere. The activation process results in the fracture of parti-
cles, or at least, the formation of cracks that exposes non-oxidized surfaces and creates
paths for faster hydrogen access to “clean” Mg surfaces. For the Mg-15wt.% VCl3 ma-
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terial produced with cryogenic ball-milling, the activation process was not necessary.
The Mg-15wt.% VCl3 material started storing hydrogen as soon as it was exposed to
hydrogen. The hydrogen uptake can be considered fast, starting almost from the begin-
ning of the heating ramp and practically stopping after reaching 350 ◦C. The onset of
hydriding is located at about 49–54 ◦C (Figure 1a). The on-set onset is defined in our
research group at the point of reaching 0.1 wt.% hydrogen uptake or release in temperature-
programmed hydriding/dehydriding experiments. Considering the 15 wt.% of VCl3 added
to Mg, the maximum achievable hydrogen uptake by the formation of MgH2 is 6.46 wt.%;
V-hydrides are not considered. The Mg-15wt.% VCl3 mixture reached a hydrogen uptake of
6 wt.% in the third and fourth hydriding steps. A complement to the activation process is
hydriding/dehydriding cycling, normally a strong increase in kinetic or hydrogen storage
levels is expected. However, as Figure 1 indicates, no changes in kinetic upon cycling of
cryogenic Mg-15wt.% VCl3 was observed. Within the reproducibility of the test, a slight in-
crease compared to the very first hydriding step can be noticed upon cycling. Dehydriding
curves are presented in Figure 1b. Dehydriding of the cryomilled material Mg-15wt.% VCl3
occurred upon reaching 350 ◦C in this series of experiments. The dehydriding at 350 ◦C
and 0.8 bar absolute pressure is completed in about 20 min after reaching the isothermal
condition in TPD experiments.
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Figure 1. Hydriding/dehydriding cycles of cryogenically prepared Mg-15wt.% VCl3. (a) Hydriding
at 350 ◦C and 26 bar. (b) Dehydriding at 350 ◦C and 0.8 bar. 5 ◦C/min heating rate.

Isothermal hydriding at 350 ◦C was impossible to follow without uncertainty because
of its quickness, despite that the data collection ratio was increased up to 10 data sets each
second. Just a few fractions of a second after a hydrogen aliquot was introduced at 350 ◦C,
the reaction was running in full. From our experience with Mg-based hydrogen storage
materials, hydrogen uptake in this cryogenically prepared Mg-VCl3 mixture is remarkably
fast. Figure 2a presents the hydriding processes performed under isothermal (50–300 ◦C)
conditions and 26 bar. For the isothermal curves, hydrogen uptake levels and kinetics
improved with increasing temperature, being 5.6 wt.% hydrogen uptake after one hour at
300 ◦C, and 1.3 wt.% after two hours at 50 ◦C. Hydriding at 300, 250, and 200 ◦C completed
80% of their maximum hydrogen uptake in about 1, 3, and 14 min, respectively. For the
tests at 150, 100, and 50 ◦C, the experiments were stopped after 2 h. In those conditions, the
hydrogen uptake was 3.9, 3.0, and 1.3 wt.%, respectively. Hydriding kinetics were notably
slower at those temperatures.
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The kinetic models [42,43] known as surface reaction controlled (Equation (1)), Johnson–
Mehl–Avrami (JMA, Equation (2)), and contracting volume (CV, Equations (3) and (4)),
were used to fit the isothermal kinetics data, following the procedure in [42,43]:

α =
wt(t)

wt(max)
= kt, (1)

[−ln(1− α)]
1
n = kt, (2)

1− (1− α)
1
n = kt, (3)

1−
(

2α

3

)
− (1− α)

2
3 = kt. (4)

Equations (1)–(4) take the form y = mx, where α is the transformed fraction, wt(max) is
the maximum hydrogen uptake or release or the maximum theoretical hydrogen content,
wt(t) is the hydrogen uptake or release at a time t, k is the rate kinetic constant (obtained
from the slope, m), n (n = 2 or 3) depends on the dimensionality of the growth of the
new phase, and t is time. The three-dimensional diffusion-controlled growth model with
decreasing interface velocity, Equation (4), produced the best fit for all hydriding reactions
at different temperatures at the beginning of the reaction [42]. This model assumes that
nucleation starts at the surface of Mg and that H-diffusion across the transformed phase
(MgH2) is the rate-limiting mechanism [42]. However, as presented in Figure 2b, differences
between low-temperature (50, 100, and 150 ◦C) and high-temperature (200, 250, and 300 ◦C)
reactions were found. At any given temperature, a change in the kinetic mechanism with
increasing reaction time was observed. The change is very evident in the high-temperature
curves (Figure 2b), i.e., the model fits in the narrow time interval of the beginning of the
reaction. For the high-temperature experiments, the fitting interval is indicated by black
lines. For the low-temperature experiments, the fitting interval extends up to 30 min (not
shown). At longer reaction times (>30 min), no model fitted the experimental data [42,44].

