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Abstract

Novel view synthesis using image-based priors has recently been shown to

provide high quality renderings of complex 3D scenes. However, current

methods are extremely slow, requiring of the order of hours to render a single

frame. In this paper we show how a coarse-to-fine method can be used to

reduce this time significantly. In contrast to traditional multiple-view stereo

methods, devising a coarse-to-fine strategy for this problem is complicated

by the fact that image-based priors are strongly tied to the scale at which

rendering is performed. We show how a hierarchical decomposition of the

texture patch database both allows multiple-scale analysis and speeds up the

imposition of the priors. Examples are shown on a number of challenging

sequences, and illustrate that the new method yields comparable results to

the previous method, with significant gains in speed.

1 Introduction

The new-view synthesis (NVS) problem may be stated as follows: given a set of images

of a 3D scene with corresponding camera positions, generate a view of the scene from a

new viewpoint, not in the original set. Approaches to the NVS problem can be roughly

subdivided into those that explicitly create a 3D representation of the scene from which

all new views are rendered, and those that do not. Methods in the first class generally

create volumetric (voxel) representations [3, 15] or texture mapped mesh representations

of the scene [11]. The second group of methods generally comes under the umbrella of

image-based rendering [6, 7, 16]. The aim of such methods is to generate photorealistic

renderings of a scene based directly on a set of input images, without an explicit recon-

struction of 3D depth. A problem which is shared by all NVS systems is the inherent

ambiguity of the problem—there are many 3D scenes which could have given rise to a

given set of input images, and thus there are many equivalent synthesized images which

are consistent with a given input set. To choose between the many nearly equivalent

solutions requires strong and accurate priors on the class of scenes to be rerendered.

Recently, Fitzgibbon et al.[5] have introduced an image-based prior to the NVS prob-

lem. While previous work had essentially modelled the scene as piecewise smooth, the

image-based prior represents the constraint that the synthesized image should have the

same local statistics as the input images. This allows realistic rendering of scenes con-

taining fine detail such as hair and textured surfaces, which previous methods tended to

blur. Their approach minimizes an energy which contains two terms: one measures the
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Figure 1: Steadicam sequence. (a) An input image from the monkey sequence [5]. (b)

A novel view from [5] (extracted from compressed video), with a quoted rendering time

of 4.4 hours. (c) Our rendering from a viewpoint as close as possible to the original.

The results are better under the monkey’s right arm and comparable elsewhere, with a

rendering time of 93 seconds.

photoconsistency between the synthesized and input views, while the second measures

the similarity of each small (e.g. 5× 5 pixels) patch in the synthesized view to the most

similar patch in the input sequence. This effectively encourages the output images to be

rendered as a patchwork of small windows from the input sequence. This produces ren-

dered sequences of very high visual quality, but has the disadvantage that it is extremely

slow (the paper quotes rendering times of 10 pixels per second, or of the order of 11 hours

per PAL frame.)

In this paper we show how to significantly improve the speed of the algorithm us-

ing a multiresolution strategy. This is a nontrivial extension of existing multiresolution

approaches to stereo, because the texture prior is not scale-invariant. Our contribution is

both to extend current methods for high-dimensional nearest-neighbour search, and to use

the particular characteristics of image patches to increase the efficiency of patch search.

As Figure 1 shows, our new approach yields results of at least the same quality as the

earlier work, with a considerable increase in speed.

1.1 Related work

Two strands of research relate to this problem: multiview dense stereo and nonparametric

texture synthesis.

Multiresolution approaches to dense stereo computation have been common since at

least the work of Marr and Poggio [14]. The basic strategy is to solve for depths or

disparities in a coarse-scale low-resolution image, and use those disparities to seed search

at the next finer scale. Adapting this approach to multiview stereo, as introduced by

Okutomi and Kanade [18], is straightforward, but is discussed below for completeness.

The second strand of relevant research is in texture synthesis: the generation of syn-

thetic images which have local statistics similar to a supplied example image. Recent

work largely builds on the patch-based approaches of Efros, Leung and Wei [4, 20], which

give results of startling visual quality using very simple algorithms. The core of these al-



gorithms is a large database of texture patches—generally every W ×W subwindow of

the example texture image, where typical values of W are from 5 to 15 pixels. Texture

synthesis amounts to a nearest-neighbour search in this database for every generated pixel.

