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Abstract
In this paper, we study the restoration of blurred images corrupted by impulse noise or

mixed impulse plus Gaussian noises. In the proposed method, we use the modi�ed total
variation minimization scheme to regularize the deblurred image and �ll in suitable values
for noisy image pixels where these are detected by median-type �lters. An alternating mini-
mization algorithm is employed to solve the proposed total variation minimization problem.
We will show the convergence of the alternating minimization algorithm and demonstrate
that the algorithm is very e�cient. Our experimental results show that the quality of re-
stored images by the proposed method is competitive with those restored by the existing
variational image restoration methods.

Keywords: deblurring, denoising, impulse noise, Gaussian noise, total variation.

1 Introduction
Digital image restoration and reconstruction play an important part in various areas of applied
sciences such as medical and astronomical imaging, �lm restoration, image and video coding.
In this paper, we focus on two degradation models: an ideal image f ∈ R

n2 is observed in the
presence of a spatial-invariant blur matrix H ∈ R

n2×n2 , an additive zero-mean Gaussian white
noise n ∈ R

n2 of standard deviation σ, and an impulse noise to the degraded image. Let Nimp

denote the process of image degradation with impulse noise. Thus the observed image g ∈ R
n2

is obtained by:
g = Nimp (Hf + n) . (1.1)
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Another noise model is that the blurred image is corrupted by an impulse noise, and then by a
Gaussian noise:

g = Nimp (Hf) + n. (1.2)
Salt-and-pepper noise and random-valued noise are the two common types of impulse noise.

They degrade an image in a totally di�erent way from that by Gaussian white noise. Suppose
ui,j ((i, j) ∈ I = {1, 2, · · · , n}×{1, 2, · · · , n}) is the gray level of an image u at location (i, j), and
[amin, amax] is the dynamic range of u. The salt-and-pepper noisy image ũ is given as follows:

ũi,j =





amin, with probability p,
amax, with probability q,
ui,j , with probability 1 − (p + q).

(1.3)

where s = p + q is the noise ratio which determines the noise level of salt-and-pepper noise.We
note that corrupted pixel values take either the maximum value amax or the minimum value amin.
On the other hand, corrupted pixel values contaminated by random-valued noise can take any
random number a which is uniformly distributed in [amin, amax], i.e.,

ũi,j =

{
ai,j , with probability r,
ui,j , with probability 1 − r.

(1.4)

Here r is the noise ratio which determines the noise level of the random-valued noise.
In the literature, there are several image processing methods [14, 11, 13, 21] based on median-

type �lters for impulse noise removal. The main idea of these �lters is that the locations of
possible noisy pixels are determined and their values are replaced by median values calculated
from their corresponding neighborhoods. These methods are superior in identifying the locations
of noisy pixels. Since the pixels in the vicinity of edges may be replaced by median values without
taking into account of local features, the edges in the recovered image are usually smeared,
especially when the impulse noise level is high. Another approach is to use variational methods
[1, 3, 2, 19] for impulse noise removal. The advantage of this approach is that edges can be
recovered e�ectively. Recently, Chan et al. [10, 9] proposed a two-phase method for impulse
noise removal. Their idea is to use median �lters to identify the noisy pixels and then employ an
variational method to �ll in the suitable values to such noisy pixels. In [5], they further extended
their scheme to restore blurred images corrupted by both impulse and Gaussian noises together.

It is well-known that restoring an image f is a very ill-conditioned problem. A regularization
method should be used in the image restoration process. The total variation (TV) regularization,
proposed by Rudin, Osher and Fatemi [22], has become very popular for this purpose. The
main advantage of the TV formulation is the ability to preserve edges in the image due to the
piecewise smooth regularization property of the TV norm. In this paper, we use median-type
�lters to identify the possible noisy pixels, and then we employ a fast total variation minimization
method for image restoration in (1.1) or (1.2). We remark that the TV regularization is not used
in [10, 9, 5]. An alternating minimization algorithm is employed to solve the proposed total
variation minimization problem. We will show the convergence of the alternating minimization
algorithm and demonstrate that the algorithm is very e�cient. Our experimental results show
that the quality of restored images by the proposed method is competitive with those restored
by the existing variational restoration methods.
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The outline of this paper is as follows. In Section 2, we present the proposed algorithm. In
Section 3, numerical examples are given to demonstrate the e�ectiveness of the proposed model.
Finally, some concluding remarks are given in Section 4.

