
ar
X

iv
:1

91
0.

01
06

9v
1

 [
m

at
h.

O
C

]
 2

 O
ct

 2
01

9

Fast Interpolation-based Globality Certificates for

Computing Kreiss Constants and the

Distance to Uncontrollability

Tim Mitchell∗

October 2nd, 2019

Abstract

The Kreiss constant of a matrix and the distance to uncontrollability can both be defined
by global minimization problems of certain singular value functions in two real variables,
which often have multiple local minima. The state-of-the-art for computing both of these
quantities uses optimization to first find minimizers and then computes globality certificates
to either assert that a given minimizer is a global one, or when not, provide new starting
points for another round of optimization. These existing globality certificates are expensive
to compute, which limits them to rather small problems, and for Kreiss constants, they also
have high memory requirements. In this paper, we propose alternative globality certificates
for both Kreiss constants and the distance to uncontrollability, based on the idea of building
interpolant approximations to certain one-variable distance functions. Our new certificates
can be orders of magnitude faster to compute, have relatively low memory requirements,
and seem to be more reliable in practice.

Notation: ‖·‖ denotes the spectral norm, σmin(·) the smallest singular value, Λ(·) the spectrum,
and (A,B) the matrix pencil A−λB, with Λ(A,B) denoting the spectrum of matrix pencil (A,B).

1 Introduction

The Kreiss Matrix Theorem [Kre62], after being refined by many authors over nearly thirty
years, says that for any matrix A ∈ Cn×n [TE05, Theorem 18.1]

K(A) ≤ sup
k≥0

‖Ak‖ ≤ enK(A), (1.1)

where the Kreiss constant K(A) has two equivalent definitions [TE05, p. 143]

K(A) = sup
z∈C,|z|>1

(|z| − 1)‖(zI −A)−1‖ (1.2a)

= sup
ε>0

ρε(A)− 1

ε
, (1.2b)

and the ε-pseudospectral radius ρε(·) is defined by

ρε(A) = max{|z| : z ∈ Λ(A+∆), ‖∆‖ ≤ ε} (1.3a)

= max{|z| : z ∈ C, ‖(zI − A)−1‖ ≥ ε−1}. (1.3b)

∗Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, 39106 Germany
mitchell@mpi-magdeburg.mpg.de. The author’s visits to the Courant Institute of Mathematical Sciences, New
York University were supported by the U.S. National Science Foundation grant DMS-1620083

1

http://arxiv.org/abs/1910.01069v1
mailto:mitchell@mpi-magdeburg.mpg.de

For ε = 0, ρε(A) = ρ(A), the spectral radius of A, and so it is easy to see that K(A) = ∞ if
ρ(A) > 1. Furthermore, if A is normal and ρ(A) ≤ 1, then K(A) = 1, which is the minimum
value K(A) can take, since k in (1.1) can be zero.

Correspondingly, there is also a continuous-time version of the Kreiss Matrix Theorem that
states for any matrix A ∈ C

n×n [TE05, Theorem 18.5]

K(A) ≤ sup
t≥0

‖etA‖ ≤ enK(A), (1.4)

where this version of K(A) also has two equivalent definitions [TE05, Eq. 14.7]

K(A) = sup
z∈C,Re z>0

(Re z)‖(zI −A)−1‖ (1.5a)

= sup
ε>0

αε(A)

ε
, (1.5b)

and the ε-pseudospectral abscissa αε(·) is defined by

αε(A) = max{Re z : z ∈ Λ(A+∆), ‖∆‖ ≤ ε} (1.6a)

= max{Re z : z ∈ C, ‖(zI −A)−1‖ ≥ ε−1}. (1.6b)

If ε = 0, αε(A) = α(A), the spectral abscissa of A, and so K(A) = ∞ if α(A) > 0. Similar to
the discrete-time case, K(A) ≥ 1 since t in (1.4) can be zero and K(A) = 1 if A is normal and
α(A) ≤ 0.

