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Abstract

We propose a fast regression model for practical sin-

gle image super-resolution based on in-place examples, by

leveraging two fundamental super-resolution approaches—

learning from an external database and learning from self-

examples. Our in-place self-similarity refines the recently

proposed local self-similarity by proving that a patch in the

upper scale image have good matches around its origin lo-

cation in the lower scale image. Based on the in-place ex-

amples, a first-order approximation of the nonlinear map-

ping function from low- to high-resolution image patches

is learned. Extensive experiments on benchmark and real-

world images demonstrate that our algorithm can produce

natural-looking results with sharp edges and preserved fine

details, while the current state-of-the-art algorithms are

prone to visual artifacts. Furthermore, our model can eas-

ily extend to deal with noise by combining the regression

results on multiple in-place examples for robust estimation.

The algorithm runs fast and is particularly useful for prac-

tical applications, where the input images typically contain

diverse textures and they are potentially contaminated by

noise or compression artifacts.

1. Introduction

Single image super-resolution aims at generating a high-

resolution image from one low-resolution input. The prob-

lem is dramatically under-constrained, and thus it has to rely

on some strong image priors for robust estimation. Such im-

age priors range from simple analytical “smoothness” priors

to more sophisticated statistical priors learned from natural

images [16, 5, 7, 19, 10].

For image upscaling, the most popular methods are those

based on analytical interpolations, e.g., bicubic interpola-

tion, with the image “smoothness” assumption. As im-

ages contain strong discontinuities, such as edges and cor-

ners, the simple “smoothness” prior will result in ring-

ing, jaggy and blurring artifacts. Therefore, more sophis-

ticated statistical priors learned from natural images are ex-

plored [5, 3, 13, 15]. However, even though natural im-

ages are sparse signals, trying to capture their rich charac-

teristics with only a few parameters is impossible. Alterna-

tively, example-based nonparametric methods [7, 14, 2, 17]

were used to predict the missing frequency band of the up-

sampled image, by relating the image pixels at two spatial

scales using a universal set of training example patch pairs.

Typically, a huge set of training patches are needed, result-

ing in excessively heavy computation cost. Taking one step

further, Yang et al. [19, 18] proposed to use sparse linear

combinations to recover the missing high-frequency band,

allowing a much more compact dictionary model based on

sparse coding.

Some recent studies show that images generally possess

a great amount of self-similarities, i.e., local image struc-

tures tend to recur within and across different image scales

[4, 1, 21], and image super-resolution can be regularized

based on these self-similar examples instead of some exter-

nal database [4, 9, 6]. In particular, Glasner et al. [9] use

self-examples within and across multiple image scales to

regularize the otherwise ill-posed classical super-resolution

scheme. Freedman and Fattal [6] extend the example-based

super-resolution framework with self-examples and itera-

tively upscale the image. They show that the local self-

similarity assumption for natural images holds better for

small upscaling factors and the patch search can be con-

ducted in a restricted local region, allowing a very fast prac-

tical implementation.

In this paper, we refine the local self-similarity [6, 21] by

in-place self-similarity, by proving that, for a query patch

in the upper scale image, patch matching can be restricted

to its origin location in the lower scale image. Based on

these in-place examples, we learn a robust first-order ap-

proximation of the nonlinear mapping function from low-

to high-resolution image patches. Compared with the state-

of-the-art methods [9, 18, 6], our algorithm runs very fast

and can produce more natural structures, thereby it is bet-

ter at handling real applications, where the input images

contain complex structures and diverse textures and they

are potentially contaminated by sensor noise (e.g, cellphone
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cameras) or compression artifacts (e.g, internet images). In

summary, this paper makes the following contributions.

1. We propose a new fast super-resolution algorithm

based on regression on in-place examples, which,

for the first time, leverages the two fundamental

super-resolution approaches of learning from external-

examples and learning from self-examples.

