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Abstract

Support vector data description (SVDD) is a machine learn-
ing technique that is used for single-class classification and
outlier detection. The idea of SVDD is to find a set of sup-
port vectors that defines a boundary around data. When deal-
ing with online or large data, existing batch SVDD methods
have to be rerun in each iteration. We propose an incremen-
tal learning algorithm for SVDD that uses the Gaussian ker-
nel. This algorithm builds on the observation that all support
vectors on the boundary have the same distance to the center
of sphere in a higher-dimensional feature space as mapped
by the Gaussian kernel function. Each iteration involves only
the existing support vectors and the new data point. More-
over, the algorithm is based solely on matrix manipulations;
the support vectors and their corresponding Lagrange multi-
plier αi’s are automatically selected and determined in each
iteration. It can be seen that the complexity of our algorithm
in each iteration is only O(k2), where k is the number of
support vectors. Experimental results on some real data sets
indicate that FISVDD demonstrates significant gains in effi-
ciency with almost no loss in either outlier detection accuracy
or objective function value.

1 Introduction

Much effort has been made to detect faults and state shifts in
industrial machines through monitoring data sensors. Suc-
cessful fault diagnosis reduces cost of maintenance and
improves both worker and machine efficiency. In machine
learning, fault diagnosis can be viewed as an outlier de-
tection problem. Support vector data description (SVDD),
a machine learning technique that is used for single-class
classification and outlier detection, is similar to support vec-
tor machine (SVM). SVDD was first introduced in Tax and
Duin (2004), although the concept of using SVM to detect
novelty was introduced in Schölkopf et al. (2000). SVDD is
used in domains where the majority of data belongs to a sin-
gle class, or when one of the classes is significantly under-
sampled. The SVDD algorithm builds a flexible boundary
around the target class data; this data boundary is character-
ized by observations that are designated as support vectors.
Having the advantage that no assumptions about the distri-
bution of outliers need to be made, SVDD can describe the
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shape of the target class without prior knowledge of the spe-
cific data distribution and can flag observations that fall out-
side the data boundary as potential outliers. In the case of
machine monitoring, data on the normal working conditions
of a machine are in abundance, whereas information from
outlier system failures are few. By using SVDD on the well-
sampled target class, one can obtain a boundary around the
distribution of normal working data, and subsequently cap-
ture the outlier points where the machine is faulty.

Traditional batch methods of SVDD typically pursue a
global optimal solution of the SVDD problem; they suffer
from low efficiency by considering all available data points.
Moreover, these methods are usually ineffective when han-
dling streaming data because the entire algorithm must be re-
run with each incoming data point. In contrast, incremental
methods deal with large or streaming data efficiently by fo-
cusing on smaller portions of the original optimization prob-
lem, as in Syed et al. (1999). Online variants of SVDD con-
centrate only on the current support vector set with incoming
data.

Cauwenberghs and Poggio (2001) give an incremental
and decremental training algorithm for SVM. Their method,
also called the C&P algorithm, provides an exact solution for
training data and one new data point. Tax and Laskov (2003)
use a numerical method to solve incremental SVM, and they
describe the relationship between incremental SVM and on-
line SVDD. Their research was extended in Laskov et al.
(2006), which provides complete learning algorithms for in-
cremental SVM and SVDD.

The algorithm given in Laskov et al. (2006) updates
weights of each support vector based on the fact that Karush-
Kuhn-Tucker (KKT) conditions must be satisfied before and
after a new data point comes in. Consequently, all data points
must be kept to pursue an objective value closer to the global
optimal value. Furthermore, a kernel matrix must be calcu-
lated every update, which can be memory-consuming and
slow for large data.

These issues are handled by the algorithm that we
propose: fast incremental support vector data description
(FISVDD). One of the most important properties of support
vectors is that in the most simplified form of SVDD they all
have the same distance to the center of a sphere. A similar
property remains even when the problem is generalized to
flexible boundaries. This property is at the core of FISVDD.
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Unlike the method in Laskov et al. (2006), FISVDD uses
only matrix manipulations to find interior points and sup-
port vectors, and it is highly efficient in detecting outliers. It
can be used either as a batch method or as an online method.
It can be seen that the complexity of key parts of FISVDD is
O(k2), where k is the number of support vectors. By Kakde
et al. (2017), the number of support vectors should be much
less than the number of observations in order to avoid over-
fitting.

