
Fast Image Restoration with Multi-bin Trainable Linear Units

Shuhang Gu1, Wen Li1, Luc Van Gool1,2, Radu Timofte1

1 ETH, Zurich, 2 KU Leuven

{shuhang.gu, liwen, vangool, radu.timofte@vision.ee.ethz.ch}

Abstract

Tremendous advances in image restoration tasks such as

denoising and super-resolution have been achieved using

neural networks. Such approaches generally employ very

deep architectures, large number of parameters, large re-

ceptive fields and high nonlinear modeling capacity. In or-

der to obtain efficient and fast image restoration networks

one should improve upon the above mentioned require-

ments. In this paper we propose a novel activation function,

the multi-bin trainable linear unit (MTLU), for increas-

ing the nonlinear modeling capacity together with lighter

and shallower networks. We validate the proposed fast im-

age restoration networks for image denoising (FDnet) and

super-resolution (FSRnet) on standard benchmarks. We

achieve large improvements in both memory and runtime

over current state-of-the-art for comparable or better PSNR

accuracies.

1. Introduction

Image restoration refers to the task of estimating the la-

tent clean image from its degraded observation, it is a classi-

cal and fundamental problem in the area of signal process-

ing and computer vision. Recently, deep neural networks

(DNNs) have been shown to deliver standout performance

on a wide variety of image restoration tasks. With massive

training data, very deep models have been trained for push-

ing the state-of-the-art of different restoration tasks.

The idea of DNN-based image restoration method is

straight forward: training a neural network to capture the

mapping function between the degraded images and their

corresponding high quality images. By stacking the stan-

dard convolution layers and Rectified Linear Unit (ReLU)

activation functions, the VDSR approach [22] and the

DnCNN approach [43] have achieved state-of-the-art per-

formance on the image super-resolution (SR) and image

denoising tasks, resp. Furthermore, it is perhaps unsurpris-

ing that we are able to further improve the results by these

models by further increasing their number of layers; since

deeper network structures not only have stronger nonlinear

Figure 1. Average PSNR on Set 14 (×4) vs. runtime (on Titan X

Pascal GPU with Caffe [20]) for processing a 512×512 HR image

by different approaches. Our MTLU improves fast SR methods

without increasing their runtime. Our FSRnet has a better trade-

off between speed and accuracy than state-of-the-art SR methods.

modeling capacity but also incorporate input pixels from a

larger area. However, in practice often only limited compu-

tational resources are available and how to design an appro-

priate network structure for such conditions is an important

research direction.

Generally, the key challenge in learning fast image

restoration networks is twofold: (i) to incorporate sufficient

receptive fields, and (ii) to economically increase the non-

linear modeling capacity of networks. In order to increase

the receptive field of the proposed network, we utilize a sim-

ilar strategy with recent works [36, 45] and conduct all the

computations in a lower spatial resolution. While for the

purpose of stronger nonlinear capacity, we propose a multi-

bin trainable linear unit (MTLU) as the activation function

used in our networks. The proposed MTLU parameterizes

each activation function with a group of parameters, which

can be trained jointly with other network parameters in an

end-to-end manner. Concretely, MTLU divides the activa-

tion space into equidistant bins and approximates the acti-

vation function in each bin with a linear function indepen-

dently. Such a simple strategy enables us to greatly enhance

the nonlinear capacity of each activation function without

significantly increase its computational burden.

We evaluated the proposed MTLU on the classical SR

14190



and image denoising tasks. Fig. 1 presents the trade-off be-

tween runtime and accuracy for different SR approaches on

Set 14 dataset with scaling factor 4. By replacing the ac-

tivation functions used in fast SR approaches [36, 10] with

MTLU, we are able to improve their accuracy without in-

creasing the runtime. Furthermore, the proposed FSRnet

is 0.2 up to 0.5dB better in PSNR terms than the bench-

mark method VDSR [22] while being 10 to 4× faster, and

achieves comparable PSNR with the state-of-the-art SRRes-

Net [25] but 3× faster. For the image denoising task, the

proposed method achieves comparable performance with

the state-of-the-art approach DnCNN [43] but 15× faster.

Our main contributions are as follows: 1) This paper is

the first work to adopt a highly complex trainable activation

function to improve general CNN-based image restoration

algorithms. 2) We proposed the parameterized activation

function MTLU and evaluated it on a wide range of network

structures. MTLU fits the CNN framework well and con-

sistently outperforms commonly used activation functions

(PReLU, ReLU and MaxOut) for solving the image denois-

ing and SR tasks. 3) Based on MTLU, we proposed the FS-

Rnet and FDnet for the image SR and denoising tasks. Our

nets achieve comparable performance with state-of-the-art

approaches, at much lower computational demands.

1.1. Related Works

DNN for Image Restoration Due to its unparalleled non-

linear modeling capacity, deep neural networks (DNNs)

have been widely applied to different image restora-

tion/enhancement tasks [9, 22, 25, 36, 43, 45, 44]. In this

part, we only provide a very brief review of DNN-based im-

age denoising and SR approaches, which are the two tasks

investigated in this paper.

To deal with SR problem, DNN-based approaches pro-

posed to train a neural network for buliding the mapping

function between low-resolution (LR) and high-resolution

(HR) images. Dong et al. [9] firstly proposed a deep

learning based model for SR – SRCNN. SRCNN [9]

achieved comparable performance with then state-of-the-

art conventional SR approaches based on sparse represen-

tations [42, 15] and anchored neighborhoods [40], trigger-

ing the tremendous investigation of DNN-based SR ap-

proaches. Kim et al. [22] proposed VDSR which utilizes a

deeper neural network to estimate the residual map between

HR and LR image, and achieved superior SR performance.

