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 
Abstract—As a recent approach for time series analysis, 

singular spectrum analysis (SSA) has been successfully applied for 

feature extraction in hyperspectral imaging (HSI), leading to 

increased accuracy in pixel-based classification tasks. However, 

one of the main drawbacks of conventional SSA in HSI is the 

extremely high computational complexity, where each pixel 

requires individual and complete singular value decomposition 

(SVD) analysis. To address this issue, a fast implementation of SSA 

(F-SSA) is proposed for efficient feature extraction in HSI. Rather 

than applying pixel-based SVD as conventional SSA does, the fast 

implementation only needs one SVD applied to a representative 

pixel, i.e. either the median or the mean spectral vector of the HSI 

hypercube. The result of SVD is employed as a unique transform 

matrix for all the pixels within the hypercube. As demonstrated in 

experiments using two well-known publicly available data sets, 

almost identical results are produced by the fast implementation in 

terms of accuracy of data classification, using the support vector 

machine (SVM) classifier. However, the overall computational 

complexity has been significantly reduced. 

 
Index Terms—Data classification, fast singular spectrum 

analysis (F-SSA), feature extraction, hyperspectral imaging (HSI), 

support vector machine (SVM). 

I. INTRODUCTION 

ITH both spatial and spectral data simultaneously 

acquired forming a hypercube structure, hyperspectral 

imaging (HSI) has provided enhanced capabilities in data 

analysis and mining. Having spectral range covered from visible 

band to (near) infrared, HSI can be used in characterizing minor 

difference or changes among materials in terms of temperature, 

moisture and chemical components. As a result, HSI has been 

successfully applied in a number of emerging tasks such as food 

quality assessment, verification of faked documents and 

land-cover analysis in remote sensing [1-4]. 
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 In HSI, classification of the pixels from a scene can be 

accurate thanks to the dimension of features (spectral bands) 

provided, especially for powerful classifiers as support vector 

machine (SVM) [4-5]. Usually a feature extraction stage is 

implemented in the spectral domain prior to feeding the 

classifier. For feature extraction in HSI, projection based 

methods such as principal component analysis (PCA) [6] have 

been widely used, where several variations can also be found in 

[7-9]. Other well-known techniques include independent 

component analysis (ICA) [10], maximum noise fraction 

(MNF) [11] and nonnegative matrix factorization (NMF) 

[12-13]. Approaches for sparse representation of data [14-15] 

and spatial feature extraction [16-18] also become of interest in 

recent years. Nonetheless, since HSI data is prone to noise, it is 

encouraging the idea of a potential decomposition in the 

spectral domain of the pixels so noise can be avoided. 

Regarding this idea, an inspiring research for us is [19], where 

the empirical mode decomposition (EMD) technique applied in 

1-D to the pixels is briefly evaluated for classification tasks. 

Being part of the Hilbert Huang transform (HHT) for 

non-linear and non-stationary data analysis, EMD decomposes 

a 1-D signal into few components called intrinsic mode 

functions (IMFs) for a later reconstruction by only specific 

IMFs [20]. Although the reconstruction aim was to achieve 

higher accuracy in classification tasks, [19] showed 

deterioration. Unlike EMD, singular spectrum analysis (SSA) 

technique evaluated in a similar way is able to produce better 

results [21-22] as it enhances the spectral pixels, becoming a 

promising feature extraction technique in the HSI field. 

However, in conventional SSA, pixel-based implementation 

of the SVD is required [21-22], which inevitably results in 

extremely high computational complexity in its implementation. 

To this end, a fast solution of SSA implementation in HSI is 

proposed in this paper, where SVD is only needed once. 

Actually, this unique SVD is applied to either the median or the 

mean spectral profile of the hypercube, whose results are then 

taken as a unique transform matrix for all the pixels in the 

hypercube. In this paper, we evaluate and compare the 

performance derived from PCA, ICA, MNF, and NMF with 

EMD, SSA and the fast implementation of SSA (F-SSA), where 

it is found that SSA surpass the rest of methods, and that F-SSA 

produces almost the same results as SSA, yet the computational 

complexity has been greatly improved. 

The remaining parts of the paper are organized as follows. 

Section II describes the conventional SSA algorithm, with our 

proposed F-SSA discussed in Section III. Experiments and 
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results are discussed in Section IV, followed by some 

concluding remarks drawn in Section V. 