The application of the kinetics models (Equations (1)–(4)) unravels only part of the
complexity of hydriding reactions; however, it is useful to extract values of the kinetic
constant. Table 1 presents the calculated k and the time interval of the best fit of the model.
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The results in Table 1 corroborated the increasing kinetics with temperature. The inset of
Figure 2b is the Arrhenius plot of ln(k) versus the inverse of temperature constructed with
the estimated k’s. The activation energy of the hydriding reaction calculated from the slope
is 63.8 ± 5.6 kJ/mol.

Table 1. Rate constant at different temperatures for the hydriding reaction of cryogenically prepared
Mg-15wt.% VCl3.

Temperature [◦C] Time Interval [min] k [s−1]

50 0–60 3.05 × 10−5

100 0–19 6.06 × 10−5

150 0–12 7.58 × 10−5

200 0–0.1 1.51 × 10−3

250 0–0.3 3.73 × 10−3

300 0–0.5 4.60 × 10−3

Figure 3 presents the isothermal dehydriding curves (350 ◦C and 0.8 bar absolute
pressure). In this case, after hydriding, the pressure was reduced to 0.8 bar (equalizing
to atmospheric pressure) and then the samples were quickly heated to 350 ◦C with the
isolation valve closed. Once under isothermal conditions, the isolation valve was opened.
Dehydriding reactions in such conditions of temperature and pressure are finished es-
sentially in 20 min. Application of the kinetic models proposed in [42] gave the best fit
with the two-dimensional JMA model (Equation (2), with n = 2). This indicates that the
nucleation of the new phase begins randomly in the bulk and at the surface of particles. An
example of the fitting process parameters is presented in Figure S1 of the supplementary
file. Equation (2), with n = 2, best fits the data in the 1–10 min period [42,44]. The kinetic
constants are presented in Table 2, but on average, k = 2.88 × 10−3 s−1.
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Figure 3. Isothermal dehydriding of cryogenically prepared Mg-15wt.% VCl3, previously hydrided
at the indicated temperature. All dehydrogenations at 350 ◦C and 0.8 bar.

An additional isothermal hydriding/dehydriding cycle at 320 ◦C, 12 bar and 1 bar,
respectively, is presented in Figure 4a,b. The isothermal cycle in that particular condition
was performed to compare to a published report of Mg-5wt.% VCl3 milled in hydrogen [29].
The work in [29] is the closest report to our work due to the use of Mg as a precur-
sor [29]. The reversible hydrogen storage level was 5.2 wt.% in the isothermal cycle of
Figure 4a. Hydrogen storage level at 12 bar is quite similar to the isothermal experiment at
300 ◦C/26 bar presented above, but lower than at 350 ◦C/26 bar. Dehydriding reaction is
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presented in Figure 4b. For comparison, isothermal dehydriding at 350 ◦C/0.8 bar (red
line of Figure 3) and at 350 ◦C/0.15 bar (from another previous hydriding at 350 ◦C/12 bar,
light-pink curves) are included. The curves indicate the dependency on pressure and
temperature of dehydriding. As expected, at lower pressure the dehydriding reactions are
quicker. Furthermore, 0.15 bar absolute pressure, in practical terms, requires operation
under a certain vacuum level. Still, many reported works utilize such low pressures, for ex-
ample in [15,30,45]. Dehydriding at 320 ◦C/1 bar constitutes a bit more practical operation
conditions. Under such conditions, dehydriding takes about 70 min to complete.

Table 2. The rate constants for the dehydriding reaction of cryogenically prepared Mg-15wt.% VCl3
at 350 ◦C and 0.8 bar absolute pressure.

Previous Hydriding Temperature [◦C] k [s−1] of Dehydriding at 350 ◦C, 0.8 Bar

50 4.98 × 10−3

100 3.14 × 10−3

150 2.50 × 10−3

200 2.24 × 10−3

250 2.38 × 10−3

300 2.05 × 10−3
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Figure 5 presents the results of PCI experiments in a relatively narrow temperature
range (295–315 ◦C). At 300 ◦C, the calculated equilibrium pressure (Equation (5)) of pure Mg
ranges between 1.81 bar (for ∆H0

f (MgH2) =−74.6 kJ/mol and ∆S0 (H2) = 135 J/mol*K [46])
and 0.71 bar (for ∆H0

f (MgH2) = −76.15 kJ/mol and ∆S0 (H2) = 130 J/mol*K [47]).

ln

(
peq

p0
eq

)
= −

∆H0
f (MgH2)

RT
+

∆S0
(H2)

T
(5)
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Figure 5. PCI experiments at different temperatures of cryogenically prepared Mg-15wt.% VCl3
(shown in absolute pressure). Insets: hydriding and dehydriding equilibrium pressures versus 1/T
for estimation of the hydriding and dehydriding enthalpies and entropies.

