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Abstract High-quality image inpainting methods based on
nonlinear higher-order partial differential equations have
been developed in the last few years. These methods are it-
erative by nature, with a time variable serving as iteration
parameter. For reasons of stability a large number of itera-
tions can be needed which results in a computational com-
plexity that is often too large for interactive image manipu-
lation.

Based on a detailed analysis of stationary first order
transport equations the current paper develops a fast non-

iterative method for image inpainting. It traverses the in-
painting domain by the fast marching method just once
while transporting, along the way, image values in a coher-
ence direction robustly estimated by means of the structure
tensor. Depending on a measure of coherence strength the
method switches continuously between diffusion and direc-
tional transport. It satisfies a comparison principle. Exper-
iments with the inpainting of gray tone and color images
show that the novel algorithm meets the high level of quality
of the methods of Bertalmio et al. (SIG-GRAPH ’00: Proc.
27th Conf. on Computer Graphics and Interactive Tech-
niques, New Orleans, ACM Press/Addison-Wesley, New
York, pp. 417–424, 2000), Masnou (IEEE Trans. Image
Process. 11(2):68–76, 2002), and Tschumperlé (Int. J. Com-
put. Vis. 68(1):65–82, 2006), while being faster by at least
an order of magnitude.
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1 Introduction

Nontexture image inpainting, also termed image interpola-
tion, is the task of restoring the values of a digital image for
a destroyed, or consciously masked, subregion of the image
domain. It thus belongs to the area of digital image process-
ing. On the other hand, if we consider a region that partially
occludes some objects of the image the related computa-
tional task of making these objects fully visible is termed
disocclusion in the area of image analysis.

The qualifying term nontexture refers to the case that lo-

cal features and short range correlations of the image are
sufficient for a result of high perceptive quality. There is no
detection of more global structures like symmetry or long

range spatial correlations perceived as patterns and textures.
If the task at hand required such global information, one
would have to rely on the methodology of pattern recog-
nition and texture synthesis. It is also not possible to restore
semantic content of an image, such as given by the phys-
iology of the shown object or the physics of the illumina-
tion.

Nevertheless, impressive results are obtainable by non-
texture image inpainting as illustrated, e.g., in Fig. 1. The
inpainting result (using the method of this paper) that is
shown in Fig. 1(c) is of such a high quality that a nonexpert
observer might consider it as the original image. Note that
even the flow-like (local) texture of the eyebrow has been
restored in a plausible way. However, a look at the origi-
nal shown in Fig. 1(a) reveals that some information such as
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Fig. 1 A digital image (a), its
vandalization (b), and its
reconstruction by inpainting1 (c)

(a) original; 241 × 159 px2 (b) vandalization (courtesy of Telea
[24], Fig. 8.i)

(c) inpainted by our fast method;
CPU time 0.4 s

reflections on the pupil have not been restored, making the
inpainted result appear less vivid.

The State of Affairs Considerable interest, and excitement,
has been generated for the inpainting problem in the applied
mathematics community by the celebrated papers of Mas-
nou and Morel [17] and Bertalmio et al. [3]. These papers
have shown that sophisticated mathematical tools such as
variational principles and partial differential equations can
be fruitful here. Many interesting applications of the inpaint-
ing methodology have been documented since then, such as
the restoration of old photographs, removal of superimposed
text or selected objects, digital zoom-in, and edge decoding.
For a survey of the mathematics involved, of many methods
and applications, see [8], Chap. 6.

At a first sight, it might appear surprising that tools from
continuous mathematics bear power on solving problems for
discrete objects such as digital images. However, the ab-
straction of a continuous, analog image that is only approx-
imated by the digital one allows for a genuine handling of
the multiscale nature of images (see [14], Fig. 20.1). The
high-level of abstraction that is given by the tools of con-
tinuous mathematics considerably contributes to the under-
standing of the problems of image processing and of the
discrete algorithms used. But it also contributes to the con-
struction of new discrete algorithms. This approach to dig-
ital image processing is elaborated, e.g., in the books of
Aubert and Kornprobst [1], Chan and Shen [8], Guichard
and Morel [14], Kimmel [15], Sapiro [19], and Weick-
ert [27].

We call the abstraction of the underlying continuous im-
age the high-resolution limit u of the discrete image uh, with
h being a measure of the fineness of the resolution.2 Note,
that the technological progress can in fact be described as re-
alizing h → 0: professional photographers already use digi-
tal cameras that make images of a size of 4992 × 3328 px2,
giving a resolution of 832 dpi for a 6′′ × 4′′ photo print.
Such fine resolutions are barely met in day-to-day simula-
tions with numerical partial differential equations. Certainly,

1Using the default parameters (23).
2Here, to be specific, we take h being related to the resolution by h−1 =√

# pixels.

some engineers would consider such grids as “numerically
converged”.

Basically, there are two major mechanisms to get im-
age information into the inpainting domain: diffusion and
transport (see [6]). For the inpainting problem, nonlinear
partial differential equations combining these mechanisms
have been obtained phenomenologically (e.g., [3] or [25]),
axiomatically (e.g., [4]), or from a variational principle
(e.g., [5, 7, 17], or [11]). The resulting numerical algorithms
are iterative by nature and the iteration is often realized by
the introduction of a time variable that is discretized by an
explicit time stepping scheme. Thus, a CFL stability condi-
tion applies, restricting the time step to τ ∝ hν , where the
exponent ν is, e.g., ν = 1 for advection type equations, but
can be as large as ν = 4 for fourth order parabolic equations.
Reaching the stationary state of the inpainted result requires
a number of iterations (time steps) as large as

# iterations ∝ (# image pixels)ν/2.

For instance, the transport equation underlying the method
of Bertalmio [3] has ν = 1. For the inpainting problems of
Figs. 12 and 13 we thus predict a number of iterations of or-
der 103. In fact, Bertalmio et al. ([3], p. 420) report to have
used 3000 time steps to inpaint these problems. On the other
hand, the numerical scheme given by Chan et al. ([5], §6.1)
for their Elastica variational inpainting method has ν = 4
(see [12], §6.3). Thus, for the reproduction of the example
found in [5], Fig. 6.4, which is basically a 140 × 32 px2

detail of the inpainting problem in Fig. 12, we predict a
necessary number of iterations of order 107. In fact, [12],
Fig. 6.9, reports to have used 12 000 000 time steps to re-
produce the published result. Consequently, in their recent
survey on variational image inpainting Chan and Shen ([9],
p. 614) list as one major open problem the “fast and efficient
digital realization” of these methods.

A notable exception from the CFL stability restriction
is the recent method of Tschumperlé [25], which basically
calls for the solution of heat equations along flow lines of the
coherence vector field. He obtains an unconditonally stable
scheme by line convolution with Gaussians.

It is not surprising that no high-quality inpainting method
has become established so far in commercial, interactive im-
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age manipulation software, such as Photoshop. The plug-
in of Tschumperlé’s [25] method to the GNU software The

GIMP is a pioneering step in this direction.

The Contribution of our Paper Our aim in this paper is
to develop an inpainting algorithm that matches the high
level of quality of the methods by Bertalmio et al. [3] and
Tschumperlé [25] while being considerably faster.

Our novel algorithm is based on two observations. The
first observation is about the celebrated method of Bertalmio
et al. [3] which is, neglecting some anisotropic diffusion
steps that are interleaved for stabilization, a time stepping
method for the transport equation

ut = ∇⊥u · ∇L, L = �u.

The phenomenological rationale ([3], §3.2) usually given
for this equation goes as follows (see also [19], §8.2.2, or
[8], §6.11.2): a measure of smoothness L of the image u is
transported along the field of isophotes induced by the vec-
tor field ∇⊥u. However, since ut but not Lt appears on the
left hand side, it is not a transport equation for L. Instead,
by writing the equation in the equivalent form

ut = −∇⊥�u · ∇u

we see that it really is a transport equation for the image
value u being convected by the field ∇⊥�u (see also [2],
p. 357). This field is in the direction of the level lines of
�u which are related to Marr–Hildreth edges (see Sect. 4).
Thus, the formal stationary state

�c · ∇u = 0, �c = ∇⊥�u,

transports the image values along continuations of edges
from the boundary of the inpainting domain into its inte-
rior. Of course, this transport along characteristics will cross
somewhere. However, if we are lucky, crossing character-
istics might carry similar information. (Like two teams dig-
ging a tunnel from both ends are meant to meet somewhere.)
Thus, well-posedness of such hyperbolic boundary prob-
lems is a central issue in our paper (see Theorem 3).

The second observation occurred while we analyzed the
discrete, linear, and fast noniterative inpainting method of
Telea [24]. This method traverses the pixels of the inpaint-
ing domain from the boundary to its interior by following
the fast marching method for the approximation of the dis-
tance map of the boundary. Along the way local weighted
averages of already known values propagate the image val-
ues into the inpainting domain. This fast method behaves
strongly diffusive (see Fig. 3) and creates peculiar transport
patterns (see Fig. 4). We have developed a deeper mathe-
matical understanding of these effects by studying what we

call the high-resolution, vanishing viscosity limit of the al-
gorithm (see Theorem 1). In fact, it turns out that the algo-
rithm approximates the stationary transport equation

�n · ∇u = 0,

where �n denotes the field of normals to the level lines of the
distance map, that is, the field of steepest ascent from the
boundary. This transport direction has already been identi-
fied by Bertalmio et al. ([3], p. 419) as being an unsuccessful
choice for the propagation of image information.

