
0-89791-993-9/97 $10.00 1997 IEEE

Fast Identification of Untestable Delay Faults Using Implications∗

Keerthi Heragu Vishwani D. Agrawal
Janak H. Patel Bell Labs, Lucent Technologies

Center for Reliable and High-Performance Computing 700 Mountain Avenue

University of Illinois at Urbana-Champaign, Urbana, IL 61801 Murray Hill, NJ 07974

heragu@crhc.uiuc.edu, patel@crhc.uiuc.edu va@research.bell-labs.com

Abstract
We propose a novel algorithm to rapidly identify

untestable delay faults using pre-computed static logic
implications. Our fault-independent analysis identifies
large sets of untestable faults, if any, without enumerat-
ing them. The cardinalities of these sets are obtained by
using a counting algorithm that has quadratic complex-
ity in the number of lines. Since our method is based on
an incomplete set of logic implications, it gives only a
lower bound on the number of untestable faults. A post-
processing step can list the untestable faults, if desired.
Targeting untestable delay faults for test generation by
an automatic test pattern generation (ATPG) tool can
be avoided. The method works for the segment delay
fault model and its special case, the path delay fault
model, and identifies robustly untestable, non-robustly
untestable, and functionally unsensitizable delay faults.
Results on benchmark circuits show that many delay
faults are identified as untestable in a very short time.
For the benchmark circuit c6288, our algorithm identi-
fied 1.978× 1020 functionally unsensitizable path faults
in 3 CPU seconds.

1 Introduction
Physical defects that cause timing violations are

modeled by delay faults at the logic level. Path delay
faults [1, 2] model defects that cause cumulative prop-
agation delays along paths to exceed specified limits.
Segment delay faults [3, 4] model defects on segments,
whose length L can be as small as 1 or as large as the
maximum logic depth.

It is known that ATPG algorithms spend most of
their time in generating tests for hard-to-detect faults
or in trying to prove that a fault is untestable. This
makes it very attractive to explore techniques that iden-
tify untestable faults quickly so that they need not be
targeted by an ATPG tool. An estimate of the number

∗This research was supported in part by Semiconductor Re-
search Corporation under contract SRC 96-DP-109, in part
by ARPA under contract DABT63-96-C-0069, and in part by
Hewlett-Packard under an equipment grant.

of untestable faults can be used during the design phase
to obtain a quick and approximate idea of the testa-
bility of a circuit. A lot of research has been done in
the area of identifying untestable stuck-at-faults. While
most of the algorithms are ATPG-based [5, 6], some
use fault-independent techniques [7, 8], based on logic
implications [9, 10], to identify untestable faults. Pre-
vious algorithms for identifying untestable path delay
faults are ATPG-based and they involve identifying un-
sensitizable segments [11, 12]. Explicit enumeration of
all path faults that pass through arbitrary unsensitiz-
able segments is prohibitively complex for circuits with
a large number of delay faults [11]. The runtime be-
comes lower when specific segments are used [12].

We propose a novel algorithm to identify untestable
delay faults using pre-computed static logic implica-
tions. Using logic implications of both value assign-
ments (0 and 1), at each line g, we perform a fault-
independent analysis to identify a set of lines S, such
that every fault passing through g and {m : m∈ S} is
untestable with respect to some combination of signal
values. Information about stuck-fault redundancies and
constant logic values, generated from static logic impli-
cations, can also be used in our analysis. We propose
a non-enumerative counting technique, based on previ-
ously published algorithms [13, 3], that uses information
gathered from our implication analysis and computes a
lower bound on the number of untestable delay faults.
The counting procedure has a quadratic complexity in
the number of lines.

Our algorithm is applicable to the segment delay
fault model and its special case, the path delay fault
model. In this paper, we only illustrate our algorithm
for identifying untestable path delay faults. Results are
presented for both models and they include robustly
untestable [1, 2], non-robustly untestable [14] and func-
tionally unsensitizable [11] delay faults.

2 Notation and Definitions
The following discussion is limited to combinational

circuits composed of simple gates (AND, OR, NOT,

NAND, and NOR). Let line denote an interconnection
between two gates, gt(l) denote the gate for which line
l is an input, and in(g) denote the set of inputs of gate
g. Let n(V) represent the stable signal value of n under
a vector V , where n is either a gate or a line.