Recently, Ledig et al. [25] built SRResNet, a very deep neu-

ral network of residual blocks, obtaining state-of-the-art SR

performance. Besides designing deeper networks for pur-

suing better SR performance, other interesting research di-

rections include investigating of better losses [21, 25] for

generating perceptual plausible SR results, extending the

generalization capacity of SR network for different kernels

settings and faster SR networks [36].

The application of discriminatively learned networks

[4, 19, 41, 35] for image denoising task is earlier than its

application on SR tasks. Different types of networks, in-

cluding auto-encoder [41], multi-layer perceptron [35] and

unfolded inference process of optimization models [34, 4]

have been suggested for dealing with the image denois-

ing problem. Recently, Zhang et al. [43] combined recent

advances in DNN design and proposed a DnCNN model

reaching state-of-the-art performance on denoising tasks

with different noise levels. After DnCNN [43], some more

complex networks have been suggested for further improv-

ing the denoising performance. Mao et al. [31] proposed to

introduce skip connections for training very deep network,

and proposed a residual encoding-decoding(RED) frame-

work to solve image restoration problems. Tai et al. [38]

adopt recursive unit and gate unit to learn multi-level rep-

resentations, and proposed a very deep persistent memory

network (MemNet) to deal with image restoration tasks.

Although RED [31] and MemNet [38] achieved better de-

noising performance than the DnCNN method, they also

requires much higher computational resources in both the

training and testing phases.

Activation Functions of DNN The nonlinear capacity of

deep neural networks come from the non-linear activation

functions (AFs). In the study of early years, the designing

of AFs often with strong biological or probability theory

motivations, the sigmoid and tanh functions have been sug-

gested for introducing nonlinearity in networks. While, the

recent study of AFs take more consideration on practical

training performance, the ReLU [32] function became the

most popular AF since it enables better training of deeper

networks [11]. Different AFs, including the Leaky ReLu

(LReLU) [30], Exponential Linear Units (ELU) [7] and the

Max-Out Unit (MU) [12] have been designed for improving

the performance of DNN.

Theoretically, a sufficiently large networks with any of

the above hand-crafted AFs can approximate arbitrarily

complex functions [5]. However, for many practical appli-

cations where the computational resources are limited, the

choice of AF affects greatly the network capacity. To im-

prove the model fitting ability of network, He et al. [16]

extend the original ReLU and propose Parametric ReLU

(PReLU) by learning parameters to control the slopes in

the negative part for each channel of feature maps. Be-

sides PReLU [16], there are still some more complex pa-

rameterization of nonlinear functions [1, 26, 4]. However,

these approaches [1, 26, 4] share a similar idea of adap-

tively summing several simple functions (kernel function)

to achieve a more complex model and, therefore, their com-

putational burden largely increase with the demand on pa-

rameterization accuracy. Furthermore, some of these func-

tions [1, 26] were designed for classification tasks with

fixed input size, the AFs were learned to be spatial vari-

4191



Figure 2. Examples of 4-bin MTLU, ReLU, PReLU, and ELU.

The proposed MTLU divided the activation space into equidistant

bins and approximates the activation function each bin with a lin-

ear function. Each AF in the network can be learned from the

training data. See Sec. 2 for more details.

ant, making them not suitable for spatial invariant image

restoration tasks. Yan et al. [37] unfold the optimization

process of ADMM algorithm to stage-wise networks for

solving the MR image reconstruction problem. They adopt

the piece-wise linear function (PLF) to approximate non-

linear penalty functions for filter responses in each stage of

network. Yan et al. [37] train the network parameters with

an elaborate optimization algorithm, LBFGS [29], which

requires to calculate gradients on all the training samples

and utilize line search method to determine the step length

in each update. Whether such a piece-wise linear function

can be plugged into general CNN framework and be opti-

mized with stochastic algorithms is still an open problem.

In this paper, we propose MTLU and directly plug it into

the general CNN framework as the AF. We evaluate it on a

wide range of network structures and train it with the com-

monly used stochastic optimization scheme. Our experi-

mental results show that MTLU is not only faster than PLF,

but also achieves better restoration performance on both the

SR and denoising tasks.

2. Multi-bin Trainable Linear Unit

In this section, we firstly introduce the proposed MTLU

activation function. Then, we present the gradient used for

training MTLU and further discuss some important charac-

ters of MTLU.

2.1. MTLU: formulation

The nonlinearity of neural networks comes from the non-

linear activation functions, by stacking some simple opera-

tions, e.g. convolution and ReLU, the networks are able to

model any nonlinear function. However, in many real appli-

cations the computational resources are limited and, thus,

we are not able to deploy very deep models to fully capture

the nonlinearity. This motivated us to improve the capacity

of activation functions for better nonlinearity modeling.

Instead of designing fixed activation functions, we pro-

posed to parameterize the activation functions and learn op-

timal functions for different stage of networks. We present

the following MTLU activation function, which simply di-

vides the activation space into multiple equidistant bins, and

uses different linear functions to generate activations in dif-

ferent bins:

f(x) =



















a0x+ b0, if x ≤ c0;

akx+ bk, if ck−1 < x ≤ ck;

...

aKx+ bK , if cK−1 < x.

(1)

where {ck}k=0,...,K−1 are K hyper-parameters for MTLU,

and {ak, bk}k=0,...,K are parameters to be learned in the

training process. Since the anchor points ck in our model

are uniformly assigned, they are defined by the number of

bins (K) and the bin width. Furthermore, given the input

value x, a simple dividing and flooring function can be uti-

lized to find its corresponding bin-index. Having the bin-

index, the activation output can be achieved by an extra

multiplication and addition function.