Early implementations were extremely slow, performing a linear search for the best

matching patch. Wei and Levoy [21] introduced tree-structured vector quantization (TSVQ),

with considerable improvements in speed, but at the cost of reduced quality of synthesis.

Liang et al.[12] assess TSVQ and observe that this reduced quality stems from the fact

that TSVQ’s greedy search, though fast, can return matches which are quite dissimilar to

the query patch. (Liu et al.[13] dub this strategy “defeatist search”). Liang et al. replace

TSVQ with a kd-tree [17], which overcomes the problems induced by defeatist search.

When adapting their method to multiscale, they simply use a quadtree decomposition.

However, to avoid boundary artifacts they essentially compute multiple quadtrees, slid-

ing the inter-node boundaries across the image, increasing the storage requirements by a

factor of more than 16. Returning to defeatist search, Liu et al.[13] observe that it can

be an order of magnitude faster than search in a kd-tree, and that its failures can be over-

come by using not a tree but a singly rooted directed graph, which they call a “spill tree”.

Spill trees are kd-trees which allow overlapping nodes, so that points near a node’s de-

cision boundary are assigned to both children of the node. In this paper, we show how

a multiresolution analogue of the spill tree allows fast and accurate patch search. The

advantages over Liang et al. are reduced memory usage and simpler tree-construction and

search algorithms. We shall use the incorrect term “tree” to describe this data structure,

thinking of it as a tree containing duplicated subtrees.

In the following sections we shall formally define the NVS problem, expressing it as

an energy minimization. We then describe our multiresolution scheme without texture

priors. In Section 5 we describe our new texture patch search algorithm, and show how it

may be integrated into the multiresolution depth estimation. We conclude by demonstrat-

ing the speedups obtained by the new technique.

2 Problem statement

We are given as input a set of 2D images of a 3D scene, I1 to In, each of which has an

associated 3 × 4 projection matrix Pi defining the ith image’s camera position [9]. We

are given a new camera position, not in the original set, defined by a projection matrix

Po. The task is to produce the output image V , which is the view of the scene from the

new camera position. The image V comprises pixels V (x,y), the colour, expressed as a

vector in the appropriate colour space, at pixel (x,y). We are at liberty to assume that

world coordinates have been transformed so that the camera centre is the origin (Po = 0)

and that the 3D ray corresponding to new-view pixel (x,y) is X(z) = [xz,yz,z,1]⊤. Let

π be the perspective division function π(x,y,z) = (x/z,y/z). Array accesses of the form

I(u),u ∈ R
2 are assumed to be bilinearly interpolated.

Following [5], NVS is expressed in a Bayesian framework of photoconsistency [19]

and image-based priors, so that producing an output image is posed as the minimization

of the negative log posterior, or “energy”, given by

E(V ) = Ephoto(V )+λEtexture(V ). (1)

The first term, Ephoto, measures the photoconsistency at each pixel between the input

images and the new-view pixel. The second measures the extent to which the new view



is “image-like”, with a tuning variable, λ, that weights the importance of Etexture relative

to Ephoto. We take the photoconsistency energy to be the sum of the mean of the squared

distances of the input samples from the rendered value. Thus

Ephoto(V ) = ∑
x,y

min
zmin<z<zmax

1

n

n

∑
i=1

‖V (x,y)− Ii(π(PiX(z)))‖2. (2)

Note that we explicitly minimize over depth at each pixel to find the most likely colour,

and that minimizing Ephoto alone is equivalent to the NVS strategy of Irani et al.[10]. The

texture energy is the sum over all pixels of the distance of the pixel’s neighbourhood to

the closest patch in the input images, defined as

Etexture(V ) = ∑
x,y

min
T∈T

‖W(T−N(V ;x,y))‖2 (3)

where N(V ;x,y) is some vector of values from the neighbourhood of V (x,y). If we are

considering 5× 5 windows of RGB images then N ∈ R
75. The patch library T is the

collection of all patches in the input sequence:

T = {N(Ik;x,y) | ∀ x,y,k}

Finally, W denotes a normalised diagonal weighting matrix that can be used to vary the

importance of different values in the neighbourhood, such as the Gaussian kernel used

in [4].