A physical path P is a sequence (g0, l0, ..., ln−1, gn),
where (g1, ..., gn−1) are gates, (l0, ..., ln−1) are lines, g0 is
a primary input (PI), and gn is a primary output (PO).
Lines (l0, ..., ln−1) are called on-path inputs of P . An
input {i : i ∈ in(gk), i 6= lk−1, 1 < k < n} is called a
side-input of P . There are two logical paths, P 1 and
P 0, associated with P , corresponding to a rising and
a falling transition respectively on g0. A faulty logical
path is called a path delay fault. In this paper, we use
the terms path delay faults, path faults and logical paths
interchangeably. A test for a path delay fault consists
of a vector pair <V1, V2>.

Definition 2.1 ([11]) A vector pair <V1, V2> is said
to functionally sensitize a path fault Pψ=(g0, l0, ..., gn),
where ψ∈{0, 1}, iff:
(1) g0(V1)=ψ, g0(V2)=ψ, and
(2) if an on-path input of Pψ has a non-controlling
value under V2, the corresponding side-inputs have non-
controlling values under V2.

Definition 2.2 ([14]) A vector pair <V1, V2> is said
to be a non-robust test for a path delay fault Pψ =
(g0, l0, ..., gn), where ψ∈{0, 1}, iff:
(1) g0(V1)=ψ, g0(V2)=ψ, and
(2) all side-inputs of Pψ have non-controlling values un-
der V2.

Definition 2.3 ([1, 2]) A vector pair < V1, V2 > is
said to be a robust test for a path delay fault Pψ =
(g0, l0, ..., gn), where ψ ∈ {0, 1}, if it guarantees detec-
tion of the fault irrespective of the delays of all other
signals in the circuit. This condition is satisfied iff:
(1) <V1, V2> is a non-robust test for Pψ, and
(2) if an on-path input of Pψ has a controlling value un-
der V2, the corresponding side-inputs have steady non-
controlling values on both vectors.

Remark 2.1 The existence of a vector V1, that satisfies
the requirement on it given by Definitions 2.1 and 2.2,
can be guaranteed for a circuit without any restrictions
on its input values.

Remark 2.2 The set of functionally sensitizable path
faults is a superset of the set of non-robustly testable
path faults, which in turn is a superset of the set of
robustly testable path faults.

Remark 2.3 Only the robustness criterion imposes the
requirement ∀1<k<n{gk(V1) 6=gk(V2)} which in turn im-
plies ∀1<k<n−1{lk(V1) 6= lk(V2)}

We say that a path fault Pψ is sensitized on a vector
pair <V1, V2> iff Pψ is either functionally sensitized,
robustly tested, or non-robustly tested by <V1, V2>.

Lemma 2.1 If a path fault Pψ = (g0, l0, ..., gn), where
ψ ∈ {0, 1}, is sensitized on a vector pair < V1, V2 >,
∀0<k<n{gk(V2) =ψ if the number of inversions between
g0 and the output of gk is even; gk(V2)=ψ otherwise}.
Proof: We will prove the lemma by induction.
Induction Basis: Since Pψ is sensitized by <V1, V2>,
from the above definitions, we know that g0(V2)=ψ.
Induction Hypothesis: Suppose the claim is true for
{gm : 0<m<n}.
Induction Step: Let gm(V2) = ξ and gm+1 be non-
inverting. Since gm+1 is non-inverting, the number of
inversions between g0 and the output of gm is equal to
the number of inversions between g0 and the output of
gm+1. If ξ is the controlling value of gm+1, gm+1(V2)=ξ.
If ξ is the non-controlling value of gm+1, by the above
definitions, the side-inputs corresponding to gm+1 have
to be non-controlling for Pψ to be sensitized and hence,
gm+1(V2)=ξ. Since gm(V2)=gm+1(V2) and the number
of inversions remains unchanged, by the induction hy-
pothesis, the claim holds for gm+1. A similar argument
can be made for the case when gm+1 is inverting. 2

3 Implication-based Analysis
We assume that logic implications of both value as-

signments (0 and 1) for every line in the circuit are
available. We present lemmas that use logic implica-
tions on a line g to help identify a set of lines S, such
that every path fault passing through g and {m : m∈S}
is untestable with respect to some combination of sig-
nal values. Let SP (xα, yβ), where α, β ∈ {0, 1}, denote
the set of path faults passing through lines x and y
such that for every path fault {Pψ : Pψ ∈ SP (xα, yβ)},
[x(V2) =α] and [y(V2) =β] are necessary conditions for
Pψ to be sensitized on a vector pair <V1, V2> (refer to
Lemma 2.1).