We present an example of a 4-bin MTLU in Fig. 2 and,

for reference, some other commonly used activation func-

tions are also included. One can see that in this sim-

ple case, MTLU divides the activation space into 4 parts,

(−∞,−0.5], (−0.5, 0], (0, 0.5] and (0.5,∞), and adopts

different linear functions in different parts to form the non-

linear activation function. PReLU [16] can be seen as a

special case of the proposed parameterization in which the

input space is divided into two bins (−∞, 0] and (0,∞) and

only the parameter a0 is learned, the other parameters b0, a1
and b1 being fixed to 0, 1 and 0, resp. The proposed MTLU

adopts a more flexible formula and is expected to have a

stronger nonlinear capacity than PReLU. The detailed set-

tings for the bin number as well as bin width will be dis-

cussed in the experimental section 5.1. In the next sub-

section, we introduce the gradients used for training MTLU,

we show that MTLU can be directly plugged into the CNN

framework and jointly trained with convolution kernels in

an end-to-end manner.

2.2. MTLU: gradients

MTLU can be trained with the back-propagation algo-

rithm. The parameters for the k−th bin will be affected by

all the signals drop into (ck−1, ck], thus, the gradients with

respect to ak and bk can be written as follows

∂loss

∂ak
=

1

Nk

∑

xi∈Sk

xi∂fi,
∂loss

∂bk
=

1

Nk

∑

xi∈Sk

∂fi (2)

where Nk is the normalization factor that counts the number

of signals in each bin, Sk indicate the range corresponding

to ak and bk, ∂fi denotes the gradient coming from the next

layer in position i. And the gradient flow toward the bottom

layer can be achieved by

∂loss

∂xi xi∈Sk

= ak. (3)

4192



In our implementation, we do not count the number of sig-

nals laying in each bin, and just use the accumulated gra-

dients. The gradient of MTLU parameters is relatively

small and we found weight decay will affect the training

of MTLU. For all the experiments in this paper, we do not

conduct weight decay on MTLU. While, the other parame-

ters are regularized by a weight decay factor of 10−4 which

is the same as [22, 43]. Our implementation of MTLU is

available at our project webpage1.

2.3. Discussion

We emphasize that we choose the formulation of MTLU

in (1) based on efficiency. Although several other non-linear

approximation approaches have been suggested in different

areas of computer vision, we will show in the experimen-

tal section that the proposed MTLU is able to deliver good

results with lower computational burden. Concretely, since

most of previous approaches [1, 26, 4] adopted a summa-

tion strategy, the increasing of parameterization accuracy

will greatly increase the computational burden in the infer-

ence phase. Compared with recent work (PLF) [37], MTLU

decoupled the linear functions in each bins and learn AF in

each area independently. While PLF uses anchors to pa-

rameterize the linear functions in the intervals, each anchor

affects the linear functions in two adjacent bins. Conse-

quently, the parameterizations in different intervals affect

each other and limit the flexibility of PLF. Furthermore,

anchor-based formula requires to pre-determine the range

of parameterization, for the inputs lies outside the parame-

terization range, PLF can only adopt a fixed activation func-

tion. While, the proposed MTLU is trainable for the entire

activation space.

Another thing which is worth mention is the discontinu-

ity issue. Some readers may raise concerns on the train-

ing stability of MTLU due to its discontinuity. Actually,

some recent advances in the field of network compression

and DNN-based image compression [18, 17, 27, 2, 39]

have shown that the networks work well even with non-

continuous functions. Furthermore, we experimentally

found that the training of MTLU is very stable, even with-

out a BN layer to normalize the range of inputs, it still able

to deliver good restoration performance.

3. Fast Super Resolution Network with MTLU

To tackle SR a CNN is trained to extract local structure

from LR images for estimating the lost high frequency de-

tails of HR images. By stacking the simple convolution

(CONV) + ReLU operations, VDSR [22] achieved very

good SR performance. To obtain a fast SR network, we

modify the network structure to (i) process the image in a

lower spatial resolution and (ii) use MTLU for improved

1https://github.com/ShuhangGu/MTLU ICCV2019.

nonlinear modeling capacity. Conducting the major SR op-

erations in the LR space was originally adopted in the CSC-

SR approach [15], where the convolution sparse coding de-

composes the LR input image to get feature maps for SR.

For DNN-based SR approaches, Shi et al. [36] firstly sug-

gested to use the LR image (instead of interpolated image)

as input and conduct SR operation in the LR space, and such

a strategy has been widely applied in recent DNN-based

SR methods [25, 28]. Different from recent approach [25],

which utilizes larger channel numbers and filter sizes to

gradually generate the final HR reconstruction from LR fea-

ture maps, we utilize the 64 LR feature maps to generate the

shuffled HR image with only one 3×3 convolution layer for

the purpose of efficiency. As we will show in section 5.3,

MTLU greatly improves the network nonlinear capacity, en-

abling good SR results with a lower depth (number of lay-

ers). Fig. 3(a) illustrates the proposed FSRNet. Since the

purpose of this paper is to find a good trade-off between

restoration performance and processing speed, and FSRNet

is capable to achieve top SR results with a few layers, we did

not employ residual blocks in the middle of our networks,

and only set one residual connection between the feature

maps of first layer and last layer.