3 Computational strategy: single resolution

To find the V that globally minimizes E(V ) would require a search over the entire space

of rendered images, R
colours×width×height. This is a huge search space. In order to reduce

the search space our approach is to optimize over depth, finding z at each pixel within

an iterated conditional modes (ICM) framework [2]. We describe our strategy at a single

resolution before proceeding to the new multiresolution algorithm. This strategy differs

from previous work in that it explicitly searches over depth (instead of colour), and more

accurately includes the texture energy.

3.1 Minimizing E(V ) over depth

Minimization over depth may be performed at each pixel independently, but, as the texture

stage will not be completely independent of the depth stage, we benefit from caching some

information. We compute a 3D array, C , that contains a colour for every output pixel at

every depth, that colour being the mean of the input-image pixels to which the 3D point

at (x,y,z) projects. Specifically,

C(x,y,z) =
1

n

n

∑
i=1

Ii(π(PiX(z))). (4)

Then Ephoto may be precomputed at each point in C . We then find the array of depths,

Z, that minimizes (1), where V (x,y) = C(x,y,Z(x,y)). We do this by using ICM to find a

local minimum.



Let the depth map at iteration t be Zt . We obtain the initial estimate, Z0, as the

minimizer of Ephoto(C (Z0)), and continue iterations until E(C (Zt)) >= E(C (Zt−1)). If

the current depth map estimate is Zt , then the next is obtained by parallel update at each

pixel (x,y) to compute Zt+1:

Zt+1(x,y), L(x,y) = argmin
zmin<z<zmax, l|Tl∈T

Ephoto(C(x,y,z))+λ‖W(Tl −N(C ,Zt ;x,y,z))‖2

(5)

In this minimization we also record, for each pixel, the index, L(x,y), of the texture

patch which minimizes the energy of that pixel. We use 5×5 windows to create the pixel

neighbourhood vectors, and all pixels in the neighbourhood have the same weighting:

N(C ,Zt ;x,y,z) = {{C(x+ i,y+ j,Zt(x+ i,y+ j)) | −2 ≤ i, j ≤ 2, i, j 6= 0}, C(x,y,z)}

Since we already have precomputed values for Ephoto for every colour in C , we can

optimize our search to finding the texture patch, T, that minimizes E(V ), taking the Ephoto

values at Zt for each pixel other than the current update pixel (x,y). The computational

cost of this stage is dominated by the need to perform a closest-patch search in T for every

pixel, which will be accelerated in §5.

On convergence, each pixel of our output image, V , is taken to be the centre pixel of

energy minimizing texture patch found in (5):

V (x,y) = TL(x,y)00

For notational convenience, T00 denotes the element of vector T corresponding to the

centre pixel of the neighbourhood it represents. For a 5×5 patch, this would be element

13 of T. The image given by C (Z∞), where Z∞ denotes the energy minimizing Z found

in (5), is made up of averaged, bilinearly interpolated samples of input images, and will

therefore have lost some high frequency detail. The final stage of our rendering process

constrains the colours in our output image to be in the set of colours seen in the input

images, with no relation to the elements of C . This enables the output image to retain

both the high frequency details and the purity of colours seen in the input images.

Implementation issues For each output image we use only the 8 closest input images,

in terms of the euclidean distance between input and output camera centres. We choose a

selection of sampling depths such that the epipolar lines in our input images are optimally

covered, with a minimum distance between sample points of half a pixel. This reduces

our initial sample set to the bare minimum, though without a multiresolution strategy it is

still necessary to sample of the order of 50–100 depth values at each pixel.

4 Multiresolution implementation

By posing our algorithm as the evaluation of depth rather than colour we enable the use

of scale-space to reduce rendering time. The slowest part of our algorithm is the mini-

mization of energy over depth. Since ICM convergence time is a function of the number

of labels (i.e. depth values), reducing the number of labels speeds up rendering. We can

reduce the number of depth labels by iteratively refining the depth estimate of each pixel



in a coarse-to-fine manner. In order for our photoconsistency energy at the coarser scale

to represent the photoconsistency over a wide range of depths we must low-pass filter our

input images before sampling. The size of low-pass filter depends on the number of fine

depth levels, s, between depth samples at our given scale. Working on the basis that there

is a maximum of half a pixel between fine level depth samples when projected into the

input images, we use a disk shaped averaging filter with radius s/2 to low-pass filter the

input images. Our image-based texture priors must be similarly low-pass filtered. We

minimize E(V ) over depth at each scale, then propagate the depth through to the next

scale, where we refine our search around that depth. If we normally sample at 50 depth

levels then 3 passes of 7 depth levels each adequately covers the range.

