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Abstract:

This paper presents a method for generating dynamically feasible,
keyframe-interpolating motions for robots undergoing contact, such as
in legged locomotion and manipulation. The first stage generates a
twice-differentiable interpolating path that obeys kinematic contact
constraints up to a user-specified tolerance. The second stage opti-
mizes speeds along the path to minimize time while satisfying dy-
namic constraints. The method supports velocity, acceleration, and
torque constraints, and polyhedral contact friction constraints at an
arbitrary number of contact points. The method is numerically stable,
and empirical running time is weakly linear in the number of degrees
of freedom and polynomial in the time-domain grid resolution. Exper-
iments demonstrate that full-body motions for robots with 100 degrees
of freedom and dozens of contact points are calculated in seconds.

1 Introduction

Online trajectory optimization is the problem of calculating optimal mo-
tions in interactive time in reaction to changing environmental conditions,
and it remains an ongoing challenge in robotics. Fast updates, on the order
of seconds or even fractions of a second, are necessary to produce feasi-
ble, safe, and efficient behavior in response to sensor updates, unpredictable
obstacles, and commands from human operators. Although progress has
been made in the classical setting of free-space motions using numerical
optimization [9, 31] and sampling-based planning techniques [14], fast opti-
mization remains elusive for high dimensional robots and systems with con-
tact. Contact, either with objects in manipulation settings or against the
environment in legged locomotion, is challenging because it imposes both
kinematic constraints that limit movement to a nonlinear submanifold1of
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Kinematic, 5 s

Kinematic, 10 s

Dynamic w/o force
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Figure 1: A side-to-side swaying motion on a humanoid robot. Pure kine-
matic interpolation abruptly starts and stops. Row 1: executed with uni-
form rate at 5 s duration, the robot falls over. Row 2: executed with a
uniform rate at 10 s duration, the robot barely stays upright, wobbling onto
its right foot at the end of the motion (last frame). Row 3: with dynamic
interpolation under only acceleration constraints, the robot decelerates far
too quickly and tips over halfway through the motion. Row 4: including
dynamic contact constraints, the robot stays upright.

the robot’s configuration space, as well as dynamic constraints that limit
the speeds and accelerations that are attainable without breaking contact.
Existing approaches to optimizing locomotion and manipulation trajecto-
ries [4,7,10,23,25] use descent-based numerical approaches that are typically
very slow, taking minutes or hours to complete, and usually require manual
selection of initial trajectories to avoid local minima.

This paper presents a dynamic interpolation method that achieves inter-
active performance for robots with many degrees of freedom (DOF) under

1If the contact constraints are singular, movement may be restricted to a non-manifold

subset. This paper assumes throughout that the contact constraints are nonsingular.
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contact. Dynamic interpolation is a simplified optimization problem of gen-
erating a dynamically-feasible trajectory that interpolates start and goal
configurations, or in general, a series of keyframes. It is useful as a subrou-
tine for more global optimizers because it handles the dynamic aspects of the
problem, and lets the global optimizer concentrate on the simpler problem
of determining a (typically small) sequence of statically-feasible keyframes.
Such keyframes might also be generated by sampling-based motion plan-
ners [22] or heuristic methods like inverse kinematics. Moreover, dynamic
interpolation is useful in its own right in interactive motion design for robots
and virtual characters.

The method uses a two-stage approach pioneered by [2] that decouples
the shape of the path from the velocities along it. First, the method con-
structs a smooth interpolating path on the the contact submanifold between
the keyframes. Second, it computes a time-scaling of the path to minimize
execution time while respecting dynamic constraints. The resulting motion
meets kinematic contact constraints up to a user-specified tolerance, and
obeys a variety of dynamic constraints, including joint velocity, accelera-
tion, torque, and frictional force limits.

Three technical contributions make this method fast enough for interac-
tive use:

1. A recursive Hermite projection algorithm generates twice-differentiable
interpolating paths up to an arbitrarily small tolerance ǫ > 0 of a
contact submanifold represented by a nonlinear implicit function.

2. A convex time-scaling formulation recasts time-scaling as a convex,
linearly constrained optimization problem in a transformed space of
rate parameters. This problem has a unique minimum, which is found
using a numerically-stable sequential linear programming (SLP) algo-
rithm.

3. A dynamic feasible rate precomputation algorithm determines a mini-
mal set of linear constraints relating each parameter to its successor in
the time-scaling problem using a polytope projection algorithm. This
drastically reduces the number of time-scaling constraints to a number
that is only weakly dependent on dimensionality.

The method is very scalable, and empirical time complexity shows a linear
relationship with the number of degrees of freedom, with a relatively small
linear coefficient.

The approach supports a wide variety of articulated systems under con-
tact, and can be applied to multi-limbed locomotion, full-body contact, and
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non-prehensile manipulations like lifting and pushing. It is guaranteed to
find solutions when the interpolated path is quasi-statically balanced, but
can also naturally handle systems for which no quasi-static solutions exist,
such as in dynamic walking. Experiments are conducted on a variety of sim-
ulated robots, including humanoids of up to 63DOF and 60 contact points
in locomotion tasks. The resulting motions are generated quickly, have rel-
atively low execution time, and maintain actuator and balance constraints
(Fig. 1).

2 Background and Related Work

Interpolation on Manifolds. Smooth interpolation on manifolds is well
studied in the case where the manifold is equipped with a geodesic (e.g.,
SO(3) [6, 27]). For many-DOF robots under arbitrary contact constraints,
geodesics are difficult to derive. Other authors have considered the problem
of interpolating contact-constrained robot motions for manipulation tasks in
the context of planning [1,29,32]. Like the current work, these methods are
also fast and produce paths that satisfy kinematic constraints within a given
resolution, but the paths are only C0 continuous and dynamic constraints
are not considered. Higher-order polynomials like the cubic splines used in
our work better match the curvature of contact submanifolds, and appear
to generate paths with lower maximum error.

Online path and trajectory optimization. Classic trajectory opti-
mization has been applied extensively to robot vehicles and manipulators
operating in free-space under a number of objective functions (e.g., to min-
imize time, minimize effort, or maximize safety) under kinematic and dy-
namic constraints (e.g., collision avoidance, actuator constraints, multibody
physics equations, goal conditions). However, for many-DOF manipulators
in complex environments they tend not to be fast enough for online use.
More recently there has been work in interactive-time methods for path
optimization in complex environments (e.g., [24]) but techniques that incor-
porate dynamics, contact, and frictional contact constraints remain elusive.

Trajectory optimization with contact. Numerical approaches have
been applied to systems with contact, primarily in legged robot locomo-
tion [4, 7, 10, 23, 25] and animation of virtual characters [16, 18, 19]. Certain
techniques are also able to flexibly determine the sequence of contacts dy-
namically during optimization [18,19,23]. But global nonlinear optimization

4



in high-dimensional parameter spaces is computationally challenging due to
problem size and the prevalence of many local minima, so these techniques
appear best suited for generating gait cycles [4, 23, 25] or offline primitives
to be reused later [7, 10].

Existing approaches differ in methods for maintaining loop closure con-
straints at contacts. Unlike in character animation, where limb lengths can
be shrunk or stretched to maintain the appearance of contact [18,19], robots
must obey loop closure strictly. Some authors parameterize the manifold of
closed-loop configurations at each possible contact state [4,7,10], while oth-
ers enforce loop closure implicitly by adding nonlinear equality constraints
at collocation points along the trajectory [23]. Parameterization is manage-
able for a small number of contact states (e.g., left foot, right foot, and two
foot support) but is challenging and tedious when hands, knees, and elbows
may be involved in contact. Collocation methods are more versatile, but
the accuracy of closure is proportional to the number of chosen grid points.
Fine grids greatly increase computational cost and increase the prevalence
of local minima in the optimization landscape. Our approach decouples the
loop closure constraint from the optimization problem, obtaining arbitrarily
tightness on constraints.

Optimal time-scaling. Time-scaling is a simplified optimization problem
that considers optimizing the execution speed of a given path under dynamic
constraints. It is often used in two-stage trajectory generation [2,5] in which
the first stage computes a path and then the second stage optimizes its
speed. The decoupled approach may fail to achieve the same quality as full
trajectory optimization because there is a risk of computing a path in stage
1 that will not yield a fast time parameterization in stage 2, but in practice
they yield orders of magnitude improvements in computational time while
delivering satisfactory results. The classical Bobrow method integrates the
time scaling variable along dynamic limits [2] both backward and forward in
time to search for a continuous time parameterization. However, as identified
in [15,26], this method was found to suffer from numerical instability issues
at dynamic singularities.

