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Abstract

We propose an EM algorithm for computing the maximum likelihood and restricted maximum 

likelihood for linear and nonlinear mixed effects models with censored response. In contrast with 

previous developments, this algorithm uses closed-form expressions at the E-step, as opposed to 

Monte Carlo simulation. These expressions rely on formulas for the mean and variance of a 

truncated multinormal distribution, and can be computed using available software. This leads to an 

improvement in the speed of computation of up to an order of magnitude. A wide class of mixed 

effects models is considered, including the Laird–Ware model, and extensions to different 

structures for the variance components, heteroscedastic and autocorrelated errors, and multilevel 

models. We apply the methodology to two case studies from our own biostatistical practice, 

involving the analysis of longitudinal HIV viral load in two recent AIDS studies.

The proposed algorithm is implemented in the R package lmec. An appendix which includes 

further mathematical details, the R code, and datasets for examples and simulations are available 

as the online supplements.
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1. INTRODUCTION

Linear and nonlinear mixed effects models (N/LME) are now well established in statistical 

methodology and practice; see, for example, Davidian and Giltinan (1995); Pinheiro and 

Bates (2000); Jiang (2007). Statistical software implementations, including the nlme and 
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lme4 suites for R/S-PLUS (Pinheiro et al. 2006; Bates and Sarkar 2007) or PROC 

NLMIXED in SAS (Wolfinger 1999), are fast and efficient, allowing repeated runs of the 

procedure in real time, such as for model comparison, multiple model fits, or statistical 

simulations. Modeling censored observations using N/LME occurs often in biomedical 

applications, such as pharmacokinetics (PK). In our own experience we encountered the 

need for these models in analyzing HIV viral load data, where observations occur below 

(left-censored) or above (right-censored) the limit of quantitation of the assay; see Saitoh et 

al. (2008) and the case studies in Section 5. Hughes (1999) proposed a Monte Carlo EM 

algorithm (MCEM) for LME with censored response (LMEC). Vaida, Fitzgerald, and 

DeGruttola (2007) proposed a hybrid EM (HEM) using a more efficient implementation of 

Hughes’ algorithm, including numeric computation at the E-step for clusters with one or two 

censored observations. They also extended the algorithm to NLME with censored data 

(NLMEC). Their MCEM improves the simulation at the E-step, the numeric implementation 

at the M-step, and includes automatic monitoring and stopping of the algorithm. However, 

by its nature MCEM is an expensive proposition, due to a combination of Monte Carlo 

simulation with the iterative procedure (Ruppert 2005). Whereas HEM takes 20–100 sec to 

compute with satisfactory precision, this is still too much for routine use, as in simulations, 

or as part of more complex statistical procedures. In this article we propose a numeric 

implementation of the EM algorithm for N/LMEC with greatly improved speed and 

precision. We show that the E-step reduces to computing the first two moments of certain 

truncated multivariate normal (multinormal) distributions. The general formulas for these 

moments were derived by Tallis (1961) and Finney (1962). They require the multinormal 

CDF, for which we use the mvtnorm package in R (Genz 1992). This implementation 

computes the maximum likelihood (MLE) or restricted maximum likelihood (REML) 

estimators. The likelihood function is easily computed as a by-product of the E-step and is 

used for monitoring convergence and for model selection (AIC, likelihood ratio test). In 

contrast with the existing literature, we give here explicit derivations for a wide class of 

mixed effects models with censored response, including the Laird–Ware model and 

extensions to different structures for the variance components, heteroscedastic and 

autocorrelated errors, and multilevel models. The method is implemented in the R package 

lmec (Vaida and Liu 2009) available on CRAN.

Section 2 presents the main method. In Sections 3 and 4 the extension to more general 

LMEC and to NLMEC is discussed. Section 5 includes two case studies of modeling HIV 

viral load. In Section 6 the new algorithm is compared with the MCEM version in terms of 

speed and precision, via simulations. A discussion in Section 7 ends the exposition. To 

simplify the presentation, further mathematical details were included in an online appendix 

accessible via the journal’s webpage, which also provides the R code and datasets for 

examples and simulations.

2. LINEAR MIXED EFFECTS WITH CENSORED RESPONSE

2.1 Model Specification and Maximum Likelihood Estimation

Consider the general mixed effects model
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(2.1)

where β is the vector of fixed effects, b is the vector of random effects, e is the error vector, 

X (n × p) and Z (n × r) are design matrices, and D and Λ are scaled variance matrices; b and 

e are assumed independent. The response y is not fully observed for all individual 

components. Assuming left-censoring, let the observed data be (Q, C), where Q is the n-

vector of uncensored readings or censoring levels, as the case may be, and C is the vector of 

censoring indicators.