Our two observations are tied together by the question
whether it is possible to modify the weight function of
Telea’s algorithm (keeping its fast performance) such as
to obtain the formal stationary state of Bertalmio et al.’s
method as limit equation (keeping its high level of qual-
ity). We will answer this question positively, up to a well
understood exceptional case (that is, the last case in (14)), in
Theorem 2.

Finally we increase the robustness of the method by re-
placing the edge-oriented transport direction of Bertalmio
et al.’s [3] method by the coherence direction. This second
moment information has successfully been used by Weick-
ert [27, 29] for the enhancement of coherent information in
anisotropic diffusion or shock-filtering. As we have already
mentioned, the coherence flow also underlies the inpainting
method of Tschumperlé [25].

Outline of our Paper In Sect. 2 we recall the details of
Telea’s [24] fast single-pass algorithm. We carefully sep-
arate specific choices from the generic architecture of the
algorithm and show that it satisfies strong stability prop-
erties. In Sect. 3 we establish the high-resolution, vanish-
ing viscosity limit of the algorithm. The modification of the
weight function for matching a given field of directions is
subject of Sect. 4. Here, an exceptional case is related to the
well-posedness of the limit equation. The choices of flow
fields that are suitable for image inpainting are discussed in
Sect. 5. We will show that the noniterative approach of this
paper requires a subtle modification of the coherence flow to
avoid undesirable boundary effects. Implementation details,
such as an updating formula for the structure tensor and the
treatment of color images, are given in Sect. 6. Finally, in
Sect. 7 we show computational results for some synthetic
and natural inpainting problems. In particular, a compari-
son with the methods of Bertalmio et al. [3], Masnou [16],
and Tschumperlé [25] will show that we meet the high level
of quality of these methods while being at least an order of
magnitude faster. We also demonstrate the application of the
inpainting methodology to the denoising of images affected
by impulse noise with a noise frequency as large as 80%.

Notation Because amplitude quantization is not an issue
in this paper, we generally assume that all gray tone images,
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or channels of color images, take values in the real interval
[umin, umax]. We will distinguish between discrete (digital)
images defined on finite sets of pixels and continuous (ana-
log) images defined on open subsets of R

2. The latter are
thought of as the high-resolution limit of the former. This
distinction will be indicated by using the index h for the
discrete notions while omitting it for the corresponding con-
tinuous ones. Pixels will be identified with their midpoint.

• �h is the image domain, i.e., the finite array of pixels for
the final, restored image uh : �h → [umin, umax].

• Dh ⊂ �h is the inpainting domain for which the values of
uh have to be determined.

• �h \ Dh is the data domain, for which the values of the
image are given as u0

h = uh|�h\Dh
.

• ∂Dh ⊂ Dh is the discrete boundary, that is, the set of in-
painting pixels that have at least one neighbor (with re-
spect to the chosen 4- or 8-connectivity, see ([23], §2.6.2))
in the data domain.

Continuous quantities are defined correspondingly. Finally,
we define discrete and continuous ǫ-neighborhoods by

Bǫ,h(x) = {y ∈ �h : |y − x| ≤ ǫ},
Bǫ(x) = {y ∈ � : |y − x| ≤ ǫ},

where | · | denotes the Euclidean norm.

2 Telea’s Single-Pass Algorithm

Telea [24] has presented a fast algorithm for image inpaint-
ing that calculates uh by traversing the pixels of the inpaint-
ing domain in just a single pass. Basically, the simple idea is
to fill the inpainting domain in a fixed order, from its bound-
ary inwards, by using weighted means of already calculated
image values. Here, the order depends on the geometry of
the inpainting domain, but not on the data image u0

h to be
inpainted.

To prepare our mathematical analysis and modification of
Telea’s approach in later sections, we break down his algo-
rithm into three aspects which are logically quite indepen-
dent from each other. The first is the generic frame of the
algorithm, the second and third are specific choices made by
Telea.

The Generic Single-Pass Algorithm We number the pixel
of the inpainting domain according to the chosen order,
Dh = {x1, . . . , xN }, and call

B<
ǫ,h(xk) = Bǫ,h(xk) \ {xk, . . . , xN }, k = 1, . . . ,N,

the neighborhood of already inpainted pixels. Mathemati-
cally, the single-pass algorithm now reads generically as fol-

lows:

uh|�h\Dh
= u0

h, (1)

uh(xk) =
∑

y∈B<
ǫ,h(xk)

wh(xk, y)uh(y)
∑

y∈B<
ǫ,h(xk)

wh(xk, y)
, k = 1, . . . ,N. (2)

Here, wh(x, y) ≥ 0 are called the weights of the algorithm
and we assume that

∑

y∈B<
ǫ,h(x)

wh(xk, y) > 0, x ∈ Dh.

Obviously, because of the weighted means this algorithm is
linear, for fixed wh, in the data image u0

h and enjoys the
following desirable stability properties:

• Comparison Principle If the data image satisfies umin ≤
u0

h ≤ umax with two constants umin and umax, the inpaint-
ing result satisfies the same inequalities

umin ≤ uh ≤ umax.

• l∞-stability Two different data images u0
h and û0

h yield
inpainting results uh and ûh satisfying

‖uh − ûh‖∞ ≤ ‖u0
h − û0

h‖∞,

where the maximum defining the norm ‖ · ‖∞ is taken
over �h and Dh, respectively.

Note that the comparison principle still holds if wh de-
pends on uh.

The Order Telea [24] realizes the intuitive idea of filling
the inpainting domain progressively from its boundary in-
wards by ordering the pixels x of Dh according to their (ap-
proximate) Euclidean distance Th(x) to the boundary ∂Dh:

Th(xj ) < Th(xk) ⇒ j < k. (3)

The geometric idea of the generic single-pass algorithm with
this distance ordering is illustrated in Fig. 2(a).

Using a priority queue data structure, such as a heap, the
function Th can be calculated on Dh in the order of increas-
ing values using O(N logN) operations. This fundamental
approach, which is similar to Dijkstra’s [10] algorithm for
finding shortest paths in weighted graphs, was found for the
problem at hand independently in different areas of applied
mathematics:

• For the fast calculation of Euclidean geodesic distance
maps in mathematical morphology [22], see also [23],
§7.4.

• For the fast calculation of value functions of certain op-
timization problems satisfying Bellman’s principle [26].
The distance map is a special instance.
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Fig. 2 The geometric idea of
the generic single-pass
inpainting algorithm with
distance ordering

(a) geometric setting of the actual, discrete
algorithm

(b) geometric setting of the high-resolution
limit (6)

• For the fast calculation of level-set discretizations of
monotonically advancing fronts [20], see also [21], §8
or [15], §7. The level sets of the Euclidean distance maps
are instances of such fronts.

We will adopt the last point of view, called fast marching

method in the literature. Here, Th is obtained as an upwind
discretization of the Euclidean distance map to the boundary
of the continuous inpainting domain, T (x) = dist(x, ∂D).
This function is the unique viscosity solution of the Dirichlet
problem for the eikonal equation,

|∇T | = 1 in D, T |∂D = 0. (4)

The Weights Telea [24] suggests a variety of weights.
However, they do not yield significantly different results in
practice, and all give the same high-resolution limit that we
will discuss in the next section. Therefore, we just take the
simplest instance

wh(x, y) = |∇hTh(x) · (x − y)|
|x − y|2 ,

where ∇h denotes a central difference approximation of the
gradient. This weight approximates the continuous one3

w(x,y) = |∇T (x) · (x − y)|
|x − y|2 = | cos∠(�n(x), x − y)|

|x − y| ,

(5)
�n(x) = ∇T (x),

where by (4) �n(x) = ∇T (x) is the unit vector (normal to the
level lines) that points into the direction in which the inpaint-
ing progresses. The rationale behind this choice is twofold:
an already inpainted pixel y in the vicinity of x contributes
to the value of uh(x) with a larger weight if, by the denom-
inator, it is closer to x and, by the numerator, it lies in the

3The (nonoriented) angle between two vectors �a1 and �a2 is defined as
0 ≤ ∠(�a1, �a2) ≤ π with

cos∠(�a1, �a2) = �a1 · �a2

|�a1| · |�a2|
.

(a) 241 × 159 px2 (courtesy of
Telea [24], Fig. 8.i)

(b) Telea’s method, ǫ = 5 px; CPU
time 0.08 s

Fig. 3 A vandalized digital image (a) and its inpainting by Telea’s
method (b). (Compare Fig. 1)

direction of steepest descent from x, that is, comes from a
shorter distance to the given data.

Examples We show the limitations of Telea’s algorithm
with two typical examples. Fig. 3(a) shows a vandalized
digital image with an inpainting domain of approximately
10 pixels thickness, Fig. 3(b) the inpainted result4 using
ǫ = 5 px. Considerable blur is produced, clearly visible
when edges are entering the inpainting domain. It appears
that color values are not only diffused but also transported
orthogonal to the direction of the edges.