The experimental hydriding equilibrium pressure of Mg-15wt.% VCl3 was located
at 1.34 bar at 300 ◦C. Meanwhile, the dehydriding equilibrium pressure at the same tem-
perature was 1.22 bar. For the rest of the hydriding and dehydriding reactions, the values
are 1.93 bar and 1.79 at 315 ◦C; and 1.15 bar and 1.02 bar at 295 ◦C; respectively. These
values indicate a relatively small hysteresis in the hydriding/dehydriding reactions of
cryogenically milled Mg-15wt.%VCl3. The insets of Figure 5 are the plots of the ln(peq)
versus the inverse of temperature for the hydriding and dehydriding reactions. Hydriding
and dehydriding enthalpies and entropies were obtained from the slope and the inter-
cept of the linear fit of experimental equilibrium data and Equation (5). The values are
−70.69 ± 3.08 kJ/mol H2 and −76.47 ± 5.71 kJ/mol H2, for hydriding and dehydriding en-
thalpies, respectively. Meanwhile, the hydriding and dehydriding entropies were estimated
as 125.7 ± 5.3 J/mol*K and 134.9 ± 9.9 J/mol*K, respectively. However, the calculation of
hydriding reaction enthalpy can be influenced by the fact that the hydriding PCI curves
were constructed with few data points. The calculation from the dehydriding reaction
is more reliable. Still, the calculated hydriding equilibrium pressures correlate well with
the expected Mg/MgH2 equilibrium. The equilibrium pressures and the enthalpy values
indicate a slight effect of the addition of VCl3 on the fundamental thermodynamics of the
Mg/MgH2 system. Reported values of equilibrium pressures of MgH2-VCl3 are a bit higher
than those encountered for our Mg-15wt.%VCl3 material: at 300 ◦C, da Conceicão et al.
reported PCI plots of MgH2-7wt.% VCl3, where a hydriding equilibrium pressure of about
1.8 bar can be read [30]. For its part, Liang et al. reported a hydriding equilibrium pressure
of about 1.9 bar for MgH2-5at.% V at 300 ◦C [45]. Malke et al., for a series of mixtures
of MgH2 with transition metal halides (7 wt.%, mainly fluorides), reported a hydriding
equilibrium pressure at about 1.5–1.6 bar at 300 ◦C [16].

Dehydriding was also studied by DSC (Figure 6). DSC experiments confirm the high
temperature required for dehydriding the cryogenically prepared Mg-15wt.% VCl3. At a
1 ◦C/min heating rate, the dehydriding peak temperature was 314 ◦C with an onset at
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about 280 ◦C. Application of the Kissinger method [48,49] (inset of Figure 6, Equation (6))
allows the obtention of the activation energy.

ln

(
β

T2
p

)
= ln

(
A ∗ R

Ea

)
− Ea

RTp
(6)

In Equation (6) β is the heating rate, Tp is the dehydriding peak temperature, A is a
pre-exponential factor and Ea is the activation energy. A dehydriding activation energy
of 123.11 ± 0.61 kJ/mol H2 was obtained from the slope of the linear fitting of the inset
of Figure 6. This value is similar to other values of activation energies reported for MgH2
mixtures (more details in the Discussion section). This indicates that the added VCl3 has a
small effect on the dehydriding reaction of hydrided Mg-15wt.% VCl3.
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Figure 6. DSC trace of the dehydriding reaction of cryogenically prepared Mg-15wt.% VCl3 hydrided
at 350 ◦C/26 bar. Inset: Application of the Kissinger method for estimation of the dehydriding
activation energy.

3.2. Hydriding and Dehydriding Reactions of Pure, Cryogenically Milled Mg and
Mg-15wt.% VCl3-RT

From published papers and our own experience, milling pure Mg without additives
(including H2 in reactive milling) at room temperature is dominated by cold-welding [50–52].
Proper cryomilling conditions can reduce cold welding. Additionally, it is well established that
achieving hydrogen uptake from pure Mg in moderate conditions of pressure is difficult [53].
Figure 7a,b presents a few hydriding/dehydriding cycles of pure Mg milled in cryogenic
conditions. The first hydriding reaction was marked by a prolonged incubation period of
almost 6 h, followed by slow hydriding kinetics, Figure 7a. This response is very much in
common with other Mg/MgH2 reported samples prepared by mechanical milling at room
temperature [51,52]. However, the kinetics of the second and third hydriding reactions were
quite improved. A complement to the activation process described in the experimental section
is hydriding/dehydriding cycling, as observed in this round of experiments. The hydrogen
uptake levels of the second and third hydriding reactions are comparable to the first hydriding
of Mg milled for 46 h at cryogenic conditions as reported elsewhere [54]. The second and
third hydriding presented an onset temperature of 215 ◦C and 203 ◦C, respectively. However,
upon cycling, a small reduction of the hydriding level can be observed (from 7.4 to 7.0 wt.%);
this is due to the incomplete dehydriding reaction, Figure 7b. Interestingly, dehydriding
reactions are quite similar, i.e., no noticeable effects of activation and cycling were observed on
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hydriding reactions. Furthermore, 0.1 wt.% of hydrogen release at 0.8 bar hydrogen pressure
occurred after reaching 350 ◦C, after 77 min in the first dehydriding.

