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Abstract

This paper presents a novel approach for combining a set of registered

images into a composite mosaic with no visible seams and minimal texture

distortion. To promote execution speed in building large area mosaics, the

mosaic space is divided into disjoint regions of image intersection based on a

geometric criterion. Pair-wise image blending is performed independently in

each region by means of watershed segmentation and graph cut optimization.

A contribution of this work – use of watershed segmentation to find possible

cuts over areas of low photometric difference – allows for searching over

a much smaller set of watershed segments, instead of over the entire set of

pixels in the intersection zone.

The proposed method presents several advantages. The use of graph cuts

over image pairs guarantees the globally optimal solution for each intersec-

tion region. The independence of such regions makes the algorithm suitable

for parallel implementation. The separated use of the geometric and photo-

metric criteria frees the need for a weighting parameter. Finally, it allows

the efficient creation of large mosaics, without user intervention. We illus-

trate the performance of the approach on image sequences with prominent

3D content and moving objects.

1 Introduction

Image blending is the final and often very important step in producing high quality mo-

saics. Radiometric variations in overlapping views and violation of certain scene assump-

tions commonly made – rigidity, stationary, and (or) planarity – lead to geometric mis-

alignments and photometric differences. Upon blending, these usually result in degrading

artifacts, such as blurry regions or artificial seams.

In this paper we are interested in developing a image blending algorithm capable

of producing seamless 2D mosaics and preserving the appearance and clarity of object

textures while dealing with misalignments resulting from strong 3D content. A primary

∗This work has been partially supported by DoD/DOE/EPA SERDP Proj. CS – 1333 and by the Portuguese
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motivation for this work is the creation of large–area underwater habitat mosaics capable

of being interpreted by a human expert. This application stresses the need to preserve

the consistency of textures which are of large importance in the successful recognition

of benthic structures. We favor blending using contributions from a single image for

each mosaic point, while minimizing the intensity discrepancies along the boundary lines

of overlapping images. Additionally, we are interested in obtaining and comparing fast

methods that could be applied in near real time.

1.1 Background

The watershed transform [12] is a region-based segmentation approach whose intuitive

idea is that of a topographic relief flooded by water: watersheds are the divide lines of

the domains of attraction of rain falling over the region. The image processing literature

provides a large number of application examples of watersheds, such as 2D/3D region

and surface segmentation [3] and in contour detection [10, 9]. However, to the best of our

knowledge, it has not been used in the context of mosaic blending. Recently, Li et al. [9]

illustrated the advantage of using clusters of pixels to reduce the algorithmic complexity

of finding approximate object contours in images, given a coarse user input. This paper

aims at the same benefit, but in the different domain of automated mosaic blending.

Many of the problems that arise in early vision can be naturally expressed in terms

of energy minimization. In the last few years, a new approach to solving these problems

has gained wide acceptance, based on graph cuts from combinatorial optimization. The

classical use of graph cuts in computer vision is to solve pixel-labelling problems. The

input is a set of pixels P and a set of labels L. The goal is to find a labelling f (i.e., a

mapping from P to L) which minimizes an energy function in the standard form

E( f ) = ∑
p∈P

Dp( fp)+ ∑
p,q∈N

Vp,q( fp, fq), (1)

where N ⊂ P×P is a neighborhood system on pixels. Dp( fp) defines the cost of assigning

the label fp to the pixel p, while Vp,q( fp, fq) represents the cost of assigning the labels

fp, fq to the adjacent pixels p and q (used to impose spatial smoothness). For the case of

binary labels, Equation 1 is a particular case of the Ising model, and the global minimum

can be found over a single graph cut computation [7].

1.2 Related work

The approaches to image stitching in the literature can be divided into two main classes

[1]: Transition smoothing and optimal seam finding.

Transition smoothing methods, commonly referred to as feathering or alpha blend-

ing, take the locations of seams between images as a given and attempt to minimize the

visibility of seams by smoothing. A traditional approach is multiresolution splining by

Burt and Adelson [4]. Recent examples include gradient domain blending [1, 2], which

reduces the inconsistencies due to illumination changes and variations in the photometric

response of the cameras. Gradient domain methods have the advantage that dissimilar-

ities in the gradients are invariant to the average image intensity, but require recovering

the blended image from a gradient description. On a general case, there is no image that

exactly matches the gradient field. A least-squares solution can be found by solving a

discrete Poisson equation, at a high computational cost.
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Optimal seam finding methods, in contrast, place the seam between two images where

intensity differences in their area of overlap are minimal [6, 5]. The method proposed in

this paper fits in this class, and is therefore related to previous work. Uyttendaele et

al. [11] search for regions of difference (ROD) among images using thresholds over the

image difference. Each ROD is assigned to just one image by computing the minimum