We focus first on the Laird–Ware model

(2.2)

where Xi (ni × p) and Zi (ni × q) are the design matrices, and bi and error vectors ei = (ei1, …, 

eini)
⊤ are independent for all i and independent of each other. Following Magnus and 

Neudecker (1999) and Wand (2002), let vec(·) denote the function which stacks vectors, or 

matrices of same number of columns, and diag(A1, …, Am) be the block-diagonal matrix 

with diagonal blocks A1, …, Am; if A1 = ⋯ = Am = A, we write diagm(A) for diag(A1, …, 

Am). Then clearly (2.2) is a special case of (2.1), with , X 

= vec(X1, …, Xm), Z = diag(Z1, …, Zm), r = mq, b = vec(b1, …, bm), e = vec(e1, …, em), D = 

diagm(F), Λ = In, and . (Conversely, (2.1) is a special case of (2.2), with m = 1.) 

F is a positive-definite matrix depending on a vector of parameters γ. Put σ2F = Ψ and 

.

Write Q = vec(Q1, …, Qm), C = vec(C1, …, Cm), such that the observed data for the ith 

subject is (Qi, Ci). For individual observations within cluster i we have

(2.3)

The EM algorithm for the Laird–Ware model with censored data was proposed by Hughes 

(1999), with computational improvements given by Vaida, Fitzgerald, and De-Gruttola 

(2007). Following the notation of the latter article, let δ = vec(β, b); decompose F−1 = Δ⊤Δ 

and define ỹ = vec(ỹ1, …, ỹm) and

(2.4)

Let yc = {yij : Cij = 1} be the set of left-censored observations. In the EM we update β, σ2 

with yc as missing data, and Ψ using yc and b as missing data (Vaida, Fitzgerald, and 

DeGruttola 2007). The M-step updates are:
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(2.5)

(2.6)

where  and E(yi | Q, C), var(yi | Q, C) are the mean and variance of yi 

conditional on Q, C, taken at the current parameter value θ = (β, σ2, F).

The update for unstructured Ψ is given by

(2.7)

It can be shown that 

. See 

Appendix A1 for details. More general structures for Ψ are considered in Section 3. The 

computations use dimension reduction based on QR decomposition which takes advantage 

of the sparse nature of the matrix M (Pinheiro and Bates 2000). The key feature is that the 

number of columns of the matrices to be decomposed does not increase with the number of 

clusters m or the number of data points n.

From (2.5)–(2.7) it is clear that the E-step reduces to the computation of E(yi | Qi, Ci, θ) and 

var(yi | Ci, Qi, θ), that is, the mean and variance of a truncated multinormal distribution. 

These can be determined in closed form, as a function of multinormal probabilities, using a 

sequence of simple transformations as follows.

i. The first step is to treat separately the observed and censored components of y. 

Partition yi into the observed and censored parts: , that is, Cij = 0 for 

all elements in , and 1 for all elements in ; write accordingly . 

Ignoring censoring for the moment, we have that marginally 

. Then , where

and . Conditioning now on , put 

. Then U follows a multinormal distribution 

N(μi, Si) left-truncated at . Note that 

. It follows that 

.
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ii. The second step is to transform U to a truncated unit multinormal variable, for 

which closed-form formulas are available. Let Bi be a diagonal matrix with 

diagonal equal to the square roots of the corresponding diagonal elements in Si. Put 

. Then T has a multinormal distribution N(0, Ri) left-truncated at 

, and  is the correlation matrix corresponding to 

Si. Then , and calculation of  reduces to 

computing the mean and variance of T.

iii. Finally, formulas for E(T), var(T) were developed by Tallis (1961) and Finney 

(1962), and their derivation and computation are given in Appendix A3. These 

formulas are available in closed form, depending on the multinormal CDF. The 

latter is available in R through the pmvnorm() function from the mvtnorm package 

(Genz 1992; Genz, Bretz, and Hothorn 2006). Note that except for the one- and 

two-dimensional cases, pmvnorm() uses internally a randomized quasi-Monte 

Carlo algorithm; see also Genz (1993, 2008).

The variance of the MLE θ̂, estimated at convergence, is adjusted for the censored 

information using Louis’s formula (Orchard and Woodbury 1972; Louis 1982). The 

variance of the fixed effects in the approximate MLE is given (Hughes 1999) by

(2.8)

2.2 Restricted Maximum Likelihood Estimation

For the computation of REML (Harville 1977; Bates and Pinheiro 1997) the M-step 

formulas for the variance components, (2.6)–(2.7) need appropriate adjustments. Put ξ = (σ2, 

F), so that θ = (β, ξ). The formula for δ̂ is obtained in the same way as in the MLE case 

(2.5):

(2.9)

In contrast, in the remainder of the section the conditional expectations are conditional on ξ, 

Q, and C, but not on β, which is integrated out, assuming the improper distribution p(β) ~ 1. 