Materials 2023, 16, x FOR PEER REVIEW 11 of 21 
 

 

Figure 7c,d presents a mixture of Mg and VCl3 milled at the same conditions of ma-

terials proportion, time, pauses, agitation, etc., as the cryogenic material but a room tem-

perature; i.e., the Mg-15wt.% VCl3-RT. This material required activation and cycling to 

improve hydriding kinetics and hydrogen storage level. A clear improvement of the hy-

driding kinetics was observed in the second cycle. However, the hydrogen uptake was 

only about 5.2–5.4 wt.%. This value is lower than the values obtained for the cryogenic 

mixture of Mg and VCl3. Additionally, the VCl3 and room-temperature ball milling have 

a small effect on the dehydriding reaction. The results presented in this section illustrate 

the beneficial effects of cryogenic milling on hydriding properties of Mg. In addition, they 

help to understand the effect of VCl3 on cryogenically milled Mg: VCl3 reduced incubation 

times and improved the kinetics of both hydriding and dehydriding reactions. 

0 60 120 180 240 300 360 420 480

50

100

150

200

250

300

350

 Temperature

  1st hydriding

 2nd hydriding

 3rd hydriding

Time [min]

T
e
m

p
e

ra
tu

re
 [

°C
]

Mg-cryo

0

1

2

3

4

5

6

7

H
y
d

ro
g

e
n

 u
p

ta
k
e

 [
w

t.
%

]

 

0 60 120 180

50

100

150

200

250

300

350

Mg-cryo

 Temperature

   1st dehydriding

  2nd dehydriding

  3rd dehydriding

Time [min]

T
e
m

p
e

ra
tu

re
 [

°C
]

-7

-6

-5

-4

-3

-2

-1

0

 H
y
d

ro
g
e

n
 r

e
le

a
s
e
 [

w
t.

%
]

 

(a) (b) 

0 30 60 90

0

50

100

150

200

250

300

350

 Temperature

 1st  hydriding

 2nd hydriding

 3rd hydriding

Time [min]

T
e
m

p
e

ra
tu

re
 [

°C
]

0

1

2

3

4

5

6

Mg-15wt.% VCl3-RT

 H
y
d

ro
g
e

n
 u

p
ta

k
e
 [

w
t.

%
]

 

0 20 40 60 80

0

50

100

150

200

250

300

350 Mg-15wt.% VCl3-RT

 Temperature

 1st dehydriding

 2nd dehydriding

 3rd dehydriding

Time [min]

T
e
m

p
e

ra
tu

re
 [

°C
]

-6

-5

-4

-3

-2

-1

0

 H
y
d

ro
g
e

n
 r

e
le

a
s
e
 [

w
t.

%
]

 

(c) (d)  

Figure 7. (a) Hydriding/(b) dehydriding cycles of cryogenically milled Mg. (c) Hydriding/(d) dehy-

driding cycles of Mg-15wt.%-RT (milled at room temperature). Hydriding at 26 bar hydrogen pres-

sure. Dehydriding at 0.8 bar hydrogen pressure. 

3.3. Characterization of As-Milled, Hydrided, and Dehydrided Materials 

Mg is a ductile material, difficult to mill without grinding additives [51,55]. However, 

cryogenic temperatures induces less ductility in materials and, in principle, fracturing 

may dominate over cold welding [35]. Figure 8 presents SEM images of the as-milled and 

hydrided Mg-15wt.% VCl3. As mentioned in the experimental section, the starting size of 
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Figure 7c,d presents a mixture of Mg and VCl3 milled at the same conditions of
materials proportion, time, pauses, agitation, etc., as the cryogenic material but a room
temperature; i.e., the Mg-15wt.% VCl3-RT. This material required activation and cycling
to improve hydriding kinetics and hydrogen storage level. A clear improvement of the
hydriding kinetics was observed in the second cycle. However, the hydrogen uptake was
only about 5.2–5.4 wt.%. This value is lower than the values obtained for the cryogenic
mixture of Mg and VCl3. Additionally, the VCl3 and room-temperature ball milling have
a small effect on the dehydriding reaction. The results presented in this section illustrate
the beneficial effects of cryogenic milling on hydriding properties of Mg. In addition, they
help to understand the effect of VCl3 on cryogenically milled Mg: VCl3 reduced incubation
times and improved the kinetics of both hydriding and dehydriding reactions.

