
Fast Implementation of Public-Key
Cryptography on a DSP TMS320C6201

Kouichi Itoh1, Masahiko Takenaka1, Naoya Torii1, Syouji Temma2, and
Yasushi Kurihara2

1 FUJITSU LABORATORIES LTD. 64 Nishiwaki, Ohkubo-cho, Akashi 674-8555
Japan.

{kito, takenaka, torii}@flab.fujitsu.co.jp
2 FUJITSU LTD. 4-1-1 Kami-kodanaka, Nakahara-ku, Kawasaki 211-8588 Japan.

{temma, kurihara}@cl.mfd.cs.fujitsu.co.jp

Abstract. We propose new fast implementation method of public-key
cryptography suitable for DSP. We improved modular multiplication and
elliptic doubling to increase speed. For modular multiplication, we devi-
sed a new implementation method of Montgomery multiplication, which
is suitable for pipeline processing. For elliptic doubling, we devised an
improved computation for the number of multiplications and additions.
We implemented RSA, DSA and ECDSA on the latest DSP (TMS320C6201,
Texas Instruments), and achieved a performance of 11.7 msec for 1024-
bit RSA signing, 14.5 msec for 1024-bit DSA verification and 3.97 msec
for 160-bit ECDSA verification.

1 Introduction

Public-key cryptography is an important encryption technique. It can be applied
to many practical uses such as electronic commerce systems and WWW systems
for enabling digital signatures and key agreement. The server systems for them
are required to process a vast number of public key operations.

Additionally, for communicating with various kinds of clients, the server sy-
stems are required to provide various public-key cryptography functions, such as
RSA [15] , Diffie-Hellman key agreement [5], DSA [16] and elliptic curve crypto-
graphy (ECC) [9][12]. These functions are under standardization in IEEE P1363
[17].

In this paper, we describe a fast implementation method using DSP as a
cryptographic engine for server systems. In public-key cryptography, modular
multiplications are the most time-consuming operations. A DSP can compute
these operations efficiently with a fast hardware multiplier. Furthermore, a DSP
can be used as the hardware engine for various algorithms since it is programma-
ble.

In the past, fast public key cryptographic implementations on DSPs have
been reported [1][2][6]. They concentrated on the implementation of RSA using
the latest DSP at the time. We implemented RSA, DSA and ECDSA over prime
fields based on the IEEE P1363 draft, and propose new implementation methods

Ç.K. Koç and C. Paar (Eds.): CHES’99, LNCS 1717, pp. 61–72, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



62 K. Itoh et al.

suitable for DSP. Our methods concern modular multiplication and elliptic doub-
ling.

For modular multiplication, we devised a fast implementation method for
Montgomery multiplication [14]. Our method is suitable for pipeline processing.

For elliptic doubling, we devised a new method which reduces the number
of multiplications and additions in comparison with that specified in the IEEE
P1363 draft. In general, the running time of addition is considered negligible
compared with that of multiplication. But in fact, the running time of addition is
not negligible on a processor such as a DSP, which has a fast hardware multiplier.

There are some reports concerning the fast implementation of ECC [3][4][13].
They used the special elliptic curve domain parameters (EC domain parameters)
for speeding up. On the other hand, our implementation can use any EC domain
parameters for the server systems. The server systems require high performance
and communicating with client systems that use various types of EC domain
parameters.

We implemented public-key cryptography functions with our method on the
latest DSP TMS320C6201 (Texas Instruments). This DSP can operate eight
function units in parallel and has a performance of 1600 MIPS at 200 MHz.
The performance achieved in our implementation was 11.7 msec for 1024-bit
RSA signing, 14.5 msec for 1024-bit DSA verification and 3.97 msec for 160-bit
ECDSA verification.

We describe our improvement method for Montgomery multiplication in sec-
tion 2, our elliptic doubling method in section 3 and the performance in section
4.

2 Fast Implementation Method of Montgomery
Multiplication

2.1 Montgomery Multiplication

Basic algorithm. Set N > 1. Select a radix R co-prime to N such that R > N
and such that computations modulo R are inexpensive to process. Let N ′ be
integers satisfying 0 < N ′ < R and N ′ = −N−1 (mod R). For all integers
A and B satisfying 0 ≤ AB < RN , we can compute REDC(A, B) = ABR−1

(mod N) with Algorithm 1.

Algorithm 1. Montgomery multiplication algorithm REDC.
input : A, B, R, N.
output : Y = ABR−1 (mod N).

