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Abstract— Data collections often have inconsistencies that arise
due to a variety of reasons, and it is desirable to be able to
identify and resolve them efficiently. Set similarity queries are
commonly used in data cleaning for matching similar data. In
this work we concentrate on set similarity selection queries: Given
a query set, retrieve all sets in a collection with similarity greater
than some threshold. Various set similarity measures have been
proposed in the past for data cleaning purposes. In this work
we concentrate on weighted similarity functions like TF/IDF,
and introduce variants that are well suited for set similarity
selections in a relational database context. These variants have
special semantic properties that can be exploited to design very
efficient index structures and algorithms for answering queries
efficiently. We present modifications of existing technologies to
work for set similarity selection queries. We also introduce three
novel algorithms based on the Threshold Algorithm, that exploit
the semantic properties of the new similarity measures to achieve
the best performance in theory and practice.

I. INTRODUCTION

Data collections often have inconsistencies that arise due to
a variety of reasons, such as typographic mistakes, formatting
conventions, data transformation errors and more. Consistent
or clean data are of high monetary significance for business
practices; it is desirable to be able to identify and resolve
such inconsistencies efficiently. For that purpose, various set
similarity join operators have been proposed in the past [1],
[2], [3]. The main idea behind such operators is to view
operands as sets of tokens and evaluate the similarity of the
operand sets. If the similarity is high enough the operand
pair is flagged as being of interest (e.g., potential duplicate).
Several such similarity operators have been proposed in the
literature. The bulk of algorithm development in this area
has concentrated on the efficient execution of join operations
between data sets, incorporating such similarity operators as
a join predicate (see Section IX). In this work we concentrate
on set similarity selection queries. Informally, a set similarity
selection query retrieves all sets from a data collection whose
similarity with the query set exceeds a user specified threshold.

A large number of set similarity measures have been
proposed in the past, like intersection, Jaccard and cosine
similarity. It has been demonstrated that no single similarity

function is best across all application domains [4]. In this work
we concentrate on well known and largely deployed weighted
similarity measures like TF/IDF cosine similarity and BM25
[5].

There are two main approaches in the design of efficient set
similarity selection algorithms. The first is based on relational
database technology, e.g., using tables, indexes, SQL and
UDFs [6], [2]. The second approach is to design specialized
disk resident indexes, in the form of inverted lists, and then
deploy variants of the Threshold Algorithm (TA/NRA) to
evaluate similarity [7], [3].

In this paper, for the problem of set similarity selection
in a relational database context, we introduce simple variants
of traditional TF/IDF, BM25 weighted measures that exhibit
certain very desirable semantic properties; such properties can
be exploited to design specialized algorithms for performing
the search orders of magnitude faster than straightforward
approaches. These semantic properties enable pruning a very
large percentage of the search space instantaneously, resulting
in huge performance benefits both for approaches utilizing
indexes based on existing relational technology as well as for
approaches utilizing inverted lists.

We first show how existing approaches (Section III) can
take advantage of semantic properties (presented in Section
IV). Next, we design three specialized list merging algorithms:
The first (Section V) is an improved version of NRA, based on
breadth first search. The second (Section VI) is based on depth
first search and is characterized by very low bookkeeping cost.
The third (Section VII) is a hybrid combination of the two,
achieving the most efficient pruning in theory and practice,
with a slightly increased bookkeeping cost. We experimen-
tally demonstrate (Section VIII) that our algorithms achieve
arbitrarily stronger pruning than NRA for certain instances,
resulting in improved performance. This follows from the fact
that NRA is instance optimal over a class of algorithms that
does not capture the new techniques proposed herein.



II. PRELIMINARIES

Consider two strings s1 =“Main St., Main” and s2 =
“Main St., Maine”, mapped into token multi-sets {‘Main’,
‘St.’, ‘Main’} and {‘Main’, ‘St.’, ‘Maine’}. The two multi-
sets share two tokens in common. Clearly, the larger the
intersection of the two multi-sets, the larger the potential
similarity. Nevertheless, not all tokens are equally important.
Tokens that appear very frequently in the database (like ‘Main’
or ‘St.’) carry small information content, whereas rare tokens
(like ‘Maine’) are more important semantically. Hence, the
more important a token is, the larger the role it should play
in overall similarity. For that reason, the TF/IDF similarity
measure uses the Inverse Document Frequency (idf) as token
weights. The idf of a token is the inverse of the total number
of times that this token appears in the database.