To enhance this effect, we apply Telea’s algorithm to the
problem of continuing a straight edge through a large in-
painting domain, shown in Fig. 4. Besides some blur a rather
peculiar transport pattern can be observed. This pattern will
be explained by the theory that we will develop in the next
section.

3 High-resolution Vanishing Viscosity Limit of

Telea’s Algorithm

The sequential generic single-pass inpainting algorithm (2)
can be thought of as a forward substitution for the equivalent

4Telea’s algorithm is applied independently to each color channel of
the RGB color space, see p. 273.
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(a) 300 × 180 px2; inpainting do-
main: 228 × 108 px2

(b) Telea’s method, ǫ = 6 px; CPU
time 0.05 s

Fig. 4 A synthetic digital image (a) and its inpainting by Telea’s
method (b)

system of linear equations
∑

y∈B<
ǫ,h(x)

(uh(x) − uh(y))wh(x, y) = 0, x ∈ Dh;

uh|�h\Dh
= u0

h.

This is, because of the definition of the neighborhoods
B<

ǫ,h(x) the system is triangular with respect to the chosen
order of pixels. Now, at least formally, we consider the high-
resolution limit h → 0 by looking at this system of equations
as a discretization of a continuous integral equation. With a
scale factor that will turn out to be convenient later on we
obtain

1

πǫ2

∫

B<
ǫ (x)

(u(x) − u(y))w(x, y) dy = 0, x ∈ D;

u|�\D = u0.

(6)

Because of the order by distance (3) used to define B<
ǫ,h

(x),
these sets are discretizations of the truncated balls (see
Fig. 2(b) for an illustration)

B<
ǫ (x) = {y ∈ Bǫ(x) : T (y) < T (x)}.

Here, we have continued T as the signed distance map into
the data domain by defining

T (x) = −dist(x, ∂D), x ∈ � \ D.

The integral equation combines directional effects due to
both, the truncation of the balls and the anisotropic choice of
the weights, with the diffusion caused by the linear averag-
ing. The amount of viscosity is determined by the radius ǫ.
To distill the directional effects we study the vanishing vis-
cosity limit ǫ → 0.

A prominent role in the formulation of this limit will be
played by the (Euclidean) skeleton 	 ⊂ D of the inpainting
domain. There are at least four different equivalent defini-
tions of the skeleton, see ([15], §6.4). We choose to define
	 as the set of singularities (locations of the ridges) of the
distance map T (x) = dist(x, ∂D) to the boundary. That is,
	 is the smallest closed set such that T ∈ C1(D \	). In fact,
we will assume throughout the paper even more regularity of
∂D, namely T ∈ C2(D \ 	).

Theorem 1 We consider a function u ∈ C1(D \ 	).

(a) For weights of the form w(x,y) = |x − y|−1k(x, ǫ−1 ·
(x −y)) with k uniformly bounded and smooth we have,
as ǫ → 0,

1

πǫ2

∫

B<
ǫ (x)

(u(x) − u(y))w(x, y) dy

= �c0(x) · ∇u(x) + O(ǫ), x ∈ D \ 	.

We express �c0 using polar coordinates with respect to

an orthonormal basis5 �a and �a⊥ of R
2. Let �e(φ) =

cos(φ)�a + sin(φ)�a⊥ and define the polar angle θ of �n
by

�n(x) = ∇T (x) = �e(θ(x)), x ∈ D \ 	.

Then

�c0(x) = 1

π

θ(x)+π/2∫

θ(x)−π/2

k∗(x, �e(φ))�e(φ)dφ,

k∗(x, �η) =
∫ 1

0
k(x, r �η)rdr.

(7)

(b) Telea’s weight function (5), that is, k(x, �η) = |�n(x) ·
�η|/|�η|, �n(x) = ∇T (x), yields

�c0(x) = �n(x)/4.

Proof Let us consider a fixed x ∈ D \	 and define the semi-
disk

Sǫ,�η(x) = {y ∈ Bǫ(x) : �η · (x − y) ≥ 0}.

By construction the inner boundaries of Sǫ,�n(x)(x) and
B<

ǫ,h(x) touch each other tangentially in x while B<
ǫ,h(x)

becomes Sǫ,�n(x)(x) asymptotically as ǫ → 0. Therefore, the
area of the symmetric difference of the two sets is of the
order O(ǫ3). Since u is assumed to be continuously differ-
entiable in x we obtain that

u(x) − u(y)

|x − y| = ∇u(x) · x − y

|x − y| + O(ǫ), y ∈ Bǫ(x),

which implies, in particular, the boundedness of the expres-
sion. Using these two estimates we obtain

1

πǫ2

∫

B<
ǫ (x)

(u(x) − u(y))w(x, y) dy

= 1

πǫ2

∫

B<
ǫ (x)

u(x) − u(y)

|x − y| k(x, ǫ−1(x − y)) dy

5This basis is not necessarily assumed to be positively oriented. Thus,
in this paper, �a⊥ denotes a fixed but arbitrary choice of the two vectors
that are normal to �a �= 0 with |�a⊥| = |�a|.
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= 1

πǫ2

∫

Sǫ,�n(x)(x)

u(x) − u(y)

|x − y| k(x, ǫ−1(x − y)) dy

+ O(ǫ)

= 1

πǫ2

∫

Sǫ,�n(x)(x)

k(x, ǫ−1(x − y))∇u(x) · x − y

|x − y| dy

+ O(ǫ)

= 1

πǫ2

∫

Sǫ,�n(x)(0)

k(x, ǫ−1(−y))∇u(x) · −y

| − y| dy

+ O(ǫ)

= 1

π

∫

S1,�n(x)(0)

k(x,−y)∇u(x) · −y

| − y| dy + O(ǫ).

Introducing polar coordinates, we realize that the vec-
tors −y, y ∈ S1,�n(x)(0), are characterized by a polar angle
between θ(x)−π/2 and θ(x)+π/2 and a radius between 0
and 1. Hence we get

1

πǫ2

∫

B<
ǫ (x)

(u(x) − u(y))w(x, y) dy

= 1

π

∫ θ(x)+π/2

θ(x)−π/2

∫ 1

0
k(x, r�e(φ))∇u(x) · �e(φ) rdrdφ

+ O(ǫ)

= 1

π

∫ θ(x)+π/2

θ(x)−π/2
k∗(x, �e(φ))�e(φ) · ∇u(x)dφ + O(ǫ)

= �c0(x) · ∇u(x) + O(ǫ),

which proves assertion (a).
Specifying Telea’s weight function k(x, �η) = |�n(x) ·

�η|/|�η| gives

k∗(x, �e) =
∫ 1

0
k(x, r�e) rdr = |�n(x) · �e|

∫ 1

0
r dr

= 1

2
|�n(x) · �e|, |�e| = 1.

Now, for θ(x) − π/2 ≤ φ ≤ θ(x) + π/2 we have �n(x) ·
�e(φ) = �e(θ(x)) · �e(φ) ≥ 0 and therefore

�c0(x) = 1

π

∫ θ(x)+π/2

θ(x)−π/2
k∗(x, �e(φ)) �e(φ)dφ

= 1

2π

∫ θ(x)+π/2

θ(x)−π/2
�n(x) · �e(φ) �e(φ)dφ

= 1

2

(
1

π

∫ θ(x)+π/2

θ(x)−π/2
�e(φ)�e(φ)T dφ

)

︸ ︷︷ ︸

=A

�n(x)

= A �n(x)/2.

(a) Telea’s method, ǫ = 6 px (b) Telea’s method, ǫ = 1 px

Fig. 5 (Color online) Explanation for the effect of Fig. 4. The skeleton
	 is shown in red, the boundary ∂D in blue

By a direct calculation involving trigonometric functions we
obtain A = I/2. Alternatively, one can argue that by the
symmetry �e(φ ± π) = −�e(φ)

2A = 1

π

∫ θ+π

θ−π

�e(φ)�e(φ)T dφ = 1

π

∫ π

−π

�e(φ)�e(φ)T dφ.

This shows that A is invariant under orthogonal coordinate
transformations and therefore A = λI . Now

2λ = tr(A) = 1

2π

∫ π

−π

tr(�e(φ)�e(φ)T ) dφ

= 1

2π

∫ π

−π

�e(φ) · �e(φ)dφ = 1.

Summarizing, we get �c0(x) = �n(x)/4, which finishes the
proof of (b). �

Theorem 1 shows that the vanishing viscosity limit of
the equations (6), which are underlying Telea’s algorithm,
is given by the following problem:

�n(x) · ∇u(x) = 0 on D \ 	, u|∂D = u0|∂D. (8)

Even though it is a hyperbolic Dirichlet problem, this bound-
ary value problem is well-posed (see Theorem 3) because
we have excluded the skeleton 	 from the domain of va-
lidity of the equation. The reason is that the skeleton 	

is precisely the set where the characteristics of the vector
field �n(x) = ∇T (x) intersect for the first time and shocks
are formed, see ([15], §6.4). Thus, the limit equations give
the following continuous inpainting algorithm (see also [3],
Fig. 2):

The known image value u0(x) of a boundary point
x ∈ ∂D is transported along the straight line of the
normal pointing inwards into the inpainting domain D

until this normal meets the skeleton 	, that is, until it
intersects with a different normal transporting differ-
ent image values. There is no transport of information
across 	.