2 The Proposed Model
Two e�ective median �lters are adaptive median �lter (AMF) and adaptive center-weighted
median �lter (ACWMF) [14, 11, 13, 21] are employed in this paper. Suppose y ∈ R

n2 is the
output by median-type �lters. The candidates of noisy pixels can be determined as follows:

• For salt-and-pepper noise:

N = {(i, j) ∈ I : yi,j 6= gi,j and gij ∈ {dmin, dmax}} ,

where dmin and dmax is the minimum and the maximum values of the recorded image;

• For random-valued impulse noise:

N = {(i, j) ∈ I : yi,j 6= gi,j} .

We note that impulse noise-free pixels can be de�ned as follows:

xi,j =

{
0 if (i, j) ∈ N
1 otherwise.

After we identify impulse noise-free pixels, we can apply the total variation minimization for
restoring an image and �lling in suitable values for noisy image pixels. As it is more di�cult
to detect random-valued impulse noise pixels, we propose to repeat the noisy pixels detection
procedure and total variation minimization image restoration procedure a few times so that a
high quality of restored image can be obtained, see the numerical results in the next section.

2.1 The Minimization Model
In this paper, we propose to minimize the following objective function for image restoration after
the detection of noisy pixels:

min
f,u

J (f , u) ≡ min
f,u

‖X(Hf − g)‖2
2 + α1‖f − u‖2

2 + α2‖u‖TV , (2.5)

where ‖ · ‖2 is the Euclidean norm, X is a nonzero diagonal matrix with its diagonal entries
given by xi,j , α1 and α2 are two positive regularization parameters, and ‖ · ‖TV is the discrete
TV regularization term. The discrete total variation of f is de�ned by

‖f‖TV :=
∑

1≤j,k≤n

|(∇f)j,k|2 =
∑

1≤j,k≤n

√
|(∇f)x

j,k|2 + |(∇f)y
j,k|2.

where | · |2 is the Euclidean norm in R
2. Suppose f is a n-by-n image, the discrete gradient

operator ∇ : R
n2 → R

n2 is de�ned by

(∇f)j,k = ((∇f)x
j,k, (∇f)y

j,k)
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with

(∇f)x
j,k =

{
fj+1,k − fj,k if j < n,
0 if j = n,

(∇f)y
j,k =

{
fj,k+1 − fj,k if k < n,
0 if k = n

(2.6)

for j, k = 1, . . . , n. Here fj,k refers to the (jn + k)th entry of the vector f (it is the (j, k)th pixel
location of the image).

In (2.5), we can interpret the total variation minimization scheme to regularize the deblurred
image pixels (for xi,j = 1) and to �ll in suitable values to noisy image pixel values (for xi,j = 0).
Here α1 measures the trade o� between a deblurred image f and a regularized image u, and α2

measures the amount of regularization to those noisy image pixel values. The main advantage
of the proposed method is that a TV norm is used in the image restoration process. Therefore
the new method has the ability to preserve edges very well in the restored image. An alternating
minimization algorithm is employed to solve the proposed total variation minimization problem
(2.5).

2.2 Alternating Minimization Algorithm
In (2.5), there are two unknown images. One is the deblurred image f and the other is the
regularized image u. We propose to use an alternating minimization algorithm to solve (2.5).
Starting from an initial guess u(0), this method computes a sequence of iterates

f (1),u(1),f (2), u(2), . . . ,f (i), u(i), . . . .

such that
{

Sh(u(i−1)) := f (i) = minf ‖X(Hf − g)‖2
2 + α1‖f − u(i−1)‖2

2

Stv(f
(i)) := u(i) = argminu α1‖f (i) − u‖2

2 + α2||u||TV

for i = 1, 2, · · ·. Therefore, we can express the following relationship between u(i) and u(i−1):

u(i) = Stv(Sh(u(i−1))), i = 1, 2, · · · .

For simplicity, we denote
u(i) = T

(
u(i−1)

)
, (2.7)

where
T (·) = Stv(Sh(·)).