2. We prove that patch matching across different image

scales with small scaling factors is in-place, which re-

fines and validates the recently proposed local self-

similarity theoretically.

3. We can easily extend our algorithm to handle noisy in-

put images by combining regression results on multi-

ple in-place examples. The algorithm runs very fast

and is particularly useful for real applications.

The remainder of the paper is organized as follows. Sec-

tion 2 introduces the notations we use. Section 3 presents

our robust regression model for super-resolution. Section 4

presents our algorithm implementation details and results

on both synthetic and real-world images. Finally, Section 5

concludes our paper.

2. Preliminaries and Notations

This work focuses on upscaling an input image X0

which contains some high-frequency content that we can

borrow for image super-resolution, i.e., X0 is a sharp image

but with unsatisfactory pixel resolution.1 In the following,

we use X0 and X to denote the input and output (by s×) im-

ages, and Y0 and Y their low-frequency bands, respectively.

That is, Y0 (Y ) has the same spatial dimension as X0 (X),

but is missing the high-frequency content. We use bolded

lower case x0 and x to denote a×a image patches sampled

from X0 and X , respectively, and y0 and y to denote a× a
image patches sampled from Y0 and Y , respectively. y0 and

y are thus referred as low-resolution image patches because

they are missing high-frequency components, while x0 and

x are referred as their high-resolution counterparts. Plain

lower case (x, y) and (p, q) denote coordinates in the 2D

image plane.

3. Regression on In-place Examples

In this section, we present our super-resolution algorithm

based on learning the in-place example regression by refer-

ring to an external database.

3.1. The Image Super-resolution Scheme

Similar to [6], we first describe our overall image upscal-

ing scheme in Figure 1, which is based on in-place exam-

ples and first-order regression that will be discussed shortly.

1This is the implicit assumption of most previous example-based ap-

proaches.

Figure 1. Image upscaling with first-order regression on in-place

examples. For each patch y of the upsampled low-frequency band

image Y , we find its in-place match y
0

from the low-frequency

band Y0, and then perform a first-order regression on x0 to esti-

mate the desired patch x for target X .

The input image is denoted as X0 ∈ R
K1×K2 , from which

we obtain its low-frequency band image Y0 ∈ R
K1×K2 by a

low-pass Gaussian filtering. We upsample X0 using bicubic

interpolation by a factor of s to get Y ∈ R
sK1×sK2 . We use

Y to approximate the low-frequency band of the unknown

high-resolution image X ∈ R
sK1×sK2 . From X0, Y0, and

Y , we aim to estimate the high-resolution image X .

For each image patch y (a × a) from the image Y at

location (x, y), we find its in-place example y0 (a × a)

around its origin coordinates (xr, yr) in image Y0, where

xr = ⌊x/s+ 0.5⌋ and yr = ⌊y/s+ 0.5⌋. Correspondingly,

we can obtain the image patch x0 (a × a) from X0, which

is a high-resolution version of y0. {y0,x0} constitutes a

low- and high-resolution prior example pair from which we

apply a first-order regression model to estimate the high-

resolution image patch x for y. We repeat this procedure

for overlapping patches of Y , and the final high-resolution

image X is generated by aggregation all the recovered high-

resolution image patches. For large upscaling factors, we it-

eratively repeat the above upscaling step by multiple times,

each with a constant scaling factor of s. In the following, we

will present details about in-place matching and regression.