This inpainting procedure is clearly visible in Fig. 5; the re-
sult for ǫ = 1 px is exactly the same as an application of the
limit equation (8) would yield. Thus, our analysis has led



266 J Math Imaging Vis (2007) 28: 259–278

to a simple explanation of the peculiar behavior of Telea’s
algorithm shown in Fig. 4.

4 Towards the Realization of Arbitrary Transport

Directions

The vanishing viscosity limit (8) clearly reveals two major
shortcomings of Telea’s algorithm:

• Inpainting information is only transported in a direction
given by the geometry of the inpainting domain D.

• There is no transport of inpainting information across the
skeleton 	 of D.

Moreover, there is the problem of a considerable amount of
blur for larger values of the inpainting radius ǫ. We aim to
resolve these issues, at least for the most parts, by a suitable
modification of Telea’s weight function.

The inpainting problem is basically about appropriately
closing isophotes which, being level lines of u, are not inter-
secting. This property is shared by the trajectories (charac-
teristics) of the flow of a unit vector field �c on D, which we
therefore take as a model for the unknown isophotes. The
actual construction of vector fields �c that are useful for the
inpainting problem is the subject of the next section. Here,
we assume that it is given. However, we note that isophotes
do not have an orientation. Thus, only the slope but not the
sign of the vector field �c is of importance. In analogy with
(8) we therefore aim for a vanishing viscosity limit of the
form

±�c(x) · ∇u(x) = 0 on D \ 	, u|∂D = u0|∂D. (9)

The signs should be chosen, depending on x, in a way to
make the hyperbolic Dirichlet problem well-posed; the for-
mation of shocks has to be confined to the skeleton 	.

Summarizing, we aim at choosing the weight w of the
generic single-pass algorithm with distance ordering in such
a way that the normalized limit vector field �c∗ = �c0/|�c0| of
Theorem 1 matches the given ±�c. In view of Theorem 1
case (b) it is tempting to replace Telea’s weight function (5)
by the expression

w(x,y) = |�c(x) · (x − y)|
|x − y|2 . (10)

However, the resulting match is not good enough (see
Fig. 6). The directional dependence of w has to be much
more pronounced; the result for a carefully crafted exponen-
tial dependence on the direction is given in the next theorem.

Theorem 2 Let �c(x) be a normalized smooth vector field on

D \ 	. Consider the weight function

w(x,y) =
√

π

2

μ

|x − y|

· exp

(

− μ2

2ǫ2

∣
∣�c⊥(x) · (x − y)

∣
∣
2
)

. (11)

and its induced vector field �c0 as defined in Theorem 1. Then,
�c0 is nonvanishing and yields a normalized vector field �c∗ =
�c0/|�c0| on D \ 	 having the same smoothness as �n. There

is a positive constant ρμ such that �n(x) · �c∗(x) ≥ ρμ > 0,
x ∈ D \ 	. With

θ(x) = ∠(�n(x), �c(x)) ∈ [0,π],

the deviation angle between �c∗ and �c is of the form

∠(�c∗(x), �c(x)) = �(θ(x)). The continuous function �(θ)

satisfies the symmetry law

�(π − θ) = π − �(θ), 0 ≤ θ ≤ π, (12)

and the asymptotic expansion (as μ → ∞)

�(θ) =
√

2

π
log

(

tan

(
θ

2
+ π

4

))

μ−1

+ O(μ−2), 0 ≤ θ <
π

2
. (13)

Here, the estimate O(μ−2) is uniform for θ uniformly

bounded away from π/2.

Proof We consider a fixed but arbitrary x ∈ D \ 	; the de-
pendence on it will be suppressed in the notation if conve-
nient. We define �a = ±�c and a⊥ by choosing the sign and
orientation such that �n · �a ≥ 0 and �n · �a⊥ ≥ 0. Then, us-
ing polar coordinates with respect to the orthonormal basis
�a, �a⊥ we obtain (with the notation of Theorem 1), writing
θ∗ = ∠(�n, �c) in this proof,

�n = �e(θ), 0 ≤ θ = min(θ∗,π − θ∗) ≤ π/2.

The case θ = π − θ∗ corresponds to the choice �a = −�c. The
weight function (11) can be written in the form discussed in
Theorem 1 with

k(x, �η) = μ

√

π

2
exp

(

−μ2

2
|�c⊥ · �η|2

)

.

Using |�c⊥ · �e(φ)|2 = sin2 φ we get by (7)

�c0 = 1√
2π

∫ θ+π/2

θ−π/2

1 − exp(−μ2

2 sin2 φ)

μ sin2 φ
�e(φ)dφ.

Writing c0 = �c0 · �a and c1 = �c0 · �a⊥ for the two components
of �c0, we get
(

c0

c1

)

= 1√
2π

·
∫ θ+π/2

θ−π/2

1 − exp(−μ2

2 sin2 φ)

μ sin2 φ

(

cosφ

sinφ

)

dφ
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Using the symmetries of the trigonometric functions at
φ = 0 and φ = π/2 we shorten the intervals of integration
to

c0 =
√

2

π

∫ π/2−θ

0

1 − exp(−μ2

2 sin2 φ)

μ sin2 φ
cosφ dφ,

c1 =
√

2

π

∫ θ

0

1 − exp(−μ2

2 cos2 φ)

μ cos2 φ
cosφ dφ.

In particular, these two integrals imply that c0 > 0, 0 ≤ θ <

π/2, and c1 > 0, 0 < θ ≤ π/2, showing that �c0 is nonvan-
ishing for all θ . Hence, �c∗ is well-defined. Since �n · �e(φ) =
�e(θ) · �e(φ) > 0, θ − π/2 < φ < θ + π/2, we get

�n · �c0 = 1√
2π

∫ θ+π/2

θ−π/2

1 − exp(−μ2

2 sin2 φ)

μ sin2 φ

· �e(θ) · �e(φ)dφ > 0,

and therefore �n · �c∗ > 0 for all θ . Continuity yields the as-
serted existence of the constant ρμ > 0.

The signs and forms of c0 and c1 imply further that
�c∗ = �e(�(θ)) with a continuous function �(θ) of θ ∈
[0,π/2] that satisfies �(π/2) = π/2. This yields the as-
serted expression ∠(�c∗, �c) = �(θ∗) by continuously extend-
ing �(θ) according to the symmetry law (12) if θ∗ = π − θ

and thus �c = −�a.
Finally, we prove the asymptotic expansion (13). To this

end we assume that 0 ≤ θ < π/2. Substituting ξ = μ sinφ

in the integral expression for c0 gives

c0 =
√

2

π

∫ μ cos θ

0

1 − exp(−ξ2/2)

ξ2
dξ

=
√

2

π

∫ ∞

0

1 − exp(−ξ2/2)

ξ2
dξ

−
√

2

π

∫ ∞

μ cos θ

1 − exp(−ξ2/2)

ξ2
dξ

= 1 −
√

2

π

(∫ ∞

μ cos θ

1

ξ2
dξ

)

·
(

1 − σ0 exp

(

−μ2

2
cos2 θ

))

= 1 −
√

2

π
sec(θ)μ−1

·
(

1 − σ0 exp

(

−μ2

2
cos2 θ

))

,

with 0 < σ0 < 1 obtained by the mean value theorem. Like-
wise we get

c1 =
√

2

π

∫ θ

0

1 − exp

(

−μ2

2 cos2 φ

)

μ cosφ
dφ

=
√

2

π

(∫ θ

0
secφ dφ

)

μ−1

·
(

1 − σ1 exp

(

−μ2

2
cos2 θ

))

=
√

2

π
log

(

tan

(
θ

2
+ π

4

))

μ−1

·
(

1 − σ1 exp

(

−μ2

2
cos2 θ

))

,

where 0 < σ1 < 1. Since the estimate

1 − σj exp

(

−μ2

2
cos2 θ

)

= 1 + O(μ−1), j = 0,1,

is uniform for θ uniformly bounded away from π/2, we get

�(θ) = arctan

(
c1

c0

)

= c1

c0

(

1 + O

(
c1

c0

))

=
√

2

π
log

(

tan

(
θ

2
+ π

4

))

μ−1 + O(μ−2),

that is, the asserted asymptotic expansion.6 �

Figure 6 shows the deviation angle � = ∠(�c∗, �c) as a
function of θ = ∠(�n, �c) for Telea’s original weight func-
tion (5), the simple modification (10), and the exponentially
confined one (11) of Theorem 2. There is a good match of
�c∗ with �c if � ≈ 0, and with −�c if � ≈ π . Thus, we observe
that the simple modification (10) does not even come close
to this match, but is quantitatively just a minor modification
of Telea’s weight function. In fact, it behaves quite similar
to Telea’s algorithm in practice.