To date, Kreiss constants have typically been estimated using supervised techniques, i.e.,
where a user is an active participant of the process. For example, in [Men06, Chapter 3.4.1] and
[EK17], Kreiss constants have been approximated by plotting (1.2b) or (1.5b) and simply taking
the maximum of the resulting curve. Kreiss constants have also been estimated by plotting ‖etA‖
with respect to t or ‖Ak‖ with respect to k, as well as by finding local maximizers of (1.2b) or
(1.5b) via optimization [TE05, Chapters 14 and 15]. Plotting techniques of course have low
fidelity. They are unlikely to obtain the value of K(A) to more than a few digits at best and may
require a large number of function evaluations to have any accuracy whatsoever. Optimization
techniques on the other hand, under sufficient regularity conditions, have high fidelity in finding
local maximizers and can often do so with relatively few function evaluations. However, for
nonconvex optimization problems like those in (1.7), general optimization solvers cannot guar-
antee that a global maximizer, and thus K(A), is obtained. Indeed, none of these techniques
can guarantee that K(A) is computed, as this would require knowing a priori an interval that
contains a global maximizer of these particular functions, an interval which is also sufficiently
sampled (to use plotting) or contains no other stationary points (to use optimization). Of course,
such intervals are not necessarily knowable in advance and/or without user involvement. Fur-
thermore, when transient behavior happens on a very fast time scale, suitable intervals would be
very small and so may be hard to find, particularly without fine-grained sampling. As noted by
Mengi [Men06, Section 6.2.2], “in general it is difficult to guess a priori which ε value is most
relevant for the transient peak [of (1.2b) or (1.5b)].”

In contrast, we recently proposed the first algorithm to compute K(A) with theoretical guar-
antees [Mit19], which was done by working with the inverses of (1.2a) and (1.5a), respectively

K(A)−1 = inf
|z|>1

σmin

(
zI −A

|z| − 1

)
(discrete-time) (1.7a)

K(A)−1 = inf
Re z>0

σmin

(
zI −A

Re z

)
(continuous-time), (1.7b)

and exploiting the similarity of solving these optimization problems to that of computing the
distance to uncontrollability. For a linear control system

ẋ = Ax+Bu, (1.8)

2

where A ∈ Cn×n, B ∈ Cn×m, and both the state x ∈ Cn and control input u ∈ Cp are dependent
on time, the distance to uncontrollability τ(A,B) can be computed by solving [Eis84]

τ(A,B) = min
z∈C

σmin

([
A− zI B

])
. (1.9)

Indeed, the algorithms we proposed in [Mit19] for computing Kreiss constants are inspired by
the existing methods of [Gu00, BLO04, GMO+06] for τ(A,B).

The main drawback of all of these methods is that they rely on a set of related level-set
tests, which can be used to guarantee convergence to τ(A,B) or K(A) but are quite expensive
to compute, e.g., O(n6) work. These particular tests can also be sensitive to rounding errors,
which can cause them to fail in practice. On the other hand, local minimizers of the optimization
problems in (1.7) and (1.9) can be found reliably and rather cheaply, relatively speaking, using
standard optimization techniques. For finding minimizers which are sufficiently smooth, typically
only a handful of optimization iterations are needed, while the dominant cost to evaluate the
value, gradient, and Hessian of any of these objective functions amounts to a single SVD, and
hence is O(n3) work for dense systems. As we noted in [Mit19], standard optimization is also
efficient for obtaining locally-optimal approximations to τ(A,B) and K(A) when n is large; (1.7)
and (1.9) only have two optimization variables and minimum singular values of large matrices,
along with their gradients with respect to the two variables, can be computed in O(n) work
via sparse SVD solvers. Indeed, to minimize the number of times the costly level-set tests are
invoked, both [BLO04] and [Mit19] proposed optimization-with-restarts methods, where “cheap”
optimization is used to find local minimizers (of (1.9) and (1.7), respectively) and the level-set
tests are only used to construct globality certificates. On each round of optimization, a certificate
either asserts that a point is a global minimizer (which terminates the algorithm) or the test
provides new points from which optimization can be restarted. In the latter case, the new
starting points guarantee that a better (lower) minimizer will be obtained in the next round of
optimization. As a result, these two optimization-with-restarts methods respectively converge to
τ(A,B) and K(A).