The rest of the paper is organized as follows. In Section 2,
we introduce the SVDD problem in Tax and Duin (2004).
In Section 3, we state some theoretical support for FISVDD.
In Section 4, the FISVDD algorithm is introduced and ex-
plained. In Section 5, we discuss several important issues in
implementing FISVDD. In Section 6, FISVDD is applied to
some data sets and compared with other methods. Finally, in
Section 7, we give our conclusions.

In this paper we follow traditional linear algebra notation.
Bold capital letters stand for matrices, and bold small letters
stand for vectors. Specifically, matrix A is used as a Gaus-
sian kernel matrix, and Ak is the Gaussian kernel matrix in
the kth iteration. The vector x > 0 stands for a positive vec-
tor, and x ≥ 0 stands for a nonnegative vector.

2 The SVDD Problem
The SVDD problem is first discussed by Tax and Duin
(2004). The idea of SVDD is to find support vectors and use
them to define a boundary around data. If a testing data point
lies outside the boundary, it is classified as an outlier; other-
wise, it is classified as normal data. The simplest form of a
boundary is a sphere. For a set of data points x1,x2, . . . ,xn,
the mathematical formulation of the problem is to find a
nonnegative vector α that contains Lagrange multipliers for
all data points, ‖α‖1 = 1, such that the following is maxi-
mized:

L =

n
∑

i=1

αi〈xi,xi〉 −
∑

i,j

αiαj〈xi,xj〉. (2.1)

Here 〈xi,xj〉 is the inner product of xi and xj . According
to Tax and Duin (2004), there are three possibilities for each
data point. The xi’s that have zero αi’s are interior points.
The xi’s for which 0 < αi < C for a preselected 0 < C ≤ 1
lie on the boundary and are called support vectors. The xi’s
for which αi = C are outliers (also called bounded support
vectors, or bsv, in Ben-Hur et al. (2001)). In this paper, we
assume there are no outliers in the training phase, so we set
C = 1. One example of where our algorithm would be use-
ful is when there is a known period during which the incom-
ing data are normal, such as streaming sensor data from ma-
chines or vehicles operating under normal conditions. Then
the model can be used to detect abnormal states. To deter-
mine whether a new data point z lies inside the boundary,
first the distance between z and the center of the sphere, a,
is calculated:

d2(z) = ‖z− a‖2 = 〈z, z〉

− 2
∑

i

αi〈z,xi〉+
∑

i,j

αiαj〈xi,xj〉. (2.2)

This distance is then compared to the radius of the sphere
for any support vector xk:

R2 = 〈xk,xk〉

− 2
∑

i

αi〈xk,xi〉+
∑

i,j

αiαj〈xi,xj〉. (2.3)

A test data point z is accepted if d2 ≤ R2, and it is classified
as an outlier if d2 > R2. This check is also called scoring.
It is easy to derive the conclusion that scoring is equivalent
to checking whether the new data point violates the current
KKT conditions.

A kernel function is needed to draw a more flexible
boundary around data in order to avoid underfitting. By Tax
and Duin (2004), using a kernel function is equivalent to im-
plicitly mapping data points to a higher feature space. Usu-
ally the Gaussian kernel,

K(xi,xj) = exp(−
‖xi − xj‖

2
2

2σ2
), (2.4)

is preferred (Ben-Hur et al. 2001; Laskov et al. 2006;
Gu et al. 2015), and the Gaussian kernel bandwidth σ must
be selected beforehand. There are some papers that discuss
how to choose a proper Gaussian kernel bandwidth (Evan-
gelista, Embrechts, and Szymanski 2007; Xiao et al. 2014;
Kakde et al. 2017). Throughout this paper, it is assumed that
the Gaussian similarity is used and that a proper Gaussian
kernel bandwidth σ has been chosen such that the number
of support vectors is much less than the number of observa-
tions. As stated in Section 5, FISVDD has protections even
if a bad bandwidth is provided. With the Gaussian kernel
function, the objective function Eq. 2.1 can be simplified to
minimizing