On the other hand, the exponentially confined weight (11)
results in excellent matches for larger values of the parame-

6The reason of the nonuniformity of the expansions near θ = π/2 is
not unboundedness, but a change of the type of asymptotic expansion
in μ. In fact, we can prove that (γ denoting Euler’s constant)

c0|θ=π/2 = 0,

c1|θ=π/2 =
√

2

π
log(μ)μ−1 + γ + log 2√

2π
μ−1 + O(μ−2).
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Fig. 6 (Color online) Deviation angle �(θ) for different weights;
gray: Telea’s weight (5); red: the modified weight (10); blue: the expo-
nentially confined weight (11), μ = 10; green: the exponentially mod-
ified weight (11), μ = 100

Fig. 7 Location of the straight line ℓ through �c(x), x ∈ 	trans (being
an inflow point for the component C)

ter μ if θ is bounded away from π/2. In fact, the asymptotic
expansion (13) proves that

lim
μ→∞

�c∗(x) =

⎧

⎪
⎨

⎪
⎩

�c(x), �n(x) · �c(x) > 0,

−�c(x), �n(x) · �c(x) < 0,

�n(x), �n(x) ⊥ �c(x).

(14)

The change of the sign is needed for the well-posedness
which the limit equation inherits from the single-pass algo-
rithm (see Theorem 3); it keeps the algorithm’s directional
averaging to be inherently upwinding. The price to pay for it
is, by continuity, the unavoidable sudden rotation of �c∗ into
the perpendicular direction �n if the flow generated by �c be-
comes close to tangential to the level lines of the distance
map (that is, �c ⊥ �n). We therefore predict, but for such cases
only, some visual effects reminiscent of Telea’s algorithm.

Moreover, all the weights shown in Fig. 6 satisfy 0 <

�(θ) ≤ θ for 0 < θ ≤ π/2. This can be proved by (13) for
large values of μ; for all other cases we rely on the shown
numerical evidence. This property is needed in the following
theorem that proves the well-posedness of the limit equa-
tion.

Theorem 3 Let D ⊂ R
2 be a bounded domain whose

boundary ∂D and skeleton 	 are made of finitely many C1-

arcs. We assume that for each of the finitely many compo-

nents C of D \ 	 the gradient �n of the distance map T can

be continued to the boundary as �n ∈ C1(C,R
2). Let �c be a

normalized C1-vector field on D, and �c∗ a normalized vec-

tor field on D \	 with the same smoothness properties as �n.
We assume that �c∗ is uniformly pointing inwards, that is,
there is a positive constant ρ such that

�n(x) · �c∗(x) ≥ ρ > 0, x ∈ D \ 	. (15)

We assume further that the deviation angle between �c
and �c∗ is of the form ∠(�c∗(x), �c(x)) = �(θ(x)), θ(x) =
∠(�n(x), �c(x)), with a continuous function �(θ) satisfying

(see Fig. 6)

�(π − θ) = π − �(θ) and 0 < �(θ) ≤ θ,

0 < θ ≤ π/2. (16)

Then, there is a geometrically defined subset 	trans ⊂ 	 of

transparent points of the skeleton (see Fig. 7) and a well-

defined linear solution operator C(∂D) → C((D \ 	) ∪
∂D ∪ 	trans), u0 �→ u, of the Dirichlet problem

�c∗(x) · ∇u(x) = 0 on D \ 	, u|∂D = u0|∂D, (17)

which is l∞-stable and satisfies the comparison principle

(see p. 262).

Proof The assumed continuity properties imply that the
backward flow of �c∗ connects the points of a component C
of D \	 either with the boundary ∂D or the skeleton 	. We
call the endpoints of the backward flow inflow points of C.
On the other hand, condition (15) shows that the distance to
∂D is strictly increasing along the forward flow of �c∗. That
is, all the forward characteristics must connect to the skele-
ton. We call the endpoints of the forward flow outflow points

of C. Below we will show that a point x in the relative in-
terior of an C1-arc of 	, that is, a point belonging to the
boundary of exactly two components of D \	, cannot be an
inflow point for both of the components. Thus, a backward
characteristics ending in x in one of the components can be
continued by a backward characteristics starting at x in the
neighboring component. We call such a point of the skeleton
transparent with respect to �c∗. By a compactness argument,
and since by (15) the distance to ∂D is strictly decreasing
along backward characteristics, after finitely many such con-
tinuations through transparent points we must finally reach
the boundary ∂D.

This way we have connected each7 point x ∈ D \ 	 by
a unique path of backward characteristics with a boundary

7Well, not quite. There may be exceptional points x that are connected
by a backwards characteristic to a triple point of 	, that is, a point at
which several C1-arcs of 	 join. However, these exceptional points are
nowhere dense and u can be defined for them by a continuity argument.
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Fig. 8 (Color online)
Inpainting a straight edge (see
also Figs. 4 and 5). 	 \ 	trans is
shown in red, 	trans in green,
∂D in blue

(a) α = 18.2◦; parameters: β = α,
μ = 100, ǫ = 6 px

(b) as (a), but β = 15.1◦ (c) α = 11.3◦; parameters: β = α,
μ = 100, ǫ = 6 px

(d) α = 5.7◦; parameters: β = α,
μ = 100, ǫ = 6 px

(e) α = 0◦; parameters: β = α, μ =
100, ǫ = 6 px

(f) as (c), but μ = 10; cyan: limit
slope α + �(π/2 − α)

point x0 ∈ ∂D. We set u(x) = u0(x0). Since the path is in-
dependent of u0 this defines a linear operator u0 �→ u that is
obviously l∞-stable and satisfies the comparison principle.
Since by construction u is constant along characteristics it
satisfies the equation �c∗ · ∇u = 0 within each component. If
we denote the set of transparent points by 	trans, it is easy
to see that u can be continued as a continuous function to
∂D ∪ 	trans. Thus, points of discontinuity (shocks) belong
to the set 	 \ 	trans.

We finish by proving that a point x in the relative inte-
rior of an C1-arc of 	 that is an inflow point for one of its
neighboring components C must be transparent. In the fol-
lowing, we simplify the argument by assuming, without loss
of generality, that x = 0 and suppress it in the notation if
convenient.

We begin by studying the geometry met by the inflow
vector �c∗ (that is, the forward characteristic of �c∗ enters C

at x). Let the unit vector �σ be tangential to 	 at x, with
the sign chosen so that 0 < ψ = ∠(�n, �σ) ≤ π/2 (see Fig. 7).
We choose �n⊥ so that ∠(�n⊥, �σ) = ψ + π/2. Now, since the
inflow vector must satisfy �c∗ �= �n, conditions (15) and (16)
imply that �c∗ points to the interior of the acute sector be-
tween �n and the straight line ℓ spanned by �c. The opening
angle of this sector must be larger than ψ since otherwise �c∗
would not point to an inflow direction. Also, �n ⊥ ℓ is impos-
sible since this would, by (16), imply �c∗ = �n. We conclude
that ℓ passes through the interior of the angular sector S be-
tween the tangent and �n⊥ (see Fig. 7). The opening angle
of S is π/2 − ψ < π/2.

Now, suppose that x is an inflow point of the neighbor-
ing component C′, too. Since the tangent of 	 at x is the
bisectrix of the two different continuations �n and �n′,8 the

8This follows from elementary geometry if the two points on ∂D that
are closest to x (and therefore at equal distance from x by the defini-

geometric constraints discussed for ℓ with respect to C ap-
ply with respect to C′ after being reflected at the tangent.
That is, ℓ must pass through the interior of the angular sec-
tors S and its reflection S ′. This is impossible, because the
opening angle of S is smaller than π/2. �

An Illustrative Example We illustrate the limit theory de-
veloped in this section by applying the generic single-pass
algorithm with distance ordering, using the exponential con-
fining weight function (11), to the synthetic inpainting prob-
lem of Fig. 4(a). Here, we generalize this inpainting prob-
lem by considering varying slopes α = ∠(edge,horizontal)
of the broken edge between the black and the gray region.
The inpainting domain has on purpose been chosen rather
large to make all effects of the algorithm clearly visible.

For the exponentially confining weight function we
choose a constant vector field �c with a given slope β =
∠(�c,horizontal). The proof of Theorem 3 (see Fig. 7) shows
that the parts of 	 which are shown in green in Fig. 8 are
transparent for prescribed slopes 0 < β < π/4.

As expected by the limit theory, Fig. 8(a) shows that for
β = α = 18.2◦ the broken edge of the original inpainting
problem is perfectly closed (μ = 100, ǫ = 6 px). On the
other hand, if we prescribe the smaller slope β = 15.1◦, the
broken edge cannot be closed.9 Fig. 8(b) shows that, in ac-
cordance with the theory, a shock forms at the nontranspar-

ent (red) part of the skeleton.
As the angle α gets smaller, the vector field �c becomes

nearly parallel to ∂D along the broken edge. The theory (see

tion of the skeleton) belong to parts of ∂D that are line segments. The
general case follows from that by linearization.
9The closing of edges at the skeleton is comparable to the digging of
a tunnel from two ends: if the measurements, the plan, and the perfor-
mance were good the digging teams will meet somewhere in the middle
(at the skeleton). If not, they will fail badly.
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Fig. 6) tells us that �c∗ rotates into the direction of �n in the
corresponding component of D \ 	. That is, we expect that
the actual slope of the inpainted edge becomes increasingly
larger than α, forming a shock at the nontransparent part of
the skeleton. In fact, there is a transition from a perfect con-
tinuation (α = 11.3◦) in Fig. 8(c), passing a clearly visible
shock (α = 5.7◦) in Fig. 8(d), to a result corresponding to
Telea’s algorithm (α = 0◦) in Fig. 8(e). We observe that the
shocks are, in parts, not exactly located at the skeleton but
have an offset of ǫ = 6 px. Even though the inpainting ra-
dius ǫ = 6 px is far from being small, there is next to no
diffusion visible in Fig. 8(a–e). (Compare with the result of
Telea’s weight in Fig. 4.) This is due to the sharp directional
confinement caused by the large value μ = 100.