While in [Mit19] we answered the open question of how to extend the existing state-of-the-art
techniques for computing τ(A,B) to realize the first algorithm for computing Kreiss constants,
computing either quantity nevertheless remains prohibitively expensive for all but the smallest of
problems. Motivated by these limitations, in this paper we develop new globality certificates for
bothK(A) and τ(A,B) that are potentially much faster to compute and more reliable numerically,
with the purpose of using them in the optimization-with-restarts methods of [Mit19] and [BLO04].
The core idea is to construct a new function that, when sufficiently resolved by an interpolant on
a finite interval known a priori, can indicate that a given point is a global minimizer of (1.7a),
(1.7b), or (1.9) (as appropriate). If the given point is not a global minimizer, then typically a
low-fidelity interpolant will suffice to provide new starting points guaranteeing a better minimizer
will be found in the subsequent round of optimization. Although our new globality-certificate
function may have to be evaluated many times in this process, it only needs O(n3) work per
evaluation and these evaluations can be done in an embarrassingly parallel manner. As such, we
think this may be a more pragmatic approach than the earlier level-set tests discussed above,
particularly for larger problems where O(n6) work is simply intractable. Furthermore, provided
sufficiently accurate interpolants are obtained, our new approach should be more reliable, since
it (a) avoids the computations of the earlier level-set tests that are numerically sensitive and (b)
can also benefit from appropriate structure-preserving eigenvalue solvers to avoid other numerical
issues.

The paper is organized as follows. We first give a high-level overview of the existing methods
of [Gu00, BLO04, GMO+06] for τ(A,B) and [Mit19] for K(A) and discuss their properties in §2.
Then in §3 we present our new interpolation-based globality certificates for the case of computing
continuous-time K(A). Analogues of our interpolation-based certificates for discrete-time K(A)
and τ(A,B) are respectively derived in §4 and §5. Numerical experiments are given in §6, while
concluding remarks are made in §7.

3

2 Existing methods and their limitations

The following algorithms for τ(A,B) and K(A) all trace back to a novel, albeit expensive, level-set
test developed by Gu [Gu00, Section 3.2], which Gu used to develop an iteration for estimating
τ(A,B) to within a factor of two [Gu00]. The dominant cost of Gu’s algorithm is performing the
test itself, which, as originally stated, is O(n6) work since it involves computing all eigenvalues
of certain 2n2 × 2n2 matrix pencils.1 Given two real parameters, specifically a guess γ ≥ 0 for
the value of τ(A,B) and some η ≥ 0, the test determines whether there exists one or more points
z ∈ C such that

σmin

([
A− zI B

])
= σmin

([
A− (z + η)I B

])
= γ. (2.1)

In other words, the test determines if there exists a pair of points on the γ-level set of
σmin ([A−zI B]) that are a distance η apart horizontally. If the test determines there are no
such points, it does not imply that τ(A,B) > γ but another key result of [Gu00, Theorem 3.1]
shows that τ(A,B) > γ − η

2 instead holds as a lower bound.
Gu’s algorithm was followed by [BLO04], which employed this new test in two different

ways to compute τ(A,B) to a given tolerance, not just estimate it to within a factor of two.
The first of these, a linearly-convergent trisection algorithm, maintains a bracketing interval
containing τ(A,B) and uses the test to determine whether the upper or lower third of this interval
can be discarded on each iteration. However, the authors of [BLO04] instead recommended
using their second proposed algorithm, the optimization-with-restarts method mentioned in the
introduction, since it is typically much faster. Though both require O(n6) work, since they each
use the test of Gu, the optimization-with-restarts method generally invokes it far fewer times
than the trisection algorithm. Finally, using a divide-and-conquer technique, [GMO+06] showed
how additional structure in the test of Gu could be exploited to reduce its work complexity to
O(n4) on average and O(n5) in the worst case.

