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Accurately evaluating the distribution of genetic ancestry across geo-
graphic space is one of the main questions addressed by evolutionary biol-
ogists. This question has been commonly addressed through the application
of Bayesian estimation programs allowing their users to estimate individual
admixture proportions and allele frequencies among putative ancestral popu-
lations. Following the explosion of high-throughput sequencing technologies,
several algorithms have been proposed to cope with computational burden
generated by the massive data in those studies. In this context, incorporating
geographic proximity in ancestry estimation algorithms is an open statistical
and computational challenge. In this study, we introduce new algorithms that
use geographic information to estimate ancestry proportions and ancestral
genotype frequencies from population genetic data. Our algorithms combine
matrix factorization methods and spatial statistics to provide estimates of an-
cestry matrices based on least-squares approximation. We demonstrate the
benefit of using spatial algorithms through extensive computer simulations,
and we provide an example of application of our new algorithms to a set of
spatially referenced samples for the plant species Arabidopsis thaliana. With-
out loss of statistical accuracy, the new algorithms exhibit runtimes that are
much shorter than those observed for previously developed spatial methods.
Our algorithms are implemented in the R package, tess3r.

1. Introduction. High-throughput sequencing technologies have enabled
studies of genetic ancestry for model and nonmodel species at an unprecedented
pace. In this context, ancestry estimation algorithms are important for demographic
analysis, medical genetics including genome-wide association studies, conser-
vation and landscape genetics [Pritchard, Stephens and Donnelly (2000), Tang
et al. (2005), Schraiber and Akey (2015), Segelbacher et al. (2010), François and
Waits (2016)]. With increasingly large data sets, Bayesian approaches to the infer-
ence of population structure, exemplified by the computer program structure
[Pritchard, Stephens and Donnelly (2000)], have been replaced by approximate
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algorithms that run several orders faster than the original version [Tang et al.
(2005), Alexander and Lange (2011), Frichot et al. (2014), Raj, Stephens and
Pritchard (2014)]. Considering K ancestral populations or genetic clusters, those
algorithms estimate ancestry coefficients following two main directions: model-
based and model-free approaches. In model-based approaches, a likelihood func-
tion is defined for the matrix of ancestry coefficients, and estimation is performed
by maximizing the log-likelihood function. For structure and related models,
model assumptions include linkage equilibrium and Hardy–Weinberg equilibrium
in ancestral populations. The first approximation to the original algorithm was
based on an expectation-minimization algorithm [Tang et al. (2005)], and more
recent likelihood algorithms are implemented in the programs admixture and
faststructure [Alexander and Lange (2011), Raj, Stephens and Pritchard
(2014)]. In model-free approaches, ancestry coefficients are estimated by using
least-squares methods or factor analysis. Model-free methods make no assump-
tions about the biological processes that have generated the data. To estimate
ancestry matrices, Engelhardt and Stephens (2010) proposed to use sparse fac-
tor analysis, Frichot et al. (2014) used sparse nonnegative matrix factorization
algorithms, and Popescu et al. (2014) used kernel-principal component analysis.
Least-squares methods accurately reproduce the results of likelihood approaches
under the model assumptions of those methods. In addition, model-free methods
provide approaches that are valid when the assumptions of likelihood approaches
are not met [Frichot et al. (2014)]. Model-free methods are generally faster than
model-based methods.

Among model-based approaches to ancestry estimation, an important class of
methods have improved the Bayesian model of structure by incorporating ge-
ographic data through spatially informative prior distributions [Chen et al. (2007),
Corander, Sirén and Arjas (2008)]. Under isolation-by-distance patterns [Wright
(1943), Malécot (1948)], spatial algorithms provide more robust estimates of pop-
ulation structure than nonspatial algorithms which can lead to biased estimates of
the number of clusters [Durand et al. (2009)]. Some Bayesian methods are based
on Markov chain Monte Carlo algorithms which are computer-intensive [François
and Durand (2010)]. Recent efforts to improve the inference of ancestral relation-
ships in a geographical context have mainly focused on the localization of re-
cent ancestors [Baran et al. (2013), Lao et al. (2014), Yang et al. (2014), Li and
Zhu (2013), Rañola, Novembre and Lange (2014)]. In these applications, spatial
information is used in a predictive framework that assigns ancestors to putative
geographic origins. While fast geographic estimation of individual ancestry pro-
portions has been proposed previously [Caye et al. (2016), Bradburd, Ralph and
Coop (2016)], there is a growing need to develop individual ancestry estimation
algorithms that reduce computational cost in a geographically explicit framework.

In this study, we present two new algorithms for the estimation of ancestry ma-
trices based on geographic and genetic data. The new algorithms solve a least
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squares optimization problem as defined by Caye et al. (2016), based on Alter-
nating Quadratic Programming (AQP) and Alternating Projected Least Squares
(APLS). While AQP algorithms have a well-established theoretical background
[Bertsekas (1995)], this is not the case of APLS algorithms. Using coalescent sim-
ulations, we provide evidence that the estimates computed by APLS algorithms
are good approximations to the solutions of AQP algorithms. In addition, we show
that the performances of APLS algorithms scale to the dimensions of modern data
sets. We discuss the application of our algorithms to data from European ecotypes
of Arabidopsis thaliana, for which individual genomic a geographic data are avail-
able [Horton et al. (2012)].