Recent work formulated a more robust convex optimization approach
that casts time-scaling as a second-order cone program (SOCP) [30]. This
paper uses a similar convex formulation that can be solved via sequential
linear program (SLP), for which fast and robust implementations are widely
available. More importantly, scalability to very high-DOF robots is im-
proved by quickly pruning irrelevant constraints. As a result the method
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solves 100D problems about as quickly as the prior authors [30] solved a 6D
one. Moreover, it is able to handle contact force constraints in the same
framework.

Simplification of Contact Conditions. Static equilibrium dictates that
an objects center of mass must lie over its support polygon, and polytope
projection methods have been devised to compute this polygon for arbitrar-
ily complex contact formations [3]. We derive a dynamic version of this
condition in the space of rates and accelerations along a fixed path. A sim-
ilar dynamic contact constraint commonly used in bipedal walking is the
zero-moment point (ZMP) condition, which states that the acceleration of
a robot’s center of mass is directly related to its center of pressure on flat
ground (the ZMP). It is used by humanoid robots to optimizing a center of
mass trajectory so that the ZMP always lies in the support foot [13]. A gen-
eralized condition was considered by [28] in the analysis of a planar rectangle
with two non-planar dynamic contacts. The condition was suggested for use
in time-scaling. Our new method is a practical, general algorithm that is
applicable to uneven terrains, walking with hand support, and simultaneous
navigation and manipulation.

3 Problem Statement

In standard kinematic interpolation, a continuous geometric path p(s) :
[0, 1] → R

n is computed to connect start and goal configurations qs and
qg. To execute such a path on a robot, some processing is needed to map
time t to the parameter s. We refer to the process of devising a dynamically
feasible interpolating trajectory as the dynamic interpolation problem.

3.1 Dynamic Interpolation in Free Space

The dynamic interpolation problem asks to generate a trajectory y(t) :
[0, T ] → R

n connecting start and goal configurations qs and qg, starting
and ending at rest. (Throughout this paper we will denote geometric paths
with p(s) and time-parameterized trajectories with y(t).) In general, one or
more intermediate keyframes may also be specified, and nonzero terminal
velocities q̇s and q̇g may be prescribed. The duration T is unknown, and in
this paper we wish to minimize T . Dynamic constraints impose restrictions
on the first and second derivatives of y(t), and are typically written in the
canonical form:

f(y(t), ẏ(t), ÿ(t)) ≤ 0. (1)
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Figure 2: Our method supports arbitrary sets of frictional point contacts.

For example, joint-wise velocity and acceleration bounds are written:

vL ≤ẏ(t) ≤ vU for all t ∈ [0, T ] (2)

aL ≤ÿ(t) ≤ aU for all t ∈ [0, T ] (3)

where all inequalities are taken element-wise.
For free-space motions (i.e. without contact), torques τ are calculated

in the standard Lagrangian form

B(q)q̈ + C(q, q̇) +G(q) = τ(q, q̇, q̈) (4)

where B is the mass matrix, C is the Coriolis force vector, and G is the
generalized gravity vector. Torque bounds are expressed using the equation.

τL ≤ τ(y(t), ẏ(t), ÿ(t)) ≤ τU . (5)

3.2 Dynamic Interpolation with Contact

Contact introduces two new complications. First, it constrains y(t) kine-
matically to lie on a lower dimensional subset of the configuration space,
and second, it couples derivatives, torques, and contact forces dynamically
such that differential constraints can no longer be expressed in canonical
form (1). This paper models contact in a highly general manner that al-
lows arbitrary arrangements of contact on the robot, environment, and/or
rigid objects, and with polyhedral force constraints, including unilateral,
frictional contact (Fig. 2).
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Assumptions. For simplicity of notation, we will assume for the moment
that contact must be maintained throughout the duration of the motion.
Later we will describe an extension to handle making and breaking contact.
Rigid objects are modeled by augmenting the robot with an additional 6
generalized coordinates for translation and rotation, which are included in
q. The velocity and acceleration bounds on these coordinates are infinite,
while the torque bounds are zero. A free-floating base, e.g., the torso of a
humanoid robot, is modeled similarly. Note that such systems are under-
actuated and hence there will be no solution of (5), in general. Instead,
contact forces must be explicitly modeled.

Assume m contact points. Each robot-world contact matches a point on
the robot c(q) ∈ R

3 with a point in space d ∈ R
3, and a robot-robot contact

matches two points on the robot c(q), d(q) ∈ R
3. All configurations q must

satisfy ci(q) = di(q) for all contacts i = 1, . . . ,m.

Kinematic constraint. The above conditions impose a kinematic con-
straint that must be met at all configurations q along the trajectory:

C(q) = 0, (6)

with C : R
n → R

k, k ≤ n a nonlinear vector field that has roots when
all of the m contact constraints are met. When many contacts lie on a
single link, many of the constraints are linearly dependent, so we reduce the
number of constraints on each individual link of the robot to at most six by
determining the affine hull of the contact positions aff({cL1 , . . . , cLk }), where
cLi is the contact point expressed in the local frame of the link. If the hull
is 2-D or 3-D we fix the link’s position and orientation (a 6-D constraint),
when the hull is 1-D we restrict the link to rotate about the contact axis
(5-D), and when the hull is 0-D we impose a point constraint (3-D).

In general, our algorithm accepts any arbitrary smooth, nonlinear con-
straint such that the Jacobian of C is not degenerate when C(q) = 0. If this
nondegeneracy condition is met, then the set of solutions this equation is a
submanifold of configuration space.

It is also assumed that there exists a Lipschitz constant M such that
‖C(p) − C(q)‖ ≤ M‖p − q‖ for all p, q ∈ R

n. For example, an upper bound
on the distance traveled by a given contact point ck(q) on a serial robot with
revolute joints is bounded by

∑k
i=1 Li,k|pi − qi| where Li,k is the maximum

outstretched length between joint axis i and the point ck(q). We can then
take M =

∑k
i=1 L1,k.
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Dynamic contact constraint. At each contact (ci, di) a force fi may be
applied to the robot at each instant in time. By the principle of virtual
work, the Lagrange equation becomes

B(q)q̈ + C(q, q̇) +G(q) = τ +

m
∑

i=1

Ji(q)
T fi (7)

where Ji is the Jacobian matrix of the constraint ci(q)− di(q) = 0. In addi-
tion, the individual forces are required to respect friction cone constraints:

fi ∈ FCi(q) for i = 1, . . . ,m (8)

where each friction cone has an apex at the origin and axis equal to the
contact normal. Note that, particularly for manipulation tasks, the normal
may change with q as the object or robot link rotates. We employ the
standard polyhedral friction cone approximation to represent each friction
cone constraint as a set of linear inequalities. Pin joints may also be modeled
by dropping the friction cone constraints altogether.

Since contact forces are a priori unknown, the instantaneous force/torque
constraint becomes

There exist (τ, f1, . . . , fm) s.t.

B(q)q̈ + C(q, q̇) +G(q) = τ +
m
∑

i=1

Ji(q)
T fi

τL ≤ τ ≤ τU

fi ∈ FCi(q) for i = 1, . . . ,m.

(9)

Note that this dynamic constraint is no longer easily represented in the
canonical form (1). Checking this condition at a particular state (q, q̇, q̈)
is equivalent to testing the non-emptiness of a convex polytope of Rn+3m,
e.g., by solving a linear program. Unfortunately this is relatively expensive
because it must be tested for each velocity/acceleration variation and at
each point in time. Our approach relies on polytope projection techniques
to precompute the set of velocities and accelerations that satisfy this equa-
tion along a fixed path. Perhaps surprisingly, the feasible set turns out to
be a convex 2D polygon of low complexity that can be computed quickly.
Although feasibility still must be checked at each point in time, testing
membership in a convex polygon is extremely fast.
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3.3 Summary of Approach

The approach operates in four stages:

1. Interpolate keyframes. Constructs a continuously differentiable kine-
matic path p(s) : [0, 1]→ R

n that connects the keyframes and satisfies
C(q) = 0.

2. Discretize time-domain. Defines a time parameterization s(t) : [0, T ]→
[0, 1] of p such that y(t) = p(s(t)) will be the resulting curve. A
piecewise quadratic representation of s on N grid intervals yields an
optimization variable θ = (θ0, . . . , θN ).

3. Precompute dynamic feasible sets. A minimal, nonredundant set of
feasibility constraints in each (θi, θi+1) plane, for i = 0, . . . , N − 1 are
precomputed.