In the next subsection, we will analyze the convergence of u(i) under T .
Let us �rst study the computational cost of the alternating minimization algorithm. The �rst

step of the method is to perform the deblurring. The minimizer of the optimization problem:

min
f

‖X(Hf − g)‖2
2 + α1‖f − u(i−1)‖2

2

is equivalent to solving a linear system:

(HtXH + α1I)f = HtXg + α1u
(i−1). (2.8)
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Because of the regularization term α1I, the coe�cient matrix HtXH +α1I is always invertible
as HtXH is singular. We remark in image restoration that H is usually a matrix of block
Toeplitz with Toeplitz blocks (BTTB) when zero boundary conditions are applied, and block
Toeplitz-plus-Hankel with Toeplitz-plus-Hankel blocks (BTHTHB) when Neumann boundary
conditions are used [16]. The conjugate gradient method can be used to solve (2.8) at each
iteration. Convergence can be improved using preconditioning techniques. Transform-based
preconditioning techniques have been proved to be very successful [15]. For instance, if H is a
blurring matrix generated by a symmetric point spread function, H can be diagonalized by a fast
transform matrix: then (2.8) is solved by using three fast transforms in O(n2 log n) operations
for an n-by-n restored image, see for instance [16].

The second step of the method is to apply an exact TV regularization scheme to the image
generated by the previous deblurring step. The minimizer of the optimization problem

α1‖f (i) − u‖2
2 + α2||u||TV

can be solved by many TV denoising methods like Chambolle's projection algorithm [6], semis-
mooth Newton's method [17], multilevel optimization method [8] and graph-based optimization
method [7]. In this paper, we employ the Chambolle projection algorithm in the denoising step.
In the Chambolle scheme, we solve the following constrained minimization problem:

min
p

∥∥∥∥f (i) − α2

α1
divp

∥∥∥∥
2

2

(2.9)

subject to
|pj,k| ≤ 1, ∀1 ≤ j, k ≤ n.

Here
pj,k =

[
px

j,k

p
y
j,k

]

is the dual variable at the (j, k)th pixel location, p is the concatenation of all pj,k, and the
discrete divergence of p is de�ned such that

(divp)j,k ≡ px
j,k − px

j−1,k + p
y
j,k − p

y
j,k−1

with px
0,k = p

y
j,0 = 0. The vector divp is the concatenation of all (divp)j,k. For simplicity, we

denote β = 2α2/α1. When the minimizer p∗ of the constrained optimization problem in (2.9) is
determined, the denoised image u(i) can be generated as follows:

u(i) = f (i) − β divp∗.

In [6], the iterative scheme for computing the optimal solution p is given as follows:

p
(l+1,x)
j,k =

p
(l,x)
j,k + γβ∇

(
β divp(l) − f (i)

)x

j,k

1 + γβ|∇
(
β divp(l) − f (i)

)
j,k

| , ∀1 ≤ j, k ≤ n
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and

p
(l+1,y)
j,k =

p
(l,y)
j,k + γβ∇

(
β divp(l) − f (i)

)y

j,k

1 + γβ|∇
(
β divp(l) − f (i)

)
j,k

| , ∀1 ≤ j, k ≤ n

where p
(l,z)
j,k (z ∈ {x, y}) is the lth iterate of the iterative method for the minimizer, ∇(·)z

j,k

(z ∈ {x, y}) is de�ned as in (2.6), and γ is the step size introduced in the projection gradient
method, see [6] for details.

2.3 Convergence Analysis
In this subsection, by making use of the Opial theorem [20] we would like to show that the
algorithm converges to a stationary point of J . We can show that J in (2.5) is coercive and T
in (2.7) is non-expansive and asymptotically regular.

De�nition 2.1. An operator P is called non-expansive if for any x1,x2 ∈ Rn2 , we have

||P(x1) − P(x2)||2 ≤ ||x1 − x2||2.

If there exists some non-expansive operator A and α ∈ (0, 1) such that P = (1−α)I + αA, then
P is called α�averaged non-expansive.

Lamma 2.1. [12, Lemma 2.4] Let ϕ be convex and semi-continuous and α > 0. Suppose x̂ is
de�ned as follows:

x̂ = argminx‖y − x‖2
2 + αϕ(x). (2.10)

De�ne S such that x̂ = S(y) for each y. Then S is 1
2 -averaged non-expansive.