A competing estimator to (2.9) is

(2.10)

For the variance components, the M-step updates are obtained similarly to the MLE case, 

except that β is treated as a random variable in the likelihood; see Appendix A3 for details. 

We update σ2 from the EM with only {yij : Cij = 1} as missing data, and Ψ from the EM 

with {yij : Cij = 1}, b, and β as missing data. The resulting equations are
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(2.11)

(2.12)

for the unstructured case; p is the dimension of β. The conditional mean and variance for b 

are computed as for the LME case, using that δ|y ~ N(δ̂, σ2(M⊤ M)−1). These expressions are

The final step is determining E(y|Q, C, ξ), var(y|Q, C, ξ). The distribution of (y|Q, C, ξ) is 

that of (y|ξ), truncated to the region ℛ = {y : yij ≤ Qij for Cij = 1, yij = Qij for Cij = 0, i = 1, 

…, m, j = 1, …, ni}:

However, (y|ξ) does not have a proper distribution. A suitable approximation is given by 

E(y|Q, C, ξ) ≈ E(y|Q, C, θ), var(y|Q, C, ξ) ≈ var(y|Q, C, θ).

2.3 The Likelihood Function

Let Φn(u; A) and ϕ(u; A) be respectively the left-tail probability (component-wise) and the 

probability density function of the N(0, A) distribution, computed at u. Let 

. The likelihood for cluster i is given by

Therefore, the log-likelihood function for the observed data is given by

(2.13)

This can be computed at each step of the EM algorithm without additional computational 

burden, because αi’s are computed at the E-step (see Appendix A3). The log-likelihood can 

be used to monitor the convergence of the algorithm. Alternatively, Vaida, Fitzgerald, and 

DeGruttola (2007) monitored convergence using the objective function

(2.14)
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which is the log-likelihood of the linear mixed model without censoring, with β profiled out 

(Pinheiro and Bates 2000, chap. 2). An analogous objective function is defined for REML 

estimation. Model selection based on the observed likelihood can be done using appropriate 

likelihood ratio tests, AIC, and BIC.

Convergence is declared when the improvement in log-likelihood falls below a certain 

preset limit. In practice, pmvnorm shows small random variability, which leads to 

nonincreasing log-likelihood beyond a certain level. At that point the algorithm has reached 

its limit of precision, and it can be stopped. The variability due to pmvnorm can be 

controlled using the algorithm=GenzBretz (value) argument.

3. MORE GENERAL LINEAR MIXED EFFECTS MODELS

The methodology from the previous section applies to a general linear mixed effects model 

(2.1). The formulas (2.5) and (2.6) apply unchanged when Λ = In. For the variance 

components, the M-step formula depends on the specific structure of D, and it is the solution 

of the general equation (A6) in the Appendix. Section 3.2 below shows a general method of 

dealing with the estimation of Λ. In this section we make explicit the EM derivation for 

several LME of practical importance.

3.1 Variance Matrices for the Random Effects

Following Pinheiro and Bates (2000), we will consider several structures for Ψ. The M-step 

updates are as follows (see Appendix A1 for details):

1.
Unstructured Ψ. , which is (2.7).

2.
Diagonal Ψ. .

3. Block-diagonal Ψ. Let Ψ = diag(Ψ1, …, ΨK), and let A1, …, AK be the 

corresponding block-diagonal submatrices of A. Then Ψ̂ = diag(A1, …, AK).

4.
Multiple of identity. Let Ψ = τ2I. Then .

5. Compound symmetry. Assume Ψ = τ2I + γ2J, where J is the square matrix with all 

entries equal to 1. Then , where sum(A) = ∑i,j Aij.

3.2 Heteroscedastic Error

Consider the extended linear mixed effects model

(3.1)

where the Λi are positive-definite matrices parameterized by a small set of parameters λ. Let 

 be the square root of Λi, such that , and let  be its inverse. Further, 

define
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Then

(3.2)

That is, given the parameter λ,  is described by a basic linear mixed effects model, and the 

parameters β, σ2, Ψ can be estimated using (2.5)–(2.7).

To estimate λ, it is convenient to write Λi = ViKiVi, where Vi is a diagonal matrix with 

elements  on the diagonal, and Ki = Corr(ei). The parameters in Vi and Ki are 

assumed independent, that is, λ = vec(λυ, λκ), and Vi = Vi(λυ), Ki = Ki(λκ). Then λυ and λκ 

can be estimated separately, as discussed below, and they depend on the models assumed for 

the variance function and within-subject correlation structure, respectively.

As in Pinheiro and Bates (2000, chap. 5), we consider the following cases for the variance 

function. See Appendix A2 for details.

1. Fixed variance: var(eij) = σ2υij, where υij is fixed; alternatively, υij = υij(μij), μij = 

Xijβ + Zijbi.