The time taken to calculate each ICM iteration is linearly proportional to the number

of pixels, so a further and much greater speed up comes from calculating the coarser

scales at a lower resolution. We downsample every coarse scale by a factor of 2 from the

previous scale, which, for 3 scales, makes the coarsest scale approximately 16 times faster

to calculate. Again, the texture priors need to be similarly downsampled. A downside of

this method is that at each jump in scale we must estimate depths for 3 out of 4 points,

since we are upsampling by interleaving. However, simply bilinearly interpolating depths

from the points we know appears to produce reasonable results. All timings quoted in

the paper use this downsampling, but, for convenience and simplicity of exposition, we

assume that the images at all scales have the same size. The only difference between

input images at different scales is the amount of low-pass filtering they have undergone.

We shall use superscript S to indicate the scale at which an entity is defined, with the finest

scale corresponding to S = 1.

5 Speeding up texture patch lookup

Recall that the patch library, T, is a collection of all patches in all our input images

(including overlaps). For 11 input images of size 800×600 pixels that is approximately

m = 5×106 patches. Because we are working at multiple scales, we have one library, T
S,

for each scale S.

If we denote the texture patch library by {Tl}
M
l=1 then patch lookup is a weighted

search in a d-dimensional point set, T, where d = 75 for 5× 5 RGB patches. Thus, at a

given scale we wish to efficiently compute the closest point to a query point, N, written

min
l

‖W(N−Tl)‖
2

This is speeded up in two ways. First, the patches are clustered into a smaller set of key

patches, which provides the greatest acceleration at the coarsest scale; then the relation-

ship between the patches at different scales is used to define a hierarchical data structure

which accelerates patch search at all scales but the coarsest.

Patch clustering Particularly at coarser scales, many of the patches in the library are

very similar to each other. Thus, we can reduce the library size by clustering so that all

patches in the library are within a threshold similarity of at least one cluster centre. For a

given patch library, T, denote the new clustered set by U, containing cluster centres U1..m.

Define u(T) = argmink ‖T−Uk‖, i.e. the index of T’s closest cluster centre. Ideally, given



All depths Coarse-to-fine

Without image priors 140 10

With image priors 4695 1079

(a) Plant

All depths Coarse-to-fine

93 7

1312 93

(b) Monkey

Table 1: Timings. Times, in seconds, taken to render each image. In both cases, stereo

without texture priors is faster by a factor of about 13. When patch priors are included, the

monkey retains this factor, while the plant image has less of a speedup (a factor of 4.3) be-

cause of the large textured green area in the background, which reduces the effectiveness

of the hierarchical method.

a threshold distance τ, we would compute the smallest U ⊂ T for which

min
k

‖T−Uk‖ < τ ∀ T ∈ T.

In practice this is an intractable problem, but a reasonably small U (say no more than

twice as large as the minimum possible) can be found using relatively simple algorithms.

We use Hartigan’s sequential leader clustering (SLC) [8]. At the finest scale, we set the

threshold to correspond to an RMS of 0.7 grey levels (i.e. τ = 10.5 for 5×5 RGB patches).

At the coarse scales, where high-frequency detail is less important, an RMS of 1.2 grey

levels gives a smaller U.

Multiscale patch hierarchy We now come to the source of the most substantial speedup

in the implementation. Although patch clustering reduces the size of the patch libraries,

the requirement for relatively small thresholds τ means that the speed improvement is

rarely greater than a factor of four or five. However, after the coarsest scale we can obtain

a greater speedup from a hierarchical representation, which we shall now describe.

At every scale but the finest, we associate with each patch (i.e. cluster centre) a list of

“child” cluster centres in the next finer scale. If we denote a patch by U′
xy, and the patch at

the next finest scale centred on1 the same pixel location (x,y) in the texture source image

by Uxy, then each U′
xy is linked to the set of U whose similarity is within a threshold β

of Uxy. Then, when moving from coarse-to-fine in the multiresolution implementation,

optimization of (5) at each pixel searches only the children of the patch which minimized

(5) at the coarser scale. In our implementation, with β corresponding to an RMS of 9.6

grey levels, the average size of the child lists2 on the “plant” image was 149 at the finest

scale and 4.4 at the next finer scale.