3.1 Robust Untestability Analysis
We say that [SP (xα,yβ) = RU] if all path faults in

the set SP (xα,yβ) are robustly untestable.

Lemma 3.1 For lines x and y, if (x = α)⇒ (y = β),
where α, β∈{0, 1} and β is the controlling value of g=
gt(y), then ∀z∈in(g),z 6=y∀ξ∈{0,1}[SP (xα, zξ)=RU].

Proof: Consider a path fault {Pψ : Pψ ∈SP (xα, zξ)},
where ψ ∈ {0, 1}. Line y is a side-input of Pψ. For a
vector pair <V1, V2> to be a robust test for Pψ, the
following conditions are necessary: (1) x(V2) = α since
Pψ ∈SP (xα, zξ), and (2) y(V2)=β, the non-controlling
value of g (by Definition 2.3). However, since (x=α)⇒
(y=β), a vector V2 that satisfies conditions (1) and (2)
cannot exist and hence, Pψ is robustly untestable. 2

Lemma 3.2 For lines x and y, if (x = α)⇒ (y = β),
where α is the non-controlling value of f = gt(x),
and β is the controlling value of g = gt(y), then
∀a∈in(f),a6=x∀b∈in(g),b6=y∀ζ∈{0,1}∀ξ∈{0,1}[SP (aζ , bξ)=RU]

Proof: Consider a path fault {Pψ : Pψ ∈ P}, where
ψ ∈ {0, 1} and P is the set of all path faults that pass
though {a : a ∈ in(f), a 6= x} and {b : b ∈ in(g), b 6= y}.
Lines x and y are side-inputs of Pψ. By Definition 2.3,
for a vector pair<V1, V2> to be a robust test for Pψ, the
following conditions are necessary: (1) x(V2) = α, the
non-controlling value of f , and (2) y(V2) = β, the non-
controlling value of g. However, since (x=α)⇒(y=β),
a vector V2 that satisfies conditions (1) and (2) cannot
exist and hence, Pψ is robustly untestable. 2

Lemma 3.3 For lines x and y, if (x = α)⇒ (y = β),
where α, β∈{0, 1} and β is the controlling value of g=
gt(y), then ∀z∈in(g),z 6=y[SP (xα, zβ)=RU].

Proof: Consider a path fault {Pψ : Pψ ∈SP (xα, zβ)},
where ψ ∈ {0, 1}. Line y is a side-input of Pψ. For a
vector pair <V1, V2> to be a robust test for Pψ, the
following conditions are necessary: (1) x(V2) = α since
Pψ∈ SP (xα, zβ) and hence x(V1)=α (by Remark 2.3),
and (2) y(V1) = β, the non-controlling value of g (by
Definition 2.3(2)). However, since (x = α)⇒ (y = β),
a vector V1 that satisfies conditions (1) and (2) cannot
exist and hence, Pψ is robustly untestable. 2

Lemma 3.4 For lines x and y, if (x = α) ⇒ (y =
β), where α, β ∈ {0, 1}, then [SP (xα, yβ) = RU] and

[SP (xα, yβ)=RU].

Proof: By definition, to sensitize a path fault {Pψ :
Pψ∈SP (xα, yβ)} on a vector pair <V1, V2>, [x(V2)=α]
and [y(V2)=β] are necessary conditions. Hence, by Re-
mark 2.3, for <V1, V2> to be a robust test for Pψ, the
following conditions are necessary: (1) [x(V1)=α], and
(2) [y(V1) = β]. However, since (x = α)⇒ (y = β), a
vector V1 that satisfies conditions (1) and (2) cannot
exist and hence, Pψ is robustly untestable. Similarly,

to robustly test a path fault {Pψ : Pψ ∈ SP (xα, yβ)},
(1) [x(V2)=α], and (2) [y(V2)=β] are necessary condi-
tions. Since a vector V2 that satisfies conditions (1) and
(2) cannot exist, Pψ is robustly untestable. 2

Lemma 3.5 If a line x is identified as having a
constant value assignment {α : α ∈ {0, 1}}, then
∀ζ∈{0,1}[SP (xζ , xζ)=RU].