2. New methods. In this section, we present two new algorithms for estimat-
ing individual admixture coefficients and ancestral genotype frequencies assuming
K ancestral populations. In addition to genotypes, the new algorithms require in-
dividual geographic coordinates of sampled individuals.

Q and G-matrices. Consider a genotypic matrix, Y, recording data for n in-
dividuals at L polymorphic loci for a p-ploid species (common values for p are
p = 1,2). For autosomal SNPs in a diploid organism, the genotype at locus � is an
integer number, 0, 1 or 2, corresponding to the number of reference alleles at this
locus. In our algorithms, disjunctive forms are used to encode each genotypic value
as the indicator of a heterozygote or a homozygote locus [Frichot et al. (2014)].
For a diploid organism each genotypic value 0, 1, 2 is encoded as 100, 010 and
001. For p-ploid organisms, there are (p + 1) possible genotypic values at each
locus, and each value corresponds to a unique disjunctive form. While our focus is
on SNPs, the algorithms presented in this section extend to multi-allelic loci with-
out loss of generality. Moreover, the method can be easily extended to genotype
likelihoods by using the likelihood to encode each genotypic value [Korneliussen,
Albrechtsen and Nielsen (2014)].

Our algorithms provide statistical estimates for the matrix Q ∈ R
K×n which

contains the admixture coefficients, Qi,k , for each sampled individual, i, and each
ancestral population, k. The algorithms also provide estimates for the matrix G ∈
R

(p+1)L×K , for which the entries, G(p+1)�+j,k , correspond to the frequency of
genotype j at locus � in population k. Obviously, the Q and G-matrices must
satisfy the following set of probabilistic constraints:

Q,G ≥ 0,

K∑

k=1

Qi,k = 1,

p∑

j=0

G(p+1)�+j,k = 1,

for all i, k and �. Using disjunctive forms and the law of total probability, esti-
mates of Q and G can be obtained by factorizing the genotypic matrix as follows
Y = QGT [Frichot et al. (2014)]. Thus the inference problem can be solved by us-
ing constrained nonnegative matrix factorization methods [Lee and Seung (1999),



FAST INFERENCE OF INDIVIDUAL ADMIXTURE COEFFICIENTS 589

Cichocki et al. (2009)]. In the sequel, we shall use the notations �Q and �G to
represent the sets of probabilistic constraints put on the Q and G matrices, respec-
tively.

Geographic weighting. Geography is introduced in the matrix factorization
problem by using weights for each pair of sampled individuals. The weights im-
pose regularity constraints on ancestry estimates over geographic space. The def-
inition of geographic weights is based on the spatial coordinates of the sampling
sites, (xi). Samples close to each other are given more weight than samples that
are far apart. The computation of the weights starts with building a complete graph
from the sampling sites. Then the weight matrix is defined as follows:

wij = exp
(−dist(xi, xj )

2/σ 2)
,

where dist(xi, xj ) denotes the geodesic distance between sites xi and xj , and σ is
a range parameter.

Next, we introduce the Laplacian matrix associated with the geographic weight
matrix, W. The Laplacian matrix is defined as � = D − W where D is a diagonal
matrix with entries Di,i = ∑n

j=1 Wi,j , for i = 1, . . . , n [Belkin and Niyogi (2003)].
Elementary matrix algebra shows that [Cai et al. (2011)]

Tr
(
QT �Q

) = 1

2

n∑

i,j=1

wij‖Qi,· − Qj,·‖2.

In our approach, assuming that geographically close individuals are more likely to
share ancestry than individuals at distant sites is thus equivalent to minimizing the
quadratic form C(Q) = Tr(QT �Q) while estimating the matrix Q.

Least-squares optimization problems. Estimating the matrices Q and G from
the observed genotypic matrix Y is performed through solving an optimization
problem defined as follows [Caye et al. (2016)]:

(2.1)

min
Q,G

LS(Q,G) = ∥∥Y − QGT
∥∥2

F + αC(Q),

s.t. Q ∈ �Q,

G ∈ �G.