II. CONVENTIONAL SINGULAR SPECTRUM ANALYSIS 

As a recent technique for time series analysis and forecasting, 

SSA [23] also allows interesting possibilities in other 

applications. SSA is able to decompose an original series into 

several independent components that are interpretable as 

varying trend, oscillations or noise. In fact, extractions of 

trends, periodic components or smoothing, as summarized in 

[23], are some of the main capabilities of SSA. 

Given a 1-D signal defined as N
Nxxx  ],,,[ 21 x , the 

SSA algorithm can be applied in the following steps. 

A. Embedding 

Defining a window size ZL  where ],1[ NL , the 

trajectory matrix X  of the vector x  can be constructed as 
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Columns of X  are LT
Lkkkk xxx   ],,[ 11 C , lagged 

vectors where ],1[ Kk  and 1 LNK . Matrix X  has 

equal values in the anti-diagonals, i.e. is Hankel type. 

Based on properties of the matrix X  [23], SSA algorithm can 

be implemented symmetrically in two intervals, i.e. 

)]2/(,1[ NroundL  and ]),2/)1(([ NNceilL  . For a given 

L , the equivalent implementation can be found for another 

KL ' , leading to the same results. 

B. Singular Value Decomposition 

Defining a matrix S  from the trajectory matrix X  as 
T

XXS  , the eigenvalues of S  and their respective 

eigenvectors are then denoted respectively as 

 L  21  and  LUUU ,,, 21  . 

The SVD of the matrix X  is formulated below. Although the 

d  is equal to the rank of X , we consider Ld   for simplicity 

 

dXXXX  21 .       (2) 

 

Thus, the trajectory matrix X  is actually built by the addition 

of several matrices ],1[| dii X , which are called elementary 

matrices, related to the respective eigenvalue as defined by 
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Matrices U  and V  are called matrix of empirical 

orthogonal functions and matrix of the principal components, 

respectively 
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C. Grouping 

The total set of L  individual components is now grouped 

into M  disjoint sets denoted as MIII ,,, 21  , where 

  LmI  and ],1[ Mm . Let  piii ,,, 21 I  be one of the 

disjoint sets, the matrix IX  related to I  is then defined by 

ipiiI XXXX  21 . After the grouping, trajectory 

matrix X  is represented as 

 

IMII XXXX  21 .      (5) 

 

Please note that the basic grouping is the one with LM  , 

and 1p , where each set is made of just one component. 

D. Diagonal Averaging 

After grouping, matrices ],1[,Im MmX  obtained above 

are not necessarily Hankel type as the original trajectory matrix. 

Therefore, each one of these matrices needs to be hankelised 

(averaged in their anti-diagonals) for the projection into 1-D 

signals, as values in the anti-diagonals of each ImX  contribute 

to the same element in the derived 1-D vector. 

Denoting 1,  jnja  as the elements of ImX , it can be 

projected to the 1-D signal N
mNmmm zzz  ],,,[ 21 z  by 

means of the diagonal averaging below 
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Finally, repeating this for every matrix ImX , the original 1-D 

signal x  can be expressed as 

 





M

m
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1
21 zzzzx  ,      (7) 

 

where the original signal can be reconstructed by using specific 

components, discarding those insignificant or prone to noise. 

E. SSA Application and Parameter Selection in HSI 

Although the eigenvalue decomposition and eigenvector 

determination used in our approach seems similar to 

conventional approaches such as PCA, ICA and others, they are 

fundamentally different. Conventional feature extraction 

approaches usually work on a set of samples. As a result, they 

tend to extract the global structures within the sample set and 

can be used for dimensionality reduction. SSA, on the contrary, 

works on pixel-based analysis, thanks for the trajectory matrix 
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formed by data embedding, thus can help to extract the local 

structures within the pixel vector.  

 

SSA application in HSI is based on selecting some 

components and discarding the rest. As noisy artefact is usually 

located in the less significant eigenvalues, a reconstruction 

where these components are evaded, leads to enhanced spectral 

profiles and, therefore, better results. Hence, the feature 

enhancement provided by SSA is related to avoidance of noise. 

According to this fact, the next step is to determine what 

parameters use to avoid the noise. SSA application is governed 

by two parameters. The first is the window size L, which states 

the total number of components extracted in the decomposition 

stage. The second is the eigenvalue grouping (EVG), which 

denotes the selected combination of extracted components used 

for a desired reconstruction.  