101 N ′ := −N−1 (mod R)
102 T := AB
103 M := (T (mod R))N ′ (mod R)
104 T := T + MN
105 T := T/R
106 if T ≥ N then return T − N else return T

If R is a power of 2, line 105 can be computed fast with shift operations.



Fast Implementation of Public-Key Cryptography on a DSP TMS320C6201 63

Modular multiplication with Montgomery method. Since REDC(A, B)
= ABR−1 (mod N), it can not compute modular multiplication directly. But
on reviewing REDC(AR, BR) = ABR (mod N), it can be seen that REDC
can compute modular multiplication by converting A (mod N) to AR (mod N).
After this conversion, a series of modular multiplications can be computed fast
with REDC. For example, we show an m-ary exponentiation [7] with REDC
in Algorithm 2, where e is a k-bit exponent and ei is an m-bit integer which
satisfies e =

∑
(2m)iei .

Algorithm 2. m-ary exponentiation method with REDC.
input : A, e, N, R
output : Y = Ae (mod N)

201 A′ := A × R (mod N)
202 T [0] := 1 × R (mod N)
203 for i := 1 to 2m − 1
204 T [i] = REDC(T [i − 1], A′)
205 next i
206 Y := 1 × R (mod N)
207 for i := dk/me − 1 down to 0
208 for j:= 1 to m
209 Y := REDC(Y, Y )
210 next j
211 Y := REDC(Y, T [ei])
212 next i
213 Y := Y × R−1 (mod N)
214 return Y

REDC routine with single-precision. To implement REDC on general pro-
cessors, multi-precision computation must be divided into iterations of single-
precision computation. In [10], many types of REDC routines are constructed
with single-precision computation. Algorithm 3 shows a Finely Integrated Ope-
rand Scanning (FIOS) type of REDC routine in [10].

We will use the following notations. Capital variables such as A or B, mean
a multi-precision integer. Small letter variables such as ai, bj or tmp1 mean a
single-precision integer of w-bit length.

A multi-precision integer, for example A, is expressed as the series of single-
precision variables (ag−1, ag−2, . . . , a0). The expression such as (a, b) means the
concatenation of single-precision variables a and b. We also use the expression
such as (A, b), which means the concatenation of a multi-precision variable A
and a single-precision variable b.

In Algorithm 3, the block-shift is executed by reading from yi and writing to
yi−1. Note that the w-bit variables tmp3 and c1 have 1-bit value.

Algorithm 3. REDC routine with single-precision computation. (FIOS [10].)
input: A = (ag−1, ag−2, . . . , a0), B = (bg−1, bg−2, . . . , b0), N ′ = (n′

g−1, n
′
g−2, . . . n

′
0),

R = (2w)g.
output: Y = (yg, yg−1, . . . , y0) = ABR−1 (mod N).



64 K. Itoh et al.

301 Y := 0
302 for j := 0 to g − 1
303 (tmp2, tmp1) := y0 + a0 × bj

304 m := tmp1 × n′
0 (mod 2w)

305 (tmp4, tmp1) := tmp1 + m × n0

306 (c1, c0) := tmp2 + tmp4
307 for i := 1 to g − 1
308 (tmp3, tmp2, tmp1) := yi+(c1, c0)+ai×bj single-precision multiplication
309 (tmp4, yi−1) := tmp1 + m × ni single-precision reduction
310 (c1, c0) := tmp4 + (tmp3, tmp2) carry computation
311 next i

312 (c1, c0) := (c1, c0) + yg

313 yg−1 := c0

314 yg := c1

315 next j

316 if Y ≥ N then Y := Y − N

317 return Y

2.2 Proposed Method

To speed up Algorithm 3 on a DSP, let us consider improving the core loop in
lines 308-310 suitable for pipelining. For the improvement, we considered the
following problems:

(1) Single-precision multiplication in line 308 cannot execute until single-precis-
ion reduction in line 309 and carry computation in line 310 finish.

(2) The contents of the computation are different among single-precision multi-
plication, single-precision reduction and carry computation.

(3) The result of carry computation, (c1, c0) in line 310, has (w + 1)-bit length
value so that it must be processed as a multi-precision variable.