4. Optimize time-scaling. Optimizes θ such that y(t) = p(s(t)) satisfies
dynamic constraints at all points t and minimizes T .

The remaining sections describe three technical contributions in more detail.
First, we describe keyframe interpolation with a recursive Hermite projec-
tion technique that projects a cubic spline onto the constraint manifold.
Next, we describe how to precompute dynamic feasible sets using polytope
projection. Finally, we describe the formulation of time-scaling as a convex
optimization problem and efficient solution techniques.

The algorithm has several favorable theoretical properties, summarized
here:

• The path p(s) satisfies ‖C(p(s))‖ < ǫ for all s, for a user-supplied
threshold ǫ > 0.

• The algorithm correctly returns failure in finite time if any keyframes
are in separate connected components of the solution set to C(q) = 0.

• The output of Stage 3 and 4 is the globally optimal time-scaling for
the parameterization of s given by θ. Furthermore, as N grows, the
result approaches the globally optimal time-scaling (assuming p(s) is
nondegenerate).

• If p(s) is quasi-statically stable — that is, (9) has a solution with q̈ =
q̇ = 0 — then the method will find a dynamically-feasible trajectory.
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Figure 3: Interpolation begins with a smooth Hermite curve connecting
the endpoints, and recursively bisects and projects the midpoint and its
derivative onto the constraint manifold.

• The running time of Stage 4 is not directly dependent on the con-
figuration space dimensionality n nor the number of contacts m, but
rather on k ·N , where k is the average complexity of the nonredundant
dynamic feasible sets. In practice, k is usually much less than m or n,
and can be treated as essentially a constant.

Performance is chiefly governed by two parameters: the constraint vio-
lation threshold ǫ > 0 and the grid size N . ǫ determines how closely the
constraint manifold is followed, and as it becomes smaller, the interpolating
path gets finer and Stage 1 takes longer. As N grows, the number of grid
points is increased and time-scaling optimization becomes slower, but closer
to the globally optimal s(t). Another consideration is that the method needs
a good set of input keyframes, or else it may fail to find a kinematically-
feasible interpolant or a dynamically-feasible time-scaling. For example,
when climbing stairs, the foot needs to be raised above the stair edge before
it shifts forward and gets placed downward.

The method can be extended to handle a sequence of changes of contact
by introducing keyframes at each contact transition. First, paths are inde-
pendently interpolated between the sequence of keyframes at each contact
state, including transition keyframes. The paths are then concatenated, and
finally time-scaling is run across the entire path.

4 Interpolation via Recursive Hermite Projection

Recursive projection generates a continuously differentiable, piecewise poly-
nomial path that satisfies C(q) = 0 within a user-specified tolerance ǫ. It
begins with an interpolating cubic Hermite curve in R

n and recursively bi-
sects while projecting midpoints onto C(q) = 0 (Fig. 3).

Hermite curves p(s) are cubic polynomials controlled by endpoints x0, x1
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and tangent velocities v0, v1 such that the curve satisfies p(0) = x0, p
′(0) =

v0, p(1) = x1, and p′(1) = v1. They can also be perfectly bisected into
two Hermite curves pA(s) and pB(s) connected at the midpoint p(0.5) with
tangent p′(0.5).Moreover, they correspond precisely to Bezier curves with
knot points P0 = x0, P1 = x0 +

1
3v0, P2 = x1 − 1

3v1, and P3 = x1, and the
length of the Bezier polygon len(p) = ‖P0 −P1‖+ ‖P1 −P2‖+ ‖P2 −P3‖ is
an upper bound on the length of the Hermite curve.

Given a threshold ǫ on constraint violation errors, the Lipschitz constant
M on C, and a growth limit β ∈ (0.5, 1), recursive projection proceeds as
follows:

1. Begin with a Hermite curve p(s) connecting the start and end config-
urations. If no tangent directions are prescribed, obtain tangents by
projecting the straight-line direction onto the nullspace of the Jaco-
bians of C(qs) and C(qg).

2. If len(p) ≤ 2ǫ/M , return ‘success’.

3. Otherwise, subdivide p(s) into two Hermite curves pA and pB, meeting
at the midpoint (x, v) = (p(0.5), p′(0.5)).

4. Project x onto C(x) = 0 using a Newton-Raphson solver. Project v
onto the nullspace of the Jacobian of C(x). Let the resulting configu-
ration and velocity be xm and vm respectively.

5. Adjust pA and pB to meet at xm with derivatives vm.

6. If max(len(pA), len(pB)) ≤ β · len(p), return ‘convergence failure’.
Otherwise, repeat Lines 2–5 on both halves.

See Fig. 3 for an illustration of these steps. The output is a sequence of
Hermite curves p1, . . . , pk as well as the fraction of the range [0, 1] main-
tained by each subsegment ∆1, . . . ,∆k to map the original range into the
subdivided sequence.

The algorithm terminates when len(p) is small enough (Fig. 4). The
growth condition in Line 6 ensures termination in finite time, and that the
projected path’s length is no more than a finite multiple of the length of the
original curve p0 constructed in Line 1. Notice that at recursion depth d
the condition len(p) ≤ βdlen(p0) must hold, so given the tolerance in Line
2, the terminal depth is no more than

dmax(ǫ, β) =
log(2ǫ/M · len(p0))

log(β)
+ 1 (10)
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Figure 4: (a) Illustrating the recursion termination criterion, proving that
the path p lies within distance ǫ/M of the submanifold in configuration
space, where M is a Lipschitz constant. (b) The Bezier polygon correspond-
ing to p. (c) p is guaranteed to lie within the union of spheres centered at the
endpoints, with radius equal to half the length of the Bezier polygon. The
spheres fail to satisfy the ǫ/M condition, so recursion continues. (d) After
subdivision, both subsegments satisfy the condition and recursion stops.

Hence the subdivided path may be no more than γ(ǫ, β) = (2β)dmax(ǫ,β)

times as long as p0. All experiments use the value β = 0.9.

4.1 Properties of the Interpolator

If the algorithm is successful, the resulting spline:

• Is C1 continuous.

• At all curve endpoints, derivatives are tangent to the constraint man-
ifold.

• Has arc-length no greater than γ(ǫ, β) · len(p0) where p0 is the initial
curve.

• Satisfies ‖C(p(s))‖ ≤ ǫ for all s ∈ [0, 1].

We now prove the latter claim.

Theorem 1. The output path p(s) satisfies C(p(s)) ≤ ǫ for all s ∈ [0, 1].

Proof. The path is composed of small segments p1, . . . , pk such that len(pi) ≤
2ǫ/M for all i and C(pi(0)) = C(pi(1)) = 0. We shall prove that for any Her-
mite curve p, max0≤s≤1 ‖C(p(s))‖ ≤M · len(p)/2, which implies the theorem
due to the termination condition in Step 2.

By the Lipschitz condition,

‖C(p(s))‖ = ‖C(p(s))− C(x0)‖ ≤M min ‖p(s)− x0‖, ‖p(s)− x1‖ (11)
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and hence the problem is one of bounding the distance between points on p
and the endpoints.

Hermite curves are equivalent to cubic Bezier curves with control points
P0 = x0, P1 = x0 + 1

3v0, P2 = x1 − 1
3v1, and P3 = x1 (Fig. 4), and by

the convex hull property, p(s) is contained entirely within the convex hull
of P0, . . . , P3. The edges of this convex hull are some subset of P0P1, P0P2,
P0P3, P1P2, P1P3, and P2P3. The next step in the proof ensures that all of
these edges are within the union of the balls B0 and B3 of radius len(p)/2
centered at each of p’s endpoints.

Obviously, P0P3 is contained within B0 ∪ B3 because len(p) ≥ ‖P3 −
P0‖. Next, since a triangle with vertices A, B, C is completely contained
within balls centered at A, B with radius 1

2(‖A−B‖+ ‖B−C‖), the edges
P0P1, P1P3, P0P2, and P2P3 are contained witihn B0 ∪B3. Finally, P1P2 is
contained within B0 ∪ B3 because the midpoint of P1P2 can be reached by
walking along the Bezier polygon a distance len(p)/2 from either endpoint.

Since the hull is contained within a distance of len(p)/2 of either end-
point of p, the entirety of p(s) is contained within as well, and therefore
‖C(p(s))‖ ≤M · len(p)/2 as desired.

As described above, the algorithm terminates in no more than 2dmax(ǫ,β)

steps. If the algorithm fails, it could be because 1) a midpoint becomes
stuck in a local minimum of ‖C(q)‖ during projection, or 2) the recursion
fails to make progress along the manifold (Fig. 5).