Returning to the case of Kreiss constants, the trisection algorithm does not appear to extend
to computing K(A) [Mit19, Section 4], and even if it did extend, it would likely be inaccurate
when K(A) is large [Mit19, Section 4.1]. In fact, the original trisection algorithm for τ(A,B)
may struggle to deliver any accuracy whatsoever, perhaps not even a single digit, if τ(A,B) is
close to zero [Mit19, Section 4.1].

Instead, we proposed two methods [Mit19, Sections 3 and 5] for computing continuous- and
discrete-time Kreiss constants via applying the optimization-with-restarts approach to (1.7b) and
(1.7a), respectively. The core part of course is to develop the corresponding computable globality
certificates which not only assess potential solutions to (1.7) but also provide good starting points
for the next round of optimization if a global minimizer has not yet been reached. In [Mit19,
Sections 3.2 and 5.2], we accomplished this by developing new continuous- and discrete-time
level-set tests for K(A)−1 that were inspired by Gu’s test for estimating τ(A,B) and which also
require O(n6) work and operate in a similar fashion. In the continuous-time case, letting

f(z) := σmin

(
zI −A

Re z

)
, (2.2)

parameter γ ∈ [0, 1) is a guess for the value of K(A)−1, η ≥ 0 is the fixed distance between pairs
of points on the γ-level set of f(z), and angle θ sets the required orientation for all such pairs.
The new continuous-time K(A)−1 test determines whether there exists one or more points z ∈ C

such that
f(z) = f(z + ηeiθ) = γ. (2.3)

If the test finds any such points, optimization is guaranteed to find better (lower) minimizers to
(1.7b) when restarted from these points. Hence the test is performed for decreasing values of

1As in [BLO04], work complexities are given in terms of considering all computations of singular values,
eigenvalues, etc., as atomic operations with cubic costs in the dimensions of the associated matrices, and we
further assume that these costs reduce to linear if sparse methods are applicable.

4

η, until either one or more points satisfying (2.3) is found and so optimization is restarted, or
η falls below a tolerance indicating a global minimizer has been found. While we additionally
showed that the asymptotically faster divide-and-conquer method of [GMO+06] does extend
to our new K(A)−1 tests derived in [Mit19, Sections 3.3 and 5.3], this appears to only be a
theoretical achievement. In practice, we observed that divide-and-conquer in the Kreiss constant
setting was unreliable [Mit19, Section 6.3]. Consequently, computing Kreiss constants with any
guarantees, i.e., via the globality certificates we derived in [Mit19], seems to be an O(n6) affair.

The high cost of these level-set tests limits computing τ(A,B) and K(A) to rather small
problems. In the Kreiss constant case, the O(n6) work complexity results also hide even higher
constant terms compared to the test of Gu for τ(A,B). As mentioned earlier, the original τ(A,B)
test derived by Gu involves computing the eigenvalues of a 2n2 × 2n2 generalized eigenvalue
problem. This was later simplified to a 2n2 × 2n2 standard eigenvalue problem in [GMO+06,
Section 3.1]. However, our new tests for K(A)−1 require computing eigenvalues of 4n2 × 4n2

generalized eigenvalue problems in the continuous-time case and 4n2 × 4n2 quadratic eigenvalue
problems in the discrete-time case. Part of the reason for these differences is that while all these
cases involve 4n2× 4n2 pencils at some point in their derivations, there is additional structure in
the τ(A,B) test that can be exploited to reduce the problem size down to 2n2 × 2n2 and from a
general to a standard eigenvalue problem; however, this exploitable structure is not present in the
Kreiss constant setting [Mit19, Remark 3.2] so it is unclear if any reductions are possible here.
Furthermore, the O(n4) and O(n5) (average and worst case) work complexities of the faster
divide-and-conquer technique, which again does not seem to work well for computing Kreiss
constants, are still quite limiting, albeit not as severely as O(n6).