In addition, TF/IDF uses a Term Frequency (tf) compo-
nent, i.e., each token is also weighted by the total number
of times it appears in the multi-set. For example, the partial
weight of ‘Main’ in s1 is doubled. From an information
retrieval perspective, where we search for highly related docu-
ments to a given keyword set, the more times a token appears
in a document, the higher the relevance of that document to the
query is expected to be. For example, the higher the frequency
of ‘Main’ within a document, the more relevant the document,
in expectation, to either s1 or s2. Nevertheless, the tf compo-
nent of the score does not carry over straightforwardly when
evaluating similarity between two multi-sets in all application
domains, e.g., when comparing similarity between two strings;
the higher the frequency discrepancy of ‘Main’ between s1 and
s2, the smaller the similarity of the two strings. Furthermore, in
practice, in relational databases, such multi-sets usually have
very small cardinality; a large percentage of tokens appear only
once in each set (i.e., tf = 1). For example, after decomposing
all strings in the IMDB [8] dataset into words, out of 950K
distinct words, only 1861 words appeared in at least one string
with tf > 2. Overall, less than 4% of the words appeared
in any set with tf > 1. Moreover, only 1% of the strings
contained at least one word with tf > 1. Similar observations
hold when decomposing strings into 3-grams, as well as when
using other datasets, like DBLP [9]. Hence, specifically for
set similarity queries in a relational database context, it is
intuitive to drop the tf component of the TF/IDF score,
essentially reducing multi-sets to sets. We term the modified
similarity measure IDF. Table I presents average precision
experiments for random set selection queries, comparing set
similarity selections using TF/IDF, BM25, IDF and BM25’
(BM25 without tf information). We used the same data sets
utilized in previous work [10] containing varying degrees of
errors, from low (cu8) to high (cu1) (see [10] for a description
of the data sets and error models). As is evident from the
table, ignoring the tf component of the score does not affect
the quality of the results in practice.

Another intuitive modification is to length normalize the
similarity scores. Length normalization restricts similarity in
the interval [0, 1]. First and foremost, we expect similar sets

TABLE I
DATA SETS AND AVERAGE PRECISION

Dataset TFIDF IDF BM25 BM25’
cu1 0.693 0.690 0.734 0.730
cu2 0.759 0.759 0.811 0.809
cu3 0.849 0.849 0.884 0.884
cu4 0.949 0.947 0.954 0.953
cu5 0.922 0.922 0.941 0.941
cu6 0.969 0.967 0.976 0.976
cu7 0.990 0.989 0.990 0.990
cu8 0.995 0.995 0.995 0.995

to have similar lengths. Hence, we can prune the search space
based on set lengths alone (cf. Section IV). Second, expressing
similarity in a closed, well defined interval is more intuitive;
without length normalization similarity thresholds have to be
expressed in terms of unbounded constants. Moreover, with
length normalization an exact match always has score equal
to 1. The same ideas can be applied to BM25 and other tf
based weighted measures. For simplicity, in the rest of the
paper we concentrate on TF/IDF.

Formally, consider a database D of sets (e.g., a collection
of strings where each string has been decomposed into q-
grams, words, etc.), where every set consists of a number of
elements from universe U ; Let set s = {s1, . . . , sn}, si ∈ U .
Every si is assigned an idf weight computed as follows:
Let N(si) be the total number of sets containing token si

and N be the total number of sets in the database. Then,
idf(si) = log2 (1 + N/N(si)). The normalized length of
set s is computed as len(s) =

√∑
si∈s idf(si)2. The IDF

similarity of sets q and s is:

I(q, s) =
∑

si∈q∩s

idf(si)2

len(s)len(q)
. (1)

If q = s, the IDF score is equal to 1. Otherwise, as the number
of common tokens grows the score becomes larger. Never-
theless, the contribution of every common token to the score
is dampened as the length divergence between the two sets
grows. Denote with wi(s) the contribution of si to the overall
score: I(q, s) =

∑
si∈q∩s wi(s). Notice that if si 6∈ s, then

wi(s) = 0. If si ∈ s, then wi(s) = idf(si)2/len(s)len(q).

III. EXISTING SOLUTIONS

The goal is to efficiently evaluate the IDF similarity of a
given query set with all database sets, and report those that
exceed a user defined threshold τ . For this purpose, specialized
indexes can be based either on relational database technology
or inverted lists.

A. Using Relational Database Technology

We can evaluate the IDF measure using pure relational
database technology in a fashion similar to the processing
described in [11], [2] for TF/IDF. First, we pre-process the
database and store all sets in a relational table in First Normal
Form; call this the Base Table. Figure 1 shows an example with
strings decomposed into sets of 4-grams. Every row consists of
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Fig. 1. Token base table and query table.

a set id, a token, the token idf and the normalized length of the
set. Given a query set q we perform the same processing and
store the result as a separate query table. Evaluating the IDF
similarity between the sets in the base table and the query can
be performed using standard SQL processing in the form of
an aggregate/group-by/join statement. If an index on tokens
is available, processing is expected to be very fast, pruning
out immediately sets that do not contain any query tokens
(a clustered index would be the best choice in this case). If
an index is not available, a linear scan of the base table is
unavoidable.

B. Using Inverted Lists

An alternative solution is to design a specialized index. The
straightforward approach is to create an inverted index on the
tokens in U (see Figure 2). We construct one list per token si.
The list is composed of one pair 〈s, len(s)〉 per set containing
si. Let query q = {q1, . . . , qn} and length len(q). Using the
inverted index, we can compute I(q, s) for all s by scanning
the lists of tokens qi, 1 ≤ i ≤ n in one pass. Irrelevant sets
(with s ∩ q = ∅) are never accessed.