3.2. In-place Matching from Scale Invariance

Although the real-world scenes are complex, images are

believed to be composed of much simpler local image struc-

tures, observed as a limited type of singular primitives, such

as lines and arcs [1, 7]. These local singular primitives are

more invariant to scale changes, i.e., an upper scale image

contains singular structures similar to those in its lower spa-

tial scale [9]. Furthermore, we expect a singular structure in

the upper scale image will have a similar structure in its ori-

gin location on the lower spatial scale. To evaluate such

local scale invariance, we compute the matching error be-

tween a 5 × 5 query patch y at (x, y) in Y and 49 patches

centering around (xr, yr) in image Y0 on the Berkeley Seg-

mentation Dataset [11]. Figures 2 plots the average match-

ing errors for different scaling factor s, where “blue” de-

notes small matching error and “red” denotes large match-

ing error. As shown, the lowest matching error occurs at
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Figure 2. Matching errors of each patch y in an upper-scale image

with its in-place neighbors in the lower-scale image for different

scaling factors.

center (xr, yr) on average, and the smaller the scaling fac-

tor, the lower the matching error, and the more concentrated

the area with lower matching error. Therefore, for a small

scaling factor, finding a similar match for a query patch

y could be extremely localized on Y0. For image upscal-

ing, we want to preserve the high-frequency information for

the singular primitives. The local scale invariance indicates

that we could efficiently find a similar example y0 for y,

and thus the corresponding high-resolution patch x0, from

which we can infer the high-frequency information of y.

Formally, we refine this local self-similarity in the follow-

ing proposition (proof in the appendix).

Proposition. For each patch y of size a × a (a > 2) from

upsampled image Y at location (x, y), containing only one

singular primitive, the location (x0, y0) of a close match y0

in Y0 for y will be at most one pixel away from y’s origin

location (x/s, y/s) on Y0, i.e., |x0 − x/s| < 1 and |y0 −
y/s| < 1, given the scaling factor s < a/(a− 2).

Therefore, the search region for y on Y0 is in-place, and

y0 is called an in-place example for patch y. Based on the

in-place example pair {y0,x0}, we perform a first-order

regression to estimate the high-resolution information for

patch y in the following section.

3.3. In-place Example Regression

The patch-based single image super-resolution problem

can be viewed as a regression problem, i.e., finding a map-

ping function f from the low-resolution patch space to the

target high-resolution patch space. However, learning this

regression function turns out to be extremely difficult due to

the ill-posed nature of super-resolution; proper regulariza-

tions or good image priors are need to constrain the solution

space. From the above analysis, the in-place example pair

{y0,x0} serves as a good prior example pair for inferring

the high-resolution version of y. Assuming some smooth-

ness on the mapping function f 2, we have the following

Taylor expansion:

x =f(y) = f(y0 + y − y0)

=f(y0) +∇fT (y0)(y − y0) + o(‖y − y0‖
2
2)

≈x0 +∇fT (y0)(y − y0),

(1)

2This is a reasonable assumption, as one will not expect a dramatic

change in the high-resolution patch for a minor change in the low-

resolution image patch, especially in the case of small scaling factors.

which is based on the facts that x0 = f(y0) and y is close

to y0.3 The equation is a first-order approximation for the

mapping function f . Instead of learning f directly, we learn

the derivative function ∇f , which is better constrained by

the in-place example pairs and should be simpler.

For simplicity, we approximate the function ∇f as a

piece-wise constant function by learning the function val-

ues on a set of anchor points {c1, ..., cn} sampled from the

low-resolution patch space. Given a set of training example

pairs {yi,xi}
m
i=1 and their corresponding prior in-place ex-

ample pairs {y0i,x0i}
m
i=1

4, we can learn the function ∇f
on the n anchor points by

min
{∇f(cj)}n

j=1

m
∑

i=1

‖xi − x0i −∇f(ci∗)(yi − y0i)‖
2
2, (2)

where c
i
∗ is the nearest anchor point to y0i. The above

optimization can be easily solved by least squares. With

the function values on the anchor points learned, for any

patch y, we first search its in-place example pair {y0,x0},

find ∇f(y0) based on its nearest anchor point, and then use

the first order approximation to compute the high-resolution

patch x.