4. Fast Image Denoising Network with MTLU

Different from the SR task, the input and the target noise-

free image in the denoising task are of same size. For

the purpose of efficiency, we shuffle the input image and

conduct the denoising operations at a lower spatial resolu-

tion. The shuffling operation has been adopted in several

previous works [45, 36, 33] to change the spatial resolu-

tion of image/feature maps. Although processing the shuf-

fled LR multi-channel image helps to reduce the computa-

tional burden in the training and testing phases as well as

greatly improves the perception field of networks, It also

has a higher demand on the nonlinear power of each layer

since the shuffling operation narrows the network width. To

balance speed and performance, we shuffle the input noisy

image with factor 4, e.g. a noisy image with size H×W×C
is shuffled to H/4×W/4×16C as the input to the network.

An illustration of the proposed FDnet structure can be found

in Figure 3(b).

5. Experimental Results

In this section, we provide experimental results to show

the advantage of the proposed models. First, we discuss

some training aspects of the proposed MTLU and conduct

experiments to compare MTLU with other activation func-

tions which have been widely used in other image restora-

tion networks. Then, we compare the proposed networks

with representative state-of-the-art SR and denoising net-

works. All the experiments are conducted on a computer

4193



(a) FSRnet (factor 2, 3 and 4) (b) FDnet
Figure 3. The network structures of the proposed FSRnet and FDnet. The hyper parameters for the shuffle layer and convolution layer are

shown in the figures. Convolution block with 64×3×3 represents convolution layer with kernel size 3 and 64 output feature maps. Shuffle

blocks with parameter /4, ×4 utilize shuffle operations to enlarge or reduce spatial resolution of input with factor 4.

Figure 4. Examples of learned MTLUs in FSRnet7. MTLUij de-

notes the activation function for the j-th channel of layer i. ReLU

function (in red) is included for reference.

with Intel Xeon CPU e5-2620, 64 GB of RAM and Nvidia

Titan X Pascal GPU. We evaluate the running time of dif-

ferent networks with Caffe toolbox [20].

5.1. Training with MTLU

The proposed MTLU has several hyper parameters, in

this section, we discuss some training details as well as pa-

rameter settings for the MTLU layers used in this paper.

MTLU: initialization In our experiments, we initialize

MTLU as a ReLU function. With other initializations, such

as random initialization of {ak, bk}k=0,...,K and initializa-

tion MTLU as a identity mapping function f(x) = x,

MTLU is still trainable. However, we experimentally found

that the ReLU initialization often delivers a better conver-

gence (about 0.05dB for SR Set 14 with factor 4) than the

models trained with other initialization methods.

Table 1. SR Results by FSRnet7 with different bin-width on Set 5

(×4). Number of bins are fixed to 2/bin-width.

Bin-width 0.025 0.05 0.1 0.2 0.5

PSNR [dB] 31.49 31.52 31.48 31.49 31.43

MTLU: number of bins and bin width The number of

bins as well as bin-width determines the parameterization

accuracy and range of the proposed MTLU layer. In both

the FDnet and FSRnet structures, we have a Batch Normal-

ization (BN) layer to help us adjust the range of inputs. We,

thus, only carefully parameterize the activations between

the range of [-1, 1], since most of the inputs of MTLU lies

in this range. Note that for input signals out of the range [-1,

1], MTLU is still trainable and can generates valid activa-

tions, but for all the values x ≤ c0 or x > cN−1, they share

the same two groups of parameters {a0, b0} or {aN , bN}.

After fixing the parameterization ranges, we only need

to choose the bin-width and the number of bins is obtained

as 2/bin-width. To choose the bin-width values, we train

a group of 7 layers FSRnet (FSRnet7) with different bin-

width values, and evaluate the SR results by different mod-

els. The average PSNR values by different settings for SR

the Set 5 data set with zooming factor 4 are shown in Ta-

ble 1. Intuitively, a smaller bin-width enables a higher pa-

rameterization accuracy of MTLU, and is expected to im-

prove the nonlinearity modeling capacity of the network.

However, this comes at the price of introducing more pa-

rameters (larger number of bins) to cover the range between

(-1,1). Furthermore, as shown in Table 1, the result obtained

with a bin-width smaller than 0.025 is worse than the ones

with larger bin-widths. A possible reason is that the num-

ber of signals in certain bins may be very small rendering

the training process unstable. In our experiments, we di-

vided the space between −1 and 1 into 40 bins (bin-width

0.05) and learn different AFs for different channels. Thus,

for a network with 64 channels of feature map, the number

of parameters of each activation function is 64×80 = 5120,

which is less than 1/7 of the parameter number of one 3×3
convolution layer. Fig. 4 depicts AFs of the 1st and 2nd

feature maps in each MTLU layers of learned FSRnet7.

5.2. Comparison with other nonlinear parameter
ization approaches

We compare MTLU with two representative non-linear

parameterization approaches: APL [1] and PLF [37]. Please

note that both APL and PLF functions have only been used

in highly specific network structures, and we are the first to

adapt them into the standard CNN framework for solving

image restoration tasks. Here we compare MTLU with the

two parameterization approaches to show the advantages of

MTLU, i.e. efficiency and robustness.

APL [1] uses summation of ReLU-like units to increase

the capacity of the activation function. As APL hi(x) =
max(0, x)+

∑

s a
s
i max(0,−x+bsi ) was designed for high-

4194



level vision tasks and the AF varies with the position i, it is

not directly applicable to restoration tasks with different in-

put sizes. Thus, we remove the spatially variant part and

adopt the same activation in different channels of feature

map (the same setting as adopted for MTLU). We adopt

APL with different number of kernels in FSRnet7; the aver-

age PSNR on Set 5 (×4) and runtime of FSRnet7 with APL

and with MTLU are reported in Table 2. FSRnet7-MTLU is

much faster and ∼0.2dB better than FSRnet7-APL.