Proof: Since a vector pair < V1, V2 > that satisfies
{x(V1) 6= x(V2)} cannot exist, by Remark 2.3, all path
faults that pass through x are robustly untestable. 2

nj

i
o

s

c

a

g

h

q

l

d

e

f
k m rb p

Figure 1: Portion of ISCAS-85 benchmark c6288

3.2 Functional Unsensitizability Analysis
Functionally unsensitizable path faults can be ig-

nored during delay fault testing and timing analysis [11].
We say that [SP (xα,yβ) =FU] if all path faults in the
set SP (xα,yβ) are functionally unsensitizable.

Lemma 3.6 For lines x and y, if (x = α)⇒ (y = β),

where α, β∈{0, 1}, then [SP (xα, yβ)=FU].

Proof: Similar to the proof of Lemma 3.4. 2

Lemma 3.7 If a line x is identified as having a
constant value assignment {α : α ∈ {0, 1}, then
[SP (xα, xα)=FU].

Proof: Similar to the proof of Lemma 3.5. 2

Other lemmas similar to those presented in Sec-
tion 3.1 can be derived for identifying functionally un-
sensitizable path faults. However, in our experiments,
we found that they do not help identify any additional
functionally unsensitizable path faults.

Figure 1 illustrates an example of identifying a func-
tionally unsensitizable path fault using Lemma 3.6.
Consider the path fault P 0 =(c, f, k,m, n, p, q, r, s). We
make two observations:

• For a vector pair <V1, V2> to functionally sensitize
P 0, the following conditions are necessary: (1) [c(V2)=
0] (from Definition 2.1), and (2) [s(V2) = 1] since the
number of inversions between c and s is seven (from
Lemma 2.1). Hence [P 0∈SP (c0, s1)].

• (c=0)⇒(s=0) from static implication learning [10].

From Lemma 3.6, we can conclude that P 0

is functionally unsensitizable. Similarly Q0 =
(c, f, k,m, n, o, q, r, s) is functionally unsensitizable. We
explicitly enumerate untestable path faults in this ex-
ample only for illustration. Our algorithm obtains the
number of untestable path faults without enumerating
them.

3.3 Non-robust Untestability Analysis
We say that [SP (xα,yβ)=NU] if all path faults in the

set SP (xα,yβ) are non-robustly untestable. To identify
non-robustly untestable path faults, Lemmas 3.1 and
3.2 can be used by replacing RU by NU in them and
Lemmas 3.6 and 3.7 can be used by replacing FU by
NU in them.

4 Using Pre-computed Implications
We assume that some set of implications of both value

assignments for every line in the circuit are available.

4.1 Maintaining Untestability Information
Using our fault-independent implication analysis at

each line g, we construct four sets of lines associated
with g: O1E1(g), O1E0(g), O0E1(g), and O0E0(g).

Definition 4.1 A set OαEβ(g) associated with a line g,
where α, β ∈ {0, 1}, consists of lines {x : [SP (gα, xβ) =
Untestable]}

Depending on the specific testability criterion used,
rules that help construct the OE sets can be derived
from the lemmas presented in Section 3. For concise-
ness, we only present an example involving the func-
tional sensitization criterion. If we know that (x=α)⇒
(y=β), where α, β∈{0, 1}, and y is in the fanout cone

of x, from Lemma 3.6, y is added to OαEβ(x).

4.2 Counting Untestable Path Faults
Pomeranz and Reddy propose a linear-time counting

algorithm [13] that can compute the number of paths in
a single pass from POs to PIs. Based on their idea, we
propose a counting algorithm that uses the OE sets on
every line to compute a lower bound on the number of
untestable path faults.

A partial path fault is a path fault without the restric-
tion that its origin should be a PI. In this section, we
use the terms path faults and partial path faults inter-
changeably. Consider a circuit with T lines. Let B(x)
denote the set of all branches of a fanout stem x. For
a line y that is not a stem, let Sy denote the output of
gt(y). We associate a few variables with each line m:

• Nm
1 (Nm

0) : number of testable path faults, as de-
termined by our procedure, that originate at m and
require a value of 1 (0) on m to be sensitized

• Tmα : temporary values of Nm
α on a specific iteration

• evalm : indicates whether Tm1 and Tm0 have been
computed on a specific iteration

• P (m) : set of all immediate predecessor lines of m

• redmα : indicates if {SP (mα,mα) = Untestable},
where α∈{0, 1}, on a specific iteration

To avoid reseting flags such as evalm and redmα , we
use unique identifiers on each iteration. With no im-
plications available, all path faults originating at a line
{m : m∈ fanout cone of line a} contribute towards the
computation of Na. Suppose O0E1(a) = {m}. By def-
inition, Nm

1 can now be ignored when computing Na
0 .