Selected parameters should ensure that reconstruction keeps 

the useful information of the spectral profiles while, at the same 

time, noisy content is discarded. As shown in [21], if EVG is 

small in relation to L, not only noise is removed but also some 

useful information (lossy region). On the opposite case, when 

EVG is large in relation to L, then some noise still remains in the 

reconstruction (noisy region). To this end, EVG must be related 

to L, so it would be appropriate to select EVG=1 for L=5 (or 

L=10), EVG=2 for L=20, or EVG=5 for L=40. This is further 

validated by the new results as reported in Section IV.D. 

III. PROPOSED FAST SSA FOR HYPERSPECTRAL DATA 

ANALYSIS 

Although SSA technique introduces added value to the data 

analysis by enhanced information extracted from the spectra, 

one remarkable drawback it has is the extremely high 

computational complexity required for pixel-based SVD. To 

address this problem, a fast implementation that requires only a 

single SVD is proposed as presented in detail below. 

Our fast implementation of SSA is based on the common 

embedding process applied to every pixel before the SVD, 

which leads to similar transformation matrices so eventually a 

single matrix can be commonly applied to all the pixels. 

Moreover, this transformation matrix is obtained by a unique 

SVD that can be applied to a representative signal from the 

whole data set to be transformed. 

A. F-SSA Concept 

Conventional SSA application in HSI [21-22] works 

individually in each pixel. However, window size L  in the 

embedding stage and components selected in the grouping stage 

are commonly applied to all the pixels. This fact allows our 

alternative F- SSA implementation. 

As the embedding process is equal for all pixels, the assembly 

of lagged vectors and trajectory matrix structure is common for 

each individual case. As such, the orthonormal basis obtained 

from a unique SVD is able to transform the spectral profiles just 

in the same terms. 

In addition, as all pixels in a hypercube are acquired by the 

same sensor under the same conditions, the distribution of 

general, system and/or environmental, noise tends to be 

consistent (also other aspects, such as the water absorption 

regions location). Consequently, a set of eigenvectors can 

perfectly project the spectral profiles into reconstructed ones 

were noise is commonly avoided. 

Regarding Eq. (2), the SVD of a signal results on different 

elements derived from the corresponding eigenvalues (or 

singular values). These elements iX  are dependent on iV , both 

outputs from the SVD. However, according to Eq. (3), it is 

possible to substitute iV  in iX , and therefore the elements 

from SVD can also be expressed in terms of inputted trajectory 

matrix and eigenvectors iU  as 

 

XUUX
T
iii  .        (8) 

 

In Eq. (8) we have just rearranged some basic SSA 

formulation so first, it is mathematically proved that F-SSA is 

feasible, and second, we can implement it in that manner. 

Consequently, any signal embedded with the adequate window 

L  in a trajectory matrix X  can be transformed into several 

SSA components through some predefined eigenvectors. This 

key fact allows the use of a single set of eigenvectors to 

transform all pixels on a given data set. 

B. Single SVD Analysis 

Since a unique set of eigenvectors can be employed to 

transform all Q  pixels in a hypercube, an issue arises regarding 

which signal the single SVD has to be applied to. As the mean 

and the median computations over general sets of pixels have 

been intensively used in HSI related applications for feature 

extraction and data classification [24-25], these are employed 

here for obtaining the representative spectral profile of the data 

set, where it is simply computed as the average (or median) 

pixel from all those Q  found in the hypercube (Fig. 1). In both 

cases, a unique pixel is introduced to represent the overall data 

set and this is considered to be an appropriate input to the SVD. 

Obviously, this input pixel needs to be embedded by the 

corresponding window L , same as the one requested in the 

analysis, leading to the representative trajectory matrix R . 

 

 

Fig. 1.  HSI hypercube with Q pixels (left) and the representative pixels (right) 

by the mean and the median computation from the whole hypercube. 

C. Grouping 

The grouping stage is not necessarily based on the strict 

addition of single components individually transformed but can 

also be simply regarded as a joint transformation, where 

defining I  as the set of selected components, the desired 

grouping is obtained by a unique multiplication as 
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Therefore, after the SVD analysis, those eigenvectors 

selected for the reconstruction of the pixels are included in the 

columns of transformation matrix T
II UU . 

D. Workflow of F-SSA 

To highlight the difference between SSA and F-SSA, their 

workflows are illustrated in Fig. 2 for comparison. As can be 

seen, in F-SSA only the embedding, transformation and 

diagonal averaging procedures are required for all Q pixels, yet 

the transformation matrix derived from the representative pixel 

is commonly used to all of them. This can highly reduce the 

complexity of SSA when applied in HSI, as only an initial SVD 

analysis is demanded, which is carried out on a representative 

pixel, i.e. either the mean or the median spectral profile of the 

hypercube. The efficiency and efficacy of F-SSA are compared 

with SSA as detailed in the next section. 