L =
∑

i,j

αiαjK(xi,xj), (2.5)

because K(xi,xi) = 1, ‖α‖1 = 1, and α is nonnegative.
Eq. 2.5 can also be expressed in matrix form:

L = α
TAα, (2.6)

where A is a Gaussian similarity matrix for all support vec-
tors and α > 0. Formulas Eq. 2.2 and Eq. 2.3 then become
as follows, respectively:

d2(z) = 1−2
∑

i

αiK(z,xi)+
∑

i,j

αiαjK(xi,xj), (2.7)

R2 = 1− 2
∑

i

αiK(xk,xi) +
∑

i,j

αiαjK(xi,xj). (2.8)

Note that to determine whether a test data point z should be
accepted, one can compute only

Q(z) = (d2(z)−R2)/2 =
∑

i

αiK(xk,xi)−
∑

i

αiK(z,xi). (2.9)

Q(z) ≤ 0 means that z is an interior point. It is worth men-
tioning that all support vectors satisfy d2 = R2, although
they might have different αi’s.
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3 Theoretical Foundations

Here we state and prove several theorems necessary for later
discussion. First, we state a lemma in Smola and Schölkopf
(1998) that a Gaussian similarity matrix has full rank. A di-
rect conclusion of the lemma is that a Gaussian similarity
matrix is symmetric positive definite (spd).

Lemma 1. Suppose x1,x2, . . . ,xk are distinct points and
σ 6= 0. Then their Gaussian similarity matrix A formed with
Eq. 2.4 has full rank.

Lemma 1 implies that A is spd and its inverse exists. Next,
we state lemmas to obtain A−1

k+1 if A−1
k is known and vice

versa. In FISVDD, we need to update the inverse of the sim-
ilarity matrix when a new data point comes in. The proof
involves only matrix calculations and is skipped.

Lemma 2. Suppose Ak and Ak+1 are both Gaussian simi-
larity matrices and

Ak+1 =

[

Ak v

vT 1

]

. (3.1)

If A−1
k is known, then A−1

k+1 is given by

A−1
k+1 =

[

A−1
k + ppT /β −p/β
−pT /β 1/β

]

, (3.2)

where p = A−1
k v and β = 1− vTA−1

k v = 1− vTp.

Lemma 2 provides a method to compute A−1
k+1 by us-

ing A−1
k and an incremental vector v. Note that to compute

A−1
k+1, we only need to compute p = A−1

k v. Also note that

β is the Schur complement (Meyer 2000) of A−1
k in A−1

k+1.
Since Ak+1 is spd, β is positive (Gallier 2010). The inverse
of Lemma 2 is straightforward and shown below.

Lemma 3. Suppose Ak+1 is spd and its inverse is given by

A−1
k+1 =

[

Pk×k u

uT λ

]

. (3.3)

Then the inverse of Ak is

A−1
k = P− uuT /λ. (3.4)

Lemma 2 and Lemma 3 together play an essential role
in FISVDD to increase efficiency. It can be seen from the
lemmas that only O(k2) multiplications are needed to obtain
the updated matrix inverse. Next, we prove that if a positive
solution is obtained for the linear system Aα = e, then all
data points in the system are support vectors. This is from
the property that all support vectors satisfy d2 = R2.

Theorem 4. A set of data points x1,x2, . . . ,xk are all sup-
port vectors if and only if

Akα = e (3.5)

has a positive solution, where e indicates a vector that con-
tains all 1’s with proper dimension.

Proof. Suppose that x1,x2, . . . ,xk are all support vectors.
Then they all satisfy d2(xi) = R2 in Eq. 2.9, and thus the
d2(xi)’s are all equal. From Eq. 2.7, the middle terms,

∑

i

αiK(z,xi), (3.6)

are all equal for any support vector z. Putting Eq. 3.6 to-
gether for all support vectors results in the left-hand side of
Eq. 3.5. Therefore, Eq. 3.5 has a positive solution. On the
other hand, Eq. 3.5 implies that all xi’s satisfy d2(xi) = R2

and thus are all support vectors.