However, it is possible that Nm
1 may contribute towards

the computation of N values for other lines in the fanin
cone of m. Assuming that the OE sets associated with
every line are available, Algorithm 4.1 processes lines in
a reverse topological order (POs to PIs) to compute a

lower bound on the number of untestable path faults.
Algorithm 4.1
testable-path-count() {
∀1<m<T {evalm=redm1 =redm0 =0}
∀1<m<T {Nm

0 =Nm
1 =∞}

for x = T to 1 // reverse topological order
foreach(a ∈ O1E1(x)) {

insert(a); reda1 =x }
foreach(a ∈ O1E0(x)) {

insert(a); reda0 =x }
label(x, x)
Nx

1 =T x1
foreach(a ∈ O0E1(x)) {

insert(a); reda1 =x+T }
foreach(a ∈ O0E0(x)) {

insert(a); reda0 =x+T }
label(x, x+T)
Nx

0 =T x0
of testable faults (TP) =

∑
i is a PI{N i

1+N i
0 }

of untestable faults = Total # of path faults - TP
}
label(x, id) {

insert(x)
while(n = dequeue())
evaln= id; Tn0 =Tn1 =0
if(redn1 6= id)

if(n is connected to a PO){T n1 =1} else
if(n is a stem)Tn1 =

∑
b∈B(n)choose(N b

1 , T
b
1 , b, id)

else {Tn1 = choose(NSn

α , T S
n

α , Sn, id)
// α=1 if gt(n) is non-inverting; 0 otherwise

Tn1 =lesser(Tn1 , N
n
1) // lesser of the two values

if(redn0 6= id)
if(n is connected to a PO){T n0 =1} else
if(n is a stem)Tn0 =

∑
b∈B(n)choose(N b

0 , T
b
0 , b, id)

else {Tn0 = choose(NSn

α , T S
n

α , Sn, id)
// α=0 if gt(n) is non-inverting; 1 otherwise

Tn0 =lesser(Tn0 , N
n
0)

if(Tn1 6=Nn
1) or if(Tn0 6=Nn

0)
∀a∈P (n){(if a is closer to a PO than x) insert(a)}

}
choose(x, y, n, id) {

if(evaln 6= id){return(x)} else {return(y)} }
insert(x) {insert x into an event list EL}
dequeue() {

if EL is non-empty, dequeue and return element
of EL that is closest to a PO; return 0 otherwise }

4.3 Counting Untestable Segment Faults

The discussion in Sections 3 and 4.1 is also applicable
to the segment delay fault model. We modify the seg-
ment counting algorithm presented in the literature [3]
to use implications to determine a lower bound on the
number of untestable segment faults.

Table 1: A lower bound on the number of untestable delay faults
Ckt. Segment faults Path faults
Name Robustly untestable Robustly Non-robustly Functionally

L=3 L=5 untestable untestable unsensitizable

% # % # % cpu(s) # % # % cpu(s)

c880 0 0.0 0 0.0 326 1.9 0 163 0.9 163 0.9 0

c1355 576 8.8 7,840 33.9 8,005,696 95.9 2 7,150,240 85.7 6,745,120 80.8 1

c1908 8 0.1 1,260 6.0 1,070,307 73.4 4 1,067,159 73.2 442,048 30.3 1

c2670 253 2.6 1,307 6.7 1,321,906 97.2 2 1,317,795 96.9 1,314,962 96.7 1

c3540 673 4.7 4,129 12.7 53,610,698 93.5 18 52,488,315 91.5 34,300,319 59.8 6

c5315 238 1.1 1,486 3.6 2,013,498 75.1 14 1,865,548 69.5 1,129,995 42.1 4

c6288 2,442 8.1 23,577 26.1 1.978×1020 99.9 3 1.978×1020 99.9 1.978×1020 99.9 3

c7552 563 1.5 3,709 4.1 981,720 67.6 24 910,926 62.7 555,050 38.2 7

s5378 284 1.8 815 3.0 6,396 23.6 9 4,869 18.0 3,718 13.7 4

s9234 1,225 4.3 4,275 8.7 442,526 90.4 58 413,785 84.5 282,149 57.6 21

s13207 1,817 5.0 5,091 8.8 2,300,812 85.5 50 1,870,582 69.5 1,722,492 64.0 24

s15850 3,349 7.1 12,321 15.3 322,581,591 97.9 101 303,523,949 92.1 274,843,560 83.4 40