3.3. Characterization of As-Milled, Hydrided, and Dehydrided Materials

Mg is a ductile material, difficult to mill without grinding additives [51,55]. However,
cryogenic temperatures induces less ductility in materials and, in principle, fracturing
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may dominate over cold welding [35]. Figure 8 presents SEM images of the as-milled
and hydrided Mg-15wt.% VCl3. As mentioned in the experimental section, the starting
size of the purchased Mg powders was quoted as −325 mesh (<44 µm); however, the
initial material has a maximum particle size of about 200 µm and is of irregular shape
(Figure S2, Supplementary File). In the cryogenically milled Mg-15wt.% VCl3 material,
Figure 8a, a flattening of the particles occurred during milling; the final morphology after
1 h of cryomilling is similar to “corn flakes”. This indicates that Mg is a ductile mate-
rial even at cryogenic temperatures. The length of most as-milled particles is between
50 and 100 µm, but some of them extended up to 200 µm (Figure S3, Supplementary File).
The arrows in Figure 8a indicate some of the measurement sites for the thickness of the
flakes. Tilted particles were not taken into account for the estimation of thickness. We
estimated the thickness of the flakes between 2.5 and 5.0 µm. In comparison, the original
powders (Figure S2, Supplementary File) had an initial thickness of roughly 15–30 µm. The
SEM images presented in Figure 8 and the Supplementary File demonstrate a reduction
in particle thickness that allows for a shorter diffusion pathway. Elemental mapping of
Mg-15wt.% VCl3 (Figure S4, Supplementary File) demonstrated a good dispersion of VCl3
onto Mg particles. Additionally, SEM images in Figure 8 reveal surface charging, which
suggests the presence of non-conductive phases such as MgO or Mg(OH)2. Non-conductive
phases are usually more brittle and therefore easier to downsize by cryogenic ball-milling.
The presence of MgO or Mg(OH)2 can decrease the hydrogen uptake and can explain part
of the “missing” 0.46 wt.% in the achieved hydrogen storage capacity (6 wt.%, Figure 1)
versus the maximum expected value (6.46 wt.%).
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The Mg powders milled in cryogenic conditions produced a mixture of globular particles
with some flakes of about 100 µm (Figure S5, Supplementary File). Therefore, VCl3 acts both
as a grinding additive and as a catalyst for the hydriding reaction of Mg. Other transition
metal halides, NbF3 and FeF3 (2 mol%), were recognized as efficient grinding additives
(3 h cryomilling) when added to pure MgH2 [10]. From our experience, the micro-flaked
morphology of as-milled Mg-15wt.% VCl3 is quite peculiar. Comparison with other Mg-
based materials is difficult because of the different precursors (MgH2 vs. Mg) and milling
conditions (room temperature vs. cryogenic) or the presence of other co-catalysts. Still, upon
room-temperature milling, the partial production of Mg flakes was reported under particular
milling conditions [55]; otherwise, other morphologies were obtained. For example, MgH2-
VCl3 processed by room-temperature milling produced globular particles with high surface
rugosity [26]. Other reports of room-temperature milled MgH2-VCl3, unfortunately, did not
include SEM images. SEM images of cryogenically prepared Mg-mixtures also are scarce.
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Floriano et al., included SEM images of MgH2 milled with iron or niobium compounds in
cryogenic conditions, and showed the formation of granular particles with bimodal size of
dispersions, 10–25 µm and 0.25–0.3 µm [10]. Another reference to cryomilling of Mg involved
a Mg-Fe mixture, where the resulting quasi-spherical particles were of smaller size than their
counterparts produced by room-temperature planetary milling [35]. Comparing these reports
and the results presented here, we conclude that the milling time, the starting material Mg
(vs. MgH2), the use of cryogenic milling, and the VCl3 addition played an important role in
the size and morphology of the products.

Figure 8b presents an SEM image of hydrided Mg-15wt.% VCl3. The hydrided ma-
terial corresponds to the fourth hydriding reaction of Figure 1a. Changes in morphology
upon hydriding/dehydriding reactions are complex. On one side, fragmentation of the
original Mg particles occurs due to the expansion/contraction of the crystalline cell during
hydriding/dehydriding cycling. On the other side, agglomeration of the smaller particles
can be observed in Figure S6, Supplementary File. Agglomeration makes it difficult to
obtain a precise estimation of individual particle sizes. Still, the shape and size of some of
the original Mg-15wt.% VCl3 particles seem to remain in the cycled flakes (green oval in
Figure 8b). The formation of dendritic material at the surface of the flakes (yellow oval in
Figure 8b) during cycling is interesting. Elemental mapping of cycled material is presented
in Figure S7, Supplementary File; a good dispersion of VCl3 onto Mg is observed.

Figure 9 presents the X-ray diffraction characterization at several stages (as-milled,
hydrided, dehydrided) of Mg-15wt.% VCl3. The first observations are the presence of the
peaks of the Kapton film between 10 and 25◦ and the strong background common to all
samples, also due to the Kapton. The X-ray diffraction pattern of as-received Mg (Figure 9a)
was included for comparison. The peaks of Kapton film can be used as a visual reference
for the changes in relative intensities of the diffraction peaks. The first characteristic to
mention of the as-milled Mg-15wt.% VCl3 (Figure 9b) is the change in relative intensities
of some peaks. In the as-milled mixture, the Mg (100), (101), and (110) hkl peaks (32.18◦,
36.61◦, and 57.37◦, respectively) are less intense than expected for a powder without texture
(ICSD-642651). Meanwhile, Mg (002), at 34.39◦, presented higher than expected intensity,
as frequently reported in plastically deformed Mg alloys [55]. These characteristics are not
observed in pure, cryogenically milled Mg (Figure S8, Supplementary File). In Mg-15wt.%
VCl3, the texture can be attributed to the flat shape of the particles that induce a preferential
orientation during the compaction of the powders for XRD data collection. Additionally,
the VCl3 peaks are missing (see Figure S9, Supplementary File, for XRD of the original VCl3
powders). In our experience, VCl3 easily amorphizes by ball-milling, even in cryogenic
mode, and this would explain the lack of the corresponding XRD peaks. The cryogenically
milled Mg-15wt.% VCl3 is a fine mixture of Mg microflakes and non-crystalline VCl3.