We reviewed the computation to solve these problems. Figure 1 shows the con-
struction of the core loop. On reviewing the carry processing in Fig.1, carry of
the single-precision multiplication and carry of the single-precision reduction are
added to C = (c1, c0), and C is input to the carry of single-precision multiplica-
tion in the next loop. To review this processing, we combine the computation in
the core loop as follows:

(C, yi−1) := yi + C + ai × bj + m × ni

From this equation, we can divide the carry C into the carry c1 for the ai × bj

and the carry c2 for the m × ni as follows:

(c1, tmp1) := yi + c1 + ai × bj single-precision multiplication
(c2, yi−1) := tmp1 + c2 + m × ni single-precision reduction



Fast Implementation of Public-Key Cryptography on a DSP TMS320C6201 65

Fig. 1. Construction of core loop in Algorithm 3.

From these equations, we can see that problems (1), (2) and (3) are solved as
follows:

Problem (1) is solved because both carry c1 and c2 feed back to themselves,
which enables single-precision multiplication to start computing without waiting
until single-precision reduction finishes. Problem (2) is solved because the com-
putation between single-precision multiplication and single-precision reduction is
the same. Problem (3) is solved because the right term of these equations never
exceeds 22w −1 even if all single-precision variables in the right terms are 2w −1,
so that the lengths of c1 and c2 do not exceed w-bit.

Algorithm 4 shows an improved routine of Algorithm 3. Figure 2 shows the
construction of the core loop in Algorithm 4.

Algorithm 4. Proposed Montgomery multiplication algorithm.
input: A = (ag−1, ag−2, . . . , a0), B = (bg−1, bg−2, . . . , b0),
N ′ = (n′

g−1, n
′
g−2, . . . , n

′
0), R = (2w)g.

output: Y = (yg, yg−1, . . . , y0) = ABR−1 (mod N).

401 Y := 0
402 for j := 0 to g − 1
403 (c1, tmp1) := y0 + ai × bj

404 m := tmp1 × n′
0 (mod 2w)

405 (c2, tmp1) := tmp1 + m × n0
406 for i := 1 to g − 1
407 (c1, tmp1) := yi + c1 + ai × bj single-precision multiplication
408 (c2, yi−1) := tmp1 + c2 + m × ni single-precision reduction



66 K. Itoh et al.

Fig. 2. Construction of the core loop in Algorithm 4.

409 next i
410 (c2, c1) := c1 + c2 + yg

411 yg−1 := c1
412 yg := c2
413 next j
414 if Y ≥ N then Y := Y − N
415 return Y

3 Fast Elliptic Doubling

We used a Weierstrass equation, y2 ≡ x3 +ax+b (mod p) for the elliptic curve
over prime fields where 4a3 + 27b2 6 ≡0 (mod p), and projective coordinate
(X, Y, Z) which satisfies (x, y) = (X/Z2, Y/Z3).

For exponentiation, such as m-ary [7] or window method [7], m elliptic doub-
lings and 1 elliptic addition are processed alternatively. Remarking on this point,
the m-repeated elliptic doublings method is proposed in [8] which is concer-
ned with the computation on affine coordinates over binary fields. Compared
to m times elliptic doublings, this method reduces the number of inverses by
computing 2mP for P = (x, y) directly without computing intermediate points
2iP (1 ≤ i ≤ m − 1).

We also remark this m-repeated elliptic doublings method, but take another
approach to decrease the number of computation in terms of projective coordi-
nates over prime fields. Our method is based on the m times elliptic doublings



Fast Implementation of Public-Key Cryptography on a DSP TMS320C6201 67

specified in the IEEE P1363 draft [17] and also reduces the number of additions
and multiplications.

3.1 Reducing the Number of Multiplications

In this section, we describe our m-repeated elliptic doublings method which
requires smaller multiplications than the m times elliptic doublings specified in
the IEEE P1363 draft. In our method, the temporary value used in the t-th
elliptic doubling is reused in the (t + 1)-th elliptic doubling, and this eliminates
2 multiplications. Therefore, our method requires 10 multiplications in the first
elliptic doubling, but requires only 8 multiplications from the second doubling
to the m-th. Let (Xm, Ym, Zm) = 2m(X0, Y0, Z0), Algorithm 5 shows m times
elliptic doublings specified in the IEEE P1363 draft [17].

Algorithm 5. m times elliptic doublings specified in the IEEE P1363 draft.
input: Elliptic curve point (X0, Y0, Z0), m and EC domain parameter a.
output: Elliptic curve point (Xm, Ym, Zm) = 2m(X0, Y0, Z0).