Correct failure can occur if there exists no interpolating path, i.e., the
start and goal lie in separate connected components of the constraint sub-
manifold. This indicates that the keyframes have been chosen poorly.

Incorrect failure can occur when the start and goal are actually in the
same connected component of the constraint submanifold, but the algorithm
fails to make progress. We empirically evaluated how often the algorithm
fails to connect two points on a torus, with target points taken on a reg-
ular grid. Over 99% of the torus is successfully reached, and Fig. 6 shows
that failures occur only in a few narrow bands. The failure rate is higher
for other cases. Fig. 6 also shows a more challenging case where interpola-
tion from one side of the manifold to the other gets stuck in local minima.
One possible direction for future work might augment this procedure with
surface-following techniques to increase its success rate for such problems.
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Figure 5: Recursive projection can fail when recursion fails to make progress
along a manifold (Top), a condition detected in Line 6, or when a midpoint
falls into a local minimum (Middle) when calling the Newton-Raphson solver
in Line 4. When the manifold is disconnected, the algorithm correctly ter-
minates with failure in finite time (Bottom).

4.2 Interpolating on Submanifolds of Riemannian Manifolds

The interpolation algorithm can be extended to handle submanifolds of
any geodesically complete Riemannian manifold rather than R

n. These
are needed to handle the base rotations of mobile manipulators (SO(2))
and free-floating bases of legged robots and free objects (SO(3)), for which
straight lines do not properly interpolate along geodesics.

Let an arbitrary Riemannian manifold M be equipped with a distance
metric d(a, b) which provides the arc-length of the length minimizing path
connecting points a and b, and a geodesic function g(u; a, b) which interpo-
lates between a and b along such a length-minimizing path, with u ∈ [0, 1].
The exponential map expq is defined such that g(u; a, b) = expa(uġ(u; a, b)).
The partial derivatives of g w.r.t. u, a, and b must also be supplied. Closed-
form expressions exist for SO(2) and SO(3) [21].

Hermite interpolation onM is performed using the classic de Casteljau
construction of a Bezier curve [6]. Let TxM denote the tangent space ofM
at x. Given end points x0, x1 ∈ M and tangents v0 ∈ Tx0

M, v1 ∈ Tx1
M,

an interpolating curve is constructed first by calculating the Bezier control
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Figure 6: Top row: Interpolating on an implicit torus embedded in R
3.

Recursive projection successfully connects the source point (X) to almost
all other points on the torus, except for the indicated failure points (circles).
Views from the side and above. Bottom: A more challenging manifold for
interpolation. About 50% of the manifold fails to be reached from the source
point.

points:
P0 = x0 P1 = expx0

(

1
3v0

)

P2 = expx1

(

−1
3v1

)

P3 = x1
(12)

where P1 and P2 are extrapolated from the endpoints along the terminal
tangent vectors. Then, the path p(s) is evaluated via the de Casteljau
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recurrences:

p(s) = g(s;P012(s), P123(s))

P012(s) = g(s;P01(s), P12(s))

P123(s) = g(s;P12(s), P23(s))

P01(s) = g(s;P0, P1)

P12(s) = g(s;P1, P2)

P23(s) = g(s;P2, P3)

(13)

With this expression, the recursive bisection algorithm proceeds as usual
except distances are replaced by d(·, ·) and p′(0.5) in Line 3 is computed via
repeated application of the chain rule:

p′(s) =

(

ġ +
∂g

∂a
P ′
012(s) +

∂g

∂b
P ′
123(s)

)
∣

∣

∣

∣

s,P012(s),P123(s)

P ′
012(s) =

(

ġ +
∂g

∂a
P ′
01(s) +

∂g

∂b
P ′
12(s)

)∣

∣

∣

∣

s,P01(s),P12(s)

P ′
01(s) = ġ(s;P0, P1)

(14)

with similar formulas holding for P ′
123, P

′
12, and P ′

23. All of the examples in
this paper use the above construction to generate singularity-free curves for
the robots’ base orientation. The 3 Euler angle parameters are converted
to rotation matrices, matrices are Hermite interpolated using geodesics on
SO(3), and then converted back to Euler angles. Derivatives of the Euler
angle parameters are also properly converted to and from the Lie algebra
so(3).

4.3 Interpolating Multiple Points

A simple extension can be used to generate a smooth interpolant through
multiple points p0, . . . , pk on the manifold at parameters u0, . . . , uk. The
first step is to generate a sequence of derivatives v0, . . . , vk that are tangent
to C(q) = 0. To reduce the overall curvature of the path, a convenient
technique chooses each intermediate vi, i = 1, . . . , k − 1 to be tangent to a
quadratic fit to pi−1, pi, and pi+1. This interpolator gives

vi =
∆u2i−1(pi+1 − pi)−∆u2i (pi−1 − pi)

∆ui−1∆ui(∆ui−1 +∆ui)
(15)

where ∆ui = ui − ui−1. vi is then projected onto the nullspace of the
Jacobian of C(q) = 0 at pi.
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Figure 7: Left: Comparing the error of recursive Hermite projection against
two piecewise linear interpolation techniques as ǫ is varied. Points are pro-
jected numerically with tolerance 10−8. Right: Hermite projection still out-
performs linear methods by up to several orders of magnitude when nor-
malizing for additional overhead (see text). Values are plotted on a log
scale.

At the endpoints, a quadratic fit in the ambient C-space is obtained by
setting v0 = 1

2(p0 + p1 − ∆u0v1/3), with a similar formula holding for vk.
Finally, the recursive projection algorithm is called to generate an interpo-
lating curve between subsequent points pi, pi+1 with derivatives vi∆ui and
vi+1∆ui.

4.4 Application as a Motion Planning Subroutine

Recursive projection is appropriate for use as a local planner in sample-based
motion planners to connect keyframes, such as the approach outlined in [22].
It can also be used as a “shortcutting” technique for postprocessing jerky
paths with smooth curves, similar to the B-spline path smoother presented
in [20]. In such applications, a minor modification allows it to check for col-
lisions during path construction, which allows it to discard infeasible paths
quickly. This change would simply check collisions at each midpoint xm dur-
ing recursion, and along all leaf curve segments at the end. For infeasible
paths, the routine is likely to exit early, rather than constructing the entire
curve and then sequentially checking collision along it.

4.5 Performance Tests

We tested the performance of this method on several toy problems, including
the manifold of solutions to y = sin(x), a sphere, and a torus. In each
case, given the same resolution ǫ, the path produced by Hermite projection
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has lower maximum error than either the linear descent technique of [29]
or piecewise linear projection (Fig. 7). For a fair comparison, however, it
should be noted that the linear techniques are approximately 50% faster
at a given ǫ; they terminate sooner because line segments are shorter than
corresponding Bezier polygons, and they avoid overhead in handling tangent
vectors. To normalize for overhead, the linear descent data was modeled as
a linear fit of time vs. log error. Fig. 7 compares the error ratio of the
linear fit vs Hermite projection for an equivalent computation time on the
y = sin(x) scenario, demonstrating that the benefits of Hermite projection
outweigh the added overhead. Similar results were observed in other tested
scenarios.

5 Precomputing Feasible Sets of First and Second

Time-Scaling Derivatives

Given the kinematic path p(s) : [0, 1] → R
n, the goal of time-scaling is to

optimize a monotonically-increasing time-scaling s(t) : [0, T ] → [0, 1], with
an unknown trajectory duration T to be minimized. The time-parameterized
trajectory is denoted y(t) = p(s(t)) and must satisfy (2,3,9).

This section describes a subroutine for precomputing the feasible sets of
first and second derivatives of s at a point in time, which will be used in the
time optimization. Specifically, we show that the set of feasible values of
(ṡ2, s̈) are convex polygons, and we present a procedure for computing the
edges of polygon. In other words, given a value s, the procedure outputs a
set of vectors a(s), b(s), and c(s) such that the feasible set is precisely the
solution to:

a(s)ṡ2 + b(s)s̈ ≤ c(s). (16)

5.1 Feasible Sets for Basic Dynamic Constraints

To develop some intuition for the method, we will discuss how to com-
pute a(s), b(s), and c(s) for free-space dynamic constraints (2,3,5). This
method has slightly lower overhead than the computation for contact force
constraints presented in the next section, and hence is preferable if contact
forces are not time-limiting (e.g., with force closure grasps).