IV. EXPERIMENTS AND RESULTS 

To evaluate both the conventional SSA and our proposed 

F-SSA, SVM-based data classification on two publicly 

available remote sensing data sets are used for comparison. A 

complete description of the data employed, experimental 

settings used and results achieved are detailed as follows. 

A. Data Description 

Two remote sensing data sets with available ground truth for 

land-cover classification purposes are employed in our 

experiments.  The first is the AVIRIS 92AV3C data set [26], 

which is a subscene acquired from Indiana, USA. With 

145×145 pixels in 220 spectral reflectance bands, this data set 

contains elements in 16 labeled classes. The second is the 

ROSIS Pavia CA data set, a subscene extracted from a largest 

data set [27]. This was taken over Pavia, Northern Italy, made of 

150×150 pixels and 102 spectral bands with elements labeled in 

a total of 7 classes. Spectral images with corresponding ground 

truth and elements to be classified are illustrated in Fig. 3 and 

Fig. 4, respectively. 

 

 

Fig. 3.  One band image at wavelength 667nm (left) and the ground truth maps 

(right) for the 92AV3C data set. 

 

 

 

Fig. 4.  One band image wavelength 521nm (left) and the ground truth maps 

(right) for the Pavia CA data set. 

 

For data conditioning, as recommended by others [5, 19, 27], 

some bands are discarded, which results in the number of bands 

reduced from 220 to 200 and from 115 to 102, for the 92AV3C 

and Pavia CA data sets, respectively. 

 
Fig. 2.  Comparison of the workflows in the conventional SSA (left) and the proposed fast implementation of SSA (right) where pixel-based SVD analysis  

has been reduced to a single case. 
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B. Experimental Settings 

Initially, the straight use of the original spectra from pixels is 

introduced as a Baseline reference for benchmarking. Then, 

several classical techniques such as PCA, ICA, MNF and NMF 

are also studied. After that, two main techniques, EMD and 

SSA, are evaluated for enhanced feature extraction and noise 

removal using reconstructed pixels in the HSI scene. Finally, 

our F-SSA proposal is implemented under same conditions for 

comparisons with conventional SSA. 

In order to implement the classical techniques, MATLAB 

offers appropriate libraries for PCA, ICA and NMF, while for 

MNF we use an implementation based on Green’s method [11], 
where in all of them the main parameter is the dimension of 

features (f). For the decomposition techniques, on one hand we 

use the code available in [28] for EMD, adopting default (α) and 

experimentally determined (θ2=10×θ1) stop threshold values 

[29], while in the reconstruction, combinations of the first, the 

first to second and the first to third IMFs are selected as 

suggested in [19]. On the other hand, for both SSA and F-SSA, 

several combinations of window L and EVG, as summarized in 

Table I, are selected to evaluate the corresponding performance.  

 
TABLE I 

FEATURE EXTRACTION METHODS AND PARAMETERS 

Method Parameters Values adopted 

Baseline N/A N/A 

PCA 

Dimension  

of features (f) 

from 5 to original 

dimensionality in steps 

of 5 features (best one) 

ICA 

MNF 

NMF 

EMD 
Thresholds θ1, θ2, and α 0.8, 8, and 0.05 

IMF grouping (IMFG) 1st, 1-2nd, 1-3rd  

SSA / F-SSA 
Window size L 5, 10, 20, and 40 

EV grouping (EVG) 1st , 1-2nd, 1-5th, 1-10th  

 

Once the corresponding features are extracted, they are 

inputted to an SVM for data classification, as SVM is widely 

used in HSI [4-5] and remote sensing even in embedded systems 

[30-31]. LibSVM library [32] with Gaussian RBF kernel [4-5, 

19] is used here, with penalty c and gamma γ parameters 

optimally determined through a grid search. 

Every experiment is repeated ten times, varying the subsets 

for training and testing, in order to avoid systematic errors. Data 

partitions are randomly selected by stratified sampling, using an 

equal sample rate of 5% in each class for training. Finally, the 

mean results from classifying the testing partitions over the ten 

repetitions including McNemar’s tests [33] are reported. 

Apart from the classification performance, we also compare 

the results from SSA and F-SSA in enhancing spectral profiles 

from pixels and evaluate their computational complexity. 