Table 2. SR results (Set 5, ×4) and run time for processing a 512×

512 image by FSRnet7 with MTLU and variations of APL [1].

AFs MTLU40 APL10 APL20 APL40

[dB]/[ms] 31.52/4.0 31.35/16.0 31.29/34.1 31.32/87.6

PLF [37] is another recently proposed non-linear parame-

terization approach, it uses a group of anchor points to de-

termine the function values in the intervals. To compare

MTLU with PLF, we incorporate them in both the FSRnet7
and FDnet10. In [37], the PLF was adopted in a highly spe-

cific network structure, and the authors only parameterized

the interval between -1 and 1. While, in order to thoroughly

compare MTLU and PLF, we generalize PLF approach.

Specifically, we keep both the bin-width of MTLU and an-

chor interval of PLF as 0.05, and use different bin-numbers

(anchor numbers). Changing the number of bins for both

the MTLU and PLF approach will not affect their running

time. Processing a 512×512 HR image by FSRnet7-MTLU

and FSRnet7-PLF takes 4.0 and 4.4 ms, respectively. The

SR (Set 5/×4) and denoising (BSD68/σ = 50) results by

different AFs are reported in Table 3.

On different settings, MTLU consistently outperforms

the PLF. For the same setting as we adopted in this paper,

i.e. 40 bin with bin-width 0.05, MTLU outperforms PLF

0.13 and 0.18 dB on the SR and denoising tasks, resp. Fur-

thermore, when the two methods use a small number of an-

chors/bins, MTLU outperforms PLF by a large margin. One

possible reason is that PLF uses anchors to parameterize the

linear functions in the intervals, each anchor will affect the

linear functions in two adjacent bins; as a result, when the

intervals do not cover all the possible values range of in-

put, e.g., PLF20 and PLF40 only covers input range of [-

0.5,0.5] and [-1,1], the values outside the range will greatly

affect the parameterization and PLF can not achieve a per-

formance as good as MTLU, which decouples the functions

in each bin. The relative larger performance gap between

MTLU and PLF on the denoising task may also due to the

correlated parameterization scheme adopted in PLF. Such a

drawback of PLF may limit its application on feature maps

which we do not have prior knowledge on the value ranges

(e.g. feature maps without BN).

5.3. Comparison with other activation functions

In this part, we compare MTLU with other AFs re-

cently adopted in image restoration networks [43, 25, 45]:

ReLU [32], the most utilized AF, PReLU [16], adopted in

the state-of-the-art SR algorithm SRResNet [25], and the

Max-out Unit (MaxOut) [12] which has been adopted in a

recently proposed SR approach [6]. Specifically, the fast SR

approaches ESPCN [36], FSRCNN [10], the state-of-the-art

SR approach SRResNet [25] as well as the proposed FSRnet

(Fast SR Net, see Section 3) are utilized to compare differ-

ent AFs on the SR task. For the denoising task, we compare

different AFs on the proposed FDNet (Fast Denoising Net,

see Section 4).

For existing network structures ESPCN [36], FSR-

CNN [10] and SRResNet [25], we directly replace the AFs

in these networks to compare different AFs. In order to thor-

oughly compare the performance of different AFs with the

proposed network structures, FSRnet and FDnet, we vary

the basic building blocks (CONV+BN+AF) in the 2 net-

work structures and compare the performance/speed curves

of networks with different AFs. The details for the em-

ployed settings of the different network structures are de-

scribed in the next.

5.3.1 Existing network structures with different AFs

In this part, we compare different AFs on representative ex-

isting restoration network structures: ESPCN [36], FSR-

CNN [10] and SRResNet [25]. ESPCN adopts three con-

volution+ReLU layers, the kernel sizes of different layers

are {5, 3, 3} and the feature map numbers of the first and

second layers are {64, 32}. We follow the same setting

and only conduct SR operation for the illumination channel.

FSRCNN adopts more layers than ESPCN but less feature

maps to trade off between SR performance and inference

speed. The original FSRCNN [10] utilizes PReLU [16], and

we derive FSRCNN-ReLU and FSRCNN-MTLU for com-

parison. SRResNet utilizes a large number (16) of residual

blocks, conducts most of the computation in the LR space,

to then use large kernels and 2 shuffle steps to gradually

reconstruct the HR estimation with the LR feature maps.

For all the variations of FSRCNN, ESPCN and SRRes-

Net, we adopt the DIV2K [3] as training set. We initial-

ize the learning rate as 1−3, for ESPCN [36] and FSR-

CNN [10], we divide the learning rate every 50K iterations

until the learning rate is less than 1−5; while, for the com-

plex SRResNet [25], we divide its learning rate every 150K

iterations. We train all the networks with Adam [23] solver

using default parameters. Table 4 summarizes the PSNR re-

sults (×4) on Set 5 and Set 14 as well as the running time

of the different methods for processing a 512× 512 image.

MTLU greatly improves the fast SR approaches without a

noticeable extra computational burden.

5.3.2 FSRnet with different AFs

We further evaluate the effectiveness of MTLU on the pro-

posed FSRnet structure. In order to thoroughly compare dif-

4195



Table 3. SR and denoising results for FSRnet7 and FDnet10 variants using our MTLU, PLF [37], ReLU [32] and PReLU [16] as AF, resp.