Next we show that the operator T de�ned in (2.7) is non-expansive.

Lamma 2.2. The operator T in (2.7) is non-expansive.

Proof. With Lemma 2.1, we know that Stv is non-expansive, for any x and y, we have

‖T (x) − T (y)‖2

= ||Stv(Sh(x)) − Stv(Sh(y))||2
≤ ||Sh(x) − Sh(y)||2
=

∥∥∥
(
HtXH + α1I

)−1 (
HtXg + α1x

)
−

(
HtXH + α1I

)−1 (
HtXg + α1y

)∥∥∥
2

=
∥∥∥α1

(
HtXH + α1I

)−1
(x − y)

∥∥∥
2

≤ ‖x − y‖2 .

The result follows.

Lamma 2.3. Let {u(i)} be generated by (2.7). Then
∑∞

i=1

∥∥u(i−1) − u(i)
∥∥2

2
converges.

Immediately, we have the following lemma, which states that the operator T is asymptotically
regular.
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Lamma 2.4. For any initial guess u(0) ∈ R
n2, suppose {u(i)} is generated by (2.7), then T is

asymptotically regular, i.e.,

lim
i→∞

∥∥∥u(i+1) − u(i)
∥∥∥

2
= lim

i→∞

∥∥∥T i+1
(
u(0)

)
− T i

(
u(0)

)∥∥∥
2

= 0.

To show the coerciveness of J , we introduce the following de�nitions.

De�nition 2.2. A function φ : R
n2 → R is proper over a set X ⊂ R

n2 if φ(x) < ∞ for at
least one x ∈ X and φ(x) > −∞ for all x ∈ X. A function φ : R

n2 → R is coercive over a set
X ⊂ R

n2 if for every sequence {xk} ⊂ X such that ||xk||2 → ∞, we have

lim
k→∞

φ(xk) = ∞.

When X = R
n2 , we say that φ is coercive on R

n2 .

Lamma 2.5. [4, Proposition 2.1.1] Let φ : R
n2 → R be a closed, proper and coercive function.

Then the set of minima of φ over R
n2 is nonempty and compact.

The following lemma states the objective function J (f , u) is coercive under certain condi-
tions.

Lamma 2.6. Let Lh and Lv be the one-side di�erence matrix on the horizontal direction and
the vertical direction respectively, and

L =

(
Lh

Lv

)
.

The function J (f , u) is coercive if Null (XH)
⋂

Null (L) = ∅, where Null (·) denotes the
null space of the corresponding matrix.

Proof. The lower bound of the discrete total variation is given by

‖u‖TV =
∑

1≤j,k≤n

|(∇u)j,k|

=
∑

1≤j,k≤n

√
((∇u)x

j,k)
2 + ((∇u)y

j,k)
2

≥ 1√
2

∑

1≤j,k≤n

∣∣(∇u)x
j,k

∣∣ +
∣∣∣(∇u)y

j,k

∣∣∣ =
1√
2
‖Lu‖1 .

By using the above inequality, we have

J (f , u) (2.11)
≥ ‖X(Hf − g)‖2

2 + α1||f − u||22 +
α2√

2
‖Lu‖1

=

∥∥∥∥
(

XH 0√
α1I −√

α1I

)(
f

u

)
−

(
Xg

0

)∥∥∥∥
2

2

+
α2√

2

∥∥∥∥
(

0 L
) (

f

u

)∥∥∥∥
1

, (2.12)
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where 0 is the zero vector. Let



x

y

z


 =




XH 0√
α1I −√

α1I

0 α2√
2
L




(
f

u

)
.

We note that



XH 0√
α1I −√

α1I

0 L


 =




I 0 0
0 I 0

− α2√
2α1

L I







XH 0√
α1I −√

α1I
α2√

2
L 0




and the above matrix is full rank as Null (XH)
⋂

Null (L) = ∅. Hence when
∥∥∥∥
(

f

u

)∥∥∥∥
2

tends

to in�nity, either
∥∥∥∥
(

x

y

)∥∥∥∥
2

or ‖z‖2 tends to in�nity, therefore by using (2.12), J (f , u) also

tends to in�nity. The result follows.