The X-ray diffraction pattern of hydrided Mg-15wt.% VCl3 material is presented in
Figure 9c. This material corresponds to the fourth hydriding step of Figure 1a. The hydriding
conditions lead to an almost complete transformation to MgH2, with a minor presence of
unreacted Mg. Additionally, the emergence of an unidentified minor peak was observed.
We revised the possible match of that peak to the expected XRD patterns of MgCl2, VCl2, or
V-hydrides, without positive identification. Figure 9d presents the XRD patterns of cycled
materials corresponding to the hydriding/dehydriding isothermal cycling in Figures 2 and 3.
The material after isothermal cycling was not forced to dehydride before XRD data collection;
this is a partially dehydrided material. First to mention is that the Mg texture found in the XRD
pattern after cryogenic ball-milling disappeared after cycling, with the peak intensities being
now as expected from randomly oriented Mg particles. Additionally, the relative intensity
of Mg peaks versus Kapton peaks diminished after cycling (more clearly observable in the
extensively cycled material, Figure 9e). A slight broadening of the diffraction peaks was also
registered. This suggests the reduction of crystallite size by the effect of the fracturing of
particles/crystals during cycling. Next to mention is the presence of a broad peak at about
43◦ in 2theta, which is consistent with the formation of some amount of MgO by the effect
of heating in the presence of impurities in the hydrogen gas, and/or the decomposition of
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superficial Mg(OH)2. Figure 9e presents the XRD pattern of an extensively PCI cycled material
(additionally to the number of PCI cycles presented in Figure 5). The material of Figure 9e
confirmed the reduction of the peak intensity and a slight increase in width of Mg diffraction
peaks compared to the as-milled material.
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4. Discussion
4.1. Remarks on Cryogenic Milling and Amount of Added VCl3

Cryogenic ball milling produced interesting hydriding behavior on pure Mg. The acti-
vation towards MgH2 formation was relatively easy and comparable with other materials
produced with long milling times in cryogenic conditions [54]. For a given mill and ball
size, factors such as the ball-to-powder ratio, the agitation rate of the vial (25 Hz), and
milling/pause time play an important role in the energy transferred to the milled powders.
The addition of VCl3 facilitated the activation, drastically reducing the incubation time
of hydriding and dehydriding reactions, and allowing hydriding at low temperatures.
However, the “price” to pay is the reduction of hydrogen storage capacity. Thus, further
optimization of the amount of VCl3 is needed. Up to now, the published reports do not
show a clear improvement with increasing additions of VCl3 (from 5 wt.% to 23.9 wt.%, i.e.,
up to 5 mol%, Table 3) [25,26,29–31]. Table 3 collects the reported results on mixtures of Mg
or MgH2 with VCl3.
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Table 3. Comparison of material composition, preparation, hydrogen uptake and release, and dehydriding temperature of reported Mg/MgH2-VCl3 and other mixtures.

Material, Theoretical Hydrogen Content [wt.%], and
Highlights of Preparation Ref. Hydrogen Uptake [wt.%] Hydrogen Release [wt.%] Peak Dehydriding Temperature [◦C]

and Conditions

Mg-5 wt.% VCl3
7.22

milled in hydrogen
[29]

3.37 wt.% at 2.5 min
6.36 wt.% at 60 min

320 ◦C, 12 bar, isothermic.

0.12 wt.% at 2.5 min
4.54 wt.% at 60 min 320 ◦C, 1 bar,

isothermic.
Not reported

Mg-15 wt.% VCl3
6.46

1 h cryomilling

This
work

5.19 wt.% at 2.5 min
5.6 wt.% at 60 min

300 ◦C, 26 bar, isothermic.

0.95 wt.% at 2.5 min
5.34 wt.% at 20 min 350 ◦C, 0.8 bar,

isothermic. 314 ◦C, 1 ◦C/min, DSC
1.26 wt.% at 2.5 min
5.3 wt.% at 60 min

320 ◦C, 12 bar, isothermic.

0.03 wt.% at 2.5 min
5.07 wt.% at 60 min 320 ◦C, 1 bar,

isothermic.
MgH2-14 wt.% VCl3

6.53
1 h milling in argon

[25] Not reported Not reported ~310 ◦C *, 5 ◦C/min, TPD

MgH2-7 wt.% VCl3
7.06

1 h milling in argon
[25] Not reported Not reported ~305 ◦C *, 5 ◦C/min, TPD

278 ◦C, 5 ◦C/min, DSC

MgH2-5 wt.% VCl3
7.22

Planetary ball milling
[26] ~7.0 wt.% *

100 ◦C, 20 bar, 60 min, isothermic
~7.0 wt.% *

TG-DSC
No kinetics study

~275 ◦C, 1 ◦C/min,
TG-DSC

MgH2-7 wt.%VCl3
7.06

Pre-milled in H2 at 2 bar for 24 h. Then milled for
20 min with the additive.