As mentioned in the introduction, these level-set tests also come with some numerical diffi-
culties, for both τ(A,B) and Kreiss constants. The first and most problematic issue is that these
tests can be quite sensitive to the parameter η. If there exist points satisfying (2.1) (or (2.3)) for
the given values of γ and η (or γ, η, and θ), the corresponding tests may, due to rounding errors,
fail to return any of them, especially if η is small. Since all of the algorithms above eventually
require performing the tests for diminishing values of η, this can lead to inaccuracy. This sensi-
tivity to η is precisely what motivated the trisection algorithm as a more reliable alternative to
using bisection to compute τ(A,B) [BLO04, p. 358]. However, this same sensitivity is ultimately
why the trisection algorithm may nevertheless still fail to have any accuracy when τ(A,B) is
small [Mit19, Corollary 4.2].

With the optimization-with-restarts methods, the sensitivity to η plays out a bit differently.
In the trisection algorithm, a lower or upper bound is updated on every iteration based on the
result of a single level-set test using a value of η determined by trisection itself. If sensitivity to
η causes the test to incorrectly return no points, the lower bound will be updated erroneously.
On the other hand, the globality certificates computed in optimization-with-restarts generally
involve computing the level-set tests for multiple values of η before asserting globality and can be
initialized with relatively large values for η. As such, it seems reasonable that optimization-with-
restarts methods may be more fault-tolerant than the trisection algorithm. Furthermore, even if
the globality certificate computation incorrectly asserts a minimizer is a global one, which would
terminate the algorithm when a restart should be performed, how much this affects the overall
accuracy is unpredictable. The accuracy depends on how close the function values differ between
the current local minimizer and a global one. It is plausible the optimization-with-restarts may
still find good local minimizers, i.e., that attain objective values close to K(A)−1 or τ(A,B),
particularly if optimization is run from many points on each round.

The second issue is much less critical and only relevant in the Kreiss constant setting. Here
the tests additionally require that γ < 1. The reason for this additional restriction is that
the level-set tests look for the presence of a pair of points that are a distance η apart. If
γ ∈ [K(A)−1, 1), then there exists an ηmax > 0 such that the tests should detect such pairs
for all η ∈ [0, ηmax] [Mit19, Section 4.2]. However, such pairs may not exist for γ ≥ 1. For
example, in the continuous-time case, all lines in the complex plane at height γ ≥ 1 may only
intersect the corresponding level set of (2.2) at most once. Hence in [Mit19], we simply assume

5

that the first round of optimization finds at least one minimizer z̃ of (2.2) such that f(z̃) < 1,
which by monotonicity of the optimization-with-restarts methods, ensures that γ < 1 holds for
all globality certificate computations; the assumption is also necessary in the discrete-time case,
i.e., at least one of the minimizers of (1.7a) found in the first round of optimization must have
a corresponding function value that is strictly less than one. This does not seem to be difficult
to satisfy in practice but it is an additional complication.

3 Interpolation-based globality certificates for continuous-

time K(A)

We begin by noting that parameters γ and η are integral parts of both Gu’s original estimation
method and the trisection algorithm. In both methods, on each iteration whether τ(A,B) > γ

holds is unknown, and so Gu’s test is used to verify either τ(A,B) ≤ γ or τ(A,B) > γ − η
2 .

Meanwhile, parameter η assesses the accuracy at any given iteration, since for sufficiently small
η, γ − η

2 ≈ γ. However, in the context of using optimization with restarts, this framework is a
bit out of sync with reality. Clearly any locally-optimal solutions to the problems of (1.7) and
(1.9) must correspond to a function value γ that is at least K(A)−1 or τ(A,B), respectively, so
there is no need to verify this. Furthermore, how accurately locally-optimal solutions to (1.7)
and (1.9) are resolved lies with the optimization solver, not with the value of η. This is evident
in the globality certificate computations, where it is not so critical to perform the level-set tests
with specific values of η; in this context, parameter η is simply an artifact of the original level-set
test of Gu that has been repurposed for detecting if the current minimizer is a global one or not.

With this different perspective in mind, we consider abandoning the concept of looking for
pairs of points a fixed distance apart specified by η. In its place, we propose constructing a new
globality certificate that, given a local minimizer whose function value is γ, answers the question:
are there other points on this same level set and if so, where are they? To do this, we will use
the following results.