Discussions In previous example-based super-resolution

works [7, 6], the high-resolution image patch x is obtained

by transferring the high-frequency component from the best

prior example pair {y0,x0} to the low-resolution image

patch y, i.e.,

x = y + (x0 − y0) = x0 + (y − y0). (3)

Instead of high frequency transfer, why not using x0 di-

rectly as the estimation of x? Note that x = x0+x−x0 =
x0 +△x. The above equation simply uses △y = y − y0

to approximate △x for error compensation, which is rea-

sonable because △y is a blurred version of △x. Compar-

ing the above equation with Eqn. 1, we can see that high-

frequency component transfer is an approximate of the first-

order regression model by setting the derivative function

∇f to be the identity matrix. By learning the derivative

function, we actually learn a set of adaptive linear sharpen-

ing filters that sharpens △y to approximate △x, and thus

our approximation to the mapping function f is more accu-

rate. On the other hand, using x0 directly as an estima-

tion for x can be seen as a zero-order approximation of

f from Eqn. 1, which does not account for error compen-

sation and thus has larger approximation errors. Figure 3

shows the super-resolution comparisons between zero- and

our first-order approximations. The results are obtained by

recovering overlapping low-resolution image patches which

3Here, x, y, x0 and y0 are in their vectorized form
4The prior in-place example pairs are found based on {y

i
}m
i=1

only as

discussed before.
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Figure 3. Example-based super-resolution results (2×). Left:

zero-order approximation; right: our first-order regression.

are later averaged at the same pixel locations. Because the

zero-order approximation has large approximation errors,

the overlapping pixel predictions do not agree with each

other. As a result, averaging them will severely blur the im-

age. Our first-order approximation is much more accurate

and thus preserves the image details.

Motivated by locally linear embedding [12], Chang et al.

[2] generalized the framework of [7] by proposing a locally

linear model to directly learn the mapping function f . How-

ever, the algorithm still requires a large number of training

examples in order to approximate f well, resulting in expen-

sive computations for practical applications. In addition, as

shown in [19], Chang’s algorithm is very sensitive to noise.

3.4. Aggregating In-place Example Regressions

Due to the discrete resampling process in downsampling

and upsampling for small scaling factors (non-dyadic), one

typically cannot find the exact in-place example; instead,

one will find multiple approximate in-place examples for y

in the neighborhood of (xr, yr), which contains at most 9

patches. To reduce the regression variance, we can perform

regression on each of them and combine the results by a

weighted average. Given the in-place prior example pairs

{y0i,x0i}
9
i=1 for y, we have

x =
9

∑

i=1

wi

{

x0i +∇fT (y0i)(y − y0i)
}

, (4)

where wi = 1/z · exp
(

−‖y − y0i‖
2
2/2σ

2
)

with z the nor-

malization factor. The above aggregated regression on mul-

tiple in-place examples is of important practical values. In

real image super-resolution scenarios, the test image might

be contaminated by noise, e.g., photos shot by mobile cam-

eras, or by compression artifacts, e.g., images from the in-

ternet. It is extremely important for the super-resolution al-

gorithm to be robust to such image degradations. By ag-

gregating the multiple regression results, our algorithm can

handle different image degradations well in practical appli-

cations. It is worthy to note that our formulation only uses

regression results on extremely localized in-place examples

in a lower spatial scale, which is different from that of the

non-local means algorithm [1] that operates on raw image

patches in a much larger spatial window at the same spatial

scale.

Table 1. Prediction RMSEs for different approaches on testing

patches and images for one upscaling step (1.5×).