C. Enhancing Spectral Pixels with SSA and F-SSA 

With both SSA and F-SSA, a spectral pixel in HSI can be 

reconstructed by selecting the main eigenvalue components, 

discarding those less representatives that usually contain noise 

and useless information. As stated in Section II.E, for data 

reconstruction two important parameters are needed in SSA: the 

window size L and the EVG (or selected components). 

For a given pixel-based spectral profile from 92AV3C data 

set, Fig. 5 illustrates the SSA reconstructed pixels using 

different EVG with L=10. As can be seen, the new profiles 

preserve the trend of the original signal but with potential 

reduction of noise. 

 

Fig. 5.  The original and reconstructed profiles by SSA for one pixel in HSI, 

with L=10 and EVG set as the 1st and the 1-5th eigenvalue component(s). 

Actually, the reconstructed spectral profile from F-SSA is 

almost the same as the one extracted from SSA. This has been 

clearly shown in Fig. 6, where almost identical results of 

reconstruction are produced using either the median or the mean 

spectral profile as the representative pixel. 

 

Fig. 6.  The original and reconstructed profiles using SSA and the two F-SSA 

schemes for one pixel in HSI, where L=10 and the EVG is set as the 1-5th 

eigenvalue components. 

To take a closer look at the spectral profiles reconstructed 

from F-SSA and SSA, the relative difference │(xn-xn
’
)/xn│ 

between each reconstructed profile and the original profile is 

compared in Fig. 7. As can be seen, both SSA and the proposed 

F-SSA produce really similar profiles and result in same level of 

relative difference in comparison to the original profile. 

To further analyze the profiles obtained from SSA and 

F-SSA, the well-known Cosine distance [34] is employed as a 

measurement to quantify the resemblance from the 

reconstructed profiles in relation to the original ones. For each 

individual pixel, the Cosine distance between the original 

profile and the reconstructed one is obtained first and then 

averaged over all pixels. As the reconstructed profiles vary with 

the SSA configurations, we evaluate this dissimilarity for 
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several cases as shown in Table II. As can be seen, dissimilarity 

increases with the window size L, and decreases for larger 

EVGs. Nevertheless, in all cases, profiles from both the 

conventional SSA and proposed F-SSA are similar enough for a 

proper feature extraction in HSI. 

 

Fig. 7.  Relative difference (%) between the original profile and the ones 

reconstructed using SSA and the two F-SSA schemes, where L=10 and the 

EVG is set as the 1-5th eigenvalue components. 

 
TABLE II 

MEAN COSINE SIMILARITY SCORES TO QUANTIFY THE DIFFERENCE BETWEEN 

THE ORIGINAL AND RECONSTRUCTED PROFILES BY SSA AND F-SSA FROM THE 

92AV3C DATA SET  

Conventional SSA 

L\EVG 1st  1-2nd 1-5th  1-10th  

5 99.7514 99.9092 100 N/A 

10 99.3228 99.7716 99.9367 100 

20 98.4455 99.3706 99.8411 99.9408 

40 97.5394 98.4087 99.5434 99.8438 

F-SSA (mean) 

L\EVG 1st  1-2nd 1-5th  1-10th  

5 99.7513 99.9091 100 N/A 

10 99.3228 99.7716 99.9365 100 

20 98.4472 99.3732 99.8411 99.9410 

40 97.5342 98.3275 99.5489 99.8433 

F-SSA (median) 

L\EVG 1st  1-2nd 1-5th  1-10th  

5 99.7513 99.9091 100 N/A 

10 99.3226 99.7716 99.9362 100 

20 98.4469 99.3730 99.8411 99.9412 

40 97.5356 98.3392 99.5506 99.8434 

 

D. Results of Data Classification 

For the two data sets 92AV3C and Pavia CA, the results of 

data classification are evaluated in this group of experiments. 

Features extracted from F-SSA are benchmarked with those 

from the Baseline, PCA, ICA, MNF, NMF, EMD [19-20] and 

conventional SSA [21-22] approaches. First of all, for the 

Baseline, classical techniques, and EMD, results of the mean 

overall accuracy (MOA) and mean McNemar’s test (MMT) are 

given in Table III, in comparison with those using SSA and 

F-SSA as given in Table IV and Table V. 

As shown in Table III and Table IV, the Baseline approach 

has a MOA of 78% for the 92AV3C data set, and this has been 

improved to over 82% by using SSA or F-SSA, surpassing the 

best case of the rest of methods evaluated. The classical 

methods provide limited accuracy in comparison with the SSA 

techniques and also present some other drawbacks; for instance, 

ICA and NMF are influenced by the initial values for iterations, 

and MNF is dependent on the algorithm to estimate the noise. 