The notation ‖M‖F denotes the Frobenius norm of a matrix, M. The regularization
parameter α controls the regularity of ancestry estimates over geographic space.
Large values of α imply that ancestry coefficients have similar values for nearby
individuals, whereas small values ignore spatial autocorrelation in observed allele
frequencies.
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The alternating quadratic programming (AQP) method. Because the polye-
drons �Q and �G are convex sets and the LS function is convex with respect to
each variable Q or G when the other one is fixed, the problem (2.1) is amenable
to the application of block coordinate descent [Bertsekas (1995)]. The APQ algo-
rithm starts from initial values for the G and Q-matrices, and alternates two steps.
The first step computes the matrix G while Q is kept fixed, and the second step
permutates the roles of G and Q. Let us assume that Q is fixed and write G in a
vectorial form, g = vec(G) ∈ R

K(p+1)L. The first step of the algorithm actually
solves the quadratic programming subproblem,

(2.2) g� = arg min
g∈�G

(−2vT
Qg + gT DQg

)
,

where DQ = I(p+1)L ⊗QT Q and vQ = vec(QT Y). Here, ⊗ denotes the Kronecker
product and Id is the identity matrix with d dimensions. The block structure of
the matrix DQ allows us to decompose the subproblem (2.2) into L independent
quadratic programming problems with K(p + 1) variables. Now, consider that G
is the value obtained after the first step of the algorithm, and write Q in a vec-
torial form, q = vec(Q) ∈ R

nK . The second step solves the following quadratic
programming subproblem. Find

(2.3) q� = arg min
q∈�Q

(−2vT
Gq + qT DGq

)
,

where DG = In ⊗ GT G + α� ⊗ IK and vG = vec(GT YT ). Unlike subproblem
(2.2), subproblem (2.3) cannot be decomposed into smaller problems. Thus the
computation of the second step of the AQP algorithm implies to solve a quadratic
programming problem with nK variables which can be problematic for large sam-
ples (n is the sample size). The AQP algorithm is described in detail in Algo-
rithm A.1. For AQP, we have the following convergence result.

THEOREM 2.1. The AQP algorithm converges to a critical point of prob-
lem (2.1).

PROOF. The quadratic convex functions defined in subproblems (2.2) and
(2.3) have finite lower bounds. The convex sets �Q and �G are compact nonempty
sets. Thus the sequence generated by the AQP algorithm is well-defined, and has
limit points. According to Corollary 2 of Grippo and Sciandrone (2000), we con-
clude that the AQP algorithm converges to a critical point of problem (2.1). �

Alternating projected least-squares (APLS). In this paragraph, we introduce
an APLS estimation algorithm which approximates the solution of problem (2.1),
and reduces the complexity of the AQP algorithm. The APLS algorithm starts
from initial values of the G and Q-matrices, and alternates two steps. The matrix
G is computed while Q is kept fixed, and vice versa. Assume that the matrix Q
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is known. The first step of the APLS algorithm solves the following optimization
problem. Find

(2.4) G� = arg min
∥∥Y − QGT

∥∥2
F.

This operation can be done by considering (p+1)L (the number of columns of Y)
independent optimization problems running in parallel. The operation is followed
by a projection of G� on the polyedron of constraints, �G. For the second step,
assume that G is set to the value obtained after the first step is completed. We
compute the eigenvectors, U, of the Laplacian matrix, and we define the diagonal
matrix � formed by the eigenvalues of � (The eigenvalues of � are nonnegative
real numbers). According to the spectral theorem, we have

� = UT �U.

After this operation, we project the data matrix Y on the basis of eigenvectors as
follows:

proj(Y) = UY,

and, for each individual, we solve the following optimization problem:

(2.5) q�
i = arg min

∥∥proj(Y)i − Gq
∥∥2 + αλi‖q‖2,

where proj(Y)i is the ith row of the projected data matrix, proj(Y), and λi is the ith
eigenvalue of �. The solutions, q�

i , are then concatenated into a matrix, conc(q),
and Q is defined as the projection of the matrix UT conc(q) on the polyedron �Q.
The complexity of step (2.5) grows linearly with n, the number of individuals.
While the theoretical convergence properties of AQP algorithms are lost for APLS
algorithms, the APLS algorithms are expected to be good approximations of AQP
algorithms. The APLS algorithm is described in details in Algorithm A.2.

Choice of hyper-parameters. In ancestry estimation programs, a number of
practices have evolved in order to set the model hyper-parameters. Those prac-
tices rely on heuristics or empirical rules for determining the prior parameters. For
example, the program structure implements weakly informative prior distri-
butions for ancestry proportions [Wang (2017)], the program admixture has a
set of regularization parameters that encourages shrinkage and “aggressive” par-
simony on ancestry estimates [Alexander and Lange (2011)], and so does the
Bayesian version TESS 2.3 [Durand et al. (2009)]. Choosing the number of an-
cestral populations is based on cross-validation methods or information theoretic
measures. Our model has three hyper-parameters: the number of factors, K , the
penalty constant, α, and the range parameter, σ . Determining those constants is no-
toriously difficult and can be costly in applications. In order to reduce the compu-
tational burden, the hyper-parameters α and σ are set as user-defined options. This
option allows an advanced user to explore different values with cross-validation or
with her own heuristics. Less advanced users could use the default values of the
hyper-parameters evaluated in our simulation study.
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Range parameter. Testing correlations between genetic and geographic data
has a long tradition in population genetics. Popular approaches are based on Man-
tel tests [Mantel (1967)] and spatial autocorrelation measures [Hardy and Veke-
mans (1999), Epperson and Li (1996)]. Prior to the application of our spatial ances-
try estimation program, we investigated biologically relevant values for the range
parameter by using spatial variograms [Cressie (1993)]. The variogram was ex-
tended to genotypic data as follows:

(2.6) γ (h) = 1

2|N(h)|
∑

i,j∈N(h)

1

L

(p+1)L∑

l=1

|Yi,l − Yj,l|,

where N(h) is defined as the set of individuals separated by geographic distance h.
Visualizing the variogram provides useful information on the level of spatial auto-
correlation in the data, and yields empirical estimates of the range parameter. More
naive estimates such as an average geodesic distance computed over a fraction of
neighboring sites in the sample also performed well in simulations, and they are
also proposed to the program users.