501 for i := 0 to m − 1
502 Wi := aZ4

i

503 Mi := 3X2
i + aZ4

i

504 Si := 4XiY
2
i

505 Ti := 8Y 4
i

506 Xi+1 := M2
i − 2Si

507 Yi+1 := Mi(Si − Xi+1) − Ti

508 Zi+1 := 2YiZi

509 next i

If we consider Wi = aZ4
i and Zi+1 = 2YiZi in line 502, 508, we notice that Wi

can be computed from Wi = 2Ti−1Wi−1, which eliminates 2 multiplications. We
show the improved routine of Algorithm 5 in Algorithm 6.

Algorithm 6. Improved routine of Algorithm 5.
input: Elliptic curve point (X0, Y0, Z0), m and EC domain parameter a.
output: Elliptic curve point (Xm, Ym, Zm) = 2m(X0, Y0, Z0).

601 W0 := aZ4
0

602 M0 := 3X2
0 + W0

603 S0 := 4X0Y
2
0

604 T0 := 8Y 4
0

605 X1 := M2
0 − 2S0

606 Y1 := M0(S0 − X1) − T0
607 Z1 := 2Y0Z0
608 for i := 1 to m − 1
609 Wi := 2Ti−1Wi−1
610 Mi := 3X2

i + Wi

611 Si := 4XiY
2
i



68 K. Itoh et al.

612 Ti := 8Y 4
i

613 Xi+1 := M2
i − 2Si

614 Yi+1 := Mi(Si − Xi+1) − Ti

615 Zi+1 := 2YiZi

616 next i

3.2 Reducing the Number of Additions

Generally, an addition is regarded as much faster than a multiplication, and its
running time is not considered. But on a DSP, multiplication can be computed
efficiently with a fast hardware multiplier, and the running time of addition
is not negligible. Table 1 shows a comparison of the running time of a modular
multiplication and a modular addition based on our implementation on the DSP.

Table 1. Comparison of the running time of a modular multiplication and a
modular addition @ 200 MHz.

160-bit 192-bit 239-bit
Multiplication 1.36 µsec 1.76 µsec 2.68 µsec

Addition 0.250 µsec 0.254 µsec 0.291 µsec

In projective elliptic doubling, some computations such as modular multiplica-
tion by 2, 3, 4, and 8 can be implemented by the combination of modular addi-
tion(s) and subtraction(s). Appending modular multiplication by 1/2 to these
computations, we define them “addition” in this paper. We estimate the com-
putation amount of “addition” as follows:

– Modular addition and subtraction are “1 addition”.
– Modular multiplication by 2 and 1/2 are “1 addition”.
– Modular multiplication by 3 and 4 are “2 additions”.
– Modular multiplication by 8 is “3 additions”.

Now we consider reducing the number of additions in Algorithm 6 with this
estimate. For example, computing 4Y 2 as (2Y )2 eliminates 1 addition compared
with computing it as 4 × (Y 2). Thus, additions in Algorithm 6 are reduced
with 2Y -based computation. With this technique, we can reduce the number of
additions in Algorithm 6 by the following techniques:

(A) At the beginning, compute Y ′
0 = 2Y0 as a base value, and compute Y ′

i (= 2Yi)
without computing Yi for i < m.

(B) By reason of (A), compute Ti = 16Y 4
i instead of 8Y 4

i .
(C) Compute Si = 4XiY

2
i , Zi = 2Zi−1Yi−1 and Ti = 16Y 4

i based on Y ′
i = 2Yi,

viz. compute Si = Xi(Y ′
i )2, Zi = Zi−1(Y ′

i−1) and T = (Y ′
i )4 respectively.

(D) Finally, compute Ym = Y ′
m/2.

We show the improved routine of Algorithm 6 in Algorithm 7.

Algorithm 7. Proposed m-repeated elliptic doublings routine.
input: Elliptic curve point (X0, Y0, Z0), m and EC domain parameter a.
output: Elliptic curve point (Xm, Ym, Zm) = 2m(X0, Y0, Z0).



Fast Implementation of Public-Key Cryptography on a DSP TMS320C6201 69

701 Y ′
0 := 2Y0

702 W0 := aZ4
0

703 M0 := 3X2
0 + W0

704 S0 := X0(Y ′
0)2

705 T0 := (Y ′
0)4

706 X1 := M2
0 − 2S0

707 Y ′
1 := 2M0(S0 − X1) − T0

708 Z1 := Y ′
0Z0

709 for i := 1 to m − 1
710 Wi := Ti−1Wi−1

711 Mi := 3X2
i + Wi

712 Si := Xi(Y ′
i )2

713 Ti := (Y ′
i )4

714 Xi+1 := M2
i − 2Si

715 Y ′
i+1 := 2Mi(Si − Xi) − Ti

716 Zi+1 := (Y ′
i )Zi

717 next i

718 Ym := Y ′
m/2

Table 2 shows the number of multiplications and additions required for the above
algorithms. Our method eliminates 2m− 2 multiplications and 5m− 2 additions
compared with the m times elliptic doublings specified in the IEEE P1363 draft.