Meanwhile, the SSA techniques are reliable, consistent and 

provide better classification accuracy. 
 

TABLE III 

MEAN OVERALL ACCURACY (%) AND MEAN MCNEMAR’S TEST [Z] OF THE 

BASELINE, PCA, ICA, MNF, NMF, EMD, AND SSA APPROACHES 

Method Parameters 92AV3C Pavia CA 

Baseline N/A 78.07 [-0.00] 97.10 [-0.00] 

PCA f=15, and f=5 77.01 [-2.36] 97.06 [-0.15] 

ICA f=20, and f=5 76.90 [-2.61] 96.93 [-0.74] 

MNF f=10, and f=5 78.03 [-0.13] 97.16 [+0.12] 

NMF f=70, and f=10 78.58 [+1.28] 97.15 [+0.25] 

EMD 

IMFG=1st 48.33 [-47.2] 68.23 [-40.7] 

IMFG=1-2nd 52.28 [-41.8] 79.55 [-30.7] 

IMFG=1-3rd  65.40 [-24.2] 90.71 [-16.6] 

SSA L=10 EVG=1st   82.13 [+10.9] 97.35 [+1.19] 

 

TABLE IV 

MEAN OVERALL ACCURACY (%) AND MEAN MCNEMAR’S TEST [Z] FOR THE 

92AV3C DATA SET USING SSA AND F-SSA 

Parameters 
SSA 

F-SSA  

(mean) 

F-SSA 

(median) L EVG 

5 1st 82.15 [+11.1] 82.12 [+11.2] 82.13 [+11.2] 

5 1-2nd 80.68 [+7.58] 80.54 [+7.17] 80.54 [+7.16] 

10 1st 82.13 [+10.9] 82.19 [+10.9] 82.17 [+11.0] 

10 1-2nd 81.67 [+9.78] 81.94 [+10.8] 82.06 [+11.0] 

10 1-5th 79.68 [+4.85] 79.85 [+5.50] 79.73 [+5.06] 

20 1st 80.82 [+7.40] 80.86 [+7.44] 80.87 [+7.44] 

20 1-2nd 82.15 [+10.9] 82.06 [+10.7] 82.05 [+10.5] 

20 1-5th 81.67 [+9.86] 81.63 [+9.85] 81.49 [+9.51] 

20 1-10th 79.13 [+3.29] 79.47 [+4.39] 79.47 [+4.38] 

40 1st 79.46 [+3.74] 78.61 [+1.48] 78.61 [+1.47] 

40 1-2nd 80.29 [+5.67] 80.64 [+6.90] 80.65 [+6.82] 

40 1-5th 82.56 [+12.0] 82.19 [+11.1] 82.39 [+11.6] 

40 1-10th 81.52 [+9.65] 81.14 [+8.58] 81.15 [+8.59] 

Overall mean 81.07 [+8.21] 81.02 [+8.15] 81.02 [+8.13] 

 

TABLE V 

MEAN OVERALL ACCURACY (%) AND MEAN MCNEMAR’S TEST [Z] FOR THE 

PAVIA CA DATA SET USING SSA AND F-SSA 

Parameters 
SSA 

F-SSA 

(mean) 

F-SSA 

(median) L EVG 

5 1st 97.16 [+0.41] 97.16 [+0.38] 97.16 [+0.36] 

5 1-2nd 97.00 [-0.23] 97.01 [-0.47] 97.01 [-0.47] 

10 1st 97.35 [+1.19] 97.36 [+1.25] 97.36 [+1.23] 

10 1-2nd 97.30 [+0.99] 97.12 [+0.16] 97.12 [+0.15] 

10 1-5th 97.22 [+0.61] 97.05 [-0.20] 97.05 [-0.25] 

20 1st 97.05 [-0.15] 97.07 [-0.10] 97.06 [-0.12] 

20 1-2nd 97.23 [+0.81] 97.38 [+1.60] 97.33 [+1.24] 

20 1-5th 97.06 [+0.07] 97.01 [-0.41] 96.92 [-0.81] 

20 1-10th 97.10 [+0.04] 97.03 [-0.37] 97.02 [-0.38] 

40 1st 96.79 [-1.85] 96.84 [-1.84] 96.85 [-1.82] 

40 1-2nd 97.19 [+0.51] 97.09 [-0.49] 97.28 [+0.71] 