For fixed υij, Λi is known, and the estimation proceeds based on the transformed 

model (3.2). For υij = υij(μij), an approximation is used (Davidian and Giltinan 

1995), with μij and υij computed at each step using the current parameter values, 

followed by the parameter update using model (3.2).

2. Different variances per stratum: var(eij) = σ2δk, where k = k(i, j) corresponds to the 

stratum, k = 1, …, K.

After reordering the error terms eij according to the variance strata, we can write

(3.3)

where s is the number of strata. For identifiability, we assume that δ1 = 1. Then, the 

M-step update is

where ej is the subvector of e corresponding to δj; see Appendix A2 for details. Put 

U = Z(D−1 + Z⊤Λ−1Z)−1Z⊤. Further calculations reveal that
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(3.4)

3. Exponential of covariate: var(eij) = σ2exp(2υijδ), with υij fixed, or depending on μij. 

Then δ is the solution of the equation

which can be solved using a generic equation solver; E(ee⊤|Q, C) is given by (3.4).

4. Power of covariate: var(eij) = σ2|υij|
2δ, where υij is either fixed (e.g., a covariate), 

or depends on μij.

This reduces to the case above, seeing that |υij|
2δ = exp(2wijδ), with wij = log(|υij|).

3.3 Autocorrelated Error

The proposed framework allows more general dependence structures (i.e., Λ not diagonal). 

For example, in a first-order autoregressive model (AR(1)), var(ei) = σ2Λi, with the (k, l) 

element of Λi given by ρkl = ρ|k−l|; a more general model is ρikl = ρd(tik, til), where tij is a 

known covariate. The parameter ρ is updated as the solution of the equation

where Λ̇ = diag(Λ̇1, …, Λ̇
m), and the generic (k, l) element of Λi̇ is d(tik, til)ρd(tik, til)−1. As 

before, E(ee⊤|Q, C) is given by (3.4). The continuous-time AR(1) model obtains for d(tik, til) 

= |tik − til|. See Appendix A2 for details.

3.4 Multilevel Models

The N/LMEC methodology extends in a natural way to multilevel models. For example, in 

the notation of Pinheiro and Bates (2000, chap. 2), consider the nested model

(3.5)

We assume that bi, bij, eij are all independent for different i, j. Let nij be the size of the 

vector yij, and n =∑i, j nij. As before, let Q be the vector of observed values y or censoring 

limits, and C the censoring indicator.

Put bi0 = vec(bi, bi1, …, bimi) for each i; Zi = (vec(Zi,1, …, Zi, mi) diag(Zi1, …, Zimi)); 

similarly, Xi = vec(Xi1, …, Ximi); yi = vec(yi1, …, yimi); ei = vec(ei1, …, eimi). Also, y = 
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vec(y1, …, ym), X = vec(X1, …, Xm), Z = vec(Z1, …, Zm), e = vec(e1, …, em), b = vec(b1, …, 

bm). Then (3.5) becomes

which is identical to the Laird–Ware model (2.2), except for the fact that Ψ10, …, Ψm0 are 

not necessarily of same dimension: Ψi0 = diag(Ψ1, diagmi (Ψ2)). Put 

. The formulas for δ̂ and σ2̂ are derived analogously to (2.5) and 

(2.6):

(3.6)

(3.7)

with .

We show in Appendix A2 that the M-step for Ψ1, Ψ2, in the unstructured case, is given by

The conditional expectations above can be computed using the expressions 

.

4. NONLINEAR CASE

The NLME (Lindstrom and Bates 1990; Pinheiro and Bates 2000) is given by

(4.1)

where f(β, bi) = f(β, bi, xij) is a nonlinear function of the fixed β and random effect bi ; xij is a 

vector of covariates, and bi and eij are given by (2.2). The approximate MLE (β̂, σ̂2, F̂) and 

predictors for the random effects b̂
i are computed by iterative linearization (L) of the 

conditional mean function. The L-step yields the LME

(4.2)

, yi is the ni-vector dependent variable for the ith subject, fi, ei are 

respectively the corresponding mean function and error ni-vectors, and the starred terms are 

computed at the current parameters (β*, ). For censored response the linearized model (4.2) 

is an LME with censored data, with same structure as (2.2), which is then solved as 

indicated in the previous section. The model matrix for (4.2) depends on the current 
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parameter value, and needs to be recalculated at each iteration. The algorithm iterates to 

convergence between L-, E-, and M-steps. See Vaida, Fitzgerald, and DeGruttola (2007) for 

details.

5. CASE STUDIES

We illustrate the proposed method with the analysis of two HIV datasets. The analysis was 

performed using the R package lmec (Vaida and Liu 2009) available on CRAN and nlmec 

available in the online supplement.