AFs: MTLU20 MTLU40 MTLU80 PLF20 PLF40 PLF80 ReLU PReLU

Super-resolution: FSRnet7 Set5, ×4 31.50 31.52 31.54 31.34 31.39 31.49 31.44 31.43

Denoising: FDnet10 BSD68, σ = 50 26.20 26.24 26.23 26.01 26.06 26.13 26.06 26.14

Table 4. SR PSNR results [dB] on Set 5 and Set 14 (×4) and runtime [ms] (on a 512 × 512 image) for ESPCN [36], FSRCNN [10] and

SRResNet [25] variants. The subscript letters R, P and M represents the ReLU [32], PReLU [16] and MTLU, resp.
Networks ESPCNR ESPCNP ESPCNM FSRCNNR FSRCNNP FSRCNNM SRResNetR SRResNetP SRResNetM

Set 5 30.66 30.67 30.82 30.73 30.76 30.96 32.07 32.06 32.13

Set 14 27.60 27.60 27.68 27.61 27.64 27.75 28.49 28.49 28.54

runtime 0.94 0.94 0.95 1.97 1.98 1.98 30.28 30.97 31.29

Figure 5. SR (Set5, ×4) and Denoising (σ = 50) results by dif-

ferent network structures with different AFs. (Left) The Markers

represent FSRnet with 7, 9, 11, 13 and 17 convolution layers, resp.

(Right) The Markers represent FDnet with 4, 6, 8, 10, 12 and 16

layers, resp.

ferent AFs on the proposed FSRnet, we train FSRnet with 7,

9, 11, 13, and 17 layers, resp. We use the same training data

DIV2K to train all the methods. The initial learning rate is

1−3 and is divided by 2 every 80K, 80K, 120K, 120K and

160K iterations for different layer numbers. All the models

are trained with 96×96 sub-images with batch size 32.

The SR results for FSRnet are shown in Figure 5. Com-

pared with other AFs, the MTLU-based network trades off

better between the processing speed and SR performance.

5.3.3 FDnet with different AFs

In this part, we compare different AFs on the proposed FD-

net. FDnet shuffles the input noisy images with factor 1/4,

the receptive field of network increases quickly with the in-

crease of number of layers. Furthermore, the same number

of 64 feature maps in FDnet need to process the input shuf-

fled image cubic with 16 channels. Due to both mentioned

reasons make FDnet has a higher demand on nonlinear ca-

pacity of each layers.

We collected 80,000 72 × 72 image crops from the 400

training images used by the DnCNN paper [43], and white

Gaussian noise with σ = 50 was added into the clean im-

ages to generate the noisy input images. We train a group

FDnet with 4, 6, 8, 12, and 16 convolution layers. For all

the models, we set the batch size as 32, and trained them

with Adam solver. The learning rate for different models

was initialized with 1× 10−3, and divided the learning rate

by 2 every 60K, 80K, 100K, 120K and 120K iterations for

models with layer numbers of 4, 6, 8, 12 and 16, respec-

tively. The training process stopped when the learning rate

dropped below 1× 10−5.

The PSNR indexes by different variations on the BSD68

dataset are shown in Figure 5. From the figure, one can

easily see that the proposed MTLU achieves much better

results than the competing AFs when combined with the

proposed FDnet structure. For equal number of layers, the

MTLU-based network outperforms the MaxOut, ReLU and

PReLU based networks by about 0.16, 0.12 and 0.08 dB.

Furthermore, since we conduct all the operations at a LR

space, the adoption of MTLU introduces only a negligible

computation burden in comparison with the compared AFs.

The processing speed by FDnet-PReLu and FDnet-MTLU

are almost the same.

5.4. Comparison with sota SR algorithms

We compare the proposed FSRnet with five typical

CNN-based SR approaches: the seminal CNN-based SR ap-

proach SRCNN [9], the benchmark VDSR method [22] and

current state-of-the-arts LapSRN [24], MemNet [38] and

SRResNet [25]. We compare the SR results on 3 commonly

used datasets, i.e. Set 5, Set 14 and BSD100, following the

settings from [40, 9, 22, 25] with zooming factors 2, 3, 4.

We train on DIV2K [3] dataset three versions of FSRnet,

with 7, 13, and 19 layers namely FSRnet7, FSRnet13, and

FSRnet19, to trade-off between performance and speed. For

different zooming factors, we collected training images to

make the networks with a spatial resolution of 24×24 in the

training phase, which means the corresponding HR training

images for factors 2, 3, and 4 are with size of 96, 72 and

96, resp. We use a batch size of 32, Adam solver, the initial

learning rate set to 0.001, and divide the learning rate by 2

every 80K, 120K and 200K iterations. The training process

stops when the learning rate is less than 1× 10−5.

The SR results by different approaches are shown in Ta-

ble 5, and the runtimes for processing a 512 × 512 image

are reported in Table 6. The proposed FSRnet7 achieved

slightly better results than VDSR [22] but much faster

(×4, ×7 and ×10 for zooming factors 2, 3 and 4, resp.).

Also, FSRnet19 compares with the state-of-the-art SRRes-

Net [25], while being > 3× faster. Figure 1 provide a

visualization of the trade-off power of our FSRnet model

equipped with MTLU. Fig. 6 shows some SR image results.

4196



Ground Truth (PSNR/runtime) SRCNN [9] (35.63 dB/1.9 ms) VDSR [22] (36.76 dB/19.3 ms) FSRnet7 (36.94 dB/2.4 ms) FSRnet19 (37.88 dB/6.6 ms)

Figure 6. SR results of the bird image by different methods (×3). The running times are evaluated on a Titan X Pascal GPU.