40 1-5th 97.31 [+1.10] 97.42 [+1.72] 97.40 [+1.64] 

40 1-10th 97.05 [-0.09] 97.24 [+0.89] 97.12 [+0.22] 

Overall mean 97.14 [+0.26] 97.14 [+0.16] 97.13 [+0.13] 
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This, on one hand, has clearly indicated that SSA and F-SSA 

improves the discriminant ability of extracted features. In 

addition, as McNemar’s tests having Baseline as a reference 

show statistical significance at a confidence level of 95% when 

│Z│> 1.96, this also validates the improvement of SSA and 

F-SSA. On the other hand, it is found that F-SSA using either 

the mean or the median spectral profile of the hypercube yields 

almost the same results as those from SSA, where the overall 

mean value from all the configurations also proves the similarity 

in the results obtained from these three SSA approaches. 

For the Pavia CA data set, similar findings can be observed 

from the associated results in Table III and Table V. Although 

MOA from the Baseline is already as high as 97.1%, SSA and 

F-SSA can still improve it to over 97.35%, where the two 

F-SSA schemes have generated almost the same results. 

Depending on the selected parameters, occasionally SSA and 

F-SSA slightly degrade MOA to 96.8% but in most cases they 

beat the other methods results.  

 
TABLE VI 

CLASS-BY-CLASS ACCURACIES (%) FOR THE 92AV3C DATA SET OBTAINED 

FROM THE BASELINE, SSA (L=10, EVG=1ST) AND F-SSA (L=10, EVG=1ST) 

APPROACHES AS WELL AS THE NUMBER OF SAMPLES (NOS) IN EACH CLASS 

Class NoS Baseline SSA 
F-SSA 

(mean) 

F-SSA 

(median) 

 54 37.84 75.29 75.29 74.71 

 1434 74.71 81.57 81.67 81.28 

 834 60.71 69.04 70.03 69.57 

 234 54.01 65.09 64.59 64.37 

 497 87.25 89.66 89.56 89.34 

 747 93.06 93.23 93.30 93.26 

 26 57.08 82.08 82.08 82.08 

 489 96.88 96.29 96.42 96.42 

 20 22.11 44.74 43.68 44.21 

 968 66.55 72.71 72.76 72.72 

 2468 81.19 82.92 82.94 83.19 

 614 68.70 81.87 82.35 82.18 

 212 95.27 96.22 96.07 96.12 

 1294 94.71 94.84 94.31 94.62 

 380 44.68 44.02 43.99 44.27 

 95 82.89 84.89 85.22 84.89 

Average accuracy 69.85 78.40 78.39 78.33 

Overall accuracy 78.07 82.13 82.19 82.17 

 
TABLE VII 

CLASS-BY-CLASS ACCURACIES (%) FOR THE PAVIA CA DATA SET OBTAINED 

FROM THE BASELINE, SSA (L=10, EVG=1ST) AND F-SSA (L=10, EVG=1ST) 

APPROACHES AS WELL AS THE NUMBER OF SAMPLES (NOS) IN EACH CLASS 

Class NoS Baseline SSA 
F-SSA 

(mean) 

F-SSA 

(median) 

 447 100 100 100 100 

 28 23.08 20.77 23.46 23.46 

 347 87.42 89.18 87.93 87.93 

 1213 95.54 96.04 96.20 96.19 

 3512 98.77 98.90 98.93 98.93 

 893 97.10 97.11 97.23 97.23 

 43 99.75 100 100 100 

Average accuracy 85.95 86.00 86.25 86.25 

Overall accuracy 97.10 97.35 97.36 97.36 

 

Although the MOA and MMT measurements above have 

validated the effectiveness of SSA and F-SSA approaches in 

improved data classification, the class-by-class results are given 

in Table VI and Table VII for more detailed comparisons. For 

both 92AV3C and Pavia CA data sets, SSA and F-SSA clearly 

show as well a general increment in average and class-by-class 

accuracies. 

E. Computational Complexity for SSA and F-SSA 

Although the spectral profiles reconstructed from SSA and 

F-SSA are almost identical and produce similar results in data 

classification, the fast solution proposed in F-SSA is more 

efficient as analyzed in detail below. 

As only a single SVD analysis is required in F-SSA, the 

saving factor in SVD stage is Q , i.e. the number of pixels in the 

given hypercube. Nevertheless, the saving factor for data 

embedding and diagonal averaging is still 1. For data grouping, 

although the transformation matrix needs to be computed only 

once, the overall saving factor remains closely to 1. This is 

because the unchanged grouping transformation part dominates 

the computational cost in this stage due to pK  .  