Table 2. Number of multiplications and additions.
m-repeated elliptic doublings Multiplication Addition

Algorithm 5 (IEEE P1363 draft) 10m 13m
Algorithm 6 8m + 2 14m − 1

Algorithm 7 (Proposed) 8m + 2 8m + 2

4 Implementation

4.1 DSP and Development Tools

For the implementation, we used the DSP TMS320C6201 [18] (Texas Instru-
ments). The DSP consists of eight parallel-operation functional units including
two 16-bit multiplication units, and has a performance of 1600 MIPS at 200
MHz. The instruction processing system is of the VLIW/pipeline type and can
execute conditional operations. And the maximum instruction code size is 64
Kbytes.

As the development tools, an assembler and C compiler are provided. We
implemented arithmetic routines such as modular multiplication, addition, and
subtraction in assembly language. Their performance greatly affects the total
performance, because they are performed frequently. Other routines were written
in C for easy implementation.



70 K. Itoh et al.

4.2 Implementation of RSA and DSA

We used the following methods:

– Modular multiplication with the Montgomery multiplication method [14]
described in section 2.

– Modular exponentiation with m-ary method [7] for m = 4.

4.3 Implementation of ECC

We used following methods:

– Modular multiplication with the Montgomery multiplication method [14]
described in section 2.

– Fast elliptic doubling with the method described in section 3, combined with
the technique for increasing speed in case EC domain parameter a = 0.

– Elliptic addition based on IEEE P1363 draft [17].
– The base point exponentiation with fixed-base comb method [11], specified

using two 5-bit precomputed tables.
– Random point exponentiation in combination with sliding-window exponen-

tiation [11] with a 4-bit precomputed table and signed-binary [7] of the ex-
ponent.

4.4 Code Size

We implemented RSA, DSA and ECDSA based on above method, and the total
instruction code size was 41.1 Kbytes. Since TMS320C6201 allows a maximum
instruction code size of 64 Kbytes, this implementation can deal with RSA, DSA
and ECDSA without reloading.

4.5 Performance of RSA, DSA, and ECC

Table 3 shows the performance of the RSA and DSA implementation. Table 4
shows the performance of the ECC implementation including the exponentiation
on a random point. We measured the 100 times average clocks and figured the
running time at 200 MHz.

In Table 3, we used e = 216 + 1 for the RSA verification key, and Chinese
remainder theorem for RSA signing.

In Table 4, the exponent of a random point has a same length as that of EC
domain parameter p. The ECDSA scheme is based on the IEEE P1363 draft.
Table 4 also shows the bit length of the order of the base point which affects the
performance of ECDSA.

Table 3. Performance of RSA and DSA @ 200 MHz.
RSA DSA

1024bit 2048 bit 512 bit 1024 bit
Sign 11.7 msec 84.6 msec 2.62 msec 7.44 msec

Verify 1.2 msec 4.5 msec 4.82 msec 14.5 msec



Fast Implementation of Public-Key Cryptography on a DSP TMS320C6201 71

Table 4. Performance of ECC @ 200 MHz.
EC domain parameter p 160-bit 192-bit 239-bit

a 6= 0 Order of the base point 151-bit 192-bit 239-bit
Exponentiation on a random point 3.09 msec 4.64 msec 8.47 msec

ECDSA sign 1.13 msec 1.67 msec 2.85 msec
ECDSA verify 3.97 msec 6.28 msec 11.2 msec

a = 0 Order of the base point 160-bit 185-bit 232-bit
Exponentiation on a random point 2.88 msec 4.15 msec 7.60 msec

ECDSA sign 1.09 msec 1.50 msec 2.66 msec
ECDSA verify 3.78 msec 5.50 msec 9.78 msec

5 Conclusion

We proposed fast implementation methods of Montgomery multiplication and
m-repeated elliptic doublings, which are efficient for any EC domain parameters
and suitable for the server systems. Our methods are efficient not only for DSP,
but also for any other processors.