5.1 HIV-1 Viral Load After Unstructured Treatment Interruption

The first application concerns a study of 72 perinatally HIV-infected children and 

adolescents (Saitoh et al. 2008). Unstructured treatment interruption (UTI) is common in 

this population, due mainly to treatment fatigue. Suboptimal adherence can lead to 

antiretroviral resistance and diminished treatment options in the future. The subjects in the 

study had taken antiretroviral therapy for at least 6 months before UTI, and the medication 

was discontinued for more than 3 months. The HIV viral load from the closest time points at 

0, 1, 3, 6, 9, 12, 18, 24 months after UTI were studied. The number of observations from 

baseline (month 0) to month 24 are 71, 62, 58, 57, 43, 34, 24, and 13, respectively. Out of 

362 observations, 26 (7%) observations were below the detection limits, 50 or 400 

copies/mL, and were censored at these values. The individual profiles of viral load at 

different follow-up times after UTI appear in Figure 1. A profile LME model with random 

intercepts bi is considered:

(5.1)

where yij is the log10 HIV RNA for subject i at time tj, t0 = 0, t1 = 1, t2 = 3, t3 = 6, t4 = 9, t5 = 

12, t6 = 18, t7 = 24 months. One interesting feature of the study is that the probability of 

dropout depends on the observed viral load outcome. Indeed, by 12 months half of the 

subjects remained in the study, as subjects went back on treatment when their viral load 

increased. Assuming that the dropout probability is adequately modeled as a function of the 

observed trajectory yi (missing at random; see, e.g., Diggle et al. 2002, chap. 13), this model 

also adequately deals with the informative dropout. Conditionally on model (5.1) being 

correct, the dropout does not bias the inference regarding the mean values βj. This is not the 

case if the longitudinal structure is ignored, and inference at each time point is based only on 

data observed at that time point. The mean viral load E(yij) = βj increased gradually 

throughout 24 months from 3.62 log10RNA at the time of UTI with 95% CI (3.37–3.87) to 

4.38 with 95% CI (4.11–4.64) at 6 months, then to 4.58 (95% CI 4.29–4.88) at 12 months 

and 4.81 (95% CI 4.41–5.21) at 24 months. This is in contrast with the mean profiles of the 

observed data alone, which show a leveling off and a decrease in viral load between 6 and 

12 months (see Figure 1). The between-subjects (bi) and within-subjects (eij) standard 

deviations were 0.88 and 0.58 log10, respectively.

5.2 HIV-1 Viral Load Setpoint for Acutely Infected Subjects

The second AIDS case study concerns 320 untreated individuals with acute HIV infection 

from the AIEDRP Program, a large multicenter observational study of subjects with acute 
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and early HIV infection. During the acute stage of infection, the large HIV RNA 

observations may lie above the limit of quantification of the assay, which we treat as right-

censoring. This limit is between 75,000 and 500,000 cp/mL, depending on the assay. The 

time of infection was estimated at 24 days prior to first positive HIV RNA sample or 

detectable serum p24 antigen test. We included the HIV RNA observations in the first 180 

days of follow-up and only up to the start of antiretroviral treatment. The subjects had 

between one and 14 observations: 129 had one, 82 had two, and 109 had three or more 

observations. Of the 830 recorded observations, 185 (22%) were above the limit of 

quantification of the assay (right-censored). In the absence of treatment, following acute 

infection the HIV RNA decreases and then varies around a setpoint value. This setpoint 

value may differ between individuals, and is of central interest here. The viral setpoint 

characterizes the severity of infection, it may relate to the strength of the subject’s immune 

system, and it may predict clinical progression of the disease. The individual profiles and a 

smooth mean of the observed data are included in Figure 2. The smooth curve agrees 

qualitatively with the postulated shape of the HIV RNA trajectory for acutely infected 

patients. There is possible indication of a continuing viral decay rather than stabilization to a 

setpoint, with the caveat that the observed mean curve may be biased due to the exclusion of 

the censored values and to differential follow-up (see, e.g., Diggle et al. 2002, chap. 11). It is 

clear that the viral setpoint values differ from subject to subject.

Our analysis considers three models for these data. We started by fitting a four-parameter 

logistic model taking into account the censoring information. The model is

(5.2)

where yij is the log10 HIV RNA for subject i at time tij. This is an inverted S-shaped curve, 

with the constant value for the later times representing the subject-specific setpoint. The 

parameters α1i and α2 are the setpoint value and the decrease from the maximum HIV RNA; 

α4 is a scale parameter modeling the rate of decline, and α3 is a location parameter 

indicating the time point at which half of the change in HIV RNA is attained. To force the 

parameters to be positive we reparameterized the model to β1i = log(α1i), βk = log(αk), k = 2, 

3, 4. The setpoint α1i was taken to be random: . It is tempting to 

consider models including random effects for β3 and β4, but there are not enough available 

data in the acute (earliest) phase of infection to allow for inclusion of these random 

parameters.