According to an introductory computational complexity 

analysis of the SSA algorithm in [35], step-wise complexity of 

the techniques presented in terms of multiplicate-accumulates 

(MACs) is given in Table VIII for comparisons. The embedding 

stage only consists of relocating the elements from a vector 

array into a matrix, so no MACs are involved. In relation to the 

second stage, even though SSA algorithm is normally 

formulated with the use of the SVD [23, 35], the SVD of the 

trajectory matrix X  can be more easily implemented by an 

equivalent formulation applying eigenvalue decomposition 

(EVD) to T
XXS  , which is faster and more efficient than the 

SVD complexity ( 322 KLKKL  ) suggested in [35-36]. 

Accordingly, we use EVD for both methods applied to S . 

The grouping stage is divided in two parts, referring first to 

EVG-based calculation of the single transformation matrix 
T
II UU  and second to the transformation applied to every pixel. 

Finally, the diagonal averaging stage, although expressed in 

terms of multiplications and additions ( N  and LK  for each 

pixel, respectively), can be approximated to a total number of 

N  MACs per pixel, where the final relocating process (from 

Hankel matrix to vector array) has no MACs associated, same as 

that in the first stage of data embedding. 

 
TABLE VIII 

COMPUTATIONAL COMPLEXITY (MACS) IN THE SSA DIFFERENT STAGES 

Stage SSA F-SSA 
Saving 

factor 

Embedding - - 1 

SVD [ L2K + L3 ] × Q [ L2K + L3 ] ×1 Q 

Grouping 
Matrix UUT [L2p] × Q [ L2p ] ×1 Q 

Transformation [ L2K ] × Q [ L2K ] × Q 1 

Diagonal Averaging [ N ] × Q [ N ] × Q 1 

 

As can be seen in Table VIII, the same computation cost is 

required for the embedding, data transformation and diagonal 

averaging stages. A saving factor of Q  is achieved for SVD 
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analysis and transformation matrix obtainment. However, due 

to the cost for data transformation is at the same magnitude of 

pixel-based SVD, the overall saving factor becomes about 2. 

For the two data sets 92AV3C and Pavia CA, the MACs 

required under different experimental settings are further 

compared in Table IX. In general, F-SSA has a saving factor of 

2.0-2.7 in our experiments, which validates the analysis above. 

It is worth noting that the implementation of SVD without the 

optimized complexity, as suggested by Golub and Reinsch 

[35-36], results in much high computational cost of SVD. As a 

result, the cost for SVD stage is much higher than those for data 

transformation. To this end, the saving factor of F-SSA becomes 

significant, where the overall computational cost can be reduced 

to less than 5%. 

 
TABLE IX 

COMPUTATIONAL COMPLEXITY (MACS) FOR THE TWO DATA SETS IN 

DIFFERENT CONFIGURATIONS (L=5, EVG=1ST), (L=40, EVG=1-10TH)  

 92AV3C Pavia CA 

L= 5 40  5 40 

EVG= 1st  1-10th  1st  1-10th  

SSA 213e6 12.5e9 116e6 6.3e9 

F-SSA 107e6 5.4e9 57e6 2.3e9 

Saving factor 1.99 2.31 2.02 2.79 

V. DISCUSSIONS AND CONCLUSIONS 

Although SSA has been proved to be effective in feature 

extraction and data classification in HSI, it suffers from 

extremely high computational cost for pixel-based SVD 

analysis. By selecting a representation pixel using the median or 

the mean spectral profile of a given hypercube, a fast 

implementation of SSA, F-SSA, is proposed in determining the 

transformation matrix for data reconstruction.  

It is found that the two F-SSA schemes actually produce 

almost the same reconstructed profiles as the conventional SSA 

does. Using the reconstructed profiles as features, these two 

F-SSA approaches are benchmarked with conventional SSA, 

EMD, classical techniques as PCA, ICA, MNF or NMF, and 

also the Baseline approach where the original spectral profiles 

are used. The results of SVM-based data classification validate 

the efficacy of the proposed F-SSA approaches. As only a 

unique SVD analysis is required in the proposed F-SSA, the 

overall computational cost has been significantly reduced. 

Further research is ongoing for alternative implementations 

of the SSA techniques, where a particular approach with 

interesting potential can be the use of variable window sizes for 

object-oriented and saliency-based feature extraction [37-39]. 
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