If a new data point xk+1 is added to the existing support
vector set but the (k + 1)th position in the solution to the
linear system Ak+1α = e is not positive, then the new data
point is an interior point. This is proven in the next theorem.

Theorem 5. Suppose data points x1,x2, . . . ,xk form a sup-
port vector set. Then a new data point xk+1 is an interior
point if and only if Ak+1α = e⇒ αk+1 ≤ 0.

Proof. Suppose that Ak+1α = e ⇒ αk+1 ≤ 0. By
Lemma 2, we have

αk+1 = [A−1
k+1e]k+1 =

[

−pT /β 1/β
]

e. (3.7)

Because αk+1 ≤ 0, we have

αk+1 =
1− eTA−1

k v

1− vTA−1
k v

≤ 0. (3.8)

Because β = 1− vTA−1
k v > 0, we have

1− eTA−1
k v ≤ 0. (3.9)

We want to prove that d2 −R2 ≤ 0 for xk+1. Note that

(d2 −R2)/2 = α
T
kAk(∗i) −α

T
k v

= (A−1
k e)TAk(∗i) − (A−1

k e)Tv

= eTA−1
k Ak(∗i) − eTA−1

k v

= 1− eTA−1
k v,

(3.10)

where Ak(∗i) is the ith column of Ak. By Eq. 3.9, we have

d2 −R2 ≤ 0.
On the other hand, suppose xk+1 is strictly inside the

boundary. Then we have

(d2 −R2)/2 = 1− eTA−1
k v ≤ 0. (3.11)

Then

αk+1 =
1− eTA−1

k v

1− vT
k A

−1
k v

≤ 0. (3.12)

Theorem 5 says that if we put a new data point xi into
an existing support vector set to form an expanded set and
the (k+1)th position in the solution to the expanded system
Ak+1α = e is less than 0, then xi is an interior point and
thus can be ignored. Because we can permute the rows and
columns in A−1

k+1, by Theorem 5 if αi ≤ 0 for 1 ≤ i ≤ k, we
can take xi out of the expanded set and solve the shrunken
k × k linear system. We can continue shrinking the system
until there are no negative entries in α; then a support vector
set is obtained. We summarize this shrinking step in the next
corollary.

Corollary 6. A data point xi is an interior point if and only
if Ak+1α = e ⇒ αi ≤ 0 and the shrunken k × k linear
system has a positive solution.
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Finally, we state and prove an observation that relates the
objective function value, the 1-norm of the unnormalized α

vector, and the scoring threshold. The observation is sub-
stantial for implementing FISVDD. With it a lot of unnec-
essary computations can be saved. This observation can be
also used to make sure that the objective function value in
FISVDD is not larger than the objective function value ob-
tained in the previous iteration so the FISVDD model is im-
proved.

Corollary 7. The objective function value in Eq. 2.6 with
positive α, ‖α‖1 = 1, satisfies

L =
1

‖α0‖1
, (3.13)

where α = α0/‖α0‖1. Moreover, it holds that

L =
∑

i

αiK(z,xi), (3.14)

where the xi’s are the support vectors and z is any one of
the support vectors.

Proof. To prove Eq. 3.13, note that by Theorem 4, α0 satis-
fies Aα0 = e. Then

L = α
TAα =

α
T
0

‖α0‖1
A

α0

‖α0‖1

=
α

T
0 e

‖α0‖21
=
‖α0‖1
‖α0‖21

=
1

‖α0‖1
.

(3.15)

To prove Eq. 3.14, note that
∑

i αiK(z,xi) is the first term
of the right-hand side of Eq. 2.9. So proving Eq. 3.14 is
equivalent to proving

∑

i,j

αiαjK(xi,xj) =
∑

i

αiK(z,xi), (3.16)

where xi, xj are support vectors, and z is any one of the
support vectors. The following equation can be derived:

∑

i,j

αiαjK(xi,xj) =
∑

j

αj

(

∑

i

αiK(xi,xj)
)

=
(

∑

i

αiK(z,xi)
)(

∑

j

αj

)

=
∑

i

αiK(z,xi).

(3.17)

The second equality is derived from the fact that the term in
parentheses is a constant for any support vector xj , and the
third equality is derived from the fact that the sum of all αi’s
is 1.