s35932 11,866 12.5 35,372 27.4 354,324 89.9 519 265,863 67.4 248,567 63.0 241

s38417 3,229 2.9 15,149 7.6 1,675,008 60.2 86 1,377,425 49.5 796,701 28.6 42

s38584 1,608 1.3 6,938 3.6 1,623,570 75.1 26 1,169,090 54.1 1,123,814 52.0 15

†Only a subset of direct implications was available for s38584

5 Results

We implemented our algorithm in C++ and ran
experiments using a HP 9000/735 workstation with
256MB of memory. We use the implications generated
by Zhao et. al. [10] for our work. Direct implications,
determined by forward and backward propagation start-
ing at the node under consideration, and indirect im-
plications, found by applying the contrapositive law [9],
transitive law and backward implications [10] were avail-
able for most circuits. Only a subset of direct implica-
tions was available for s38584. Information on constant
value assignments that is generated as a by-product of
their implication procedure is also used. For all the
ISCAS-85 circuits, their program took less than 150 sec-
onds to generate the relevant information [10]. Times
taken by their program for the ISCAS-89 circuits were
not available.

Table 1 shows results of the algorithm for a subset
of all values that segment length L, an input parame-
ter to the program, can take. For path delay faults, we
consider the robust, non-robust and functional sensiti-
zation criteria. For segment faults with (L = 3) and
(L = 5), we only consider the robust testability cri-
teria. Columns with the heading # show the num-
ber of untestable faults determined by our procedure.
Columns with the heading % indicate the percentage
of untestable faults with respect to the total number of
faults. The runtimes in CPU seconds are shown only for
identifying robustly untestable and functionally unsen-
sitizable path faults. Runtimes for identifying robustly
untestable segment faults and non-robustly untestable

path faults were similar to those for identifying robustly
untestable path faults. However, there is a marginal in-
crease in the runtimes as L is increased. In all cases, the
runtime of our method is very small and is independent
of the number of faults. While our method identifies
more untestable path faults in some circuits, previously
published methods [11, 12] do better for some circuits.

Since we identify only a subset of all untestable

Table 2: Our results versus ATPG results
Ckt. Non-robustly untestable path faults
Name Exact [15] Our procedure

s5378 19.0% 18.0%
s9234 87.8% 84.5%
s13207 82.3% 69.5%
s15850 96.7% 92.1%
s35932 85.2% 67.4%
s38417 59.1% 49.5%
s38584 84.5% 54.1%

faults, firm conclusions cannot be drawn. However,
for circuits such as c1908, it appears that many non-
robustly untestable path faults do not belong to the set
of functionally unsensitizable faults. Such path faults
are testable only as a multiple fault [16]. Dealing with
multiple path faults may be computationally intractable
for large circuits. In such cases, using the segment delay
fault model, with a small value of L, may be a feasible
alternative. For circuits like c2670, most of the path
faults are functionally unsensitizable. These path faults
can be ignored for the purposes of delay testing and the

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100 120 140

%
 ro

bu
st

ly
 u

nt
es

ta
bl

e

Segment length L

c6288
s9234

Figure 2: % of untestable faults versus segment length

path fault model may be practical in such cases.
Table 2 compares our results with the exact results

obtained from a test generator [15] for the ISCAS-89
circuits. The exact number of untestable faults is un-
known for many of the ISCAS-85 circuits. Our method
gives only a lower bound on the number of untestable
faults since it is based on an incomplete set of impli-
cations. During an ATPG run, a lower bound on the
number of untestable faults may be useful as a stopping
criterion if the required fault efficiency is reached.

In our experiments, the percentage of untestable
faults increases monotonically with L and then de-
creases as L approaches the maximum logic depth. Fig-
ure 2 shows this trend for robustly untestable faults in
c6288 (maximum logic depth: 125) and s9234 (max-
imum logic depth: 59). For c6288, we identified
1.9788271×1020 robustly untestable path faults, of which
1.9778345×1020 were also functionally unsensitizable.