Regularization parameter. A default value for the regularization parameter α

was set so that the weights for the loss function and for the penalty term C(Q)

are of similar order. We proposed to divide each term by its maximum value. This
amounts to consider α equal to L/λmax, where λmax is the largest eigenvalue of
the Laplacian matrix (the Laplacian matrix has nonnegative eigenvalues).

Number of factors. The number of ancestral populations, K , can be evaluated
by using a cross-validation technique based on imputation of masked genotypes
[Wold (1978), Eastment and Krzanowski (1982), Alexander and Lange (2011),
Frichot et al. (2014)]. The cross-validation procedure partitions the genotypic ma-
trix entries into a learning set and a test set in which 5% of all genotypes are tagged
as masked entries. The genotype probabilities for the masked entries are predicted
from the factor estimates obtained from unmasked entries. Then the error between
the predicted and truly observed genotype frequencies is computed, and smaller
values of that criterion indicate better choices.

Comparison with tess3. The algorithm implemented in a previous version
of tess3 also provides another approximation of the solution of problem (2.1).
The tess3 algorithm first computes a Cholesky decomposition of the Laplacian
matrix. Then, by a change of variables, the least-squares problem is transformed
into a sparse nonnegative matrix factorization problem [Caye et al. (2016)]. Solv-
ing the sparse nonnegative matrix factorization problem relies on the application
of existing methods [Kim and Park (2011), Frichot et al. (2014)]. The methods im-
plemented in tess3 have an algorithmic complexity that increases linearly with
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the number of loci and the number of clusters. They lead to estimates that accu-
rately reproduce those of the Monte Carlo algorithms implemented in the Bayesian
method tess 2.3 [Caye et al. (2016)]. Like for the AQP method, the tess3 algo-
rithms have an algorithmic complexity that increases quadratically with the sample
size.

Ancestral population differentiation statistics and local adaptation scans. As-
suming K ancestral populations, the Q and G-matrices obtained from the AQP
and from the APLS algorithms were used to compute single-locus estimates of a
population differentiation statistic similar to FST, as follows:

F
Q
ST = 1 −

K∑

k=1

qk

fk(1 − fk)

f (1 − f )
,

where qk is the average of ancestry coefficients over sampled individuals, qk =∑n
i=1 Qi,k/n, for the cluster k, fk is the ancestral allele frequency in population k

at the locus of interest,

fk =
p∑

j=1

jG(p+1)(�)+j,k/p,

and f = ∑K
k=1 qkfk [Martins et al. (2016)]. For a particular locus, the formula for

F
Q
ST corresponds to the proportion of the genetic variation (or variance) in ancestral

allele frequency that can be explained by latent population structure

F
Q
ST = σ 2

T − σ 2
S

σ 2
T

,

where σ 2
T is the total variance and σ 2

S is the error variance [Weir (1996)]. Fol-
lowing ANOVA theory, the F

Q
ST statistics were used to perform statistical tests of

neutrality at each locus, by comparing the observed values to their expectations
from the genome-wide background. The test was based on the squared z-score
statistic, z2 = (n − K)F

Q
ST/(1 − F

Q
ST), for which a chi-squared distribution with

K − 1 degrees of freedom was assumed under the null-hypothesis. To avoid an
increased number of false positive tests, we adopted an empirical null-hypothesis
testing approach that recalibrates the null-hypothesis for the background levels of
population differentiation expected at selectively neutral SNPs [Efron (2004)]. The
calibration of the null-hypothesis was achieved by using genomic control to adjust
the test statistics [Devlin and Roeder (1999), François et al. (2016)]. After recali-
bration of the null-hypothesis, the control of the false discovery rate was achieved
by using the Benjamini–Hochberg algorithm [Benjamini and Hochberg (1995)].

R package. We implemented the AQP and APLS algorithms and improved
graphical tools in the R package tess3r, available from Github and submitted to
the Comprehensive R Archive Network [R Core Team (2016)].
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3. Simulated and real data sets.

Coalescent simulations. We used the computer program ms to perform coa-
lescent simulations of neutral and outlier SNPs under spatial models of admixture
[Hudson (2002)]. Two ancestral populations were created from the simulation of
Wright’s two-island models. The simulated data sets contained admixed genotypes
for n individuals for which the admixture proportions varied continuously along a
longitudinal gradient [Durand et al. (2009), François and Durand (2010)]. In those
scenarios, individuals at each extreme of the geographic range were representative
of their population of origin, while individuals at the center of the range shared in-
termediate levels of ancestry in the two ancestral populations [Caye et al. (2016)].
For those simulations, the Q matrix, Q0, was entirely described by the location of
the sampled individuals.