Finally, in Fig 8(f) we study the influence of the parame-
ter μ by decreasing its value from the perfect μ = 100 of
Fig 8(c) to μ = 10. The limit theory predicts, in the critical
component of D\	, a pronounced rotation of the prescribed
slope α = 11.3◦ by the amount of

∠(�c∗, �c) = �

(
π

2
− α

)∣
∣
∣
∣
μ=10

= 16.8◦,

which is consistent with the actual behavior shown in
Fig 8(f). Further, there is more visible diffusion here. How-
ever, different from the limit theory, in the realm of the dis-
crete setting of the actual algorithm there is no further im-
provement of Fig. 8(d) if we increase the value of μ. The
reason is that there are only finitely many different slopes
x − y, y ∈ B<

ǫ,h(x), that enter the exponent of the expression

w(x,y) =
√

π

2

μ

|x − y| exp

(

− μ2

2ǫ2
|�c⊥(x) · (x − y)|2

)

.

Moreover, generally none of them will be exactly paral-
lel to the preassigned direction �c. This means that values
of μ which are too large simply result, by underflow, in a
weight w that is identical to a floating point zero.

5 Coherence Direction and Modified Structure Tensor

Generally, the vector field �c that enters our weight func-
tion (11) has to be extracted from the (already known) image
values u. A reasonable choice of �c has to be aligned with the
level lines (isophotes) of u or, at least, with those that carry
pronounced information, e.g., the edges.

Edge Detecting Flow As we have already discussed in the
introduction, the celebrated inpainting method of Bertalmio
et al. [3] (see also [19], §8.2.2, or [8], §6.11.2) is based on a
third order pde that can be written in the equivalent forms

ut = ∇⊥u · ∇�u = −∇⊥�u · ∇u.

The time evolution of this equation has to be stabilized in
practice; the authors suggest a hybrid method by interleav-
ing every 15 time steps of size τ = 0.1 two time steps of an
anisotropic diffusion equation; see [3], p. 420 or [19], p. 350.
Leaving the anisotropy aside, this hybrid method is basically
a splitting scheme for the integro-differential equation

ut = −∇⊥�uσ · ∇u, uσ = Kσ ⋆ u,

Kσ (x) = 1

2πσ 2
e
− |x|2

2σ2 ,

Here, Kσ ⋆ u denotes the spatial convolution with the
Gaussian (heat kernel) Kσ of standard deviation σ . For-
mally, the stationary state of this equation is given by

±∇⊥�uσ · ∇u = 0.

In view of the “ideal” limit transport equation (9) of the pre-
vious section, this suggests the choice

�c = ∇⊥�uσ . (18)

Besides the formal relation to Bertalmio et al.’s [3] method,
the following rationale can be given for this choice. The zero
crossings of �uσ are the classical characterization of edges
as given by Marr and Hildreth; see, e.g., [27], p. 5, or [8],
§7.2.1.10 Now, if x is a point of a Marr–Hildreth edge, the
vector �c(x) = ∇⊥�uσ (x) defines the tangent direction of
that edge. Thus, for x in between the edges, the still well-
defined expression �c(x) yields a reasonable interpolation.
We therefore call the flow generated by (18) the edge de-

tection flow.
We illustrate the behavior of this choice by applying it

to a digitized fingerprint. Figure 9(e) shows a visible align-
ment of the edge detection flow with the ridges of the post-
processed fingerprint in Fig. 9(d). However, for the original
digitization shown in Fig. 9(a) the edge detection flow in
Fig. 9(b) closely follows minor local features; it looses rela-
tion with the global coherent flow of information. Thus, the
example reveals that the edge detection flow, like edge de-
tection itself, has problems with its robustness. Since a better
choice can be made we do not advocate its use in combina-
tion with the weight function (11) for image inpainting.

Structure Tensor and Coherence Flow We follow Weick-
ert’s [27, 29] approach of using the structure tensor to the
robust determination of coherence directions in images; see
([27], §5.2) for coherence-enhancing anisotropic diffusion

10The anisotropic diffusion actually used by Bertalmio et al. [3] relates
presumably to the choice

�c = ∇⊥D2uσ (∇uσ /|∇uσ |,∇uσ /|∇uσ |),
which can be motivated by the Canny–Haralick edge detector; see, e.g.,
[8], §7.2.1.
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Fig. 9 Edge detection flow
(b and e) vs. coherence flow
(c and f) for a digitized
fingerprint (a and d)

(a) 219 × 220 px2 (courtesy of We-
ickert [29], Fig. 1)

(b) edge detection flow field for (a);
σ = 1.5 px

(c) coherence flow field for (a); σ =
1.5 px, ρ = 4 px

(d) shock filtering of (a) (Weickert
[29], Fig. 1)

(e) edge detection flow field for (d);
σ = 1.5 px

(f) coherence flow field for (d); σ =
1.5 px, ρ = 4 px

and [29] for coherence-enhancing shock-filtering.11 In fact,
Weickert’s approach will not only give a coherence direction
but also a measure of coherence strength which allows us to
adapt the parameter μ of the weight function (11) to local
features of the image.

The structure tensor Jρ of a gray tone image u is the sym-
metric positive semidefinite 2 × 2-matrix defined by

Jρ(∇uσ ) = Kρ ⋆ (∇uσ ⊗ ∇uσ ), uσ = Kσ ⋆ u.

Its eigenvalues are 0 ≤ λ1(x) ≤ λ2(x) with the correspond-
ing normalized eigenvectors denoted as �w1(x) and �w2(x).
We note that for the rank-one matrix J0(∇u0) = ∇u ⊗ ∇u,
∇u �= 0, we have λ1 = 0, λ2 = |∇u|2, �w1 = ∇⊥u/|∇u|,
�w2 = ∇u/|∇u|. Hence, the coherence direction

�c = �w1, w1 normalized eigenvector

to the minimal eigenvalue of Jρ(∇uσ ), (19)

is a smoothing of the isophote direction ∇⊥uσ on a second-
moment scale ρ. The induced flow will be called coherence

flow.
The robustness of the coherence flow, and its power

to describe larger-scale information flow, is illustrated in

11In the latter reference one can also find pointers to earlier, indepen-
dent uses of the structure tensor in the literature. There, it is known
by the names second-moment matrix, scatter matrix, Förstner interest

operator.

Figs. 9(c) and (f). There is barely a difference visible
if applied to the digitization (Fig. 9(a)) or to the im-
age post-processed by coherence-enhancing shock-filtering
(Fig. 9(d)). In fact, the post-processed image was calcu-
lated using the coherence flow of the digitized image (see
[29], Fig. 1). We observe that small12 scale features that
are present in the edge-detecting flow, such as small closed
loops of ridges, are neglected by the coherence flow.

If λ1 ≈ λ2 the determination of the two eigendirections
of the structure tensor becomes ill conditioned. In fact, for
λ1 = λ2 the structure tensor becomes a multiple of the iden-
tity matrix and any system of orthonormal vectors will serve
as �w1 and �w2. That is to say, w1 does not contain any viable
information then; there is just a weak coherence present. For
this reason, we introduce the following measure of local co-

herence strength

μ(x) =
{

1 if λ1(x) = λ2(x),

1 + κ exp(
−δ4

quant

(λ2(x)−λ1(x))2 ) otherwise.
(20)

(A similar coherence measure was used by Weickert ([27],
p. 128) for coherence-enhancing anisotropic diffusion.) To
make the expression scale invariant, we take δquant as the
resolution of the quantization, that is, the difference of two
successive gray levels. Note that 1 ≤ μ(x) ≤ κ + 1. The the-
ory of the previous section has shown that using large values

12That is, small with respect to the post-smoothing scale ρ.
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Fig. 10 (Color online)
Coherence vs. modified
coherence flow for inpainting
problems (strong coherence
is red, weak is blue)

(a) 130 × 78 px2; green: inpainting
domain D

(b) coherence flow; σ = 1.5 px,
ρ = 4 px

(c) modified coherence flow; σ =
1.5 px, ρ = 4 px

of μ in the weight function (11) allows to faithfully follow-
ing the given vector field �c with just a small amount of dif-
fusion, whereas small values (μ ≈ 1) yield a considerable
amount of diffusion. Since the first behavior is desirable for
strong coherence and the second for a weak one, we suggest
taking the image-adapted parameter μ = μ(x) in the weight
function (11).