We remark that if f ∈ Null(L), then fi,j = c for any i and j, where c is a nonzero constant.
Since H is a blurring matrix (all the nonzero entries should be positive), it is clear that XHf is
a nonzero vector whenever X is not a zero matrix. It follows that the assumption Null (XH)⋂

Null (L) = ∅ holds in general.
Now we show that the set of �xed points of T is non-empty.

Lamma 2.7. Suppose Null (XH)
⋂

Null (L) = ∅. Then the set of �xed points of T is
non-empty.

Proof. Since the objective function J is coercive, the set of minimizers of J is non-empty.
Assume (f ′, u′) is a minimizer of J (f ,u), i.e.,




∂J
∂f

(f ′, u′)

∂J
∂u

(f ′, u′)


 =

(
0

0

)
.

Therefore we have
∂J
∂f

(
f ′, u′) = 0 and

∂J
∂u

(
f ′,u′) = 0.

It implies that {
f ′ = Sh(u′) = argminJ (·, u′)
u′ = Stv(f

′) = argminJ (f ′, ·).
Thus we obtain u′ = Stv(Sh(u′)) = T (u′) and u′ is a �xed point of T . The result follows.

Theorem 2.1. Suppose Null (XH)
⋂

Null (L) = ∅. For any initial guess u(0) ∈ R
n2, suppose

{u(i)} is generated by (2.7), u(i) converges to a stationary point of J .

We remark that the objective function in (2.5) is convex. The alternating minimization
algorithm can determine a stationary point of the objective function.
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3 Experimental Results
In this section, numerical results are presented to demonstrate the performance of our proposed
algorithm for image restoration involving impulse noise and/or Gaussian noise. The results are
compared with those obtained by two-phase method proposed in [5]. For simplicity, we call it
�Cai-TP� method. In the Cai-TP method, a modi�ed Mumford-Shah regularization scheme is
used. There are three parameters (α, β and ǫ) in the Cai-TP method. We remark that there are
two regularization parameters in the proposed algorithm. In order to reduce the complexity of
searching the optimal parameters for image restoration. In all the tests, we set α2 to be 1. On
the other hand, we determine α1 such that

‖u(α1) − u‖2

‖u‖2

is the smallest among all tested values of α1. For the Cai-TP method, we report the restoration
results using the optimal parameters given in [5].

Peak signal to noise ratio (PSNR) is used to measure the quality of the restoration results.
It is de�ned as follows:

PSNR = 20 log10

(
‖255‖2

1
n
‖f̃ − f‖2

)
,

where f and f̃ are the original image and the restored image respectively. The stopping criterion
of both methods is that the relative di�erence between the successive iterate of the restored image
should satisfy the following inequality:

||f (i+1) − f (i)||2
||f (i+1)||2

< δ.

δ is set to be 5 × 10−4 in the Cai-TP method and the proposed minimization method. Similar
to the Cai-TP method, we apply a detection procedure to identify noisy pixels and then use the
proposed minimization scheme and the alternating minimization algorithm to restore images.
However, for random-valued noise removal problems, both detection and minimization procedures
are repeated several times so that a high quality of restored image can be obtained.

We also note in degradation of random-valued noise that many outliers still remain after
the median �ltering. An additional preprocessing such as ℓ1 norm smoothing disposal [5] is
introduced in this case before the restoration step. It has been demonstrated in [18] that the use
of ℓ1 norm is less sensitive to outliers.

3.1 Experiment 1
In the �rst four experiments, we test that the observed image is degraded as follows:

g = Nimp (Hf + n) .

In the �rst experiment, we restore images corrupted by salt-and-pepper noise only. The �Lena�
image is blurred by an out of focus blur with radius 3, and then is corrupted by di�erent levels
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of salt-and-pepper noise. Figures 1(a)�(d) are the blurred and noisy images. Figures 1(e)�(h)
are the corresponding restored images by the proposed method. Figures 2(a)�(d) are the other
blurred and noisy images. They are blurred by an out of focus blur with radius 3, and then
are corrupted by salt-and-pepper noise of level s = 70%. Figures 2(e)�(h) are the corresponding
restored images by the proposed method. In Table 1, we show the summary results of the
proposed method and the Cai-TP method. We report the PSNRs and the computational timed
required by the two methods. The PSNRs of the restored images by two methods are about the
same. However, the proposed method is more e�cient than the Cai-TP method.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: The blurred and noisy �Lena� images by using an out of focus kernel with radius 3 and
corrupted by salt-and-pepper noise with di�erent noise levels (the upper part); (a) s = 30%; (b)
s = 50%; (c) s = 70%; (d) s = 90%. The corresponding restored images (the lower part) by the
proposed method.