Assume that lists are sorted in increasing order of set id
(for brevity, in the rest we associate with every set a unique
natural number; see Figure 2). Computing I(q, s) for all s can
be performed using a multi-way list merging algorithm. We
maintain an in memory heap containing the set ids at the head
of the lists (1, 2 and 3 in the example). We aggregate the score
of any id that appears at the head of multiple lists. Obviously,
the score of the smallest id (the one at the top of the heap)
is complete (this id has either been encountered in all lists or
does not appear in the rest of the lists). If its score exceeds τ
it is reported as an answer, else it is discarded. The process is
repeated after advancing the head of the lists pointing to the
id last removed from the heap.

Alternatively, assume that lists are sorted first in increasing
order of lengths and then in increasing order of set ids. Notice
that len(q) is constant across all lists, and for a given token
qi, idf(qi) is constant across list i. Hence, by sorting the list
in increasing length order, we implicitly arrange the sets in
decreasing wi order. Clearly, given that IDF is a monotonic
score function, we can now use TA/NRA style algorithms to
compute the scores incrementally, by using Equation (1) [7].

For simplicity in the following examples the lists appear
already in sorted wi order, where the token idf, the length of
the set and the length of the query have already been taken into
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account. Refer to the example query in Figure 3. We consider
the NRA algorithm first. NRA performs sequential accesses
only. The algorithm reads the lists in a round-robin fashion,
and iteratively loads the next element from every list starting
from the top. It maintains an in memory hash table with one
entry per set id discovered so far. Each entry s contains the
aggregated score of the contributions of the lists in which s
has already appeared. It also contains a bit vector indicating
the lists where s has not been encountered yet. Denote the
last (frontier) element read on each list with fi, 1 ≤ i ≤ n.
The lower bound I`(s) of the score of s is computed as the
sum of wi(s) for all i where s has been encountered so far.
The upper bound Ia(s) is computed as the sum of the lower
bound and the contributions wi(fi) for each i where s has
not been encountered yet. On every iteration over the lists,
after all fi have been updated, NRA scans the candidate set
and discards all s with upper bound smaller then τ . It also
reports sets whose score is complete and larger than τ . The
search terminates when the candidate set becomes empty. The
algorithm appears as Algorithm 1. If an index on set ids is
also available per inverted list, one can use the TA algorithm
instead, to perform the search.

A running example of NRA is shown on the right side of
Figure 3 for τ = 1. After the first round through the lists,
NRA discovers sets 1, 2, 3 which are all viable, given current
frontier f1 = .7, f2 = .4, f3 = .1. After the second round, the
scores of 2 and 3 are updated and 4 enters the candidate list.
On the third round, the score of 4 is complete and is reported
as an answer. Set 7 enters the list. On the fourth round 5 and
6 enter the list. Given the current frontier, 1, 3, 5 and 7 cannot
exceed the threshold and are deleted. The algorithm proceeds
until set 2 is discovered or the lists are exhausted.



Algorithm 1: The NRA algorithm

Input : Lists q = {q1, . . . , qn}, Threshold τ
Output: Sets with I(q, s) ≥ τ
Set C = ∅, fi = first element on list i1

∀ new s ∈ C, let I`(s) = 0, Ia(s) = 0, b[1,n](s) = 02

repeat3

forall 1 ≤ i ≤ n do4

fi = s = pop next element from list i5

If s 6∈ C insert s in C6

Else retrieve s from C7

I`(s)+ = wi(s), bi = 18

forall r ∈ C do9

Update bi(r) according to new fi10

If b[1,n](r) = 1 and I(q, s) ≥ τ report r11

If new Ia(r) < τ remove r from C12

until C = ∅ ;13

IV. SEMANTIC PROPERTIES OF IDF

The solutions presented so far take into account only the
monotonicity property of IDF, needed for TA/NRA. In this
section we present several other properties that can be ex-
ploited to design specialized algorithms that are considerably
more efficient than straightforward solutions.

Recall that list entries are sorted in increasing order of
lengths (and as a consequence in decreasing order of partial
contributions wi). The important observation is that the length
of a set is constant across all lists. Hence, if two sets s and r
appear in multiple lists, their sort order is preserved:

Property 1 (Order Preservation): For all k 6= l, if wk(s) ≤
wk(r) then wl(s) ≤ wl(r) and vice versa.
Property (1) is important for the following reason. If we know
from list k that len(s) < len(r) and set r has already been
encountered in any other list l, then either set s has been
encountered in l as well, or s does not appear in l.

After the length of a set is known (e.g., after encountering
the set in list k), we can immediately compute contribution
wk and, in addition, all other contributions wl, l 6= k (since
the idfs of all tokens are known). Hence, after encountering
a set s in any list k, a best case maximum score for s can
be determined by making the assumption that s appears in all
other lists:

Property 2 (Magnitude Boundedness): For any s and q, af-
ter retrieving len(s) from any list k, a best case upper bound
Ia(s) can be computed directly.
This gives a tight upper bound that can be used for more
efficient pruning.

Intuitively, we expect similar sets to have similar lengths.
Also, small sets tend to have small lengths, and large sets tend
to have large lengths. 1 Clearly, it must be possible to perform
pruning based on set lengths. The following holds:

1This is not always the case since, e.g., a large set may contain very frequent
tokens only, which have low idfs, resulting in a small length.