Approaches bicubic zero order transfer regression

testing patches 8.59 14.67 9.34 8.21

kid 3.47 4.93 3.45 2.88

barbara 8.31 10.40 8.14 6.87

worker 8.44 9.36 7.20 6.29

lena 4.31 5.01 3.66 3.21

koala 3.79 5.12 3.59 2.96

girl 4.32 5.45 3.97 3.39

wall 10.08 11.11 9.09 8.15

3.5. Selective Patch Processing

Natural images typically contain large smooth regions

with sparse discontinuities. Although simple interpolation

methods result in artifacts along the discontinuities, they

perform well on smooth regions. This observation suggests

that we only need to process the textured regions with our

super-resolution model, while leaving the large smooth re-

gions to simple and fast interpolation techniques. To differ-

entiate smooth and textured regions, we do SVD on the gra-

dient matrix of a local image patch, and calculate the singu-

lar values s1 ≥ s2 ≥ 0, which represent the energies in the

dominant local gradient and edge orientation. Specifically,

we use the following two image content metrics defined in

[20] to find the textured regions: R = s1−s2
s1+s2

, Q = s1
s1−s2
s1+s2

,

where R and Q are large for textured regions and small for

smooth regions. Therefore, we can selectively process im-

age patches with center R and Q values larger than some

predefined thresholds, which leads to a speedup of 2 ∼ 3
times without compromise in the image quality.

4. Experimental Results

In this section, we evaluate our algorithm on both syn-

thetic test examples used in the super-resolution literature

and real-world test examples. In both cases, our algorithm

can produce compelling results with a practically fast speed.

Parameters We choose patch size a = 5 and iterative

scaling factor s = 1.5 in our experiments, in order to sat-

isfy the in-place matching constraints in the proposition.

The low-frequency band Y of the target high-resolution im-

age is approximated by bicubic interpolation from X0. The

low-frequency band Y0 of the input image X0 is obtained

by a low-pass Gaussian filtering with a standard deviation

of 0.55. The image patches of Y are processed with over-

lapping pixels, which are simply averaged to get the final

result. For clean images, we use the nearest neighbor in-

place example for regression, and for noisy images, we av-

erage all 9 in-place example regressions for robust estima-

tion, where σ is the only tuning parameter to compute wi in

Eqn. 4 depending on the noise level.
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frequency transfer regression

Figure 4. Super-resolution (3×) comparison between frequency

transfer and regression.

Training To train the regression model, we start from a

collection of high-resolution natural images {Xi}
r
i=1 from

the Berkeley Segmentation Dataset [11]. The correspond-

ing lower spatial scale images {X0i}
r
i=1 are generated by

blurring and downsampling the high-resolution images by

a factor of s. The two low-frequency band image sets

{Yi}
r
i=1 and {Y0i}

r
i=1 are generated as described above.

We then randomly sample image patch pairs from {Yi}
r
i=1

and {Xi}
r
i=1 to obtain the low- and high-resolution patch

pairs {xi,yi}
m
i=1, and meanwhile get the corresponding in-

place matching image pairs {xi
0,y

i
0}

m
i=1 from {X0i}

m
i=1

and {Y0i}
r
i=1. The anchor points {c1, ..., cn} are obtained

by simple unsupervised clustering with the random projec-

tion tree [8] from {y0i}
m
i=1. By using the random projection

tree for clustering, we are able to efficiently find the nearest

anchor point for a given image patch. In our experiments,

we find that the learned regression model can be very com-

pact; using 27 = 128 anchor points already suffice for our

purpose.

4.1. Regression Evaluations

To measure the regression accuracy from the recovery

perspective, we first conduct quantitative comparisons for

different methods in terms of RMSE. Table 1 reports the

results on both testing patches and synthetic images taken

from [11] for one upscaling step (1.5×). As shown, zero-

order regression performs the worst due to its large approx-

imation errors. Frequency transfer performs much better

than zero-order regression due to the error compensation for

∆x by ∆y. Our first-order regression model performs the

best.5 In Figure 4, we show super-resolution results (3×) on

the “Mayan architecture” image with frequency transfer and

our regression model, respectively. By comparison, our re-

gression estimation is more accurate and thus can preserve

more sharp details compared with frequency transfer.