3.2 Experiment 2
In the second experiment, we restore images corrupted by random-valued noise only. The �Lena�
image is blurred by an out of focus blur with radius 3, and then is corrupted by di�erent levels of
random-valued noise. Figures 3(a)�(d) are the blurred and noisy images. Figures 3(e)�(h) are the
corresponding restored images by the proposed method. Figures 4(a)�(d) are the other blurred
and noisy images. They are blurred by an out of focus blur with radius 3, and then are corrupted
by random-valued noise of level r = 40%. Figures 4(e)�(h) are the corresponding restored images

10



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: The blurred and noisy (a) �Bridge�, (b) �Cameraman�, (c) �Boat� and (d) �Goldhill�
images by using an out of focus kernel with radius 3 and corrupted by salt-and-pepper noise
with noise level s = 70% (the upper part). The corresponding restored images (the lower part)
by the proposed method.

by the proposed method. In Table 2, we show the summary results of the proposed method and
the Cai-TP method. We report the PSNRs and the computational times required by the two
methods. In these tests, both PSNRs of the restored images and the computational times required
by the proposed method are better those by the Cai-TP method.

3.3 Experiment 3
In the third experiment, we restore images corrupted by Gaussian noise plus impulse noise. The
�Lena� image is blurred by an out of focus blur with radius 3, and then is corrupted by Gaussian
noise of mean zero and standard deviation (σ = 5), and then by di�erent levels of salt-and-pepper
noise (or random-valued noise). Figures 5(a)�(d) are the blurred and noisy images. Figures
5(e)�(h) are the corresponding restored images by the proposed method. Figures 6(a)�(d) are
the other blurred and noisy images. Figures 6(e)�(h) are the corresponding restored images by
the proposed method. In Tables 3 and 4, we show the summary results of the proposed method
and the Cai-TP method. We report the PSNRs and the computational times required by the
two methods. In these tests, both PSNRs of the restored images and the computational times
required by the proposed method are again better those by the Cai-TP method.
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Proposed method Cai-TP method
Noise CPU CPU

Image Level s PSNR (dB) time (second) PSNR (dB) time (second)
30% 36.7 52.0 35.9 465.5

�Lena� 50% 33.2 58.5 32.7 432.0
70% 30.3 61.0 30.1 602.9
90% 26.6 71.5 26.7 729.2

�Bridge� 26.1 61.0 26.2 585.4
�Cameraman� 70% 27.2 65.0 26.7 621.3

�Boat� 27.2 52.1 26.7 601.5
�Goldhill� 28.6 48.7 28.4 592.0

Table 1: Summary results for the proposed method (α1 = 0.0001) and the Cai-TP method.
The blurring kernel is an out-of-focus with radius 3 and the image is corrupted by salt-and-
pepper noise only. The parameters used in Cai-TP method for �Lena� image are: s = 30%, [α =
0.0002, β = 0.0002, ǫ = 0.001]; s = 50%, [α = 0.0002, β = 0.0002, ǫ = 0.0005]; s = 70%, [α =
0.0005, β = 0.0005, ǫ = 0.0002] and s = 90%, [α = 0.001, β = 0.001, ǫ = 0.0001] respectively. The
parameters used for other pictures are the same: [α = 0.0005, β = 0.0005, ǫ = 0.0002].