Neutrally evolving ancestral chromosomal segments were generated by simulat-
ing DNA sequences with an effective population size N0 = 106 for each ancestral
population. The mutation rate per bp and generation was set to μ = 0.25 × 10−7,
the recombination rate per generation was set to r = 0.25 × 10−8, and the param-
eter m was set to obtain neutral levels of FST ranging between values of 0.005 and
0.10. The number of base pairs for each DNA sequence was varied between 10k
to 300k to obtain numbers of polymorphic loci ranging between 1k and 200k af-
ter filtering out SNPs with minor allele frequency lower than 5%. To create SNPs
with values in the tail of the empirical distribution of FST, additional ancestral
chromosomal segments were generated by simulating DNA sequences with a mi-
gration rate ms lower than m. The simulations reproduced the reduced levels of
diversity and the increased levels of differentiation expected under hard selective
sweeps occurring at one particular chromosomal segment in ancestral populations
[Martins et al. (2016)]. For each simulation, the sample size was varied in the range
n = 50–700.

We compared the AQP and APLS algorithm estimates with those obtained with
the tess3 algorithm. Each program was run 5 times on the same simulated data.
Using K = 2 ancestral populations, we computed the root mean squared error
(RMSE) between the estimated and known values of the Q-matrix, and between
the estimated and known values of the G-matrix. To evaluate the benefit of spatial
algorithms, we compared the statistical errors of APLS algorithms to the errors
obtained with the snmf method that reproduces the outputs of the structure
program accurately [Frichot et al. (2014, 2015)]. To quantify the performances
of neutrality tests as a function of ancestral and observed levels of FST, we used
the area under the precision-recall curve (AUC) for several values of the selection
rate. Subsamples from a real data set were used to perform a runtime analysis
of the AQP and APLS algorithms (A. thaliana data, see below). Runtimes were
evaluated by using a single computer processor unit Intel Xeon 2.0 GHz.
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Application to human data. To evaluate the robustness of our approach to a
situation where admixture was the consequence of large displacement rather than
contact between proximal populations, we studied the case of African-American
populations. This is an interesting case for which the incorporation of geographic
data could potentially bias estimation of ancestry coefficients. Genotypes with mi-
nor allele frequency greater than 5% were obtained from a public release of the
1000 Genomes project phase 3 for African Americans (ASW, 61 individuals),
Africans (YRI from Nigeria and LWK from Kenya, 207 individuals) and Euro-
peans (GBR from the United Kingdom and TSI from Italy, 198 individuals) [1000
Genomes Project Consortium et al. (2015)]. A total of 6,994,677 SNPs were an-
alyzed with geographic data corresponding to the country of origin of individual
samples. We compared the estimates from the APLS algorithm applied with its
default parameter settings to the results of the snmf program that do not make use
of geographic information.

Application to European ecotypes of Arabidopsis thaliana. We used the APLS
algorithm to survey spatial population genetic structure and to investigate the
molecular basis of adaptation by considering 214k SNPs from 1095 European eco-
types of the plant species A. thaliana [Horton et al. (2012)]. The cross-validation
criterion was used to evaluate the number of clusters in the sample, and a statistical
analysis was performed to evaluate the range of the variogram from the data. We
used R functions of the tess3r package to display interpolated admixture coef-
ficients on a geographic map of Europe [R Core Team (2016)]. A gene ontology
enrichment analysis using the software AMIGO [Carbon et al. (2009)] was per-
formed in order to evaluate which molecular functions and biological processes
might be involved in local adaptation of A. thaliana in Europe.

4. Results.

Statistical errors. We used coalescent simulations of neutral polymorphisms
under spatial models of admixture to compare the statistical errors of the AQP
and APLS estimates with those of the tess3 algorithm [Caye et al. (2016)]. The
ground truth for the Q-matrix (Q0) was computed from the mathematical model
for admixture proportions used to generate the data. For the G-matrix, the ground
truth matrix (G0) was computed from the empirical genotype frequencies in the
two population samples before an admixture event. The root mean squared errors
(RMSE) for the Q and G estimates decreased as the sample size and the number
of loci increased (Figure 1). For all algorithms, the statistical errors were generally
small when the number of loci was greater than 10k SNPs. Those results provided
evidence that the three algorithms produced equivalent estimates of the matrices
Q0 and G0. The results also provided a check that the APLS and tess3 algo-
rithms converged to the same estimates as those obtained after the application of
the AQP algorithm, which is guaranteed to converge mathematically.
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FIG. 1. Root Mean Squared Errors (RMSEs) for the G and Q matrix estimates. Simulations of
spatially admixed populations. (A)–(B) Statistical errors for APLS, AQP and tess3 estimates as
a function of the sample size, n (L ∼ 104). (C)–(D) Statistical errors for APLS, AQP and tess3
estimates as a function of the number of loci, L (n = 200).