weight vertex cover over a graph representation of weighted RODs. This is done exhaus-

tively for 8 or less vertices, and by a randomized approximation for more. However there

is little control over the shape or sizes of the RODs, and it is not clear how the quality

of the results scales with the number or RODs. Agarwala et al. [2] use graph cuts to

find the contribution regions among several images where each pixel is treated indepen-

dently. Pixel labelling is performed in general terms, by minimizing over all images at

the same time. To find a solution, an iterative alpha–expansion graph cut algorithm was

used. The application of multi-label graph cuts requires a potentially large number of

graph-cut iterations (which grows with the number of labels). In contrast, our approach

constrains the problem by dividing the mosaic space into large disjoint regions using a

geometric criterion of distance to camera centers. We independently solve a single binary

labelling problem for each region, releasing the need for iterative approximations. Since

only one graph–cut is performed per region, the total optimization time for our method

is in the order of a single multi-label alpha-expansion iteration. Section 4 demonstrates

that our approach is more suited to the processing of large sets of images without human

intervention.

2 Image Blending with Watersheds and Graph Cuts

The watershed/graph cut approach divides the regions of image intersection into sets of

disjoint segments then finds the labelling of the segments that minimizes intensity differ-

ences along the seam. By labelling we refer to the association of each watershed segment

to one of the images. By seam we refer to the combined path that separates neighboring

segments that have different labels.

2.1 Segmentation of the intersection region

The watershed transform divides an input surface into a set of disjoint regions around

local minima. When used on a similarity surface, created from the intersection of a given

pair of images, it aggregates the areas where the images are least similar. These are the

areas to be avoided when looking for the best seam between the images.

This paper uses the absolute value of the grey–level differences as a similarity cri-

terion. Direct application of the watershed algorithm to the grey–level image difference

generally results in over–segmentation, i.e. the creation of a large number of very small

contiguous regions. To avoid over–segmentation the image is smoothed prior to the appli-

cation of the watershed algorithm. For all the image sets of this paper, good results were

achieved using a Gaussian low pass filter with a standard deviation of 1.4 pixels.

An example of watershed segmentation and blending using two registered images

from an underwater sequence of a coral patch is shown in Figures 1 (a) and (b). Blending

using simple geometric criteria is inadequate; the average image (Figure 1(c)) is blurry,

and filling pixels with the contribution from the image with the closest center produces

a visible seam (Figure 1(d)). Figure 2 presents the absolute image difference and the

watershed result over the low pass filtered difference. At this point we could blend the

images by simply associating each watershed segment to the closest image center (Figure
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(a) (b) (c) (d)

Figure 1: Original images used for the watershed blending example (a and b) and examples of

purely geometric blending – average over intersection (c) and closest to image center (d).

(a) (b) (c) (d)

Figure 2: Absolute value of the grey–level image difference (a), watershed segmentation over

the inverted, low–pass filtered difference (b), and segmentation outline over the closest–to–center

blending (c). Simple watershed blending obtained by associating each segment to the closest image

center (d).

2(d)). Although not perfect, it improves greatly over the simple geometric algorithms

(Figure 1(c,d)).

2.2 Graph cut labelling

The visibility of the seams can be further reduced by penalizing the photometric difference

along the seams, and using graph cuts to assign the watershed segments. Let L be a binary

label vector of size n, where n is the number of watershed segments. Let Si be the binary

mask that defines segment i.

Let D1 and D2 be vectors containing the costs of assigning each segment to each

image. Let V be the n× n matrix such that V (i, j) contains the cost of having Si and S j

associated with different images.

The costs are found as follows. Let I1w and I2w be the images to be blended, already

warped into a common (mosaic) reference frame. Let R12 be the mosaic frame region

were the mosaic points are closer to the center of image 1 and second closer to image 2.

Let R21 be the opposite. The union of R12 and R21 completely defines the intersection of

I1w and I2w. Let R10 and R20 be the areas where outside the intersection region where the

mosaic points are closer to the center of image 1 and 2 respectively. R12, R21, R10 and R20

are mutually exclusive, i.e., have no intersection. These regions are illustrated in Figure

3 (a). We denote Ddi f f (Si,S j) as the vector of intensity differences between I1w and I2w

along the common boundary of regions Si and S j. If Si and S j are not neighbors (i.e. no

common boundary) then Ddi f f (Si,S j) is null.