Proposed method Cai-TP method
Noise CPU CPU

Image Level r α1 PSNR (dB) time (second) PSNR (dB) time (second)
10% 0.0007 39.4 74.6 38.7 599.3

�Lenna� 25% 0.0009 35.1 74.3 34.4 763.4
40% 0.0010 32.1 81.4 31.2 643.3
55% 0.0030 29.0 78.0 27.8 779.2

�Bridge� 0.0010 28.2 100.6 27.3 573.6
�Cameraman� 40% 0.0010 27.9 91.7 27.8 532.9

�Boat� 0.0010 29.3 68.5 28.2 523.5
�Goldhill� 0.0010 30.8 65.2 29.5 487.3

Table 2: Summary results for the proposed method and the Cai-TP method. The blurring kernel
is an out-of-focus with radius 3 and the image is corrupted by random-valued noise only. The
parameters used in Cai-TP method for �Lena� image are: r = 10%, [α = 0.0005, β = 0.0005, ǫ =
0.001]; r = 25%, [α = 0.001, β = 0.001, ǫ = 0.0005]; r = 40%, [α = 0.002, β = 0.002, ǫ = 0.0005]
and r = 55%; [α = 0.005, β = 0.005, ǫ = 0.0001] respectively. The parameters for other pictures
are the same: [α = 0.002, β = 0.002, ǫ = 0.0005].
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Proposed method Cai-TP method
Noise CPU CPU

Image Level s α1 PSNR (dB) time (second) PSNR (dB) time (second)
30% 0.7 27.5 18.9 27.2 512.0

�Lena� 50% 0.5 27.2 19.5 26.9 642.0
70% 0.4 26.6 20.4 26.4 555.8
90% 0.2 24.9 32.5 24.7 771.4

Table 3: Summary results for the proposed method and the Cai-TP method. The blurring
kernel is an out-of-focus with radius 3 and the image is corrupted by Gaussian noise and then
salt-and-pepper noise. The parameters used in Cai-TP method for di�erent noises are the same
[α = 0.05, β = 0.05, ǫ = 0.0002].

Proposed method Cai-TP method
Noise CPU CPU

Image Level r α1 PSNR (dB) time (second) PSNR (dB) time (second)
10% 0.6 27.6 48.5 27.2 569.7

�Lena� 25% 0.7 27.3 54.0 27.0 873.2
40% 0.8 27.0 56.4 26.7 736.5
55% 0.6 25.8 64.8 25.6 912.3

Table 4: Summary results for the proposed method and the Cai-TP method. The blurring kernel
is an out-of-focus with radius 3 and the image is corrupted by Gaussian noise and then random-
valued noise. The parameters used in Cai-TP method for di�erent noises are: r = 10%, [α =
0.05, β = 0.05, ǫ = 0.0002]; r = 25%, [α = 0.01, β = 0.005, ǫ = 0.0002], [α = 0.01, β = 0.005, ǫ =
0.0002] and [α = 0.01, β = 0.01, ǫ = 0.0001] respectively.
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(e) (f) (g) (h)

Figure 3: The blurred and noisy �Lena� images by using an out of focus kernel with radius 3 and
corrupted by random-valued noise with di�erent noise levels (the upper part); (a) r = 10%; (b)
r = 25%; (c) r = 40%; (d) r = 55%. The corresponding restored images (the lower part) by the
proposed method.

3.4 Experiment 4
In the fourth experiment, we restore images blurred by a Gaussian kernel (generated by MATLAB
command fspecial('Gaussian', [7 7], 1)) and a motion kernel (generated by MATLAB command
fspecial('motion', 9, 1)). Figures 7(a) and (b) are such blurred images. When these two blurred
images are corrupted by salt-and-pepper noise only of level s = 70 (see Figures 7(c) and (d)),
Figures 7(g) and (h) are the corresponding restored images by the proposed method. When the
blurred images are corrupted by random-valued noise only of level r = 40 (see Figures 7(e) and
(f)), Figures 7(i) and (j) are the corresponding restored images by the proposed method. The
PSNRs of the restored images in (g), (h), (i) and (j) by the proposed method are 31.1 dB, 30.4
dB, 31.3 dB and 31.4 dB respectively. The computational time required for the restored images
in (g), (h), (i) and (j) by the proposed method are 89.8 seconds, 98.1 seconds, 101.8 seconds and
104.3 seconds respectively. In contrast, the PSNRs of the restored images by the Cai-TP method
are 30.6 dB, 28.0 dB, 31.5 dB and 29.8 dB respectively. Also the computational time required for
the restored images by the Cai-TP method are 603.5 seconds, 613.5 seconds, 839.2 seconds and
551.7 seconds respectively. These results show that the proposed method can restore corrupted
image quite well in an e�cient manner.
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Figure 4: The blurred and noisy (a) �Bridge�, (b) �Cameraman�, (c) �Boat� and (d) �Goldhill�
images by using an out of focus kernel with radius 3 and corrupted by random-valued noise with
noise level r = 40% (the upper part). The corresponding restored images (the lower part) by the
proposed method.