Boundary Effects and Modified Coherence Flow In the
realm of the single-pass inpainting algorithm we must base
the calculation (19) of the coherence vector field �c(x) on
the already inpainted image values u|�(x), �(x) = {y ∈
� : T (y) < T (x)}. The problem here is that the smooth-
ing by the Gaussians Kσ and Kρ reaches into the yet-to-
be-inpainted domain D \ �(x). A straightforward approach
would just continue u by zero, that is, would consider the
structure tensor

Jρ(∇(1�(x)u)σ )(x),

where 1�(x)(y) = [y ∈ �(x)] denotes the indicator func-
tion of �(x). However, in general, this makes ∂�(x) to a
spurious edge, aligning the coherence flow tangentially to
it; an effect that is illustrated in Fig. 10(b) for the inpaint-
ing problem of Fig. 10(a). The coherence strength is color
coded from blue for weak strengths to red for strong ones.
Since we know from Sect. 4 that a tangential vector field �c is
rotated into the normal direction �c∗ = �n, we would basically
end up with Telea’s algorithm once again.

Also symmetry boundary conditions, as typically used
for the image boundary ∂� in digital image processing,
would not solve the problem. They tend to align the coher-
ence flow field with the normal to the boundary as is clearly
visible at the bottom of Fig. 10(b). In fact, they are related
to Neumann boundary conditions ∇u · �n = 0 which gives
∇⊥u ‖ �n. Thus, once more, we would obtain a vector field
�c that yields �c∗ ≈ �n and therefore to the basic behavior of
Telea’s algorithm.

Experimentally (see Fig. 10(c)), we have observed that
the problem can be solved by appropriately rescaling the
smoothing of 1�(x)u before taking gradients. That is, we
use the following modified structure tensor, which is again

a symmetric positive semi-definite 2 × 2-matrix:

Ĵσ,ρ(x) = (Kρ ⋆ (1�(x)∇vσ ⊗ ∇vσ ))(x)

(Kρ ⋆ 1�(x))(x)
,

vσ = Kσ ⋆ (1�(x)u)

Kσ ⋆ 1�(x)

. (21)

Note that the auxiliary function vσ is well-defined in a vicin-
ity of x. We call

�c = �w1, w1 normalized eigenvector

to the minimal eigenvalue of Ĵσ,ρ, (22)

the modified coherence direction, which induces the mod-

ified coherence flow. The eigenvalues 0 ≤ λ1 ≤ λ2 of Ĵσ,ρ

define by (20) a modified coherence strength μ(x).
A deeper mathematical understanding of the modified co-

herence flow—based on a detailed analysis of a model situ-
ation such as Fig. 10—will be the subject of future work.

Summary For the convenience of the reader we summarize
the building blocks of our novel inpainting algorithm that we
have developed so far:

• the generic single-pass algorithm (1) and (2),
• the distance ordering (3) based on using the fast marching

method,
• the exponentially confining weight function (11) with

– �c taken as the vector field of modified coherence direc-
tions (22),

– μ taken as the modified coherence strength defined as
in (20).

Because of the thus established intricate nonlinear depen-
dence of the weight function on the inpainted result there are
many interesting mathematical questions about the mathe-
matics of the limit h → 0, ǫ → 0, that we leave to future
work. However, despite this nonlinear dependence, the al-
gorithm still satisfies the comparison principle that we have
generally shown to hold for the generic single-pass algo-
rithm in Sect. 2.
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6 Some Remarks on the Implementation

Calculation of the Modified Structure Tensor The most
time-consuming part of our algorithm is the calculation of
the modified structure tensor (21). It is therefore imperative
to organize it by an update procedure, which we describe
now for the auxiliary function vσ . The update procedure for
Ĵσ,ρ is similar.

The smoothing with the Gaussians Kσ is done by trun-
cating it to a quadratic convolution mask of side length 4σ .
The corresponding quadratic neighborhood of a point x in
�h will be denoted by Qσ (x). Now, let x ∈ Dh be the actual
point that has just been inpainted and x′ ∈ Dh the next one in
the distance order established by the fast marching method.
Let the functions v̂σ and χσ carry, up to a common scale
factor, the actual values of Kσ ⋆ (1�(x)u) resp. Kσ ⋆ 1�(x).
These functions are updated by the formulas

v̂σ (y) ← v̂σ (y) + Kσ (x − y)u(x),

χσ (y) ← χσ (y) + Kσ (x − y), y ∈ Qσ (x),

to carry the values of Kσ ⋆ (1�(x′)u) resp. Kσ ⋆1�(x′). Then
vσ = v̂σ /χσ can be calculated to update the modified struc-
ture tensor Ĵσ,ρ in a likewise fashion to become relevant
for x′.

Color Images The algorithm so far applies to gray tone im-
ages. A straightforward approach to color images is to con-
sider them as a set of three images and apply the algorithm
independently to each one. However, to avoid the appear-
ance of spurious colors, one should use a color space which
separates luminance as one component from two chromi-
nance components (see, e.g., [3], p. 420).

For the algorithm at hand even better results can be ob-
tained by using one and the same coherence direction �c for
the inpainting of the three color components. Such a direc-
tion is derived from a common structure tensor which we
define, following Weickert’s ([28], p. 204) suggestion for
coherence-enhancing diffusion, as a convex combination of
the structure tensors of the component images. Specifically,
for RGB images u = (uR, uG, uB) we form the convex com-
bination by using the same coefficients that define the lu-
minance image of the YIQ and YUV color spaces. (His-
torically, these coefficients stem from matching color with
monochromatic TV, see [13], §6.2.1.). That is, with the lu-
minance image given as

uY = 0.299uR + 0.587uG + 0.114uB

we define the common modified structure tensor of the color
image as

Ĵσ,ρ |u = 0.299Ĵσ,ρ |uR
+ 0.587Ĵσ,ρ |uG

+ 0.114Ĵσ,ρ |uB
.

Note that the amount of work spent for the eigenvalue prob-
lems is the same for color and gray tone images. Therefore,
color images take just about twice the CPU time needed for
inpainting the corresponding luminance image.

7 Experiments and Comparison with Other Methods

Here, we report on a few computational experiments that
should help to compare our algorithm with some of the
known methods in the literature. For this reason we have
extracted noncompressed data images u0 from the electron-
ically published PDF or postscript versions of the papers
that we compare with. The experiments were performed on a
notebook with a 2 GHz Pentium M CPU and 1 GB of RAM.
The code is written in C and has an interface to Matlab’s
image processing toolbox.13

Choice of the Parameters The execution of the algorithm
depends on the choice of four parameters:

• ǫ, the averaging radius.
• κ , the sharpness parameter.
• σ and ρ, the scale parameters for pre- and post-smoothing.

Here, ǫ is the local scale of dependence on the image values;
whereas σ and ρ are describing the scale on which details
are neglected for the calculation of the direction of the in-
formation flow. Finally, κ controls the amount of diffusivity.
In view of the last remark in Sect. 4 larger values of κ are
allowed for larger radii ǫ.

For inpainting problems with narrow (that is, about
10 px) but elongated inpainting domains, such as Figs. 1,
12, and 13, a good start is made with the default parameters

(ǫ, κ, σ,ρ) = (5 px,25,1.4 px,4 px). (23)

Other problems need some interactive experimentation to
get a good choice of parameters. However, due to the fast
performance of our algorithm, such an experimentation is
generally feasible.

Comparison with Telea’s [24] Method Recall that our
method was constructed from a deeper mathematical under-
standing of Telea’s algorithm with the aim of removing its
shortcoming while keeping its computational speed. A com-
parison of Figs. 1(c) and 3(b) shows the improvement for

13To foster further experiments and checks of the reproducibility of our
experiments, all the images and a Windows executable of the code with
its Matlab driver can be downloaded, for academic purposes only, at the
URL http://www-m3.ma.tum.de/bornemann/InpaintingCodeAndData.
zip. In particular, the directories Code_and_Images/originals
and Code_and_Images/compare contain the original images and
the results of the methods we compare with, respectively.
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Fig. 11 (Color online) Telea’s
method vs. our method of
coherence based inpainting. 	

is shown in red, ∂D in blue

(a) 180 × 180 px2; white: inpaint-
ing domain D

(b) Telea’s [24] method; ǫ = 6 px (c) ǫ = 6 px, κ = 125, σ = 12 px,
ρ = 18 px; CPU: 3 s

Fig. 12 (Color online) Scratch
removal: restoration of an old
photograph (compare with [3],
Fig. 5)

(a) digitized photograph, 483 ×
405 px2

(b) red mask: inpainting domain D (c) ǫ = 4 px, κ = 25, σ = 2 px, ρ =
3 px; CPU: 0.5 s

Fig. 13 Removal of
superimposed text (compare
with [3], Fig. 6)

(a) original digital image 437 × 296 px2 (courtesy of
Bertalmio et al. [3], Fig. 6)

(b) inpainted; parameters: ǫ = 4 px, κ = 25, σ =
2 px, ρ = 3 px; CPU time: 1 s

the restoration of a vandalized natural image. There is vir-
tually no diffusion visible with our algorithm, even the fine
flow-like texture of the eyebrow has been inpainted in a visu-
ally satisfactory way. In fact, the nonexpert observer might
accept Fig. 1(c) as the original image. (However, compare
with the actual original one shown in Fig. 1(a).) In con-
trast, Telea’s algorithm introduces strong diffusive artifacts.
In this example, the computing time increases by a factor of
5 from Telea’s algorithm to our improvement.