Theorem 1 (Length Boundedness): Given query q, set s
and threshold τ , if I(q, s) ≥ τ it follows that τ len(q) ≤
len(s) ≤ len(q)

τ .
Proof: There are three cases to consider:

Case 1. q ∩ s = q. We have:

I(q, s) =

∑
qi∈q idf(qi)2

len(s)len(q)
=

len(q)2

len(s)len(q)
=

len(q)
len(s)

≥ τ.

Case 2. q ∩ s = s. We have:

I(q, s) =
len(s)2

len(s)len(q)
=

len(s)
len(q)

≥ τ.

Case 3. q ∩ s ⊂ q and q ∩ s ⊂ s. We have:
∑

qi∈q∩s idf(qi)2

len(s)len(q)
≥ τ ⇒ len(s) ≤

P
qi∈q∩s idf(qi)2

τlen(q) <

P
qi∈q idf(qi)2

τlen(q) = len(q)
τ .

This proves the upper bound. For the lower bound:

len(s)2 =
∑

si∈s

idf(si)2 >
∑

qi∈q∩s

idf(qi)2.

But:
∑

qi∈q∩s idf(qi)2

len(s)len(q)
≥ τ ⇒

∑

qi∈q∩s

idf(qi)2 ≥ τ len(s)len(q).

Hence, len(s)2 ≥ τ len(s)len(q) ⇒ len(s) ≥ τ len(q).
Notice also that given cases 1 and 2 above, the range of

lengths is tight. The importance of this theorem is self-evident.
Given the inverted lists of the query tokens and a user defined
threshold, we can immediately prune all sets whose lengths
fall outside the given bounds. Hence, we only need to run
any algorithm on a much reduced subset of the database.
This property will significantly affect the performance of all
existing and new solutions. It should be stressed here that
TF/IDF and BM25 follow looser versions of the aforemen-
tioned properties (by associating with every token a maximum
tf component and boosting all bounds accordingly). Existing
and novel algorithms for these metrics can also be optimized
accordingly.

V. THE IMPROVED NRA ALGORITHM (INRA)

The above observations can help significantly improve
NRA. Given query q and threshold τ , we use Length Bounded-
ness to determine which part of the lists we need to scan. If no
index on lengths exists, we follow the normal NRA algorithm
and simply ignore list entries outside the length bounds during
sequential scans. If an index on length exists (e.g., in the form
of a skip list) we skip directly to the first entry with length
equal to τ len(q) in every list. We also stop reading a list after
encountering the last element with length equal to len(q)/τ .

Next, we use Order Preservation to directly determine if a
given element appears in a list or not. Given set s, if len(s) <
len(fi) for any i, and s has not appeared in list i yet, we update
its upper bound accordingly; s will never appear on list i.



Algorithm 2: The iNRA algorithm

Input : Lists Q = {q1, . . . , qn}, Threshold τ
Output: Sets with I(q, s) ≥ τ
Set C = ∅, fi = first element on list i1

∀ new s ∈ C, let I`(s) = 0, Ia(s) = 0, b[1,n](s) = 02

Skip to first entry with len(s) > τlen(q) in all lists3

repeat4

forall 1 ≤ i ≤ n do5

fi = s = pop next element from list i6

If len(s) > len(q)/τ mark list as complete7

If s 6∈ C and (F < τ or
∑

1≤j≤n wj(s) < τ )8
continue
Else insert s in C or retrieve s from C9

I`(s)+ = wi(s), bi = 110

if F < τ then forall r ∈ C do11

Update bi(r) according to new fi12

If b[1,n](r) = 1 and I(q, s) ≥ τ report r13

If new Ia(r) < τ remove r from C14

Else break15

until C = ∅ ;16

We can use Magnitude Boundedness to directly compute
the best case upper bound for any encountered set id. If the
upper bound is less than τ we can immediately discard the set.
This computation requires time linear to the number of lists
per element access. To reduce the overhead, we can use the
following observation as a pre-condition. The frontier elements
fi define a conceptual best possible score of a yet unseen
element. Assume that the same set id appears in all lists exactly
after elements fi. The score of this unseen element is at most
F =

∑
1≤i≤n wi(fi). If F < τ no unseen element can exceed

the threshold. Hence, after this condition is satisfied we do not
need to insert any new elements in the candidate set, but only
complete the scores of already discovered elements. Threshold
F is computed only once per round robin iteration.

Another observation is that NRA performs one scan of the
candidate set per round robin iteration. If the candidate set
is large, the cost is overwhelming. First, notice that iNRA
cannot terminate unless F < τ . Hence, scanning the candidate
set before this condition is satisfied is not necessary. Second,
a conservative approach for reducing the scanning cost is to
terminate the scan once the first viable candidate has been
encountered (i.e., a candidate with Ia(s) ≥ τ ). The iNRA
algorithm appears as Algorithm 2. The correctness of the
algorithm is not hard to prove. It follows directly from that of
NRA and the correctness of the novel pruning decisions.