Rate constraints. First, as usual in time scaling, the trajectory deriva-
tives are written in terms of the derivatives of p(s) and s(t) following the
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chain rule:

ẏ(t) = p′(s(t))ṡ(t) (17)

ÿ(t) = p′′(s(t))ṡ(t)2 + p′(s(t))s̈(t). (18)

We also make use of the following relation between the time scaling deriva-
tives and torque:

τ(s, ṡ, s̈) = B · (p′′(s)ṡ2 + p′(s)s̈) + Cṡ2 +G (19)

where B(p(s)), C(p(s), p′(s)), and G(p(s)) are independent of ṡ and s̈. This
equation uses the fact that the Coriolis force term satisfies C(q, αq̇) =
α2C(q, q̇) for any scalar α.

Linear constraints in squared-rate / acceleration space. Substitut-
ing (17–19) into (2,3,5), we obtain:

vL ≤p′(s)ṡ ≤ vU (20)

aL ≤p′′(s)ṡ2 + p′(s)s̈ ≤ aU (21)

τL ≤B · (p′′ṡ2 + p′(s)s̈) + Cṡ2 +G ≤ τU (22)

where B(p(s)), C(p(s), p′(s)), and G(p(s)) are independent of ṡ and s̈. By
inspection, it is clear that constraints (21–22) are linear in the squared-rate
ṡ2 and rate derivative s̈. In fact, any dynamic constraint that is linear in
acceleration and parabolic in velocity:

f(q, q̇, q̈) = c0(q) + q̇TC1(q)q̇ + c2(q)q̈ ≤ 0 (23)

can be transformed in a similar manner.
Finally, it is also a simple matter to convert (20) to squared-rate con-

straints:

0 ≤ ṡ2 ≤
(

n

min
i=1

max
vL,i
p′(s)i

,
vU,i
p′(s)i

)2

(24)

where the subscript i denotes an element of each vector.

Irrelevant constraint removal via halfplane intersection. Especially
for high-DOF problems, most of the 4n halfplane constraints (21,22) will be
irrelevant, i.e., will not bound the feasible set F in the (ṡ2, s̈) plane. These
correspond to the dynamic constraints that are non-limiting, e.g., joints that
are moving slowly relative to others. It is advantageous to remove these
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ṡ²

0

1

2

3

4

5

6

0 2 4 6

s̈

ṡ²

Figure 8: Of over 500 inequality constraints relating squared-rates and accel-
erations, all but 5 are irrelevant to the feasible set. A halfplane intersection
procedure calculates the feasible polygon (shaded) by repeated cutting.

constraints because they do not affect the solution and the time-scaling
optimization will be solved more quickly with fewer constraints.

To do so, we invoke a halfplane intersection routine. F is incrementally
built, starting from the vertical strip satisfying (24). Then, each halfplane
is added one-by-one to cut away portions of the polygon (Fig. 8). At the
end of this process the supporting halfplanes are the boundaries of F . The
complexity of this procedure is O(kn) where k is the maximum number of
edges in the intermediate polygons. We observe a low value of k << n in
practice. This added cost is usually overwhelmed by the savings because
time-scaling runs in time superlinear in the number of constraints.

5.2 Feasible Sets for Contact Constraints

Alternative methods are needed to handle contact force constraints, which
are no longer expressed in the form (1). We find that the set of ṡ2 and s̈ for
which some set of feasible torques and contact forces exist (9) is a convex
polygon, which corresponds to the projection of a 2 + n + 3m dimensional
convex polytope onto a plane. To calculate this polygon we use an efficient
recursive expansion algorithm.

Transformation to rate/force/torque space. Performing the substi-
tution y(t) = p(s(t)) into (7), we find the following instantaneous relation
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between time scaling derivatives, torques, and forces:

B · (p′′ṡ2 + p′s̈) + Cṡ2 +G = τ +

m
∑

i=1

JT
i fi. (25)

Here, p′, p′′, B, C, G, and each Ji depend only on s and are independent of
ṡ and s̈, so this equation is linear in the (ṡ2, s̈, τ, f1, . . . , fm) space.

Including force and torque constraints, we are interested in the feasible
set F of (ṡ2, s̈, τ, f1, . . . , fm) that satisfy the simultaneous equations:

B · (p′′ṡ2 + p′s̈) + Cṡ2 +G = τ +

m
∑

i=1

JT
i fi

τL ≤ τ ≤ τU

fi ∈ FCi(p(s)) for i = 1, . . . ,m.

(26)

as well as velocity and acceleration constraints (20) and (21). It is slightly
faster to eliminate τ as an optimization variable by moving the force terms
in (25) to the left hand side and then bounding the l.h.s. by the torque limits
τL and τU . This reduces the dimension of F from 2 + n+ 3m to 2 + 3m.

Testing whether a particular set of rates (ṡ, s̈) yields feasible forces and
torques is equivalent to checking whether a 3m-dimensional hyperplane in-
tersects F . Another interpretation is that the value of (ṡ, s̈) must lie in the
“shadow” of F when projected onto the (ṡ2, s̈) plane. Next we show how
to compute this 2-D projection, which we denote P . Specifically, with x
denoting the (ṡ2, s̈) component of this space and y denoting the rest, we
have P = {x | (x, y) ∈ F}.

Polytope projection via recursive expansion. Since all constraints
are convex, F is also a convex set, and P is a convex planar shape. With
friction cones approximated as polyhedra, F is a convex polytope and P
is a convex polygon (Fig. 9). We compute this polygon by the recursive
expansion technique presented in [3] which bears a close resemblance to the
Equality Set Projection algorithm of [12].

The algorithm incrementally grows tighter approximations to P by de-
termining an extremum of F in a direction on the x plane at each iteration.
Each extremizing step solves a linear program (LP) of the form

max
x,y

vTx s.t. (x, y) ∈ F (27)

with v some direction in the plane.
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Figure 9: Illustrating the polytope projection step. The feasible polytope
F is projected along the torque and force dimensions (denoted y) onto the
plane of first and second derivatives the time scaling parameter (denoted x).
To do so, the x parameter is maximized in three initial directions v0a, v0b, v0c
subject to the halfplane constraints of F to obtain an initial approximation
P0. Each edge is then recursively expanded in the direction of the outward
normal to obtain the next approximation. When an edge fails to expand,
recursion stops.

The algorithm begins at an initial polygon P0 ⊆ P by extremizing
P in at least three directions whose positive span contains the origin in
its interior. Our implementation uses the directions v0a = (1, 0), v0b =
(cos(120◦), sin(120◦)), and v0c = (cos(240◦), sin(240◦))). If any of these LPs
are infeasible, then P is empty and the dynamic constraints are inconsistent.

Next, it begins a recursion to grow finer approximations P1, P2, . . ., at
each step i extremizing along a direction vi which is determined by choosing
an outward-pointing normal to an unexpanded edge of Pi. The value of x
that achieves the maximum is either contained in Pi or not. In the former
case, that edge is marked as expanded in Pi+1. Otherwise, x is added as
a new vertex to obtain Pi+1. This continues until no unexpanded edges
remain, or a maximum number of iterations is reached.

The steps of this procedure are illustrated in Fig. 9. Once the edges of P
are determined, each supporting plane is converted to a halfplane equation
aṡ2 + bs̈ ≤ c.

Comments on complexity. Let n be the robot dimensionality, m be the
number of contacts, and k be the number of planes in each approximated
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Figure 10: Simple rod example with a point contact.

friction cone. Because F lies in a 2+ 3m-dimensional space and is bounded
by 3n+ km halfplane constraints, in the worst case the feasible set

(

3n+km
2+3m

)

vertices. However, experiments suggest the number of boundaries z of the
projected feasible sets are of much lower complexity, and can be considered
essentially bounded by a constant. Surprisingly, z ≈ 7 on average in our
humanoid robot examples despite having dozens of degrees of freedom and
contact points. The recursive expansion algorithm is output-sensitive, only
making O(z) calls to solve a relatively small linear program. So, empirical
performance appears to be polynomial time.

5.3 Illustration: Rod with Point Contact

Fig. 10 illustrates a planar rod of mass m, inertia H, and length 2L making
contact with the origin at one end. Its coordinates are given by (x, y, θ),
where (x, y) is the center of mass and θ is the leftward lean angle. It can
produce a torque τθ about the center of mass, but cannot exert translational
forces on the rod directly. The contact force f is subjected to Coulomb fric-
tion with coefficient µ. The path is fully determined by θ via the equations
x = −L sin θ, y = L cos θ.