[30]
~6.5 wt.% *

350 ◦C, 10 bar, 30 min
Isothermic

~6.2 wt.% *
350 ◦C, 0.1 bar (vacuum), 14 min

Isothermic
~375 ◦C

DSC

MgH2-5mol% VCl3 (i.e., 23.9 wt.% VCl3)
5.78 [31]

wt.% not reported
270 and 320 ◦C,

100–150 bar
In-situ SR-PXD

wt.% not reported
270 and 320 ◦C, dynamic vacuum

In-situ SR-PXD
Not reported

MgH2-10 wt.% NiCl2
2 h ball milled [14] ~6.1 wt.% *

350 ◦C, 20 bar, 5 min, isothermic
~6.1 wt.% *

0.01 bar (vacuum), TPD Not reported

MgH2-4mol% TiCl3 (i.e., 19.6 wt.% TiCl3)
10 h milling in argon [56,57] ~5.1 wt.% *

300 ◦C, 20 bar, 1 min, isothermic
~3.8 wt.% *

280 ◦C, 0.1 bar (vacuum), 25 min,
isothermic

Not reported

MgH2-5 wt.% NbCl5
milled in H2 at 2 bar for 24 h. [58] ~6.4 wt.% *

350 ◦C, 10 bar, 15 min, isothermic
~6.4 wt.% *

350 ◦C, 0.1 bar (vacuum), 6 min,
isothermic

~375 ◦C
DSC

* As read from plots.
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4.2. Other Reported Mg/MgH2-VCl3 Mixtures

A direct comparison of the kinetics and the amount of hydrogen storage of our Mg-
15wt.% VCl3 material versus published reports is difficult. Different conditions regarding
the precursors (Mg vs MgH2), amount of VCl3, sample preparation, and testing conditions
can influence the results. Even more, with the same material but different characterization
techniques, different results were reported (Table 3, ref. [25]).

Based on our experience, mixtures starting with Mg can present a more challenging
activation or reduced hydriding/dehydriding kinetics as compared to mixtures starting
from MgH2. The work of Song et al. [29] is similar to ours due to their use of Mg as
the precursor. The differences between our work and Song et al’s. [29] is in the use of
cryomilling versus reactive milling in hydrogen and the amount of VCl3 addition. The
last factor affected the maximum theoretical uptake: 6.46 wt.% here and 7.22 wt.% in
ref. [29]. We use in Table 3 the same time-markers as Song et al. [29], i.e., hydriding and
dehydriding levels at 2.5 and 60 min. In both works, the hydriding and dehydriding levels
are more or less comparable, considering the corresponding experimental conditions of P
and T. Hydriding kinetics is faster in our cryogenically prepared Mg-15wt.% VCl3 material.
The dehydriding reaction started faster in the work of Song et al. [29], but by the end
of the experiment (60 min), our cryogenically milled material desorbed more hydrogen.
Due to safety concerns in reactive milling in hydrogen atmosphere, we recommend using
instead cryogenic ball-milling of Mg. Among the materials that used MgH2 as MgH2-5
wt.% VCl3 precursor stands out as produced by Kumar et al. [26]. However, no detailed
data on dehydriding kinetics were presented by these authors. Finally, Table 3 presents
three outstanding reported materials: MgH2/NiCl3, MgH2/TiCl3, and MgH2/NbCl5 to
have an idea of the performance of other transition metal chlorides used as accelerators
of hydriding/dehydring of MgH2. A direct comparison is not an easy task due to the
differences in precursor, milling conditions, and quantity of the transition metal chloride
added. Optimization of the milling process and quantity of VCl3 must be performed in
further work. Still, the use of VCl3 as a hydriding/dehydriding accelerator can be another
viable option for catalyzing the hydriding/dehydriding reactions of Mg/MgH2.

4.3. Hydriding Activation Energy

Table 4 compares data on hydriding activation energy from pure Mg and our Mg-
15wt.% VCl3 material. An important reduction in the hydriding activation energy has
occurred for the cryogenically milled Mg-15wt.% VCl3. As mentioned before, the cryo-
genically milled Mg-15wt.% VCl3 exhibits fast kinetics in the different tested conditions
of pressure and temperature. Fast kinetics is a good characteristic of any Mg-based
material [59]. In our case, fast kinetics is the result of the favorable activation energy.

Table 4. The activation energy of the hydriding reaction.

Material Ea [kJ/mol H2] Reference

Mg 90 ± 10 [60]
95–130 [61]

Mg-15wt.% VCl3 63.8 ± 5.6 This work

4.4. Dehydriding Activation Energy

Hydriding activation energy data (Table 4) are scarcer than dehydriding activation energy
data (Table 5) because MgH2 is more frequently used as a starting material than Mg, and
because of the interest in finding softer conditions for hydrogen release. However, reported
values of activation energy for the dehydriding reaction are very dispersed, perhaps because
of the different conditions of materials processing (materials history), and experimental
conditions of data collection for activation energy determination. In Table 5 we collected
relevant data reported on the dehydriding reaction in MgH2-based materials. The dehydriding
activation energy of the cryogenically milled and hydrided Mg-15wt.% VCl3 is lower than
that of pure MgH2. The dehydriding activation energy reported here is similar to that of
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MgH2 containing other transition metal chlorides (including a MgH2 -VCl3 mixture from
Ref [26], NiCl2, TiCl3 and NbCl5). In addition it is higher than other V or VCl3-added MgH2
materials [25,30,45]. Among the data collected in Table 5, there is no clear trend between the
VCl3 addition level, particle size, milling conditions, and activation energy.