The assignment costs penalize the segments that are neighbors to R10 and are at-

tributed to image 2 and vice–versa, whereas the interaction costs penalize the dissimilarity
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(a) (b) (c)

Figure 3: Example of graph cut labelling over the watershed segments – Regions involved in

computing the cost function (a), optimal labelling (b) and resulting blending (c).

along common boundaries,

D1(i) =
∥

∥Ddi f f (Si,R20)
∥

∥

p
; D2(i) =

∥

∥Ddi f f (Si,R10)
∥

∥

p
; V (i, j) =

∥

∥Ddi f f (Si,S j)
∥

∥

p

where ‖·‖p is the p−norm. We define a cost function as

C (L) = ∑
i

(

D1(i) ·L(i)+D2(i) ·L(i)
)

+ ∑
i, j

V (i, j) · (L(i)⊗L( j))

where L(i) = 1−L(i) and ⊗ is the exclusive OR.

The labelling problem above can be cast as a binary graph–cut problem. An efficient

algorithm exists based on a max–flow approach1, which guaranties global minimization

[8]. The main condition for applicability and guarantee of global minimum is that the cost

function be regular, defined as

Vi j(0,0)+Vi j(1,1) ≤Vi j(0,1)+Vi j(1,0)

where Vi j(li, l j), li, l j ∈ {0,1} refers to the costs of each combination of having segments

i and j attributed to each of the images. Our cost function is regular since Vi j(0,0) =
Vi j(1,1) = 0, Vi j(0,1) ≥ 0 and Vi j(1,0) ≥ 0 for all i, j.

Figure 3 illustrates the outcome of the process using p = 1. Comparing to the simple

watershed blending result from the previous section (Figure 2 (d)), two main improve-

ments are noticeable: (1) Photometric criterion helps to preserve the most prominent scene

features such as the circular sponge on the right; (2) Use of boundary conditions defined

by R10 and R20 eliminated the seams at the limits of the image intersection areas.

2.3 Dealing with multiple images

Sections 2.1 and 2.2 described the watershed/graph cut algorithm operating on a pair of

images. Extension to any number of images assumes known image–to–mosaic coordinate

transformations, and requires dividing the mosaic space in disjoint regions of image in-

tersection (ROII). These regions are obtained from the first and second closest maps. We

refer to the first closest map as the two–dimensional array that, for each element (u,v),
contains the index of the image whose center is the closest to (u,v). Conversely, the sec-

ond closest map contains the indicies to the second closest image. Let Ri j denote the

1The C++ code for constructing the graph and finding the minimal cut is available in the internet [8].

5



mosaic region where, simultaneously, image i is the closest image and image j is the sec-

ond closest. Every pair of overlapping images i and j will create a ROII, which is defined

as ROIIi, j = Ri j ∪R ji. Both closest maps and the ROIIs are defined only by geometric

(registration) parameters and can be computed very efficiently.

Once the ROIIs are defined, then pair–wise image blending is performed indepen-

dently in each region, as described previously for the case of two images.

From an implementation point of view it should be noted that we are using geomet-

ric and photometric criteria separately — the initial computation of the ROIIs is purely

geometric while the posterior watershed blending is purely photometric. This separation

allows for a very compact memory usage. All the required information is stored in just

four arrays: the first and second closest maps, and their corresponding image texture mo-

saics. These arrays have the dimensions of the final mosaic. Such compact storage is of

great importance when processing large data sets and large mosaics.

3 Results

The performance of the approach is illustrated on two distinct sequences.

The first data set is a panoramic sequence of an outdoor scene2, captured under rota-

tion, with multiple moving pedestrians. It was initially used by Uyttendaele et al. [11] and

more recently by Aggarwal et al. [2]. The sequence is available as a stack of 7 warped

images, already transformed into the mosaic frame. Figure 4 contains a sub–set of the

original images and the resulting watershed mosaic. The mosaic shows no visible cuts

over the people, except for the cases where a cut is unavoidable (example – feet of a man

on the lower right, for which there is no possible cut that could either include or exclude

him totally).

The second sequence contains 10 underwater images of a coral reef patch (Figure 5).

The image motions were estimated based on a planar model for the environment, resulting

in registration inaccuracies over the areas of strong 3-D structure. The watershed/graph

cut blending provided a realistic rendering of the scene, by cutting around the prominent

benthic structures (such as rocks and coral heads).

4 Comparison to pixel–level graph cut blending

A central idea in this paper is that watershed segmentation greatly reduces the search

space for finding contribution boundaries without affecting the seam quality, when com-

pared to searching over all individual pixels in the intersection zone. Searching over indi-

vidual pixels would allow for an arbitrarily shaped seam, whereas our method imposes the

seam to be formed by the boundaries of the watershed segments. Therefore it is relevant

to compare both approaches in terms of execution speed and image difference along the

seams. For this purpose, a pixel–level equivalent of our method was implemented, using

8–connectivity to compute the neighboring costs for each pixel.