Consider the singular value function in (1.7b) parameterized in polar coordinates:

fc(r, θ) = σmin(Fc(r, θ)) and Fc(r, θ) =
reiθI −A

r cos θ
, (3.1)

so
K(A)−1 = inf

r>0, θ∈(−
π
2 ,

π
2)

fc(r, θ).

We assume α(A) ≤ 0 (as otherwise K(A) = ∞) and that zero is not an eigenvalue of A. The
reason for the exclusion of zero as an eigenvalue will become clear momentarily. For a fixed
θ ∈ R, the following key result relates singular values of Fc(r, θ) with eigenvalues of a certain
2n×2n matrix pencil. Exploiting such relationships of singular values and eigenvalues has a rich
history in computing various robust stability measures, dating back to at least 1988 when Byers
introduced the first algorithm for computing the distance to instability [Bye88].

Theorem 3.1. Given finite parameters γ, r, θ ∈ R, with γ ≥ 0 and r > 0, then γ is a singular
value of Fc(r, θ) defined in (3.1) if and only if r is an eigenvalue of matrix pencil (M,Nθ), where

M :=

[
0 A

A∗ 0

]
and Nθ :=

[
−γ cos θI eiθI
e−iθI −γ cos θI

]
(3.2)

are Hermitian matrices and Nθ is indefinite if |γ cos θ| < 1.

Proof. Suppose γ is a singular value of Fc(r, θ) with left and right singular vectors u and v. Then

(
reiθI −A

r cos θ

)
v = γu and

(
re−iθI −A∗

r cos θ

)
u = γv.

6

Multiplying both equations by r cos θ and then rearranging terms yields:

Av = r
(
−γ cos θu+ eiθv

)
and −A∗u = r

(
−e−iθu+ γ cos θv

)
.

These two equations can then be written as this generalized eigenvalue problem:

[
−A∗ 0
0 A

] [
u

v

]
= r

[
−e−iθI γ cos θI
−γ cos θI eiθI

] [
u

v

]
.

Multiplying this generalized eigenvalue problem on the left by the unitary matrix J =
[

0 I
−I 0

]

does not change the spectrum and yields (3.2), thus proving the if-and-only-if equivalence.
Since Nθ is composed of four blocks of different multiples of the n× n identity matrix, it is

easy to see that its eigenvalues are −γ cos θ± 1. Hence Nθ must be indefinite if |γ cos θ| < 1.

Remark 3.2. If a point (r̃, θ̃) is in the γ-level set of fc(r, θ) for some γ ≥ 0, then by Theorem 3.1,
it follows that r̃ is an eigenvalue of the matrix pencil (M,Nθ̃). Note that the converse is not
necessarily true, i.e., if r̃ is an eigenvalue of the matrix pencil (M,Nθ̃), Theorem 3.1 only states

that γ is a singular value of Fc(r̃, θ̃). For point (r̃, θ̃) to also be in the γ-level set, γ would
additionally have to be the smallest singular value of Fc(r̃, θ̃). However, when γ is not the
minimum singular value of Fc(r, θ), it means that point (r̃, θ̃) is instead in some γ̂-level set of
fc(r, θ) with γ̂ < γ.

Lemma 3.3. Given A ∈ Cn×n, let M be as defined in (3.2) and N ∈ C2n×2n any other matrix.
Then the matrix pencil (M,N) has zero as an eigenvalue if and only if matrix A has zero as an
eigenvalue.

Proof. The proof is immediate since if x and y are right and left eigenvectors for the zero
eigenvalue of A, then

0 =

[
0 A

A∗ 0

] [
y

x

]
= 0 ·N

[
y

x

]
.