Running this algorithm on the example of Figure 3 il-
lustrates the significant benefits of the improvements. After
the second round through the lists the algorithm immediately
discards set 1 using the Order Preservation property, since
clearly if set 1 appeared in lists q2, q3 it should appear before
entries 2 and 3 respectively. Overall, the algorithm terminates
at round four after also discarding set 2. The original NRA,

in the worst case, could do a complete scan of the lists:
Lemma 1: In the worst case, the NRA algorithm reads

arbitrarily more elements than iNRA.
Notice that this observation does not contradict the instance
optimality of NRA, since our algorithm is taking informed
decisions based on a property other than monotonicity. This
class of algorithms is not considered in the proof for NRA
(they are referred to as algorithms that take “lucky” guesses).
To prove Lemma 1 we use the Order Preservation property.
Additionally, we can also prove that any algorithm that utilizes
the Length Boundedness property runs arbitrarily better than
NRA for certain instances. This is not hard to see in special
cases. Assume that set lengths are unique and τ = 1. The
Length Boundedness property will restrict the search space
to only one set, the one with length equal to the length of
the query. Clearly, in this case we can construct examples
where NRA will have to examine every single set in the
database instead. It should be noted here that we can apply
similar optimizations to the TA algorithm. Modifications are
straightforward, and omitted for brevity. We call the optimized
version iTA.

VI. THE SHORTEST-FIRST ALGORITHM (SF)

The iNRA algorithm uses the semantic properties of IDF to
speed-up the search but adheres to the round robin processing
of lists in the original NRA. In that sense, the NRA algorithm
can be viewed as a breadth-first approach. A different strategy
is a depth-first approach. The SF algorithm scans lists in
decreasing idf order. By the definition of idf, frequent tokens
(with low idf) are associated with long lists and rare tokens
(with high idf) are associated with short lists. By reading
shorter lists first, the search discovers a smaller number of
false positive candidates, improving pruning bounds faster and,
hence, obviating the need to exhaustively scan longer lists.

Let query Q = {q1, . . . , qn}, and without loss of generality
assume that idf(q1) > idf(q2) > · · · > idf(qn). Denote by
λi the maximum length a candidate s in list qi can have, in
order to exceed threshold τ assuming that s appears in all
subsequent lists j ≥ i (recall that the length of s is constant
across all lists). Hence:

∑

i≤j≤n

idf(qj)2

λilen(q)
= τ ⇒ λi =

∑

i≤j≤n

idf(qj)2

τ len(q)
. (2)

Length λi is a natural cutoff point in list i beyond which no
yet unseen element s can be a viable candidate. An important
observation is that λ1 ≥ λ2 ≥ . . . ≥ λn. (Notice that iNRA
implicitly evaluates λi in line 8 on a per element access basis
as opposed to computing it in advance.)

The SF algorithm is shown as Algorithm 3. It proceeds
as follows. First, it skips to the first entry in every list with
length len(s) ≥ τ len(q). Then, it computes λ1, . . . , λn and
scans lists from high idf to low idf order, reading all elements
from length τ len(q) up to and including sets with length
min(λi, len(q)/τ). Potential candidates are stored in a sorted
list C in increasing length order. When scanning list q1, C
is empty and it is populated with all new elements from q1.



Algorithm 3: The SF Algorithm

Input : Lists Q = {q1, . . . , qn}, Threshold τ
Output: Sets with I(q, s) ≥ τ
Let idf(q1) > idf(q2) > . . . , idf(qn)1

C = ∅, max len(C) = 02

for 1 ≤ i ≤ n do3

Skip to first entry with len(s) ≥ τ len(q)4

Compute λi using Equation (2)5

Let µi = min (λi, len(q)/τ)6

repeat7

s = pop next element from list i8

If s ∈ C then I`(s)+ = wi(s)9

Else if len(s) ≤ λi insert s in C10

∀ skipped r ∈ C reevaluate Ia(r) and discard11

until len(s) > max (max len(C), µi) ;12

Notice that any element with length larger than λ1 cannot
exceed the threshold, even if it appeared at the top of every
subsequent list. When scanning q2, since both C and q2

are sorted by increasing lengths, a merge-sort algorithm is
performed to combine the new elements read with the existing
list. The partial score of elements in C contributed from list
q1 is updated; new elements from list q2 are inserted in C
in sorted length order; elements contributed by previous lists
not present in the current list are reevaluated for potential
pruning (e.g., sets from list q1 that did not appear in list q2,
and thus have smaller potential maximum score than initially
computed). Once again, new elements with length larger than
λ2 cannot exceed τ . But clearly, there might be elements
s from list q1 with len(s) > λ2 already in C. Hence, to
guarantee that no partial score components of elements in C
have been omitted, the SF algorithm continues to scan list
q2 until it encounters an element with length larger then the
largest length in C (denote this by max len(C)). Pruning non
viable candidates is important since it reduces max len(C)
and, consequently affects how deep the algorithm needs to
scan subsequent lists. The algorithm continues sequentially
with all remaining lists. It terminates when the score of all
elements in C is complete. The correctness of the algorithm
follows from the correctness of the λi values for identifying
possible new candidates in a list, given that consecutive lists
are sorted in decreasing idf order. It also follows from the fact
that the algorithm will read a list until all the scores of existing
candidates have been updated or it has been deduced that a
candidate does not appear in this list.