Construction of our Montgomery multiplication method is suitable for the
implementation on various pipeline processors. Furthermore, our method is also
effective for the implementation on non-pipeline processors, because it computes
all carries within a single-precision value.

Our m-repeated elliptic doublings method eliminates 2m − 2 multiplications
and 5m−2 additions compared with m times elliptic doublings specified in IEEE
P1363 draft. This method is efficient on any processors. As the multiplication is
faster in comparison with addition, our method is more effective.

We implemented RSA, DSA and ECC with our method on the latest DSP
TMS320C6201(Texas Instruments). The performance is 11.7 msec for 1024-bit
RSA signing, 14.5 msec for 1024-bit DSA verification and 3.97 msec for 160-bit
ECDSA verification.

References

1. Paul Barrett, “Implementing the Rivest, Shamir, and Adleman Public-Key Encryp-
tion Algorithm on a Standard Digital Signal Processor”, Advances in Cryptology-
CRYTO’86(LNCS 263), pp.311-323, 1987.

2. E.F.Brickell, “A Survey of Hardware Implementations of RSA”, Advances in
Cryptology-CRYPTO’89(LNCS 435), pp.368-370, 1990.

3. D.Chudnovsky and G.Chudnovsky, “Sequences of numbers generated by addition
in formal groups and new primality and factoring tests”, Advances in Applied Ma-
thematics, 7, pp.385-434, 1987.

4. Richard E.Crandall, “Method and apparatus for public key exchange in a crypto-
graphic system”, U.S. Patent, 5,159,632, 27 October 1992.

5. W.Diffie and M.Hellman, “New directions in cryptography”, IEEE Transactions on
Information Theory 22, pp.644-654, 1976.

6. S.R.Dusse and B.S.Kaliski Jr., “A Cryptographic Library for the Motorola
DSP56000”, Advances in Cryptology-Eurocrypt’90(LNCS 473), pp.230-244, 1991.



72 K. Itoh et al.

7. Daniel M.Gordon, “A Survey of Fast Exponentiation Methods”, Journal of Algo-
rithms 27, pp.129-146, 1998.

8. J.Guajardo and C.Paar, “Efficient Algorithms for Elliptic Curve Cryptosystems”,
Advances in Cryptology-CRYPTO’97(LNCS 1294), pp.342-356, 1997.

9. N.Koblitz, “Elliptic curve cryptosystems”, Mathematics of Computation 48, pp.203-
209, 1987.

10. Çetin Kaya Koç, Tolga Acar, B.S.Kaliski Jr., “Analyzing and Comparing Montgo-
mery Multiplication Algorithms”, IEEE Macro, Vol.16, No.3, pp.26-33, June 1996.

11. Alfred J.Menezes, Paul C.van Oorschot and Scott A.Vanstone, “HANDBOOK of
APPLIED CRYPTOGRAPHY”, CRC Press, 1997.

12. V.S.Miller, “Use of elliptic curves in cryptography”, Advances in Cryptology-
CRYPTO’85(LNCS 218), pp.417-426, 1986.

13. Atsuko Miyaji, “Method for Generating and Verifying Electronic Signatures and
Privacy Communication Using Elliptic Curves”, U.S. Patent, No.5,442,707, 15 Au-
gust 1995.

14. P.L.Montgomery, “Modular Multiplication without Trial Division”, Mathematics
of Computation, Vol.44, No.170, pp.519-521, 1985.

15. R.L.Rivest, A.Shamir and L.Adleman, “A Method of obtaining digital signature
and public key cryptosystems”, Comm. of ACM, Vol.21, No.2, pp.120-126, Feb.1978.

16. FIPS 186, “Digital signature standard”, Federal Information Processing Standards
Publication 186, U.S.Department of Commerce/N.I.S.T., National Technical Infor-
mation Service, Springfield, Virginia, 1994.

17. IEEE P1363/D9(Draft Version 9) Standard Specifications for Public Key,
http://grouper.ieee.org/groups/1363/.

18. Texas Instruments, “Digital Signal Processing Solutions Products - TMS320C6x”,
http://www.ti.com/sc/docs/products/dsp/tms320c6201.html.


	Introduction
	Fast Implementation Method of Montgomery Multiplication
	Montgomery Multiplication
	Proposed Method

	Fast Elliptic Doubling
	Reducing the Number of Multiplications
	Reducing the Number of Additions

	Implementation
	DSP and Development Tools
	Implementation of RSA and DSA
	Implementation of ECC
	Code Size
	Performance of RSA, DSA, and ECC

	Conclusion