The plot of model residuals against time shows a relatively good fit (Figure 3), but it 

suggests that the model does not capture a time trend in the data after day 50 since infection 

and an initial increase in viral load (see also Figure 2). In addition, a variogram of the 

residuals (Figure 4) indicates long-term autocorrelation, which may be due either to bias in 

modeling the mean term or to genuine serial autocorrelation beyond the random intercept, 

unaccounted for in the model.

To address the bias concern we added a linear term after day 50 in the second model:
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(5.3)

The residuals’ plot (Figure 3) indicates a better overall fit, but the variogram shows that the 

serial autocorrelation is not properly accounted for. This suggests a third model, by adding a 

random slope after day 50:

(5.4)

As in (5.2), we have log(α1i) = β1i = β1 + b1i, βk = log(αk) for k = 2, 3, 4, but α5i = β5 + b5i, 

to allow for increasing HIV RNA trajectories after day 50. Also, (b1i, b5i) are assumed to be 

iid, multivariate normal with unrestricted variance matrix. The model fit is slightly better 

than that in the second model, with the smooth mean residual curve in Figure 3 closer to 

zero, and fitted values between the fitted values of the first two models. More importantly, 

the residuals show no serial correlation in the variogram (Figure 4).

The results of the analysis are in Table 1. We can use the last model with reasonable 

confidence for predictions of viral load. For example, at 6 months since infection the 

average viral load is 4.55 log10 units (in contrast, the setpoint model (5.2) estimates this at 

4.83). The individual 6-month viral load estimates vary between 1.63 and 6.65, with 5th and 

95th quantiles at 3.37 and 5.50. The average slope after day 50 was negative, β5 = −0.0035 

log10 HIV/day, with 95% CI (−0.0063, −0.0006). However, the individual slopes α5i 

included positive values, with 5th and 95th quantiles of −0.0070 and 0.0004.

6. COMPARISON OF CLOSED-FORM AND MONTE CARLO EM 

ALGORITHMS

We compared the behavior and performance of the closed-form EM algorithm with the 

MCEM algorithm of Vaida, Fitzgerald, and DeGruttola (2007) via a simulation study with 

application in both linear and nonlinear mixed effects models. The MCEM algorithm is an 

improved, faster version of that of Hughes (1999), and it was described in detail by Vaida, 

Fitzgerald, and DeGruttola (2007). For clarity of comparison, in this simulation the MCEM 

does not use the closed-form E-step for one or two censored observations per cluster, unlike 

in the work of Vaida, Fitzgerald, and DeGruttola (2007). To separate the effect of censoring 

from the effect of N/LME approximation and finite sample bias, we also include results 

from the complete data (N/LME). The three methods were compared based on average 

estimate of the parameter, the simulation-based variance, relative bias E(θ̂ − θ)/|θ|, and 

coverage probability for 95% confidence intervals Pr(θ ∈ Î). (The parameter of interest θ is 

estimated by θ̂ and the confidence interval Î.)

6.1 Linear Case

The first simulation, using 4000 simulated datasets, was based on a Cadralazine 

pharmacokinetics study dataset (Lunn et al. 1999; Vaida and Blanchard 2005). The original 

dataset consists of plasma drug concentrations from 10 cardiac patients who were given a 
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single intravenous dose of 30 mg of Cadralazine, an anti-hypertensive drug. Each subject 

has the plasma drug concentration measured at 2, 4, 6, 8, 10, 24 hr, for a total of six 

observations per subject. We considered the linear model (6.1) with random intercepts b0i 

and random slopes b1i which was studied by Vaida and Blanchard (2005):

(6.1)

where

yij is equal to log(concentration) − log(dose) for the ith subject at time tij. Parameters in the 

simulation were chosen similarly to the estimated values from the LME based on the 

Cadralazine data: β0 = −2.83, β1 = −0.18, σ = 0.15, the matrix Ψ has elements Ψ11 = 0.049, 

Ψ12 = 0.001, Ψ22 = 0.002. Each simulated dataset had 50 subjects, with six observations per 

subject and a follow-up of 24 hr; 22.8% of all observations were censored and the average 

maximum number of censoring observations per subject is 3.2. Table 2 presents the average 

estimates for fixed effects, variance components, and σ; their simulation-based standard 

deviation; and the numeric error of the estimation. The MLE method was used throughout; 

the REML results (not included) were similar. Table 3 contains the coverage probabilities of 

the fixed effects and the relative bias for all estimated parameters. The numeric error of the 

estimator was computed at the suggestion of one of the referees, as follows: the “gold 

standard” MLE θ̂G was computed using increased precision for mvtnorm and for the EM 

convergence criterion (by two orders of magnitude), at the expense of a much longer 

running time. This was compared with the “standard” estimator θ̂S, and the root mean 

squared error of simulation, E{(θ̂S − θ̂
G)2} was computed for each parameter. The numeric 

error was defined as the relative root mean squared error, .