Corollary 7 shows a direct relationship between the objec-
tive function value, the 1-norm of the solution vector to the
linear system Aα = e, and the scoring threshold. The ob-
jective function value is a very important term of an SVDD
model and can be requested by the user at any time. When
the solution vector of the linear system is derived, the inverse
of its 1-norm directly gives the objective function value, and

the calculations in Eq. 2.6 are avoided. At the same time, L
is also the scoring threshold for the current model. Only the
second term in Eq. 2.9 needs to be computed when a new
data point needs to be scored. The results from Corollary 7
help make our FISVDD algorithm more efficient.

4 Fast Incremental SVDD Learning

Algorithm

We propose a fast incremental algorithm of SVDD
(FISVDD). The central idea of FISVDD is to minimize the
objective function (2.6) by quickly updating the inverse of
similarity matrices in each iteration. Suppose that we be-
gin with a support vector set x1,x2, . . . ,xk. When a new
data point xk+1 comes in, by Theorem 4 the linear system
Ak+1α = e will have a positive solution if the k + 1 data
points form a new support vector set, and the normalized α

vector gives the αi’s. However, if at least one of the entries
in the solution is negative, that indicates there is at least one
interior point in the set. Then we are able to drop the nega-
tive αi that has the largest |d2−R2|magnitude and solve the
shrunken k×k linear system. If the system has a positive so-
lution, then we have found a support vector set. Otherwise,
we can continue to drop the next negative αi that has the
largest |d2−R2|magnitude and solve the (k−1)×(k−1) lin-
ear system, and so on. It is worth noting that if more than one
variable is dropped from the system, the dropped data points
should be re-scored against the new boundary to determine
whether the KKT conditions are violated. If the KKT con-
ditions are violated, then the system will expand again. We
provide details below.

The FISVDD Algorithm

The FISVDD algorithm is shown in Algorithm 3. It contains
three parts of FISVDD: expanding (which is shown in Al-
gorithm 1), shrinking (which is shown in Algorithm 2), and
bookkeeping.

Stage 1, Expanding When a new data point xk+1 comes
in, it is scored to determine whether it falls in the interior.
If so, it is immediately discarded. Otherwise, it is combined
with existing support vectors to form an expanded set. The
corresponding inverse matrix of the similarity matrix and its
row sums are then updated by Lemma 2. If all row sums are
positive, then xk+1 is another support vector and the nor-
malized α vector contains the updated αi’s. If αk+1 ≤ 0,
then xk+1 is taken out of the expanded set and the support
vector set returns to the previous set. If αk+1 > 0 but there
is at least one αi ≤ 0, then there is at least one interior point
in the expanded set and the shrinking step is called. The ex-
panding step is given in Algorithm 1.

Stage 2, Shrinking If αk+1 > 0 but at least one αi < 0,
then at least one existing support vector in the support vec-
tor set has become an interior point. We need to identify
and discard such vectors. By Corollary 6, we can shrink the
support vector set one vector at a time until a positive α

is obtained. It is possible that there are several negative en-
tries in the α vector, but after taking out one negative entry
all other entries are positive. Hence, it is recommended to
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Algorithm 1 Expand

1: Input: xk+1,α, SV, σ,A−1

2: v← K(xk+1, SV, σ)
3: A−1

old ← A−1

4: A−1 ← Eq. 3.2
5: αold ← α

6: α← row sums of A−1

7: if αk+1 ≤ 0 then

8: A−1 ← A−1
old

9: α← αold

10: else
11: SV← SV + xk+1

12: end if
13: Return: α, SV,A−1

take out one vector at a time rather than taking out several
vectors. Moreover, taking out several vectors at once slows
the algorithm because then we need to calculate the inverse
of matrices whose rank is larger than 1. Although there is
no certain way of choosing which vector to remove first, in
FISVDD we choose the negative αi that has the largest mag-
nitude. From Eq. 3.8 and Eq. 3.10 and permuting columns
and rows in Ak+1, we have

αk+1 =
d2 −R2

2(1− vTA−1
k v)

, (4.1)

where αk+1 is the αi of interest permuted to the (k+1)th po-
sition. It can be seen from Eq. 4.1 that if the denominators of
the data points that have negative αi’s are close, then a data
point that has a larger |αi| tends to have a larger |d2 − R2|,
which means it lies farther from the boundary. Intuitively, a
data point farther from the boundary is more likely to be a
true interior point. Although not guaranteed, the data point
farthest from the boundary is typically the one we want to
remove first.