6 Concluding Remarks
Our algorithm uses static logic implications and

rapidly computes a lower bound on the number of ro-
bustly untestable, non-robustly untestable, and func-
tionally unsensitizable delay faults by using a non-
enumerative counting procedure. Untestable faults can
also be listed if desired and targeting them for test gen-
eration by an ATPG tool can be avoided. One of the
main features of the algorithm is that its complexity of
computation does not grow with the number of delay
faults. This is especially important when considering
the path delay fault model since circuits typically have
a large number of path faults. The implication analy-
sis presented in this paper considers one implication at
a time. It may be possible to obtain better results by
considering multiple implications simultaneously.

References
[1] G. L. Smith, “Model for Delay Faults Based Upon

Paths,” in Proc. International Test Conf., pp. 342–349,

Nov. 1985.

[2] C. J. Lin and S. M. Reddy, “On Delay Fault Testing in
Logic Circuits,” IEEE Trans. on CAD, vol. 6, pp. 694–
703, Sept. 1987.

[3] K. Heragu, J. H. Patel, and V. D. Agrawal, “Segment
Delay Faults: A New Fault Model,” in Proc. VLSI Test
Symp., pp. 32–39, Apr. 1996.

[4] K. Heragu, J. H. Patel, and V. D. Agrawal, “SIGMA:
A Simulator for Segment Delay Faults,” in Proc. Inter-
national Conf. CAD, pp. 502–508, Nov. 1996.

[5] I. Pomeranz and S. M. Reddy, “On Achieving Com-
plete Testability of Synchronous Sequential Circuits
with Synchronizing Sequences,” in Proc. International
Test Conf., pp. 1007–1016, Oct. 1994.

[6] V. D. Agrawal and S. T. Chakradhar, “Combinational
ATPG Theorems for Identifying Untestable Faults in
Sequential Circuits,” IEEE Trans. on CAD, vol. 14,
pp. 1155–1160, Sep. 1995.

[7] M. A. Iyer and M. Abramovici, “FIRE: A Fault-
Independent Combinational Redundancy Identification
Algorithm,” IEEE Trans. on VLSI Systems, vol. 4,
pp. 295–301, Jun. 1996.

[8] M. A. Iyer, D. E. Long, and M. Abramovici, “Identify-
ing Sequential Redundancies Without Search,” in Proc.
33rd Design Automation Conf., Jun. 1996.

[9] W. Kunz and D. K. Pradhan, “Accelerated Dynamic
Learning for Test Pattern Generation in Combinational
Circuits,” IEEE Trans. on CAD, vol. 12, pp. 684–694,
May 1993.

[10] J. Zhao, E. M. Rudnick, and J. H. Patel, “Static Logic
Implication with Application to Redundancy Identifi-
cation,” in Proc. VLSI Test Symp., pp. 288–293, Apr.
1997.

[11] K. T. Cheng and H. C. Chen, “Delay Testing for Non-
Robust Untestable Circuits,” in Proc. International
Test Conf., pp. 954–961, Oct. 1993.

[12] S. Kajihara, K. Kinoshita, I. Pomeranz, and S. Reddy,
“A Method for Identifying Robust Dependent and
Functionally Unsensitizable Paths,” in Proc. 10th Inter-
national Conf. on VLSI Design, pp. 82–87, Jan. 1996.

[13] I. Pomeranz and S. M. Reddy, “An Efficient Non-
Enumerative Method to Estimate the Path Delay Fault
Coverage in Combinational Circuits,” IEEE Trans.
CAD, vol. 13, pp. 240–250, Feb. 1994.

[14] E. S. Park and M. R. Mercer, “Robust and Nonrobust
Tests for Path Delay Faults in a Combinational Cir-
cuit,” in Proc. International Test Conf., pp. 1027–1034,
Sept. 1987.

[15] K. Fuchs, M. Pabst, and T. Rossel, “RESIST: A Recur-
sive Test Pattern Generation Algorithm for Path Delay
Faults Considering Various Test Classes,” IEEE Trans.
on CAD, vol. 13, pp. 1550–1561, Dec. 1994.

[16] W. Ke and P. R. Menon, “Synthesis of Delay-verifiable
Combinational Circuits,” IEEE Trans. on CAD, vol. 44,
pp. 213–222, Feb. 1995.