The closed-form EM,MCEM, and complete data LME performed similarly: all average 

estimates of parameters were very close to each other, and close to the true values except for 

Ψ12. These censored data algorithms had slightly larger simulation-based variances than 

LME, as expected. All three methods underestimated Ψ12 with a bias of −78.7% for closed-

form EM, −77.2% for MCEM, and −79.5% for LME. Both closed-form EM and MCEM 

account for censoring in the variance of the parameter estimates. The relative loss of 

information due to censoring for all six parameters, 1 − varLME(θ̂)/varEM(θ̂), ranged from 

21% for β0 to 44% for Ψ12. In terms of coverage, all three methods performed well. The 

coverage probabilities of β0 were 93.6% for closed-form EM, and 93.3% and 94.3% for 

MCEM and complete data LME; the coverage probabilities for β1 were 93.8% for closed-

form EM and MCEM, and 94.1% for LME. Note that with 4000 datasets the standard error 

for the coverage values is 0.4 percentage points. As expected, the closed-form EM improved 

the computation time substantially. On average, it took 212 sec for MCEM to converge, but 

only 5.5 sec for closed-form EM, about 40 times faster than MCEM. In addition, the 

numeric error is practically negligible for the closed-form EM, more than 10 times smaller 

than MCEM for the mean parameters, and at least twice smaller for the variance 

components.
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The contrast between the closed-form EM and MCEM is illustrated in Figure 5. The figure 

displays the objective function (2.14), which is the log-likelihood surrogate used by MCEM 

in the article by Vaida, Fitzgerald, and DeGruttola (2007), for the two algorithms, for the 

Cadralazine dataset used as a framework for the simulations in this section. The closed-form 

EM has smooth and fast convergence (12 sec). In contrast, the MCEM log-likelihood is 

subject to random variations, proportional to the inverse square root of the MCMC sample 

size, and larger convergence times (120 sec in this example).

6.2 Nonlinear Case

The second simulation was based on the AIEDRP data studied in Section 5.2. We 

considered a similar logistic model (6.2) with random setpoints α1i and random decline rates 

α4i:

(6.2)

Reparameterizing the model (6.2) as in Section 4.2, we estimated βsi = log(αsi) (s = 1, 4) and 

βt = log(αt) (t = 2, 3) where βsi = βs + bsi, , and random errors are 

normally distributed with a standard deviation of σ. Parameters in the simulation were also 

chosen similarly to the estimated values based on the original data using LME: β1 = 1.6094, 

β1 = 0.6931, β3 = 3.8067, β4 = 2.3026, σ = 0.55; the matrix Ψ has elements Ψ11 = 0.0025, 

Ψ12 = −0.0010, Ψ22 = 0.0100. Each simulated dataset had 100 subjects, with ten 

observations per subject and a follow-up of 90 days. Seventeen point eight percent of all 

observations were censored and the average maximum number of censoring observations 

per subject is 5.1. The simulation is based on 1000 datasets. Table 4 presents the average 

estimates for fixed effects, variance components, and σ, and their simulation-based standard 

deviations. Table 5 contains the coverage probabilities of the fixed effects and the relative 

bias for all estimated parameters.

The closed-form EM and MCEM still performed very similarly; the average estimates of all 

parameters were very close. Compared to NLME, they also provided similar estimates for 

fixed effects and σ. All three methods overestimated Ψ11 and Ψ22 and underestimated Ψ12. 

The bias for closed-form EM and MCEM is 15.96% and 16.19% for Ψ11, −83.89% and 

−84.79% for Ψ12, and 392% and 431% for Ψ22. The relative loss of information due to 

censoring ranged from 4% to 23% for fixed effects and σ. For variance components, the 

relative loss is 0% for Ψ11, 27% for Ψ12. For Ψ22, the closed-form EM had a smaller 

variance than NLME; this might be due to more nonconvergent iterations in the simulation 

for NLME. The coverage probabilities for fixed effects βi (i = 1, 2, 3, 4) using the closed-

form EM and MCEM are similar and all higher than NLME. The range of the coverage 

probabilities was 92.2%–94.6% for closed-form EM, 92.1%–94.5% for MCEM, and 71.4%–

93.5% for NLME. In terms of computation time, the closed-form EM is 5 times faster than 

the MCEM.
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7. DISCUSSION

In this article we have developed an EM algorithm for linear and nonlinear mixed effects 

models with censored response. The algorithm has a closed-form expression for the E-step, 

based on formulas for the mean and variance of the truncated multinormal distribution. The 

computation uses existing functions for the multinormal cumulative distribution function. 