Algorithm 2 Shrink

1: Input: α, SV,A−1,Backup
2: flag← 1
3: while flag = 1 do
4: p← argminα
5: Backup← Backup + xp

6: SV← SV − xp

7: A−1 ←Eq. 3.4
8: α← row sums of A−1

9: if minα > 0 then
10: flag← 0
11: end if
12: end while
13: Return α, SV,A−1,Backup

Bookkeeping When the shrinking algorithm is performed,
some of the previous support vectors are taken out of the
support vector set if they have negative αi’s. However, hav-
ing a negative αi in the middle of a shrinking process does

not rule a support vector out from the final set. A data
point is considered to be an interior point only if it satisfies
(d2−R2) < 0 when scored with the final support vector set.
Therefore, it is necessary to recheck whether the data points
taken out of the support vector set are truly interior points.
In FISVDD, we build a backup set when the shrinking stage
begins. When a data point is taken out of the support vector
set, it is put into the backup set. Then the inverse matrix is
“downdated” with Eq. 3.4 and its row sums are calculated.
The shrinking continues until there are no negative entries
in the α vector. The backup set keeps growing as the linear
system shrinks. When there are no negative values in α, we
have found a support vector set, although it might not be the
final one. Then the data points in the backup set are scored
with the support vector set one by one in a first in, first out
order. To increase the algorithm’s efficiency, the backup set
is scanned only once. If (d2−R2) > 0 for a data point, then
the expanding algorithm is called again, and the data point is
removed from the backup set and placed back into the sup-
port vector set. The expanding finishes when all data points
in the backup set have (d2 − R2) ≤ 0. Although the same
check can be performed on all prior data, doing so would
cost too much memory and the gains are far less significant.
So the backup set is emptied when each new data point ar-
rives.

For completeness, we add a check to the unnormalized α

vector to make sure that the result in each iteration is im-
proved from the previous iteration. By Corollary 7, the re-
sult is improved if the 1-norm of the unnormalized α vector
increases. At the end of each iteration, this norm is com-
pared with the norm in the previous iteration. If the norm
decreases, then the result from the previous iteration is re-
stored. None of our experiments have ever violated this con-
dition.

To summarize, FISVDD is fast and computationally ef-
ficient because the algorithm ignores interior points and is
built solely on matrix manipulations. First, FISVDD tries to
obtain the optimal solution in each iteration without using
the interior points, similar to the idea mentioned in Syed et
al. (1999). Results from many experiments show that if a
proper Gaussian bandwidth is chosen, then the number of
support vectors should be far smaller than the total num-
ber of observations. FISVDD takes advantage of this fact by
calculating only the similarities between the new data points
and the support vectors.

Secondly, it can be seen from Algorithm 3 that FISVDD is
based only on matrix manipulation. Matrix inverse updating
steps are the core of FISVDD, which lets the system itself
choose which data points to move between support vector
sets and interior point sets. Sometimes the choice of the sys-
tem might not be optimal, but the existence of backup sets
allows the system to correct itself and removes a significant
number of calculations.

5 Implementation Details

In this section we discuss several important details for im-
plementing FISVDD.
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Algorithm 3 Fast Incremental Support Vector Data Descrip-
tion (FISVDD)

1: Input: Initialize(α, SV,A−1, σ)
2: for i← 1, n do
3: Q← Eq. 2.9
4: if Q ≤ 0 then
5: pass
6: else
7: α, SV,A−1 ← Expand(xk+1,α, SV, σ,A−1)
8: if minα < 0 then
9: Backup← Empty set

10: α, SV,A−1,Backup
← Shrink(α, SV,A−1,Backup)

11: if card(Backup) > 1 then
12: for j ← 1, card(Backup) do
13: Q←Eq. 2.9
14: if Q > 0 then
15: α, SV,A−1