The mass matrix B is a diagonal matrix with entries [m,m,H], the
Coriolis term C is zero, and the gravity vector G is [0,mg, 0]T . Assuming a
path with constant velocity θ′(s) = 1 and θ′′(s) = 0, we have the torque τ
given by:





−mx
−my
0



 ṡ2 +





−my
mx
H



 s̈+G−





1 0
0 1
−y x



 f. (28)
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Since τ = [0, 0, τθ]
T , the first two rows in this matrix must be equal to zero.

In other words,

f = −m[x, y]T ṡ2 +m[−y, x]T s̈+ [0,mg], (29)

and the third row gives:

τθ = Hs̈+ [−y, x]T f. (30)

Replacing the formula for f into the above expression, we have

τθ = (H +mL2)s̈+mxg (31)

after a bit of algebra and observing that x2+y2 = L2. This equation signifies
that with zero torque, s̈ = −mxg/(H+mL2). Adding torques increases the
range of attainable accelerations.

Adding in the torque constraints |τθ| ≤ τmax and the friction constraints
[1, µ]f ≥ 0 and [−1, µ]f ≥ 0, we observe four linear constraints in the ṡ2

and s̈ space. ṡ2 must also be nonnegative.
Fig. 10 plots the feasible set for different values of θ for m = L = 1,

H = m/3, µ = 0.5, and the magnitude of τθ limited to 2. Observe that
forward and backward accelerations are only attainable in a small range of
inclinations about the vertical; otherwise the torque exerted by gravity over-
whelms the robot’s ability to balance. Also observe that at faster rotation
speeds (approximately θ̇ ≥

√
7), the feasible set is bounded by diagonals,

and at even faster speeds, there are no feasible solutions. A vertex at the
upper and lower bounds signifies that at faster velocities, the contact would
slide because of insufficient friction. A rightward facing point between the
upper and lower bounds indicates that at faster speeds, additional downward
forces are needed to maintain contact. Without such forces, the rod would
break contact and fly away.

6 Convex Optimization Time Scaling

This section describes the final time-scaling component of the method, and
proves that with the proper parameterization this gives rise to a convex
program with linear inequalities.

6.1 Parameterizing the time scaling by gridding the path

domain

For (18) to be well defined, y must be twice differentiable, and hence it is
necessary for ṡ(t) to be continuous. Terminal conditions dictate that the

25



s’

s
1

s
2

s
3

s
N-2

s
 N-1. .

.

.

.

s
0

t

s
s

1
s

2
s

3
s

N-2
s

N-1
s

N
...

T

s
0

s
s

1
s

2
s

3
s

N-2
s

N-1
s

N
...

Figure 11: A piecewise quadratic time-scaling s(t) is parameterized by the
rates ṡ0, . . . , ṡN .

trajectory start and stop at zero velocity: ṡ(0) = ṡ(T ) = 0.
We grid the path domain [0, 1] intoN intervals [sk, sk+1], k = 0, . . . , N−1

and enforce constraints at the collocation points s0, . . . , sN . We then for-
mulate s as a piecewise quadratic, twice differentiable curve parameterized
by N + 1 rate parameters ṡ0, . . . , ṡN at segment division points (Fig. 11).
Although it is not immediately obvious, these parameters do indeed fully
determine s(t) and T as follows.

Consider an interval k of size ∆sk = sk+1 − sk and its unknown time
interval [tk, tk+1]. Over this interval, s(t) is fully determined by endpoint
velocities ṡ(tk) = ṡk and ṡ(tk+1) = ṡk+1. We require s(tk) = sk, s(tk+1) =
sk+1, ṡ(tk) = ṡk and ṡ(tk+1) = ṡk+1. Simple algebra verifies that the choices
∆tk = tk+1 − tk = 2∆sk

ṡk+1+ṡk
and

s(t) =
ṡ2k+1 − ṡ2k
4∆sk

(t− tk)
2 + ṡk(t− tk) + sk (32)

satisfy all of the boundary constraints.
Also, observe that ṡ(t) is a linear interpolation between ṡk and ṡk+1 and

s̈(t) = (ṡ2k+1 − ṡ2k)/(2∆sk) (33)

is constant over the entire interval. Finally, we have the total trajectory
duration

T =
N
∑

k=1

∆tk =
N
∑

k=1

2∆sk
ṡk+1 + ṡk

. (34)
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6.2 Linearly Constrained Convex Program in the Squared-

rate Space

The next step of the formulation transforms the optimization problem to
squared-rate parameters θ0 = ṡ20, . . . , θN = ṡ2N . Due to (33) we can transform
each linear constraint in the form (16), evaluated at a grid point, to a linear
constraint in the squared-rate space.

In particular, at a grid point sk, the constraints of (16) become

a(sk)θk + b(sk)
θk+1 − θk
2∆sk

≤ c(sk)a(sk)θk + b(sk)
θk − θk−1

2∆sk−1
≤ c(sk). (35)

(Only the first constraint is used at k = 0 and only the second is used
at k = N .) Note that the acceleration constraints must be duplicated to
account for differing second derivatives over interval k and k − 1.

The final optimization problem minimizes time subject to dynamic fea-
sibility:

min
θ

T (θ) =

N
∑

k=1

∆tk =
N
∑

k=1

2∆sk
√

θk+1 +
√
θk

s.t. θ0 = θN = 0

a(sk)θk + b(sk)
θk+1 − θk
2∆sk

≤ c(sk) for k = 0, . . . , N − 1

a(sk)θk + b(sk)
θk − θk−1

2∆sk−1
≤ c(sk) for k = 1, . . . , N.

(36)

We now state the main result:

Theorem 2. The optimization problem (36) is convex.

Proof. Each equality and inequality in (36) is linear, and hence the feasi-
ble set F is a convex polytope. Convexity of T follows because the inverse
function is convex and non-increasing, and the square root function is con-
cave.

In the following, we make the weak assumption that p(s) is nondegener-
ate (that is, p′(s) 6= 0 for all s).

Lemma 1. The feasible set F of (36) is bounded, and the global, unique
minimum of (36) lies on the boundary of F .
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Figure 12: Illustrating sequential linear programming on a hypothetical 2D
slice. The feasible set is shaded, and contours of T are drawn. First, a
negated gradient direction is computed (solid arrow), and an LP is solved
to obtain the next step (dashed arrow). This continues until the LP move
does not decrease T . The LP trust region (shaded square) is shrunk until a
decreasing move is found. The process continues until convergence.

Boundedness of F follows because (24) gives a finite upper bound to
every θk. Furthermore, over the unbounded positive space θ ≥ 0, T ap-
proaches a single global minimum value (namely, zero with θ → ∞). Since
F is bounded and convex, and T is convex, the optimum of the constrained
problem must lie on the boundary.

These results are significant because if there exists a feasible solution θ,
then it can be found reliably using convex programming techniques. Further-
more, as N increases, the representation of s(t) provided by the optimized
θ grows progressively more faithful to the true optimum.

We also prove that for paths in quasi-static balance, a feasible solution
will be found.

Lemma 2. If p(s) is quasi-statically balanced for all s ∈ [0, 1] (i.e. there
exists a solution to (9) with q̇ = q̈ = 0), and all velocity and acceleration
bounds contain zero (i.e., vL ≤ 0 ≤ vU and aL ≤ 0 ≤ aU ), then the opti-
mization program (36) has a feasible solution.
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Proof. The proof shows that the origin θ0 = · · · = θN = 0 is a feasible point,
in other words, ṡ = s̈ = 0 throughout the path.

The quasi-static balance condition states that for all points p(s) on the
path, there exist torques τ(s) and forces fi(s), i = 1, . . . ,m that satisfy:

G(p(s)) = τ(s) +
m
∑

i=1

Ji(p(s))
T fi(s)

τL ≤ τ ≤ τU

fi(s) ∈ FCi(p(s)) for i = 1, . . . ,m.

(37)

Therefore, at every point s there exists a solution to (26) with ṡ = s̈ = 0.
Since ṡ = s̈ = 0 also satisfies the velocity and acceleration bounds (20) and
(21), the solution is feasible.

Note that this proof does not necessarily indicate that there exists a
feasible solution with finite duration T . For example, if the robot’s center
of mass lies precisely on the edge of the support polygon, it is balanced
quasi-statically but there are no valid forces that can push the center of
mass inwards. In such cases, the algorithm will return successfully but with
an infinite-time solution.