The benefit of including spatial information in algorithms. Using neutral co-
alescent simulations of spatial admixture, we compared the statistical estimates
obtained from the spatial algorithm APLS and the nonspatial algorithm snmf
[Frichot et al. (2014)]. For various levels of ancestral population differentiation,
estimates obtained from the spatial algorithm were more accurate than for those
obtained using nonspatial approaches (Figure 2). For the larger samples, a much
finer population structure was detected with the spatial method than with the non-
spatial algorithm (Figure 2).

In simulations of outlier loci, we used the area under the precision-recall curve
(AUC) for quantifying the performances of tests based on the estimates of ances-
try matrices, Q and G. In addition, we computed AUCs for FST-based neutrality
tests using truly ancestral genotypes. As they represented the maximum reach-
able values, AUCs based on truly ancestral genotypes were always higher than
those obtained for tests based on reconstructed matrices. For all values of the rela-
tive selection intensity, AUCs were higher for spatial methods than for nonspatial
methods (Figure 3, the relative selection intensity is the ratio of migration rates at
neutral and adaptive loci). For high selection intensities, the performances of tests
based on estimates of ancestry matrices were close to the optimal values reached
by tests based on true ancestral frequencies. These results provided evidence that
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FIG. 2. Root Mean Squared Errors (RMSEs) for the Q estimates. Simulations of spatially ad-
mixed populations for several values of fixation index (FST) between ancestral populations. Ances-
tral populations are simulated with Wright’s two-island models and the fixation index is defined as
1/(1 + 4N0m) where m is the migration rate and N0 the effective population size. The statistical
errors for sNMF and APLS are represented as a function of FST.

including spatial information in ancestry estimation algorithms improves the de-
tection of signatures of hard selective sweeps having occurred in unknown ances-
tral populations.

Sensitivity of estimates to spatial measurements. Next, we used the simulated
data sets to evaluate the robustness of APLS estimates to inaccurate measurements
of spatial coordinates. To this aim, Gaussian noise was added to truly observed
geographic coordinates by considering values of the noise-to-signal ratio rang-
ing from 0 to 3. We computed variograms in all cases, and found that the spa-
tial signal was removed from simulations for noise-to-signal ratios greater than
two, while the signal was still observable with a noise-to-signal ratio lower than
one. For all simulations, we compared the relative error of APLS Q-matrix esti-
mates to those obtained from an nonspatial method (snmf). For small levels of
uncertainty in spatial coordinates, the errors of APLS estimates were lower than
those of snmf (Figure 4). For simulations with n = 500 individuals and L = 105

loci, a larger noise-to-signal ratio increased statistical errors in the Q-matrix es-
timates from the APLS algorithm. For smaller noise-to-signal ratios, RMSEs re-
mained generally lower for the APLS algorithm than for methods without spa-
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FIG. 3. Area under the precision-recall curve (AUC). Neutrality tests applied to simulations of
spatially admixed populations. AUCs for tests based on FST with the true ancestral populations,
spatial ancestry estimates computed with APLS algorithms, nonspatial (structure-like) ancestry
estimates computed with the snmf algorithm. The relative intensity of selection in ancestral popula-
tions, defined as the ratio m/ms , was varied in the range 1–160.

tial coordinates. For simulations with n = 50 individuals and L = 104 loci, the
APLS estimates were more accurate than the nonspatial estimates. This unex-
pected result could be explained by subtle algorithmic differences in tested pro-
grams. To a large extent, estimates from the APLS algorithm were robust to un-
certainty in spatial measurements. Standard graphical tests such as a variogram
analysis can help deciding whether our spatially explicit algorithm is useful or
not.

Runtime and convergence analyses. We subsampled a large SNP data set for
A. thaliana ecotypes to compare the convergence properties and runtimes of the
tess3, AQP and APLS algorithms. In those experiments, we used K = 6 an-
cestral populations, and replicated 5 runs for each simulation. For n = 100–600
individuals (L = 50k SNPs), the APLS algorithm required more iterations (25
iterations) than the AQP algorithm (20 iterations) to converge to its solution (Fig-
ure 5). This was less than for tess3 (30 iterations). For L = 10–200k SNPs
(n = 150 individuals), similar results were observed. For 50k SNPs, the run-
times were significantly lower for the APLS algorithm than for the tess3 and
AQP algorithms. For L = 50k SNPs and n = 600 individuals, it took on aver-



FAST INFERENCE OF INDIVIDUAL ADMIXTURE COEFFICIENTS 599

FIG. 4. Impact of uncertainty in geographic coordinates on ancestry estimates. Relative statistical
error of ancestry estimates obtained from the APLS algorithm for several levels of the noise-to-signal
ratio and values of the fixation index. The snmf algorithm was considered as the reference for the
nonspatial method (value 0).

age 1.0 min for the APLS and 100 min for the AQP algorithm to compute an-
cestry estimates. For tess3, the runtime was on average 66 min. For L = 100k
SNPs and n = 150 individuals, it took on average 0.6 min (9.0 min) for the APLS
(AQP) algorithm to compute ancestry estimates. For tess3, the runtime was
on average 1.3 min. For those values of n and L, the APLS algorithm imple-
mentation ran about 2 to 100 times faster than the other algorithm implementa-
tions.