In the example of Figure 3, setting idf(q1) = 15 yields
idf(q1)2 = 225, idf(q2)2 = 180 and idf(q3)2 = 45, which
are consistent with the partial scores in the lists. Now, we can
compute len(q) = 21.21, len(1) = 15.15, len(2) = len(3) =
len(4) = 21.21, λ1 = 21.21, λ2 = 10.6 and λ3 = 2.12. The
SF algorithm first reads elements 1, 2, 4 from list q1 (up to
length 21.21), and proceeds with list q2. Clearly, len(2) > λ2

and no new candidates can exist in q2. Nevertheless, currently
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Fig. 4. In this example iNRA is arbitrarily better than SF.

max len(C) = 21.21 and the algorithm reads all elements
with len(s) ≤ 21.21 in order to complete the scores of
1, 2, 4. Hence, sets 2, 3, 4 are read; 3 is discarded since it does
not appear in C; 1 can also be discarded due to the Order
Preservation property; the scores of 2 and 4 are updated. Next,
list q3 is processed. Once again, no new candidates can exist
in this list since len(3) > λ3. Nevertheless, elements with
len(s) ≤ 21.21 need to be read for score completion. After
set 3 is processed, candidate 2 can be discarded due to the
Order Preservation property. The score of 4 is completed and
reported as an answer. The candidate set becomes empty and
the algorithm terminates.

We can see that SF reads even fewer entries than iNRA for
this particular instance. More specifically:

Lemma 2: Let Q = {q1, . . . , qn} and dmax be the maxi-
mum depth that SF descents over all lists. In the worst case
iNRA will read (dmax − 1)(n− 1) elements more than SF.

Nevertheless, Figure 4 shows a slightly different example
where iNRA performs arbitrarily better than SF. Once again,
consider τ = 1 and set idf(q1) = 15. We get idf(q1)2 = 225,
idf(q2)2 = 135 and idf(q3)2 = 45. Now, we can compute
len(q) = 20.12, len(1) = 15.97, len(2) = len(3) = len(4) =
. . . = 22.36, λ1 = 20.12, λ2 = 8.94 and λ3 = 2.23. SF reads
elements 1, 2, 4, 5, . . . from q1, 2, 3, 4 from q2 and 3, 4 from
q3 as before, deducing that no exact matches exist. A running
example of iNRA is shown at the right side of the figure. Here,
iNRA reads elements 1, 2, 3 in the first round, deduces that 1
can be discarded due to Order Preservation. Given Ia(2) =
Ia(3) = 0.9, both 2 and 3 are also discarded. The algorithm
continues with the second round since F > τ . Sets 2 and
3 are ignored once again and 4 is discarded similarly. Now,
F < τ and the algorithm terminates. iNRA reads arbitrarily
fewer elements than SF. In the worst case SF will read all
elements in list q1, before reading list q2.

Lemma 3: In the worst case, the SF algorithm reads arbi-
trarily more elements than iNRA.

Choosing to access longer, low idf lists last has important
advantages. In practice, it is expected that only a small fraction
of long lists will need to be accessed, since max len(C) and λi

keep decreasing as the algorithm proceeds. Another advantage
is that SF requires only one scan of the candidate set per
list, in contrast with iNRA that requires one scan for each
round robin iteration. Clearly, the bookkeeping cost of SF
will be significantly smaller than that of iNRA. Still, a hybrid
approach that combines the small I/O cost of both algorithms
for all problem instances would be desirable.



Algorithm 4: The Hybrid algorithm
. . .
forall 1 ≤ i ≤ n do

7 . . .
If len(s) > max len(C) mark list as complete

8 . . .

VII. THE HYBRID ALGORITHM

Clearly the SF algorithm has very small bookkeeping cost
due to its sorted data structure and is expected to achieve
high element pruning on average. On the other hand, iNRA
has significantly higher bookkeeping cost due to the required
candidate set scans, but may access arbitrarily fewer elements
than SF in special cases. We expect SF to work best in
practice, but it would be desirable to design an algorithm
that accesses the least possible number of elements in theory.
We call this algorithm Hybrid. Hybrid reads elements in a
round robin fashion like iNRA but uses max len(C) as a
stopping condition for a particular list. This condition restricts
the Hybrid algorithm from descending in any list deeper than
SF, hence making Hybrid at least as efficient as SF in terms
of element accesses for all instances. In addition, since the
algorithm follows the iNRA strategy, it reads no more elements
than iNRA in all cases, combining the best of both previous
techniques:

Lemma 4: The Hybrid algorithm reads at most as many
elements as either SF or iNRA for all problem instances.
The proof for SF is based on the fact that no candidates
with length larger than λ1 will ever be inserted in C. Thus,
max len(C) is in the worst case the same for both algorithms.
The rest depends on tightly pruning candidates from C, hence
not allowing Hybrid to exceed the depth of SF in any list.

The algorithm is the same as Algorithm 2, except from the
addition of the max len(C) condition between lines 7 and
8. In the present form the algorithm has higher bookkeeping
cost than either iNRA or SF, since, first, it needs to maintain
C as a hash table on set ids for efficient access, second,
it needs to identify the current max len(C) per list access,
which necessitates a full scan of C. (Notice that max len(C)
cannot be maintained incrementally, since elements are deleted
occasionally from the set.)