← Expand(Backupj ,α, SV, σ,A−1)
16: end if
17: end for
18: end if
19: end if
20: α← α/‖α‖1
21: end if
22: end for

Initialization

A key advantage of FISVDD is that the similarity matrix A
is directly calculated only at initialization. As stated in Sec-
tion 4, each iteration calculates only the similarities between
a new data point and the existing support vectors. These are
used to update the inverse of the similarity matrix; the sim-
ilarity matrix is calculated only at initialization. Once the
burn-in data points are selected, their similarity matrix A
and its inverse A−1 are calculated. After the row sums of
A−1 are calculated, the shrinking step in Algorithm 2 is used
to pick out the interior points. Then the vector that contains
the normalized row sums of A−1 is the initial α.

Memory

For any online method, it is important to make sure that both
of the following conditions hold:

• The complexity in each step is small.

• Memory usage will never expand out of control even for
very large data.

For FISVDD, the two challenges are handled smoothly. The
first part is easy to see: The key parts in the algorithm
(expanding and shrinking the linear systems) require only
O(k2) multiplications each time, where k is the number of
support vectors. In addition, k should be far less than the to-
tal number of the whole data set if a proper Gaussian kernel
bandwidth σ is chosen.

For the second part, the number of support vectors can in-
deed grow large with streaming data. To avoid the potential

threat of memory expanding out of control, we set a param-
eter, M , for the maximal number of support vectors, where
M depends on availability of memory. When M is reached,
the number of support vectors will not grow large. If a new
data point xk+1 satisfies d2 > R2, then one of the three
situations will occur:

• αk+1 > 0 but at least one of the αi’s is less than or equal
to 0. In this case, the algorithm runs normally to select the
interior points.

• All αi’s are greater than 0, but αk+1 is the smallest among
all αi’s. In this case, αk+1 is discarded.

• All αi’s are greater than 0, and αk+1 is not the smallest
among all αi’s. In this case, the support vector that has
the smallest αi is replaced by xk+1, and the new αi’s are
updated.

By handling these three cases, the number of support vec-
tors will not exceed M , and the memory usage in each step
is controlled.

Outliers and Close Points

Until now, our analysis focused primarily on describing the
boundary of the streaming data. Another important feature
of SVDD is that it finds outliers in the data so that fur-
ther investigations can be taken. In Laskov et al. (2006)
and Scheinberg (2006), data points are classified as outliers
based on αi values. FISVDD assumes that outliers are far
from normal data and hence do not influence the support
vectors and the αi’s. In addition, we assume that the bound-
ary that is determined by the support vectors is robust to
outliers. Note that if a data point is far from the support vec-
tors, the v vector in Eq. 3.1 should be close to a zero vector,
which indicates that the largest value in v should be close to
0. In FISVDD, a data point z is classified as an outlier if it
satisfies the following condition for a preselected parameter
ǫ1 > 0:

maxv < ǫ1. (5.1)

If z is classified as an outlier, then it is passed to further
investigation, and no α value is assigned to it.

Another special case we have to consider is a new data
point that is very close to one of the existing support vectors.
Although in practice it is rare that a new data point is exactly
the same as an existing support vector, it is possible that they
are very close to each other. In this case, the similarity matrix
A will be ill-conditioned and A−1 might be not accurate.
We can avoid this situation by also looking at the maximal
entry value in v. If a new data point is very close to one of
the support vectors, then the maximal entry value in v will
be close to 1. In FISVDD, a point is discarded if it satisfies
the following condition for a preselected parameter ǫ2 > 0:

maxv > 1− ǫ2. (5.2)

Finally, note that these preprocessing steps can help pre-
vent unnecessary calculations if the Gaussian kernel band-
width σ is not a proper bandwidth. If σ is too small, then
every data point tends to be a support vector and the similar-
ity between every pair of data points is close to 0. If σ is too
large, then the similarity between every pair of data points is
close to 1. Introducing ǫ1 and ǫ2 can prevent these cases.
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6 Experiments