Human data analysis. To evaluate a case of model misspecification, we ana-
lyzed data from the 1000 Genomes project for African Americans, Africans from
Nigeria and from Kenya and Europeans from the United Kingdom and from Italy.
Using the default values for the hyper-parameters, the Laplacian matrix was a
block diagonal matrix where each block corresponded to one of the five popula-
tions. The spatial variogram exhibited a flat shape. For K = 2, the APLS estimates
for the African American population were equal to 24.2% for European ancestors
and 75.8% for African ancestors. The corresponding snmf estimates were equal
to 22.4% for European ancestors and 77.6% for African ancestors. For K = 3, the
APLS estimates for the African American population were equal to 21.4% for Eu-
ropean ancestors, 51.8% for West African ancestors and 26.8% for East African
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FIG. 5. Number of iterations and runtimes for the AQP, APLS and tess3 algorithm implemen-
tations. (A)–(B) Total number of iterations before an algorithm reached a steady solution. (C)–(D)
Runtime for a single iteration (seconds). The number of SNPs was kept fixed to L = 50k in (A) and
(C). The number of individuals was kept fixed to n = 150 in (B) and (D).

ancestors. The corresponding snmf estimates were equal to 22.2% for European
ancestors, 68.4% for West African ancestors and 9.4% for East African ances-
tors. Overall, the results obtained with our spatial method for African Americans
were similar to those obtained with snmf. The main difference between APLS
and snmf estimates were for African populations. For Africans, snmf detected
two distinct genetic clusters whereas APLS detected a larger proportion of shared
ancestry between Eastern and Western populations.

Application to European ecotypes of Arabidopsis thaliana. We used the APLS
algorithm to survey spatial population genetic structure and perform a genome
scan for adaptive alleles in European ecotypes of the plant species A. thaliana.
The cross validation criterion decreased rapidly from K = 1 to K = 3 clusters,
indicating that there were three main ancestral groups in Europe, corresponding to
geographic regions in Western Europe, Eastern and Central Europe and Northern
Scandinavia. For K greater than four, the values of the cross validation criterion
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FIG. 6. Choice of σ and K for the APLS algorithm. (A) Empirical variogram for the A. thaliana
data. The red vertical line shows the range value σ = 1.5. (B) Cross validation error as function
of the number of ancestral populations, K . The red vertical line shows the number of ancestral
populations K = 6.

decreased in a slower way, indicating that subtle substructure resulting from com-
plex historical isolation-by-distance processes could also be detected (Figure 6).
The spatial analysis provided an approximate range of σ = 150 km for the spatial
variogram (Figure 6). Figure 7 displays the Q-matrix estimate interpolated on a
geographic map of Europe for K = 6 ancestral groups. The estimated admixture
coefficients provided clear evidence for the clustering of the ecotypes in spatially
homogeneous genetic groups.

Targets of selection in A. thaliana genomes. Tests based on the F
Q
ST statistic

were applied to the 241k SNP data set to reveal new targets of natural selection in
the A. thaliana genome (Figure 8). A. thaliana occurs in a broad variety of habitats,
and local adaptation to the environment is acknowledged to be important in shap-
ing its genetic diversity through space [Hancock et al. (2011), Fournier-Level et al.
(2011)]. The APLS algorithm was run on the 1095 European lines of A. thaliana
with K = 6 ancestral populations and σ = 1.5 for the range parameter. Using the
Benjamini–Hochberg algorithm to control the FDR at the level 1%, the program
produced a list of 12,701 candidate SNPs, including linked loci and represent-
ing 3% of the total number of loci. The top 100 candidates included SNPs in the
flowering-related genes SHORT VEGETATIVE PHASE (SVP), COP1-interacting
protein 4.1 (CIP4.1) and FRIGIDA (FRI) (p-values < 10−300). These genes were
detected by previous scans for selection on this dataset [Horton et al. (2012)].
We performed a gene ontology enrichment analysis using AmiGO in order to
evaluate which biological functions might be involved in local adaptation in Eu-
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FIG. 7. A. thaliana ancestry coeficients. Ancestry coefficient estimates computed by the APLS al-
gorithm with K = 6 ancestral populations and σ = 1.5 for the range parameter. (A) Geographic
map of ancestry coefficients. (B) Barplot of ancestry coefficients.

rope. We found a significant over-representation of genes involved in cellular pro-
cesses (fold enrichment of 1.06, p-value equal to 0.0215 after Bonferonni correc-
tion).