Table 5. Activation energy of dehydriding reaction.

Material Relevant Conditions of Materials Preparation Ea [kJ/mol H2] Reference

MgH2 Not milled 240 [25]
MgH2 Commercial (not milled) 195.3 ± 10 [62]
MgH2 Not milled 156 [63]
MgH2 Particle size 45 µm 160 ± 10 [60,61]
MgH2 2 h ball milled 158.5 [14]

Mg-15wt.% VCl3 Cryogenic ball milling (2.5–5 µm thickness) 123.11 ± 0.61 This work
MgH2-5wt.% VCl3 Planetary ball milling, 2 h, particle size < 10 µm 122 ± 5 [26]

MgH2-10wt.% CoCl2 2 h ball milled 121.3 [14]
MgH2-10wt.% NiCl2 2 h ball milled 102.6 [14]
MgH2-7wt.% TiCl3 1 h milling in argon 97 [25]

MgH2-5wt.% NbCl5 24 h reactive-milling in 2 bar H2 98 [58]
MgH2-7wt.% VCl3 1 h milling in argon 96–97 [25]

MgH2-5 at.% V
(9.2 wt.% V) 20 h milling, particle size < 5 µm 62 [45]

MgH2-7wt.% VCl3
Pre-milled in H2 at 2 bar for 24 h. Then milled for 20 min

with the additive. 47 [30]

4.5. Reason for Improved Hydriding Kinetics

In an interesting report, Ma et al. proposed the occurrence of Ti-F-Mg interactions in
TiF3-doped MgH2 as the cause for improved kinetics of MgH2 [56]. However, a similarly
produced TiCl3-doped MgH2 did not show such kind of interactions (Ti-Cl-Mg) [56].
However, Mg and Ti interaction with Cl can be expected because the TiCl3-doped MgH2
also showed an improvement compared to Mg alone. An example of another interaction
between a catalyst and Mg is the efficient Nb2O5 catalyst interacting with Mg to form
MgNbxOy species [59,64]. In the present work, we proposed a V-Cl-Mg interaction
as being responsible for the improvement in hydriding/dehydriding kinetics in our
Mg-15wt.% VCl3 material. We are performing further work to unravel properly the kind
of interactions on the system Mg-15wt.% VCl3, but a strong dependency on the oxidation
state of V can be anticipated.

On the other hand, the reaction between MgH2 and the additives has been frequently
reported. Kumar et al. indicated the thermodynamic feasibility of the reaction between
MgH2 and VCl3 even at room temperature [26]:

VCl3 + 1.5MgH2 → 1.5MgCl2 + V + 1.5 H2, ∆Gr = −322.24 kJ/mol (7)

However, despite their thermodynamic feasibility, neither MgCl2 nor V was detected
by XRD. Thus, the occurrence of Equation (7) in our system is limited. We also discard the
reaction between Mg and V (Equation (8)) during cryomilling or heating, because of the
lack of VCl2 detection by XRD.

VCl3 + Mg→MgCl2 + 0.5VCl2 + 0.5V, (8)

At near room temperatures and moderate pressures, V can form several hydrides
(V2H, VH, VH2, and non-stoichiometric hydrides) [65–67]. The equilibrium pressure
of VH2 formation is reported to be 3–5 bar at low temperatures (room-temperature to
~100 ◦C) [65–67]. Additionally, the equilibrium pressure of V-hydrides can be modified by
alloying [67]. In the present work, the formation of V-hydrides was not confirmed by XRD.
Additionally, no indications of another equilibrium plateau, besides the one of Mg/MgH2,
are observable in the PCI curves. The occurrence of V-hydrides would be linked to the
occurrence of reactions (7) and (8).
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5. Conclusions

Cryogenically prepared mixtures of Mg-15wt.% VCl3 were tested for hydrogen storage
purposes. Cryogenic milling and the use of VCl3 as an additive produced an uncommon
morphology of the as-milled powders. The milled material is a fine mixture of components.
The Mg-15wt.% VCl3 demonstrated easy hydrogen uptake even at low temperatures
because of a reduction of the activation energy of the hydriding reaction, as compared
to reported data on pure Mg. The activation energy of the dehydriding reaction also
diminished as compared to pure Mg. However, the complete dehydriding reaction occurred
only at high temperatures (300–350 ◦C) at 1 bar hydrogen pressure. Kinetics models point
to the diffusion of hydrogen atoms as the main factor affecting the hydriding reaction. The
cryogenic ball-milling opens the way for a preparation procedure that can be applied to
other combinations of Mg and transition metal salts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16062526/s1, Figure S1. Application of the kinetic models
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