Table 5. Super-resolution PSNR results [dB] by different methods.
Dataset Factor SRCNN [9] VDSR [22] LapSRN [24] MemNet [38] SRResNet [25] FSRnet7 FSRnet13 FSRnet19

Set 5

×2 36.66 37.53 37.52 37.78 - 37.58 37.73 37.82

×3 32.75 33.66 - 34.09 - 33.71 34.07 34.13

×4 30.48 31.35 31.54 31.74 32.05 31.52 31.82 31.89

Set 14

×2 32.42 33.03 33.08 33.28 - 33.19 33.31 33.47

×3 29.28 29.77 - 30.00 - 29.93 30.16 30.22

×4 27.49 28.01 28.19 28.26 28.49 28.22 28.42 28.51

BSD 100

×2 31.36 31.90 31.80 32.08 - 31.89 32.02 32.10

×3 28.41 28.82 - 28.96 - 28.80 28.96 29.01

×4 26.90 27.29 27.32 27.40 27.58 27.31 27.45 27.52

Table 6. Runtimes [ms] by SR methods processing a 512× 512 pixels HR image.
Factor SRCNN [9] VDSR [22] MemNet [38] SRResNet [25] FSRnet7 FSRnet13 FSRnet19
×2 4.3 42.2 926.8 - 9.7 18.5 27.4

×3 4.2 42.0 930.1 - 6.0 11.1 14.2

×4 4.3 41.7 928.0 31.2 3.9 6.8 8.9

Ground Truth WNNM [13] TNRD [4] DnCNN [43] FDnet (our)

Figure 7. Examples of denoising results by different methods (noise level, σ = 50).

5.5. Comparison with sota denoising algorithms

We compare in Tables 7 and 8 and Figure 7 the proposed

FDnet with state-of-the-art CNN-based DnCNN [43] and

other representative methods, including state-of-the-art un-

supervised approaches BM3D [8] and WNNM [14], and

one discriminative learning approach TNRD [4]. To train

FDnet we used the same 80000 image crops, initialized the

learning rate to 1 × 10−3 and divided it by 2 every 100K

iterations. Our FDnet uses 10 convolution layers to balance

between denoising performance and speed. FDnet10 com-

pares favorable to DnCNN and the other methods in PSNR

terms and is > 10× faster than DnCNN.

Table 7. Image Denoising PSNR results [dB] on BSD68.
Noise Level BM3D [8] WNNM [14] TNRD [4] DnCNN [43] FDnet

σ = 25 28.57 28.83 28.92 29.23 29.12

σ = 50 25.62 25.87 25.97 26.23 26.24

σ = 75 24.21 24.40 - 24.64 24.76

Table 8. Runtime [ms] for processing 512× 512 noisy image.

DnCNN [43] FDnet (our)

runtime (TitanX Pascal GPU) 74.8 5.0

6. Conclusion

We introduced the multi-bin trainable linear unit

(MTLU), a novel activation function for increasing the non-

linear capacity of neural networks. MTLU is a robust al-

ternative to the current activation functions, it improves the

results of a wide range of restoration networks. Based on

MTLU, we proposed two efficient networks: a fast super-

resolution network (FSRnet) and a fast denoising network

(FDnet). They trade-off between speed and performance

better than the prior art in image restoration. On stan-

dard super-resolution and denoising benchmarks the pro-

posed networks achieve comparable results with the cur-

rent state-of-the-art deep learning networks but significantly

faster and with lower memory requirements.

Acknowledgments: This work was supported by the ETH

Zurich General Fund and an Nvidia GPU hardware grant.