Because of the unmatched abilities of the human visual
system synthetic inpainting problems are much more unfor-
giving. In Sects. 2 and 4 we have already discussed at length
the comparison of our method with Telea’s for the inpainting
of a straight line (see Figs. 4(b) and 8(a)). The inpainting of a
curved object is shown in Fig. 11. Even though our method

closes the boundary of the circle not perfectly symmetric,
it is reasonable in view of the large inpainting domain of
105 × 85 px2. The remarkable sharp closure can be under-
stood as follows: at the inpainting of a point x ∈ D the mod-
ified coherence flow field starts communicating between op-
posite sides of the yet-to-be-inpainted domain D \ �(x) if
their distance is below 4ρ.

This result should be compared to the involved varia-
tional techniques, such as the Mumford–Shah–Euler model,
that have been specifically invented just for the purposes of
inpainting curved objects; see the results reported in [11],
Fig. 7, or [8], Fig. 6.17, for which no CPU times have been
published, however.

Comparison with Bertalmio et al.’s [3] Method We have
already discussed the basic principles underlying Bertalmio
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Fig. 14 (Color online)
Touch-up: liberate a parrot
(digital image and mask
courtesy of [25], Fig. 6(a))

(a) digital image, 495 × 498 px2 (b) yellow mask: inpainting do-
main D

(c) ǫ = 14 px, κ = 250, σ = 1.2 px,
ρ = 7 px; CPU:20 s

Fig. 15 Disocclusion:
comparison with Masnou’s [16]
variational approach using
isophotes

(a) 254 × 254 px2 (courtesy of
Masnou [16], Fig. 7.b)

(b) Masnou’s [16, Fig. 7.c] disoc-
clusion result

(c) ǫ = 7 px, κ = 25, σ = 1 px, ρ =
2 px; CPU: 1 s

et al.’s [3] method in the introduction and at the beginning
of Sect. 5. Two examples from this celebrated paper have
served as a kind of benchmark for several other authors:
the removal of scratches in an old photograph [3], Fig. 5,
and the removal of superimposed text [3], Fig. 6. Our re-
sults are shown in Figs. 12 and 13; their visual quality is
on a high level which is absolutely comparable to the re-
sults14 published by Bertalmio et al. These authors report,
for a 300 MHz Pentium II PC, CPU times of about 2 min
for the first example and about 5 min for the second one. If
we concede a factor of 10 due to our faster hardware, our
method is nevertheless at least an order of magnitude faster.

Oliveira et al. ([18], Figs. 4 and 5) have also applied
their method of repeated convolutions to these two exam-
ples. Their result shows considerable artifacts for the text
removal. The CPU times are more or less comparable to the
ones of our method.

Comparison with Tschumperlé’s [25] Method An interest-
ing iterative method for image inpainting that gives excellent
results was recently published by Tschumperlé. Like in the
method of Bertalmio et al. [3] the iteration is realized by in-
troducing a formal time variable. His method is related to

14Bertalmio et al.’s results are part of the web material mentioned in
Footnote 13.

ours in its use of the structure tensor. Specifically, in a sim-
plified variant15 the method realizes the time evolution of
a heat equation constrained to the flow lines of the coher-
ence flow,

∂u(�sx)

∂t
= ∂2u(�sx)

∂s2
,

u|t=0 = some simple interpolation of u0,

with boundary values given by the image data u0. Here, �sx

denotes a parametrization of the flow line through a given
point x ∈ D. At each time step the coherence direction is
updated by the actual values of u.

Tschumperlé’s method (that also uses at least 4 pa-
rameters) was popularized by an open source plug-in to
The GIMP, the GNU image manipulation program. His ex-
ample [25], Fig. 5(a) of removing the cage from a digital
image of a parrot contributed to this popularization. [25],
p. 14 reports a CPU time of 4 min 11 s on a 2.8 GHz PC; our
result shown in Fig. 14 is of a similar16 quality and com-
pletes within 20 s—an order of magnitude faster. One could

15The general variant is a weighted average of diffusion along all di-
rections, giving the coherence direction a stronger weight depending
on a measure of coherence strength.
16Tschumperlé’s result is part of the web material mentioned in Foot-
note 13.
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Fig. 16 Details of the
comparison in Fig. 15

(a) 81 × 81 px2 detail of Fig. 15(a) (b) detail of Fig. 15(b) (c) detail of Fig. 15(c)

Fig. 17 (Color online)
Denoising: inpainting of a salt
and pepper noise domain,
detected by thresholding

(a) immortal digital Lena, 1024 × 1024 px2 (b) Lena with 80% salt & pepper noise

(c) red: inpainting domain D, detected by threshold-
ing

(d) inpainted; ǫ = 5 px, κ = 25, σ = 1 px, ρ = 2 px;
CPU time: 20 s

think about using the result of our method as the start image

that is iteratively improved by Tschumperlé’s method.

Comparison with Masnou’s [16] Method Masnou and

Morel [17] presented a variational approach using level lines

(isophotes) by minimizing a discrete version of the func-

tional
∫

�

|∇u|
(

α + β

∣
∣
∣
∣
div

∇u

|∇u|

∣
∣
∣
∣

p)

dx, p = 1,

subject to the boundary conditions u|�\D = u0|�\D . The re-
lation of this idea to an axiomatic theory of image interpo-
lation has been studied in [4]; details of the theoretical jus-
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Fig. 18 Denoising: comparison
with the hybrid method
suggested by Guichard and
Morel [14], §24.4.6

(a) 246 × 255 px2 (Guichard and
Morel [14], Fig. 1.2)

(b) Guichard and Morel’s [14,
Fig. 1.2] result

(c) ǫ = 5 px, κ = 25, σ = 1 px, ρ =
2 px; CPU: 0.5 s

Fig. 19 (Color online) Details
of the comparison in Fig. 18

(a) 81 × 81 px2 detail; blue: in-
painting domain

(b) detail of Fig. 18(b) (c) detail of Fig. 18(c)

tification and the algorithm itself were much later published
by Masnou [16]. The discrete version is deeply connected
to Gestalt theory, in particular Kanizsa’s amodal comple-

tion theory, that contributes to explaining how the human
visual system manages to understand partially occluded ob-
jects. The detection of T -junctions plays a prominent role in
the algorithm; the actual global minimization over all com-
peting level line completions is done by dynamic program-
ming.

Because of its root in image analysis and understanding,
Masnou and Morel use the term disocclusion instead of im-

age inpainting. On the other hand, the above functional with
p = 2 is basically the elastica image model suggested later
by Chan et al. [5] for inpainting problems. For the relation
of the two approaches see [8], p. 285.

We compare Masnou’s method with ours for the partially
occluded train shown in Fig. 15(a): only one row resp. col-
umn out of six is kept, the rest is turned white. Thus, about
70% of the image have been destroyed. Masnou’s [16],
Fig. 7(c) result17 is shown in Fig. 15(b) (no CPU times have
been published), ours in Fig. 15(c); details are shown in
Fig. 16. The results are of comparable quality (though the

17Actually, the uncompressed versions of the occluded and the dis-
occluded image were extracted from [4], Fig. 10. The electronically
published images of [16], Fig. 7, suffer from strongly visible JPEG
artifacts.

details in Fig. 16 show that straight lines appear less ragged
in our method); the original image of the train without oc-
clusion can be found in [16], Fig. 7(a) and as part of the web
material mentioned in Footnote 13.

Denoising Salt and Pepper Noise Masnou [16], p. 75 has
suggested the use of his disocclusion algorithm for the de-
noising of images that are affected by salt & pepper (im-
pulse) noise. First, the occluded domain, that is, the inpaint-
ing domain D, is detected by tools of mathematical mor-
phology. Then, the image is restored by inpainting. Masnou
shows an example with a noise frequency of 10%, see [16],
Fig. 5. We will show two experiments with a much larger
noise frequency.

In Fig. 17, a 1024×1024 px2 8-bit image of Lena (a) has
been destroyed by 80% black and white impulse noise (b).
Detecting the inpainting domain by masking the 0- and
255-level yields an inpainting domain (c), shown in red, that
consists of one large component and five isolated points. The
inpainting (d) by our method gives within a CPU time of 20 s
a surprisingly good result. One has to zoom-in quite closely
to see that the textures of the smooth surfaces look like being
truly “painted”.

Figure 18(a) shows an 8-bit image taken from [14],
Fig. 1.2, reportedly affected by about 75% of salt and pep-
per noise. Here, we take as inpainting region the domain ob-
tained by thresholding below the 28 and above the 227 level
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of gray; this way 56% of the image have been masked. The
inpainting result, computed in a CPU time of 0.5 s, is shown
in Fig. 18(c). Guichard and Morel suggest in [14], §24.4.6,
the following hybrid method for denoising: first they apply
a grain filter (that is, the morphological area open-close fil-
ter, see [23], §4.4.2 and §8.4) and then a finite difference
scheme for the affine invariant morphological scale space
equation (AMSS). They report a computing time of about
24 s on a Pentium 200 MHz PC. That is, the computing
time is roughly comparable to our suggestion, for which the
edges are less frayed, though. However, the surfaces get a
slightly brushed texture with our method, which is typical
for the use of the coherence flow (see Fig. 19).
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