5. Discussion. Including geographic information on sample locations in the
inference of ancestral relationships among organisms is a major objective of pop-
ulation genetic studies [Malécot (1948), Cavalli, Menozzi and Piazza (1994),

FIG. 8. Local adaptation in European lines of A. thaliana. Manhattan plot of − log(p-value).
p-value were computed from population structure estimated by the APLS algorithm with K = 6
ancestral populations and σ = 1.5 for the range parameter.
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Epperson (2003)]. Assuming that geographically close individuals are more likely
to share ancestry than individuals at distant sites, we introduced two new algo-
rithms for estimating ancestry proportions using geographic information. Based
on least-squares problems, the new algorithms combine matrix factorization ap-
proaches and spatial statistics to provide accurate estimates of individual ancestry
coefficients and ancestral genotype frequencies. The two methods share many sim-
ilarities, but they differ in the approximations they make in order to decrease algo-
rithmic complexity. More specifically, the AQP algorithm was based on quadratic
programming, whereas the APLS algorithm was based on the spectral decompo-
sition of the Laplacian matrix. The algorithmic complexity of APLS algorithm
grows linearly with the number of individuals in the sample while the method has
the same statistical accuracy as more complex algorithms.

To measure the benefit of using spatial algorithms, we compared the statisti-
cal errors observed for spatial algorithms with those observed for nonspatial al-
gorithms. The errors of spatial methods were lower than those observed with
nonspatial methods, and spatial algorithms allowed the detection of more subtle
population structure. In addition, we implemented neutrality tests based on the
spatial estimates of the Q and G-matrices [Martins et al. (2016)], and we ob-
served that those tests had higher power to reject neutrality than those based on
nonspatial approaches. Thus spatial information helped improving the detection
of signatures of selective sweeps having occurred in ancestral populations prior
to admixture events. We applied the neutrality tests to perform a genome scan
for selection in European ecotypes of the plant species A. thaliana. The genome
scan confirmed the evidence for selection at flowering-related genes CIP4.1, FRI
and DOG1 differentiating Fennoscandia from North-West Europe [Horton et al.
(2012)].

Estimation of ancestry coefficients using fast algorithms that extend nonspa-
tial approaches—such as structure—has been intensively discussed during
the last years [Wollstein and Lao (2015)]. In these improvements, spatial ap-
proaches have received less attention than nonspatial approaches. In this study,
we have proposed a conceptual framework for developing fast spatial ancestry es-
timation methods, and a suite of computer programs implements this framework
in the R program tess3r. Our package provides an integrated pipeline for es-
timating and visualizing population genetic structure, and for scanning genomes
for signature of local adaptation. The algorithmic complexity of our algorithms
allows their users to analyze samples including hundreds to thousands of individ-
uals. For example, analyzing more than one thousand A. thaliana genotypes, each
including more than 210k SNPs, took only a few minutes using a single CPU.
In addition, the algorithms have multithreaded versions that run on parallel com-
puters by using multiple CPUs. The multithreaded algorithm, which is available
from the R program, allows using our programs in large-scale genomic sequencing
projects.
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APPENDIX: ALGORITHMS

ALGORITHM A.1. AQP algorithm pseudo code. To solve optimization prob-
lem (2.1).

Input: the data matrix Y ∈ {0,1}n×(p+1)L, the Laplacian matrix � ∈ R
n×n,

the number of ancestral populations K , the regularization coefficient
α, the maximum number of iteration itMax

Output: the admixture matrix Q ∈ R
n×K , the ancestral genotype frequency

matrix G ∈ R
K×(p+1)L

Initialize Q at random;
for it = 1..itMax do

// G optimization step
for l = 1..L do

Y l ← Y·,(p+1)l..(p+1)l+d ;
DQ ← Ip+1 ⊗ QT Q;
vQ ← Vec(QT Y l);
g� ∈ arg ming∈�G

−2vT
Qg + gT DQg;

Vec(G(p+1)l..(p+1)l+d,·) ← g�;
end

// Q optimization step
DG ← Idn ⊗ GT G + α� ⊗ IK ;
vG ← Vec(GT YT );
Vec(QT ) ∈ arg minq∈�Q

−2vT
Gq + qT DGq;

end

ALGORITHM A.2. APLS algorithm pseudo code. To solve the optimization
problem (2.1).

Input: the data matrix Y ∈ {0,1}n×(d+1)L, the eigenvalues matrix � and
eigenvectors matrices U such that � = UT �U, the number of
ancestral populations K , the regularization coefficient α, the
maximum number of iteration itMax

Output: the admixture matrix Q ∈ R
n×K , the ancestral genotype frequency

matrix G ∈ R
K×(d+1)L

Initialize Q at random;
proj(Y) ← RY;
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for it = 1..itMax do

// G optimization step
for j = 1..(p + 1)L do

g� ∈ arg ming∈RK ‖Y·,j − Qg‖2;
Gj,· ← g�;

end
Project G such that G ∈ �G;

// Q optimization step
for i = 1..n do

g�
i ∈ arg minq∈RK ‖proj(Y)i,· − GT q‖2 + α�i,i‖q‖2;

proj(Q)i,· ← g�
i ;

end
Q ← UT proj(Q);
Project Q such that Q ∈ �Q;

end
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