4197



References

[1] Forest Agostinelli, Matthew Hoffman, Peter Sadowski, and

Pierre Baldi. Learning activation functions to improve deep

neural networks. arXiv preprint arXiv:1412.6830, 2014. 2,

4, 5, 6

[2] Eirikur Agustsson, Fabian Mentzer, Michael Tschannen,

Lukas Cavigelli, Radu Timofte, Luca Benini, and Luc V

Gool. Soft-to-hard vector quantization for end-to-end learn-

ing compressible representations. In NIPS, 2017. 4

[3] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge

on single image super-resolution: Dataset and study. In

CVPR Workshops, 2017. 6, 7

[4] Yunjin Chen and Thomas Pock. Trainable nonlinear reaction

diffusion: A flexible framework for fast and effective image

restoration. IEEE transactions on pattern analysis and ma-

chine intelligence, 2017. 2, 4, 8

[5] Youngmin Cho and Lawrence K Saul. Large-margin clas-

sification in infinite neural networks. Neural computation,

2010. 2

[6] Jae-Seok Choi and Munchurl Kim. Can maxout units down-

size restoration networks?-single image super-resolution us-

ing lightweight cnn with maxout units. arXiv preprint

arXiv:1711.02321, 2017. 6

[7] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochre-

iter. Fast and accurate deep network learning by exponential

linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

2

[8] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and

Karen Egiazarian. Image denoising by sparse 3-d transform-

domain collaborative filtering. IEEE Transactions on image

processing, 2007. 8

[9] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou

Tang. Image super-resolution using deep convolutional net-

works. IEEE transactions on pattern analysis and machine

intelligence, 2016. 2, 7, 8

[10] Chao Dong, Chen Change Loy, and Xiaoou Tang. Acceler-

ating the super-resolution convolutional neural network. In

ECCV, 2016. 2, 6, 7

[11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep

sparse rectifier neural networks. In Proceedings of the Four-

teenth International Conference on Artificial Intelligence

and Statistics, 2011. 2

[12] Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron

Courville, and Yoshua Bengio. Maxout networks. arXiv

preprint arXiv:1302.4389, 2013. 2, 6

[13] Shuhang Gu, Qi Xie, Deyu Meng, Wangmeng Zuo, Xi-

angchu Feng, and Lei Zhang. Weighted nuclear norm min-

imization and its applications to low level vision. Interna-

tional journal of computer vision, 2017. 8

[14] Shuhang Gu, Lei Zhang, Wangmeng Zuo, and Xiangchu

Feng. Weighted nuclear norm minimization with application

to image denoising. In CVPR, 2014. 8

[15] Shuhang Gu, Wangmeng Zuo, Qi Xie, Deyu Meng, Xi-

angchu Feng, and Lei Zhang. Convolutional sparse coding

for image super-resolution. In ICCV, 2015. 2, 4

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving deep into rectifiers: Surpassing human-level perfor-

mance on imagenet classification. In ICCV, 2015. 2, 3, 6,

7

[17] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-

Yaniv, and Yoshua Bengio. Binarized neural networks. In

NIPS, 2016. 4

[18] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-

Yaniv, and Yoshua Bengio. Quantized neural networks:

Training neural networks with low precision weights and ac-

tivations. arXiv preprint arXiv:1609.07061, 2016. 4

[19] Viren Jain and Sebastian Seung. Natural image denoising

with convolutional networks. In NIPS, 2009. 2

[20] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey

Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama,

and Trevor Darrell. Caffe: Convolutional architecture for fast

feature embedding. arXiv preprint arXiv:1408.5093, 2014.

1, 5

[21] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

ECCV, 2016. 2

[22] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate

image super-resolution using very deep convolutional net-

works. In CVPR, 2016. 1, 2, 4, 7, 8

[23] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 6

[24] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-

Hsuan Yang. Deep laplacian pyramid networks for fast and

accurate superresolution. In CVPR, 2017. 7, 8

[25] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero,

Andrew Cunningham, Alejandro Acosta, Andrew Aitken,

Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-

realistic single image super-resolution using a generative ad-

versarial network. In CVPR, 2017. 2, 4, 6, 7, 8

[26] Hongyang Li, Wanli Ouyang, and Xiaogang Wang. Multi-

bias non-linear activation in deep neural networks. In ICML,

2016. 2, 4

[27] Mu Li, Wangmeng Zuo, Shuhang Gu, Debin Zhao, and

David Zhang. Learning convolutional networks for content-

weighted image compression. 4

[28] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and

Kyoung Mu Lee. Enhanced deep residual networks for single

image super-resolution. In CVPR Workshops, 2017. 4

[29] Dong C Liu and Jorge Nocedal. On the limited memory bfgs

method for large scale optimization. Mathematical program-

ming, 45(1-3):503–528, 1989. 3

[30] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Recti-

fier nonlinearities improve neural network acoustic models.

In ICML, 2013. 2

[31] Xiaojiao Mao, Chunhua Shen, and Yu-Bin Yang. Image

restoration using very deep convolutional encoder-decoder

networks with symmetric skip connections. In Advances

in neural information processing systems, pages 2802–2810,

2016. 2

[32] Vinod Nair and Geoffrey E Hinton. Rectified linear units

improve restricted boltzmann machines. In ICML, 2010. 2,

6, 7

4198



[33] Mehdi SM Sajjadi, Raviteja Vemulapalli, and Matthew

Brown. Frame-recurrent video super-resolution. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 6626–6634, 2018. 4

[34] Uwe Schmidt and Stefan Roth. Shrinkage fields for effective

image restoration. In CVPR, 2014. 2

[35] Christian J Schuler, Harold Christopher Burger, Stefan

Harmeling, and Bernhard Scholkopf. A machine learning ap-

proach for non-blind image deconvolution. In CVPR, 2013.

2

[36] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,

Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan

Wang. Real-time single image and video super-resolution

using an efficient sub-pixel convolutional neural network. In

CVPR, 2016. 1, 2, 4, 6, 7

[37] Jian Sun, Huibin Li, Zongben Xu, et al. Deep admm-net for

compressive sensing mri. In NIPS, pages 10–18, 2016. 3, 4,

5, 6, 7

[38] Ying Tai, Jian Yang, Xiaoming Liu, and Chunyan Xu. Mem-

net: A persistent memory network for image restoration. In

CVPR, 2017. 2, 7, 8

[39] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc

Huszár. Lossy image compression with compressive autoen-

coders. arXiv preprint arXiv:1703.00395, 2017. 4

[40] Radu Timofte, Vincent De Smet, and Luc Van Gool. A+:

Adjusted anchored neighborhood regression for fast super-

resolution. In ACCV, 2014. 2, 7

[41] Junyuan Xie, Linli Xu, and Enhong Chen. Image denoising

and inpainting with deep neural networks. In NIPS, 2012. 2

[42] Jianchao Yang, John Wright, Thomas Huang, and Yi Ma.

Image super-resolution as sparse representation of raw image

patches. In CVPR, 2008. 2

[43] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and

Lei Zhang. Beyond a gaussian denoiser: Residual learning of

deep cnn for image denoising. IEEE Transactions on Image

Processing, 2017. 1, 2, 4, 6, 7, 8

[44] Kai Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang.

Learning deep cnn denoiser prior for image restoration.

arXiv preprint arXiv:1704.03264, 2017. 2

[45] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Ffdnet: Toward

a fast and flexible solution for cnn based image denoising.

arXiv preprint arXiv:1710.04026, 2017. 1, 2, 4, 6

4199