Our simulation studies showed that this implementation leads to an improved speed of 

convergence of up to an order of magnitude over leading alternatives. The observed 

likelihood is derived at no additional computational cost, paving the way for model selection 

procedures, such as the likelihood ratio test, the AIC, or the conditional AIC (Vaida and 

Blanchard 2005). As an added benefit, the EM likelihood sequence is monotonic and the 

difficulties in assessing convergence which face MCEM algorithms are avoided.

We considered several extensions of the standard Laird–Ware model, including 

heteroscedastic and autocorrelated error, and multilevel models. Other cases, such as crossed 

random effects (Breslow and Clayton 1993; Vaida and Meng 2005, see, e.g.) are not 

explicitly discussed, but are covered by the general methodology presented here. For these, 

however, the updates of the variance components need to be made on a case-by-case basis.

Finally, it is worth emphasizing that we are currently using these methods in our 

biostatistical practice. The articles by Saitoh et al. (2008) and Cysique et al. (2009) are two 

such instances of ‘real’ data analysis in the medical literature.
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Figure 1. 
UTI data: Individual profiles and overall mean (and 95% CI) log10 viral load at different 

follow-up times post-UTI. The means are estimated (i) using a random intercept model, with 

adjustment for viral load values censored below the limit of detection (−); (ii) using 

observed data alone (- -).
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Figure 2. 
AIEDRP data: Model fits from (i) random intercept logistic model (– –); (ii) random 

intercept logistic model with linear decrease after 50 days (- -); (iii) logistic model with 

random intercept and random linear decrease after 50 days (−·−). Solid line: a smooth fit of 

the observed data, with censored observations excluded.
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Figure 3. 
AIEDRP data: Smooth means of residuals from (i) random intercept logistic model (– –); (ii) 

random intercept logistic model with linear decrease after 50 days (- -); (iii) logistic model 

with random intercept and random linear decrease after 50 days (−·−). The residuals from 

model (iii) appear as points; the right-censored residuals appear as “+.”
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Figure 4. 
AIEDRP data: Variogram from model residuals from (i) random intercept logistic model (– 

–); (ii) random intercept logistic model with linear decrease after 50 days (- -); (iii) logistic 

model with random intercept and random linear decrease after 50 days (−·−).
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Figure 5. 
Comparison of the convergence of MCEM (jagged line) and the proposed EM (smooth line). 

The convergence times were 120 and 12 sec in this example. The MCMC sample size for 

the MCEM is plotted at the bottom of the graph. The y-axis represents the surrogate log-

likelihood (objective function) given by formula (2.13).

Vaida and Liu Page 22

J Comput Graph Stat. Author manuscript; available in PMC 2015 March 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vaida and Liu Page 23

Table 1

Analysis of primary HIV infection. The parameters are for the random intercept logistic model and logistic 

model with random intercept and random linear decrease after 50 days, respectively.

Setpoint model Five-parameter model

Estimate SE Estimate SE

β1 1.575 0.014 1.609 0.014

β2 0.4240 0.0933 0.1441 0.0950

β3 3.561 0.034 3.526 0.024

β4 1.547 0.228 1.060 0.267

β5 −3.48 · 10−3 1.43 · 10−3

σ 0.554 0.512

σb1 0.139 0.133

σb5 7.10 · 10−3

ρb12 0.17
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Table 3

Linear case: Coverage probability and relative bias (%) based on a simulation study of 4000 datasets. The 

coverage probability has a standard error of 0.004; z(ρ12) is the z-transformed correlation coefficient in Ψ.

Closed-form EM MCEM Complete data LME

β0 (coverage probability) 0.936 0.933 0.943

β1 (coverage probability) 0.938 0.938 0.941

β0 0.01 0.01 0.00

β1 0.02 0.02 0.06

σ −0.45 −0.31 −0.24

Ψ11 −2.54 −3.20 −2.48

Ψ12 −78.67 −77.16 −79.47

Ψ22 −11.33 −11.68 −11.23

z(ρ12) −26.87 −26.13 −28.88
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Table 5

Nonlinear case: Coverage probability and relative bias (%) based on a simulation study of 1000 datasets. The 

coverage probability has a standard error of 0.008.

Closed-form EM MCEM Complete data NLME

β1 (coverage probability) 0.945 0.944 0.931

β2 (coverage probability) 0.920 0.921 0.911

β3 (coverage probability) 0.947 0.949 0.935

β4 (coverage probability) 0.922 0.925 0.714

β1 −0.03 −0.06 0.23

β2 1.91 2.30 −1.12

β3 −0.18 −0.19 −0.18

β4 1.48 1.77 −0.67

σ −0.81 −0.86 −0.27

Ψ11 15.96 16.19 13.10

Ψ12 −83.69 −84.79 −37.66

Ψ22 392.61 431.64 79.91
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