5It is worthy to note that the algorithms discussed here are based on

multiple iterative upscaling steps for large scaling factors. So, minor struc-

ture distortions and estimation errors may propagate and accumulate over

several iterations. As a result, it is hard to compare the image quality after

several steps in terms of RMSE. Therefore, we only make comparisons for

one upscaling step to keep the experiment clean.

4.2. Visual Quality Evaluations

We compare our algorithm with the recent state-of-the-

art algorithms [9, 18, 6] in terms of visual quality on both

commonly adopted super-resolution test examples and real-

world images. Specifically, for methods based on external

examples, we choose the representative work [18] for com-

parison; for methods based on self-examples, we choose

the recent two representative works [9, 6] for compari-

son. For visual quality comparison, conventional algo-

rithms have been focusing on image sharpness, ignoring the

image naturalness (affected by visual artifacts) to a large

extent. For user experience in real applications, both im-

age sharpness and naturalness, and algorithm speed are all

important. Therefore, in the following comparisons, we pay

attentions to all three aspects. Note that the results and com-

parisons are best viewed in zoomed PDF. We also provide

the original images in the supplementary material for better

comparison.

In general, the algorithm of [18] can produce natural-

looking results with a pre-trained universal dictionary, even

though they are a little blurry. However, it also creates small

artifacts across the image due to the fact that some unique

patches to the image cannot be well represented by the uni-

versal dictionary, and the algorithm is also much slower

than ours. The algorithms of [9] and [6] are based on self-

examples, which tend to create artificially sharp edges and

artifacts due to the insufficient number of matched self-

examples. In contrast, by leveraging learning from exter-

nal examples and learning from self-examples, our algo-

rithm can produce sharp details without noticeable visual

artifacts.

Figure 5 shows the super-resolution results of different

approaches on “kid” and “chip” by 4× and on “cameraman”

by 3×. As shown, the results of Glasner et al. [9] are overly

sharp, resulting in noticeable visual artifacts, e.g., ghost ar-

tifacts along the cheek in “kid”, jaggy artifacts on the long

edge in “chip”, and artifacts in the camera area in “camera-

man”. The results of Yang et al. [18] are generally a little

burry and they contain many small artifacts across the im-

age upon a closer look. Freedman’s algorithm is good at en-

hancing edges but is prone to create rigid artificial edges and

small structure distortions, e.g., character “A” in “chip” and

grass region in “cameraman”, due to the insufficient number

of self-examples. It also fails to preserve some local details,

e.g., pupil in “kid”, as it is using frequency transfer to gen-

erate high-resolution patches. In comparison, our algorithm

is able to recover local texture details as well as sharp edges

without sacrificing the naturalness.

Most previous super-resolution works focus on synthetic

test examples with simple edge structures, but the large

body of natural images typically contain diverse textures

and rich fine structures. Figure 6 shows another set of super-

resolution results (3×) on images with cluttered texture re-
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Bicubic Glasner et al. [9] Yang et al. [18] Freedman & Fattal [6] Ours

Figure 5. Super-resolution results on “kid” (4×), “chip” (4×) and “Cameraman” (3×). Our algorithm can generate natural-looking results

without noticeable visual artifacts. Results are better viewed in zoomed PDF.

gions. The algorithm in [18] can produce natural looking

results, but the textures are a little blurry with occassional

small artifacts. Freedman and Fattal’s again fails to recover

the fine details and produces many rigid false edges in the

textured regions. Besides images with complex and diverse

structures, we also encounter frequently noisy images in

real applications, e.g., images captured by low cost sensors

are typically contaminated by some amount of sensor noise

and internet images with JPEG compression artifacts. It is

extremely important that the super-resolution algorithm is

robust to such degradations. By averaging the regression re-

sults on multiple in-place self-examples, our algorithm can

naturally handle noisy inputs. Figure 7 shows one more set

of super-resolution results (3×) on real-world images that

are corrupted with either sensor noise or compression arti-

facts. As shown, the algorithms in [9] and [6] cannot distin-

guish noise from the signal and thus enhance both, result-

ing in magnified noise artifacts, while our algorithm almost

completely eliminates the noise and at the same time pre-

serves sharp image structures. The de-noising effectiveness

of our algorithm also validates our proposed in-place self-

similarity.