A special candidate set organization can reduce both the
cost of scanning C and identifying max len(C). We partition
candidates into lists sorted by length; one sorted list ci per
inverted list qi along with a hash table on set ids. A candidate
s first discovered in qi is inserted into candidate list ci. Notice
that since candidates from qi are discovered in increasing
length order by construction, they can simply be appended
to the end of ci for a constant insertion cost. Each candidate
is also inserted in the hash table, along with a pointer to its
location in list ci, needed for efficient deletion when elements
are pruned from the hash table. With this combined structure
max len(C) can be computed by peeking at the last element
of every list, for a cost linear to n (as opposed to linear to
the number of candidates). Moreover, deleting all non-viable
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candidates from the candidate set is accomplished by dropping
elements repeatedly from the back of all lists until a viable
candidate is found in every list (once a viable candidate is
found all subsequent elements are guaranteed to be viable as
well). Notice that the same structure can be used with iNRA
in order to minimize memory requirements by removing all
non-viable candidates after a scan, instead of terminating the
scan once the first viable candidate is found.

VIII. EXPERIMENTAL EVALUATION

A. Experimental Setup

We run experiments on an Intel(R) Xeon 2.66 MHz, with 16
GB RAM. Two real datasets were used for the experimental
evaluation; the DBLP citations [9] and the IMDB database
[8]. In the rest, we concentrate on the IMDB data. Results for
DBLP followed identical trends. Our data table consists of two
fields, Actor and Movie, it is stored in first normal form, and
consists of 7 million rows. We tokenize tuples into words, and
convert each word into a set using 3-grams. Every word/set
is associated with a unique, 8 byte long identifier encoding
the row/column/location of the word in the data table. Word
similarity queries are translated to set similarity using the
IDF measure. The result of a query is the locations of words
with similarity larger than the user specified threshold. We
compare set similarity indexes based both on inverted lists
and DBMS technology. Algorithms are evaluated according
to overall processing cost (measured in average wall-clock
time over repeated runs), pruning power (measured as the
percentage of words examined over the total number of words),
and storage efficiency. We create query workloads of 100
words each, by randomly extracting words between lengths 1-
5, 6-10, 11-15, and 16-20 3-grams from the base table. Clearly,
every word has at least one exact match. We also apply a
fixed number of random letter insertions, deletions and swaps
(termed modifications from now on) on every word in the
query workloads to create words with potentially close but
not exact matches.

We implemented the set similarity query processing tech-
niques proposed in [11], [2] using MS SQL Server 2005.
The q-gram table consists of fields: word id (s), 3-gram (i),
word length (len(s)), and partial weight (wi(s)). It contains
one tuple per word per 3-gram, for a total of 453 million
tuples. We also need to build a composite B-tree index on
3-gram/length/id/weight, which we build as a clustered index
to save space. We run queries without using the composite
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Fig. 8. Effect of Length Bounding on performance.

index, and since they did not terminate in a reasonable amount
of time we omit the results. We refer to this algorithm as
SQL. For the inverted list indexes we constructed two lists
per q-gram, and stored them on disk. One list is sorted by
increasing word id, the other by decreasing partial weights.
The first is used for the multi-way merge algorithm according
to ids (referred to as sort-by-id), and the second for TA/NRA
style algorithms. Lists sorted by weights are also associated
with a skip list for efficiently identifying an entry with a
specific weight (needed for employing the Length Bounding
property) and a secondary index on word ids for efficiently
deducing whether a given id appears in the list or not (needed
for running TA style algorithms that are based on random
accesses). We use extendible hashing as the index on word
ids since it can answer set containment queries with at most
one random I/O in the worst case. The total size of the inverted
lists (either sorting) is 5 GB. Skip lists are restricted to at most
10 MB per inverted list, for a total size of 42 MB over all lists.
Finally, the extendible hashing indexes occupy 3.2 GB (after
tuning, 1 KB page sizes appeared to be the best choice). The
total index size for all algorithms, in comparison to the size
of the data table, is shown in Figure 5. Clearly, all indexes

are significantly larger than the data table (explosion due to
3-gram decomposition). The inverted lists approach is 9 times
larger, while SQL is 26 times larger. Notice the significant
overhead of extendible hashing, which is necessary for running
TA. As a basis of comparison, we also run the original TA
and NRA algorithms. We employ a few of the modifications
proposed in Section V to NRA, for reducing the overwhelming
bookkeeping cost. We use early termination for candidate
set scans, and also avoid scanning while F ≥ τ . NRA did
not terminate in a reasonable amount of time without these
optimizations. Finally, we leave caching up to the operating
system and the disk drive, disabling all other software buffers.
More aggressive buffering will certainly favor TA and iTA.