6.3 Solution via Sequential Linear Programming

Linearly constrained convex programs are suitable for sequential linear pro-
gramming (SLP) solvers. SLP starts at an initial point and linearizes the
objective function about the point to obtain a descent direction, which is
optimized by solving an LP. This process repeats, linearizing the objective
about the new point (Fig. 12). A trust-region method is used to ensure that
the process converges to optimal solutions that are not at a vertex of F .
The implementation operates as follows:
Time Scaling SLP

1. Initialize a rough solution θ by greedily picking each subsequent θk+1

according to the maximum value that satisfies all constraints involving
itself and θk

2. Initialize the trust region size r = ‖θ‖∞.

3. Linearize the objective function about the current solution θ and solve
an LP:

min
x

∂T

∂θ
(θ)Tx s.t.

x ∈ F and ‖x− θ‖∞ ≤ r.
(38)
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4. If the LP is infeasible, return ‘failure’.

5. If T (x) > T (θ), set r ← r/2 and repeat from step 3. Otherwise set
r ← 1.5r.

6. If |T (x)− T (θ)| < ǫT or ‖x− θ‖∞ < ǫθ return ‘converged’.

7. Set θ ← x and repeat from step 3.

The algorithm terminates when the change in T or the change in θ decrease
below user-specified convergence thresholds ǫT or ǫθ, respectively (Line 6).
Also, given a fixed time budget, it may be terminated with θ containing a
feasible solution any time after the first iteration.

Thanks to widely available and reliable LP implementations (e.g., CPLEX,
GLPK), SLP is robust and fast. Moreover, it typically takes only a few it-
erations to converge. Lemma 1 helps explain why this is so: the optimum is
often at a vertex of F , so the LP solution often reaches a maximum without
ever needing to adapt the trust region size.

6.4 Conservative Enforcement of Exact Dynamic Feasibility

The collocation point method only enforces dynamic feasibility at finite
points, which has the potential to miss constraint violations in-between.
The severity of these violations shrinks as N grows, but it may be desirable
to obtain dynamic feasibility regardless of the value of N .

The simplest approach to this problem is to add safety margins onto
each constraint. This also helps the method tolerate execution and modeling
errors. We slightly shrink the torque limits and friction coefficient estimates
by a user-defined parameter. Also, we add a small offset to the each friction
cone in the normal direction which enforces that each contact must apply
a minimum force. Currently these parameters are chosen by manual tuning
but in future work we would be interested in guaranteed feasibility. The
humanoid robot experiments in this paper use a friction reduction of 50%
and impose a minimum of 9.8N force on each limb in contact.

A more sophisticated method uses interval analysis to conservatively
bound the coefficients of the optimization parameters along each grid in-
terval. We have implemented this technique for velocity and acceleration
constraints (2,3) as follows. Extending this method to torque and force
constraints is left for future work.

Over the domain s ∈ [sk, sk+∆sk], we compute bounds on the derivatives
of p: p′(s) ∈ [vLk , v

U
k ] and p′′(s) ∈ [aLk , a

U
k ]. Here the notation [a, b], where a
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and b are vectors, indicates an axis-aligned box in R
n. Since each Hermite

curve comprising the path is a third-degree polynomial along each axis,
velocity extrema are found either at the endpoints or at critical points where
acceleration crosses zero. Acceleration extrema occur only the endpoints.

To bound the inner velocity term in (20), observe that ṡ(t) is a linear
interpolation with extrema ṡk at t = tk and ṡk+1 at t = tk+1. Hence, (20) is
proven feasible throughout the interval if the constraints

vL ≤ vLk ṡk vL ≤ vLk ṡk+1

vUk ṡk ≤ vU vUk ṡk+1 ≤ vU
(39)

are satisfied. (The constraints become one-sided due to the requirement that
ṡ > 0.)

The acceleration constraint (21) expands to a quadratic constraint on
ṡk and ṡk+1. Note that because the time scaling has positive derivative,
the extrema of the term ṡ(t)2 are obtained at the endpoints ṡ2k and ṡ2k+1.
Hence, (21) is proven feasible throughout the interval if the conditions:

ṡ2k[a
L
k , a

U
k ] +

1

2∆sk
[vLk , v

U
k ](ṡ

2
k+1 − ṡ2k) ∈ [aL, aU ] (40)

ṡ2k+1[a
L
k , a

U
k ] +

1

2∆sk
[vLk , v

U
k ](ṡ

2
k+1 − ṡ2k) ∈ [aL, aU ] (41)

are satisfied. Note that these conditions are also linear in θk and θk+1, and
are amenable to irrelevant constraint removal.

7 Experiments

Performance testing is conducted on a 2.67GHz PC and C++ implemen-
tation using the GLPK library to solve linear programs. The Featherstone
articulated body dynamics algorithm [8] was adapted to compute the coef-
ficients in (26).

7.1 Performance and Dimensionality

Irrelevant constraint pruning provides major speed advantages for high-DOF
robots, since the number of relevant constraints is only weakly dependent
on n (Fig. 13). The total number of inequality constraints grows with cNn,
where c is a constant depending on how many constraints are enforced: c = 2
for acceleration bounds only, c = 4 for acceleration and torque bounds, and
c = 8 for conservatively enforced acceleration bounds. However, the number
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Figure 13: Performance on (a) planar, endpoint constrained, n-joint robots.
(b) In the 100D case, nearly 99% of the original constraints are irrelevant. (c)
When those constraints are pruned, the cost of time-scaling is only weakly
dependent on n. (d) Including spline projection, our technique can solve
100D problems in approximately 1 s. (Grid size is fixed at N = 1024.)

of relevant constraints appears to have an empirical growth rate approxi-
mately equal to Nn/50. This speeds up LP solving dramatically, because
for a fixed number of variables, LP running times scale approximately lin-
early in the number of constraints [17]. For the 63 DOF humanoid described
below, computation times are reduced by two orders of magnitude.

Fig. 14 compares SLP time-scaling to the recent open source implemen-
tation by [15] of the classical exact time-scaling algorithm [2] (code accessed
May 2012). B-spline path derivative calculations were integrated into the
code, and the method was run on the B-spline paths produced in Fig. 13. It
worked successfully for a majority of the examples but failed with numerical
error in 5 of 13 runs. Failures did not follow any clear pattern. In contrast,
with N = 1024 grid points, SLP produces trajectories of about 4% slower
duration, but runs faster, more scalably, and more reliably.
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Table 1: Performance on humanoid examples, w/o force constraints

Example Crouch Sway Stair Ladder

Keyframes 2 3 10 33
Manifolds 1 1 5 13
Contact tol. ǫ 2mm 2mm 2mm 2mm
Grid size N 128 128 350 1500
Interp. time (s) 0.15 0.09 0.24 2.61
SLP time (s) 0.23 0.24 0.79 1.50
Opt. duration (s) 1.76 9.31 10.8 35.2
Tri. vel. dur. (s) 2.40 12.6 24.2 96.0

7.2 Performance and Grid Size

Fig. 15 shows the solution for a unit circle path with axis-wise velocity and
acceleration bounds. The optimal time scaling is acceleration-limited, with
the slope of either ẋ or ẏ limited throughout. The solution at a given res-
olution is suboptimal, but approaches the optimum as the resolution grows
finer. These experiments also suggest that running time of SLP grows ap-
proximately quadratically in N , which is consistent with empirical observa-
tions and smoothed analyses of linear program running time [17].

7.3 Humanoid Robot Locomotion

We tested the method on a simulated model of the KAIST Hubo-II+ hu-
manoid robot. The physical robot is 130 cm tall and weighs 42 kg with 37
actuated degrees of freedom. The configuration space model includes indi-
vidually actuated finger joints and the 6DOF base translation and rotation,
leading to a 63-D configuration space SE(3)× R

57.
Table 1 displays timing results for four example motions, not includ-

ing force constraints. In Crouch the hands are maintained at a constant
relative translation and orientation, as though holding an object with a two-
handed grasp. Both feet are constrained to lie on the floor with ǫ = 2mm.
The start and end configurations are constructed to be kinematically feasi-
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ble, i.e., quasi-statically balanced and collision free. Sway, also shown in
Fig. 1, is a side-to-side swaying motion. Stair is a hand-supported stair
climb that grasps the rail and takes a single step to the first step. The robot
traverses five manifolds: LF+RF (left foot + right foot support), LH (left
hand support)+LF+RF , LH+LF, LH+LF+RF, and LH+RF. A sequence
of 10 kinematically-feasible configurations are provided to the algorithm.
Ladder is a backwards ladder climb that moves 6 steps up a ladder. Steps
alternate between 3-limb and 4-limb contact, so the robot moves between
13 contact submanifolds total. (The robot uses the 4-limb contact stages to
shift its center of mass.) A sequence of 33 kinematically-feasible configura-
tions are provided as input. To interpolate multi-step paths, configurations
at each contact stage are interpolated and then the resulting paths are con-
catenated together. Short trajectories can be generated in a fraction of a
second, whereas the longest ladder climbing trajectory takes approximately
4 s. Each segment with fixed contact points is optimized individually.