We examined the performance of FISVDD with four real
data sets: shuttle data (Lichman 2013), mammography data
(Woods et al. 1993), forest cover (ForestType) data (Rayana
2016), and the SMTP subset of KDD Cup 99 data (Rayana
2016). The purpose of our experiments is to show that com-
pared to the incremental SVM method (which can achieve
global optimal solutions), the FISVDD method does not
lose much in either objective function value or outlier de-
tection accuracy while it demonstrates significant gains in
efficiency. Our experiments used 4/5 of the normal data,
randomly chosen, for training. The remaining normal data
and the outliers together form the testing sets. All dupli-
cates in the data sets are removed beforehand. Proper Gaus-
sian bandwidths are selected by using fivefold cross val-
idation, although selecting a proper Gaussian bandwidth
is beyond the scope of this paper. SAS/IML R© software is
used in performing the experiments. In this paper, we com-
pare FISVDD with the one-class incremental SVM method
(Laskov et al. 2006), a well-known technique for perform-
ing global optimal SVDD. For each method, the following
quantities are measured in Table 1:

• Time: The time used to learn the SVDD model.

• Objective function value (OFV): The objective function
values that were obtained with Eq. 2.6 after each iteration.

• Number of support vectors (#sv): The number of support
vectors when the training phase is finished. This number
is related to the efficiency of the testing phase. When more
support vectors exist, more calculations are required in
testing.

The time consumed by the incremental SVM method
with interior points discarded after each iteration is listed
in parentheses. Table 1 also lists the settings for the exper-
iments, including Gaussian bandwidth (Sigma), number of
training observations (#Train obs), number of testing obser-
vations (#Test obs), and number of variables (#Var).

Table 1: Experimental Results of FISVDD and Incremental
SVM on Different Data Sets

Data Sigma Method #Train obs #Test obs #Var OFV Time (s) #sv

Shuttle 5.5 FISVDD 36469 21531 9 1.7378e−3 251.01 1736
Inc. SVM 1.7369e−3 22923.57 1926

(312.65)
CoverType 470 FISVDD 226641 59407 10 1.14158e−2 19.47 432

Inc. SVM 1.14155e−2 12954.81 470
(29.45)

Mammography 0.8 FISVDD 6076 1773 6 9.8134e−3 1.19 317
Inc. SVM 9.8008e−3 67.01 317

(1.58)
SMTP 6 FISVDD 56967 14263 3 0.393 0.27 5

Inc. SVM 0.393 2.49 5
(0.38)

Table 1 shows that for the same Gaussian bandwidth, the
FISVDD method is much faster than the incremental SVM
method, with only a tiny sacrifice in the objective function
value. Because incremental SVM achieves global optimal
solutions, the solutions provided by FISVDD are very close
to the global optimal solutions. Even with interior points dis-
carded after each iteration, FISVDD is faster than incremen-
tal SVM for the data sets in our experiments. As explained

(a) Shuttle Data (b) CoverType Data

(c) Mammography Data (d) SMTP Data

Figure 1: F-1 Measure for Different Data Sets

in Section 4, FISVDD is faster because it is based solely on
matrix manipulation and thus many calculations are saved.

Figure 1 shows plots of the F-1 measure (Tan, Steinbach,
and Kumar 2007) of the accuracy of FISVDD and incremen-
tal SVM with different training sizes. The plots show that by
discarding interior points at the end of each iteration, there
is almost no loss in the quality of outlier detection.

7 Conclusion

This paper introduces a fast incremental SVDD learning
algorithm (FISVDD), which is more efficient than exist-
ing SVDD algorithms. In each iteration, FISVDD considers
only the incoming data point and the support vectors that
were determined in the previous iteration. The essential cal-
culations of FISVDD are contributed from incremental and
decremental updates of a similar matrix inverse A−1. This
algorithm builds on an observation that is natural in SVDD
models but has not been fully utilized by existing SVDD al-
gorithms: that all support vectors on the boundary have the
same distance to the center of sphere in a higher-dimensional
feature space as mapped by the Gaussian kernel function.
FISVDD uses the signs of entries in the row sums of A−1 to
determine the interior points and support vectors and uses
their magnitudes to determine the Lagrange multiplier αi

for each support vector. Experimental results indicate that
FISVDD gains much efficiency with almost no loss in accu-
racy and objective function value.
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