3.5 Experiment 5
In this subsection, we test images degraded as follows:

g = Nimp (Hf) + n.

In the experiment, we restore images corrupted by impulse noise and then by Gaussian noise.
The �Lena� image is blurred by an out of focus blur with radius 3, and then is corrupted by
di�erent levels of salt-and-pepper noise plus Gaussian noise, see Figures 8(a)�(d), or of random-
valued noise plus Gaussian noise, see Figures 9(a)�(d). Figures 8(e)�(h) and Figures 9(e)�(h)
are the corresponding restored images by the proposed method. In Tables 5 and 6, we show
the summary results of the proposed method. We report the PSNRs and the computational
times required by the proposed method. The proposed method can restore image quite well. We
remark that this image degradation model is not considered and studied in [5]. It is interesting
to note that the PSNRs and the computational times of the proposed method are about the
same as those images degraded by g = Nimp (Hf + n), see Tables 3 and 5, and Tables 4 and 6.
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Figure 5: The blurred and noisy �Lena� images by using an out of focus kernel with radius 3
and corrupted by Gaussian noise of standard deviation 5 and then salt-and-pepper noise with
di�erent noise levels (the upper part); (a) s = 30%; (b) s = 50%; (c) s = 70%; (d) s = 90%.
The corresponding restored images (the lower part) by the proposed method.

4 Concluding Remarks
In this paper, we have proposed fast restoration methods for blurred images corrupted by impulse
noise or mixed impulse plus Gaussian noises. In the proposed method, we use the modi�ed total
variation minimization scheme to regularize the deblurred image and �ll in suitable values for
noisy image pixels where these are detected by median-type �lters. An alternating minimization
algorithm is employed to solve the proposed total variation minimization problem. We have
shown the convergence of the alternating minimization algorithm and demonstrate that the
algorithm is very e�cient. Our experimental results have also shown that the quality of restored
images by the proposed method is competitive with those restored by the existing variational
image restoration methods.

Acknowledgement: The authors would like to thank Dr. Jian-Feng Cai for his kind o�er of the
source codes for the Cai-TP method compared in the paper.
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Figure 6: The blurred and noisy �Lena� images by using an out of focus kernel with radius 3
and corrupted by Gaussian noise of standard deviation 5 and then random-valued noise with
di�erent noise levels (the upper part); (a) r = 10%; (b) r = 25%; (c) r = 40%; (d) r = 55%.
The corresponding restored images (the lower part) by the proposed method.
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Figure 7: �Lena� image blurred with di�erent kernels, and then corrupted by impulse noise
only. (a) the blurred image with a Gaussian kernel (generated by MATLAB command fspe-
cial('Gaussian', [7 7], 1)); (b) the blurred image with a motion kernel (generated by MATLAB
command fspecial('motion', 9, 1)); (c) the blurred image in (a) corrupted by salt-and-pepper
noise only with s = 70%; (d) the blurred image in (b) corrupted by salt-and-pepper noise only
with s = 70%; (e) the blurred image in (a) corrupted by random-valued noise only with r = 40%;
(f) the blurred image in (b) corrupted by random-valued noise only with r = 40%; (g)�(j) are
the corresponding restored images for (c)�(f).
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Figure 8: The blurred �Lenna� images by using an out of focus kernel with radius 3 and corrupted
by salt-and-pepper noise with di�erent noise levels and then Gaussian noise of standard deviation
5 (the upper part); (a) r = 30%; (b) r = 50%; (c) r = 70%; (d) r = 90%. The corresponding
restored images (the lower part) by the proposed method.
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Figure 9: The blurred �Lenna� images by using an out of focus kernel with radius 3 and corrupted
by random-valued noise with di�erent noise levels and then Gaussian noise of standard deviation
5 (the upper part); (a) r = 10%; (b) r = 25%; (c) r = 40%; (d) r = 55%. The corresponding
restored images (the lower part) by the proposed method.

22