B. Wall Clock Time Improvement

The first set of experiments measures performance as a func-
tion of wall-clock time in terms of variable query thresholds.
We use a query workload with 11-15 3-grams per word and
0 modifications (every word has an exact match). Figure 6(a)
clearly shows that SF has the best overall performance, with
SQL, iNRA and Hybrid being slightly slower. The sort-by-id
algorithm has constant computation cost since it needs to do



a full scan of the inverted lists irrespective of query threshold.
For large thresholds it is up to 70 times slower than SF. The
traditional TA and NRA algorithms are clearly not competitive
(up to 92 times slower). We implemented an improved version
of the TA algorithm (iTA) by applying ideas similar to iNRA.
iTA is slower than iNRA due to the random I/Os per element
access per list, as a result of probing the hash table to complete
candidate scores. Notice that the performance of the algorithms
is also related to the selectivity of the query workload. The top
of the graph displays the average number of results returned
per query word. For smaller thresholds, a larger number of
results is returned as expected. For highly selective queries, our
algorithms achieve sub-second answers (0.17 secs on average
for SF and τ = 0.9).

Figure 6(b) plots performance as a function of query size.
Here τ = 0.8 and we use a workload with 0 modifications per
word. The first important observation is that all algorithms
that employ the Length Bounding property have improved
performance for increased query sizes (from 0.77 secs for SF
to 0.12 secs, as shown in the detailed graph). Since large
queries have larger lengths, the Length Bounding property
enables the algorithms to skip a much larger prefix of the
inverted lists, and restrict the search space significantly. The
second observation is that the performance of TA deteriorates
sharply with increasing query sizes, since a larger number of
lists implies an increased number of hash probes per element
access. Once again, the total number of results returned are
shown on the top of the graph.

Finally, performance as a function of query modifications is
shown in Figure 6(c). We use τ = 0.6, and query workloads
with 11-15 3-grams per word. Notice that as the number
of modifications per word increases, the average number of
results per query decreases sharply, as expected. The process-
ing cost decreases accordingly, since queries become highly
selective and as a consequence pruning efficiency increases.

C. List Element Pruning

Figure 7 plots the same set of experiments but as a function
of the percentage of list elements pruned by each algorithm.
We focus on inverted list approaches only. Sort-by-id does
not perform any pruning. iTA has the largest pruning power
since it uses random accesses to complete element scores
directly and avoids using looser lower bounds. Nevertheless,
the random I/Os come at a cost. SF, Hybrid and iNRA exhibit
close to 95% pruning power for large thresholds, and signifi-
cantly faster performance due to sequential I/Os. Once again,
algorithms that use the Length Bounding property exhibit
increasing pruning power with increasing query lengths, in
contrast to TA and NRA.

Figure 8 shows the importance of Length Bounding on
the efficiency of the algorithms. We run the same set of
experiments for all algorithms by disabling Length Bounding.
In some cases, for a given algorithm, Length Bounding yields
a 4-fold improvement, both in terms of wall-clock time and
pruning power. A more detailed graph for SQL and SF is
shown in 8(b).
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Finally, we measure the effect of using skip lists on the
performance of inverted list algorithms. Without the skip lists,
algorithms employing Length Bounding need to sequentially
scan and immediately discard large prefixes of the inverted
lists. Skip lists yield almost a two-fold improvement for all
algorithms (as shown in Figure 9). The improvement increases
for increased query sizes. Skip lists offer an excellent im-
provement, given their small space overhead (especially when
compared with extendible hashing, needed for running TA).

D. Experimental Summary

Overall, SF is a clear winner both in terms of computation
cost (due low bookkeeping), and index size (it uses only the in-
verted lists and the skip lists). Notice that even though Hybrid
has higher pruning power, on average the more involved data
structures increase the computation cost. Hybrid is expected
to perform better only in very special cases.

IX. RELATED WORK

The Prefix Filter [2] technique was proposed for evaluating
joins using pure relational processing. It is designed for
edit/hamming distance, Jaccard and some simple weighted
variants thereof. It can be modified to work for all weighted
similarity measures for selection queries (i.e., in the degenerate
case where one side of the join contains only one entry), but it
is subsumed by the SQL based approach described in Section
III-A, when a B-tree index exists. Arasu et al. [1] design a
signature scheme that can be used as a filter for identifying
candidate sets with hamming distance smaller than k from a
query set. It was used for answering set similarity joins based
on edit distance and Jaccard. It is not clear how to extend this
work for weighted metrics and selection queries.

Both exact [12] and approximate [13] algorithms for set
similarity joins between sets with unweighted elements have
been proposed as well. Specialized set similarity join algo-
rithms using cosine similarity between sets have also been
considered [14].

Kahveci et al. [15] propose an index for substring matches
within edit distance k from a query. The same problem has
been addressed in, among others, [16], [17]. In [18] the authors
use VP-trees for answering nearest neighbor queries for edit
distance. An exhaustive comparison of methods based on edit
distance and variants appears in [19]. None of these techniques
can be applied for TF/IDF, BM25 style metrics.



X. CONCLUSIONS

We argued that special semantic properties of some
weighted similarity measures can be exploited to design very
efficient index structures and algorithms for set similarity
retrieval. We proved a Length Bounding property that, if
employed, yields orders of magnitude speed up for all algo-
rithms. We proposed three new algorithms based on TA/NRA
style processing on inverted lists. The Shortest-First algorithm
achieved truly interactive responses in all practical cases. In the
future, we plan to extend our techniques for top-k processing,
devise parallel versions of all algorithms, and explore semantic
properties of a wide variety of similarity measures.
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