Using the mosaic of Figure 5 of 1172×795 pixel, comparative results were obtained

for several values of σ (the standard deviation of the low pass Gaussian filter), in the range

σ ∈ [0.8 5] pixel. The size of the watershed segments grows approximately linearly with

σ and ranges from 46 to 920 pixels.

2This set is available at http://grail.cs.washington.edu/projects/photomontage
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Figure 4: 4 original images from the outdoor panoramic sequence (top) and watershed blending

result (down), cropped over the area containing moving people.

GLOBALWSMAP

Figure 5: Underwater sequence – First closest map (left top), second closest map (left middle)

and the watershed blending contribution map (left bottom). Mosaic from the closest contribution

(center) and mosaic from watershed blending (right).
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Figure 6: Effect of the average size of segments on the cost (left) and on the execution times (right).

The partial execution times of the watershed blending are represented as dotted lines.

Figure 7: Example of image blending over a 3D model – The upper row shows two original images

(left and center) selected to provide texture to the faceted model for the 3D structure (top right). The

faces are color–coded according to the geometric criterion of minimum angle between face normals

and camera centers (represented as red dots). The lower row contains a ortho–rectified view of the

scene using just the geometric criterion (left) and the graph-cut solution combining geometric and

photometric criteria (right). The seams are marked by dotted white lines.
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Figure 6 illustrates the effect of varying the average segment size on the total execution

times and the seam costs for both methods. The execution time for the watershed blending

has a significant drop for segments less than 100 pixels and is approximately constant

above than value, where it is roughly 6 times faster that the pixel–level blending. The

seam cost is defined as the sum of absolute image differences along the seam. As a base–

line for comparison, we consider the cost associated with using the closest-contribution

(Figure 5 (center)), and normalize the results by it. The seam cost is approximately 6%

higher for segments less than 100 pixels and grows up to 34% for segments around 900

pixels.

The right hand side of figure 6 illustrates the execution times of the several compo-

nents of the watershed method. For segments less than 80 pixels the computation of the

cost terms is the dominant term. This term primarily depends on the accumulated length

of the watershed boundaries, which in turn depends on the number of segments and their

smoothness.

A good compromise between execution times and seam cost is obtained for watershed

segments of around 100 pixels. This is achieved without any noticeable effects on the

seam quality. Although the threshold for detecting visible seams may vary from person

to person, in this example the seams only became apparent for normalized costs of more

than 80%. In conclusion, the speed increase of the graph-cut minimization easily offsets

the added computational cost of the watershed segmentation, even for small segments of

tens of pixels.

5 Extension to image blending in 3–D

The approach in this paper can be suitably extended to image blending over 3–D surfaces.

This section outlines an extension, and provides an illustrative example using a 3D relief

model of a coral head.

The surface model was estimated from matched point projections over a set of 6 un-

derwater images, using standard structure–from–motion techniques. This resulted in a

planar patch approximation to the real surface, comprising 273 triangles. Two images

were selected to provide texture to the 3D model. The problem was cast an optimization

problem, to balance both geometric and photometric criteria. The chosen geometric cri-

terion is the minimal angle between the normal to each triangle and the vector uniting the

center of the triangle to the camera optical center. It promotes minimum texture distortion,

by choosing the least slanted image to contribute to each 3D triangle. As a photometric

criterion, the difference of intensities along common edges of the triangles was used 3.

The top row of Figure 7 show a view of the 3D model of the scene, where the faces are

color–coded to illustrate the geometric criterion. The roughness of the surface results in

a small number of faces being separated from the two main regions. The creation of a

ortho–rectified view of the scene using just the geometric criterion leads to visible seams

(Figure 7, lower–left). The visibility of the seams is greatly reduced by combining the

photometric criterion and obtaining a graph cut solution (Figure 7, lower–right).

3Given the small size of the triangles, the watershed segmentation was not performed for this example.
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6 Conclusions

This paper presented a new approach for automated blending of registered images to

create a mosaic. A novel aspect is the use of watershed segmentation in the context of

image blending. Instead of optimizing over the entire set of pixels in the intersection

zone, preprocessing with the watershed transform led to a reduction of the search space

for finding the boundaries between images while still ensuring that the boundaries of each

segment would be along low difference areas. Results were presented for 3 challenging

image sets, with moving objects and unaccounted 3D structure. An extension of the

approach was also illustrated for the case of image blending over 3D surfaces.

The proposed method has several advantages for automated mosaic creation. The use

of graph cuts over image pairs guarantees the globally optimal solution for each intersec-

tion region. The independence of such regions makes the algorithm suitable for parallel

implementation. The separated use of the geometric and photometric criteria eliminates

the need for a weighting parameter. Finally, the simple input requirements (closest and

second closest image index and texture maps) is memory-efficient, enabling this technique

to scale to large mosaics.
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