Computational Efficiency With fast in-place matching

and selective patch processing, our algorithm is much faster

than Glasner’s algorithm [9], is at least one order of mag-

nitude faster than Yang’s algorithm [18], and is comparable

with Freedman’s algorithm [6]. For example, on a modern

machine with Intel CPU 2.8 GHz and 8 GB memory, it takes

3.2 seconds to upscale the “cameraman” image of 256×256
pixels to 1024 × 1024 pixels. The algorithm can easily be

parallelized with GPU for real-time processing.

5. Conclusions

In this paper, we propose a robust first-order regression

model for image super-resolution based on justified in-place

self-similarity. Our model leverages the two most success-

ful super-resolution methodologies of learning from an ex-

ternal training database and learning from self-examples.

Taking advantage of the in-place examples, we can learn

a fast and robust regression function for the otherwise

ill-posed inverse mapping from low- to high-resolution

patches. On the other hand, by learning from an external

training database, the regression model can overcome the

problem of insufficient number of self-examples for match-

ing. Compared with previous example-based approaches,

our new approach is more accurate and can produce natural

looking results with sharp details. In many practical ap-

plications where images are contaminated by noise or com-

pression artifacts, our robust formulation is of particular im-

portance.
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Bicubic Yang et al. [18] Freedman and Fattal [6] Ours

Figure 6. Super-resolution results by 3×. The results of [18] contain small artifacts along edges (best perceived in zoomed PDF). The

results of [6] contain many artificial edges and distorted structures across the image. Our results are more natural looking with preserved

details. Note that the algorithm of [18] is at least one order of magnitude slower than our algorithm.

Bicubic Freedman and Fattal [6] Glasner et al. [9] Ours

Figure 7. Super-resolution by 3× on real-world noisy images. The first image was captured by a mobile camera in a daily situation, which

is contaminated by a certain amount of sensor noise. The second image was collected from the internet, which is corrupted by compression

artifacts. Our algorithm can handle these noise well.
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A. Proof of in-place matching

Proof. For simplicity, our discussion is based on contin-

uous image signals. Given a patch y (a × a) from the

low-frequency band image Y centered at (x, y), shown in

Figure 8, we assume it has a singular structure centered at

(p, q). This point has a shift from the patch center by p =
x+ tx and q = y+ ty (|tx|, |ty| < a/2). (x′, y′) and (p′, q′)
are the corresponding coordinates of (x, y) and (p, q), re-

spectively, on image plane Y0, i.e., x′ = x/s, y′ = y/s
and p′ = p/s, q′ = q/s. For super-resolution, we desire

to preserve the high-frequency information of the singular

structures. Therefore, we want to match the singular point

(p, q) to (p′, q′) in order to infer the high-frequency infor-

mation. As a result, the center of the desired y0 will be at

x0 = p′ − tx, y0 = q′ − ty (note that y0 has the same size

as y). Therefore, for s > 1, we have

|x0 − x′| =|p′ − tx − x/s| = |p/s− tx − x/s|

=|x/s+ tx/s− tx − x/s|

=|(1− s)tx/s| < (s− 1)a/2s.

(5)

If the patch size a ≤ 2, we have (s − 1)a/2s ≤ 1 for any

s. In practice, we have a > 2, then (s − 1)a/2s ≤ 1 holds

for s ≤ a/(a − 2). For example, if the image patch size

a = 5, we have |(1 − s)tx/s| < 1, as long as the scaling

factor s ≤ 5/3. Similarly results can be shown for |y0−y′|,
which means that the center of the desired match y0 will

be constrained to be less than one pixel city block distance

from (x′, y′), and thus the matching is called in-place.
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