In all cases, it is worth the added expense in absolute terms to compute
the optimal time scaling rather than to rely on simpler heuristics. The last
row in Table 1 (Tri. vel. dur.) compares one such heuristic: a triangular
velocity profile that speeds up and then slows down to a stop at each contact
stage. The apex of the triangle governs the speed of the trajectory and
is scaled to the dynamic limits of the robot. The method is only slightly
faster to compute than time-scaling, yet produces substantially slower paths.
For the ladder climbing example, time-scaling saves 59 s of computation +
execution time.

Fig. 16 shows another ladder-climbing motion, but with force constraints
included in the time-scaling. It consists of 16 changes of contact and climbs
up two rungs of the ladder, and has an average of 32 contact points. The op-
timized motion is approximately 27 s in duration. Unlike the prior examples,
in this example the SLP is jointly optimized across all changes of contact.
Feasible set computation time increases in N , the number of DOFs, and the
number of contact points. In these experiments the average number of fea-
sible set boundaries per grid point ranges between 5–7, so the time-scaling
cost is primarily only dependent on N .

7.4 Simulation Experiments

The next set of experiments demonstrate the value of dynamic interpola-
tion for feasibility constraints such as balance, using physics simulation as
an approximation of real-world conditions. We use the Klamp’t simulator,
which extends the Open Dynamics Engine rigid body simulator with im-
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proved contact handling for triangle-mesh collisions and emulation for robot
actuators and sensors [11].

Fig. 17 shows simulated execution results for a simple pendulum swing-
up task where input keyframes are not quasistatically stable. The pendulum
has a mass of 1 kg, length of 1m and moves under the influence of gravity.
The motor’s torque limit of 5.6Nm is not sufficient to lift the pendulum
directly. The robot performs trajectory following PD control with grav-
ity compensation. When the kinematic path is uniformly mapped to a 5 s
duration, the pendulum completely overshoots the target. With the path
mapped to ≤4 s or ≥9 s duration, the robot does not even reach the upright
position (not shown). Opt w/o Torque shows a dynamic interpolation with
no torque limits and approximate acceleration bounds of 5.6 rad / s2. The
optimized motion had duration 5.28 s and does not take advantage of the dy-
namic effects of gravity. As a result, during execution the robot overshoots
the target. With torque bounds, the optimized motion (Opt w/ Torque) has
duration 4.6 s and is executed accurately. The optimized path is solved in
89ms with N=100.

Fig. 1 illustrates the importance of dynamic balance constraints for hu-
manoids. A side-to-side configuration-space path on the Hubo-II+ is exe-
cuted in simulation using four time parameterizations:

• Uniform, 5 s duration: the robot slips at the beginning of the path as
it jerks to a start, and falls over at the end of the path.

• Uniform, 10 s duration: ultimately, the robot does not fall over, but it
still wobbles on its feet.

• Dynamic interpolation, acceleration constraints only: the robot still
slows down too quickly and tips over.

• Dynamic interpolation, all constraints: the robot stays upright with
an optimized duration of 4.99 s.

The latter method uses 59 contact points and N = 100, taking 2.40 s to
precompute feasible sets and 2.46 s to solve the SLP. The dynamic feasible
sets at each grid point averaged 9.1 boundaries. The shade of green on
the feet indicates the force magnitude; note that in our method the robot
decelerates as quickly as possible by shifting all of its weight onto its right
foot (second to last frame, last row).

Fig. 18 shows an execution of the Crouch motion as simulated in a rigid
body physics simulator. This is a fairly realistic test of how the method
would perform on a physical robot, because realistic motor PID controllers
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Figure 18: Left: Frames from a simulation of a dynamically-optimized tra-
jectory for the Hubo to crouch while holding an object with both hands.
Right: a non-optimized trajectory abruptly stops at the end of simulation,
causing the legs and arms to overshoot the target and cause a collision.

Figure 19: Standing-up motions on a simulated ATLAS humanoid. Top
row: the robot tips over when executing a dynamic interpolation without
contact force constraints. Bottom row: with force constraints, the robot
stays balanced.

and frictional ground contact forces are simulated. The motion produced
by the method is performed as desired, without incident. In contrast, direct
execution of the path without dynamic optimization causes large jerks at the
start and end of motion, causing the robot to both overshoot the endpoint
and wobble.

In Fig. 19 the Boston Dynamics ATLAS robot is simulated standing up
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from a squat. The input motion has 45 DOF and the stance is modeled with
30 contacts. Without force/torque constraints, the optimized trajectory was
generated about twice as quickly and has duration 3.43 s, but the robot falls
over at the end of the trajectory. When considering force/torque constraints,
the optimized trajectory was generated in 1.44s and has duration 6.63 s, and
the robot stays upright.

7.5 Implementation and Usage

The technique presented in this paper is implemented in C++ the Mani-
fold Interpolation and Time-Optimal Smoothing (MInTOS) library, which is
publicly available at http://www.iu.edu/~motion/mintos/. Its API sup-
ports submanifold interpolation of 2 or more keyframes given arbitrary vec-
tor fields C(q) = 0, as well as time-scaling with 1) velocity and acceleration
bounds enforced conservatively, and/or 2) torque and force constraints via
the collocation point method.

Usage. In basic mode, Mintos performs projection and time-scaling
with velocity and acceleration bounds in one step, and the user supplies
bounds and subroutines for kinematic constraint evaluation to customize
the procedure to a given robot. Altogether, the user input includes:

• The sequence of keyframes,

• Subroutines for evaluating C(q) and its Jacobian ∂C
∂q

(q),

• The termination threshold 2ǫ/M used in recursive Hermite projection,

• The number of grid points N ,

• The velocity and acceleration limits vL, vU , aL, aU .

• Optionally, subroutines for calculating geodesics and their derivatives
for non-Cartesian configuration spaces may be provided.

In contact mode, Mintos accepts torque and frictional force constraints.
It requires that the user performs kinematic interpolation and time-scaling in
separate steps, and that the user supply contact information and subroutines
to evaluate the components of the dynamic equation. In addition to the basic
mode parameters, the user supplies:

• A list of grid points (in lieu of N , this provides finer control),

• Subroutines for calculating each item B(q), C(q, q̇)), G(q), and Ji(q)
in the robot’s dynamic equation,
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• Torque bounds τL, τU ,

• A list of contact points, normals, and friction coefficients at each con-
tact phase,

• The number of edges in the polyhedral approximation to the friction
cone.

The Klamp’t library provides a more convenient interface to Mintos that
supplies the geodesic, kinematic constraints, and dynamics subroutines for
a given robot model [11].

Parameter selection. The constraint tolerance ǫ > 0 should be set
depending on how much error in the contact equalities can be tolerated by
the robot; higher values can be used with passively compliant joints, or with
compliant surfaces in contact. Lower values should be used for stiff systems,
at the expense of higher running time. The parameter β is set by default to
0.9. We find that bound values typically have a minor effect on performance.

In basic mode, the grid resolution N should be set to achieve the desired
tradeoff between computation time and path optimality. In contact mode, N
should be set according to achieve the desired tradeoff between computation
time and severity of constraint violations between collocation points. In
either case, experimental tuning is necessary. In our experiments, setting
N = 1000 typically leads to nearly optimal solutions with approximately
1 s solution times in basic mode. In contact mode, a much lower value is
recommended (say, N = 100) to achieve interactive performance due to the
significant extra cost of feasible set precomputation.

8 Conclusion

This paper presented a fast method for interpolating robot keyframes un-
der kinematic and dynamic contact constraints. Three contributions make
it possible: recursive Hermite projection for calculating a kinematic path
within a given tolerance, polytope projection to compute dynamically feasi-
ble sets of timing derivatives, and convex optimization for time-scaling. The
algorithm computes optimized trajectories in seconds for high-dimensional
humanoid robots and complex contact formations. It is implemented in the
open-source Manifold Interpolation and Time-Optimal Smoothing (MInTOS)
library, available at http://www.iu.edu/~motion/mintos/. In future work
we plan to embed the method into higher-level optimizations to choose
keyframes, study its tradeoffs between resolution and robustness, and to
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apply it to other problems such as dynamic locomotion on uneven terrain
and nonprehensile manipulation.
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