At the coarsest scale we have no patch index from the previous scale, therefore we

must search through all the quantized patches for every pixel at this scale. Fortunately,

there are fewer pixels as a result of downsampling, and fewer patches because of the

clustering.

1Note that, when coarser scales are downsampled, Uxy and U′
xy will cover different sized areas of the texture

source image.
2When coarser scales are downsampled, some pixels don’t have associated child lists. Their child lists are

created by concatenating the known child lists of neighbouring pixels. The patch centres from each neighbour’s

child list are offset by the distance from the neighbour to the pixel in question prior to concatenation.



(a) Ground truth (b) Slow Ephoto (b′) Fast Ephoto

(d) Difference (c) Slow Ephoto +λEtexture (c′) Fast Ephoto +λEtexture

(A) (C) (C′)

Figure 2: Leave-one-out test. (a) Ground-truth image, one of twelve from the “plant”

sequence. (b),(b′) Rendered images without texture priors. (c),(c′) Rendered images

with texture priors. Note the improvement in detail in the hair and on the blue stem of the

toy. (d) Difference between (c′) and the ground truth showing how, in common with [5],

the coarse geometry is consistent with the true new view, while fine details are essentially

invented by texture synthesis. Bottom row: zooms of a,c,c′.



6 Examples

One image sequence was obtained from Fitzgibbon et al.ḟor direct comparison with their

results, and a further sequence was captured using a digital stills camera and calibrated

using commercially available software [1] to give us the projection matrices.

Our first experiment is a leave-one-out test. We reconstruct each of the 12 input im-

ages of our “plant” sequence using the other 11 images. Taking a typical image, Figure 2

shows the ground truth, as well as 4 output images created by minimizing Ephoto(V )
and E(V ) with and without our coarse-to-fine algorithm using hierarchical texture priors.

Comparing the two output images (b) and (b′) that don’t use texture priors (i.e. just min-

imize Ephoto), we can see the effect of using scale-space clearly. The artifacts in (b) are

less widespread than in (b′), as the spatial support at coarse scales aids depth estimation,

but each artifact covers a larger area, as the wrong choice of depth for a single pixel at a

coarse scale affects multiple pixels at a fine scale. Comparing (c) with (b) shows some

quality improvements on edges, while other details become more blurred. By contrast,

comparing images (c′) with (b′) we can clearly see the effect of using image-based texture

priors. The image using texture priors is sharper, bringing out the high frequency detail

in the leaves and feathers, and reproducing specularities on the body of the toy. This im-

provement in image quality over the non-hierarchical image (c) results from the coarser

scales constraining the patch search at the finer scales, and shows that the new algorithm

can give higher quality as well as faster results. However, the hierarchical method still

fails to reproduce the high frequency detail of the baize background.

Our second experiment is a recreation of the steadicam monkey video produced in [5].

As Figure 1 shows, our rendering of the monkey is of comparable quality, with improve-

ments in the background reconstruction resulting from our use of only a few close input

images rather than all the images. However, the real improvement comes from the two

orders of magnitude increase in rendering speed.

7 Conclusion

This paper has presented a scheme for the acceleration of new-view synthesis using patch

priors. We introduced an image-priors-based NVS technique that minimizes energy over

depth, rather than colour as per [5]. On its own this method speeds up rendering time

by an order of magnitude, but at the cost of image quality. However, we have shown

how posing the problem in this way allows us to leverage scale-space not only to reduce

the number of depths sampled, but also to constrain the patch search at a given scale

according to the result of energy minimization at the previous scale. This both reduces

rendering time by a further order of magnitude and increases image quality, showing that

by introducing a hierarchical representation integrated with a multiscale search, consid-

erable speed improvements are possible over existing schemes, with equivalent or higher

quality. We have shown the main failure mode of the algorithm—large areas of the image

where texture exists only at the finest scale do not benefit from the clustering at coarse

scales. We hope to repair this deficiency by more intelligent scale selection, and by the

use of a hybrid of the hierarchy and a kd-tree.
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