Theorem 3.4. The spectrum of matrix pencil (M,Nθ) defined by (3.2) is symmetric with respect
to the real axis and, provided |γ cos θ| 6= 1, is also equivalent to the spectrum of

Mθ :=
1

(γ cos θ)2 − 1

[
−eiθA∗ −γ cos θA

−γ cos θA∗ −e−iθA

]
. (3.3)

Proof. Since det(Nθ) = (γ cos θ)2 − 1, as long as |γ cos θ| 6= 1 holds, Nθ is invertible with inverse

N−1
θ =

1

(γ cos θ)2 − 1

[
−γ cos θI −eiθI
−e−iθI −γ cos θI

]
,

and so the spectrum of (M,Nθ) can be rewritten as the eigenvalues of N−1
θ M , which is equal to

(3.3).
Still assuming that |γ cos θ| 6= 1 for now, as the matrices of (3.2) are both Hermitian, with Nθ

invertible, the eigenvalues of the matrix pencil (M,Nθ) are symmetric with respect to the real
axis by a result of Lancaster and Ye [LY91, Theorem 2.2]. Since Nθ is only singular for at most
four distinct values of θ ∈ [0, 2π), by continuity of eigenvalues, the eigenvalues of (M,Nθ) remain
symmetric with respect to the real axis even if |γ cos θ| = 1, thus completing the proof.

We are now ready to present our new globality certificate for (1.7b). Given a γ ≥ 0, the idea
is to sweep the open right half of the complex plane with rays from the origin to determine which
ones intersect the γ-level set. To do this, we will construct a nonnegative continuous function
dc : (−

π
2 ,

π
2) → [0, π2] such that dc(θ̃) = 0 holds if and only if the ray from the origin determined

7

by θ̃ intersects either the γ-level set of fc(r, θ) or, per Remark 3.2, another γ̂-level set with γ̂ < γ.
Hence, if dc(θ) is strictly positive for all θ ∈ (−π

2 ,
π
2), then γ < K(A)−1 must hold. Otherwise,

the angles θ̃ for which dc(θ̃) = 0 provide the directions of the rays that intersect the γ-level or
γ̂-level sets (with γ̂ < γ), and these intersection points can be used to restart optimization in
order to find a better minimizer of (1.7b).

Keeping in mind that the spectrum of (M,Nθ) is always real-axis symmetric, to accomplish
our criteria above, we use the function

dc(θ) := min{Arg(λ)2 : λ ∈ Λ(M,Nθ), Im λ ≥ 0}, (3.4)

where Arg : C \ {0} → (−π, π] is the principal value argument function.

Remark 3.5. Function dc(θ) has the following properties:

1. dc(θ) ≥ 0 for all θ ∈ (−π
2 ,

π
2)

2. dc(θ) = 0 if and only if Λ(M,Nθ) contains an eigenvalue r ∈ R, r > 0

3. dc(θ) is continuous on its entire domain (−π
2 ,

π
2)

4. dc(θ) is differentiable at a point θ if the eigenvalue λ ∈ Λ(M,Nθ) attaining the value of
dc(θ) is unique and simple

5. If γ ∈ (K(A)−1, 1), then the set D = {θ : dc(θ) = 0, θ ∈ (−π
2 ,

π
2)} has positive measure.

The first and second properties hold by construction. The third property is a consequence
of the continuity of eigenvalues and our assumption that 0 6∈ Λ(A) and hence by Lemma 3.3,
zero is never an eigenvalue of (M,Nθ) for any θ. The fourth property follows from standard
perturbation theory for simple eigenvalues and by the definition of dc(θ). As we now clarify, the
fifth property follows from an argument given in [Mit19, p. 11], which itself is an adaptation
of Gu’s proof given for [Gu00, Theorem 3.1]. Let (r⋆, θ⋆) be a global minimizer of (1.7b). If
γ ∈ (K(A)−1, 1), then the γ-level set of fc(r, θ) consists of a finite number of continuous closed
algebraic curves and (r⋆, θ⋆) must reside in the interior of one of these curves, which we will call
G and lies entirely in the open right half-plane. Hence there exists an open neighborhood N
about (r⋆, θ⋆) that lies in the interior of G. Since rays from the origin that sweep through G must
also sweep through N , dc(θ) = 0 must hold on a set of angles with positive measure.

Taken together, it is clear from Theorem 3.1 and Remark 3.2 that dc(θ) meets the criteria
outlined above for our new globality certificate. Given γ ≥ 0, r̃ > 0 and some θ̃ ∈ (−π

2 ,
π
2),

if point (r̃, θ̃) is in the γ-level set of fc(r, θ), then by Theorem 3.1, r̃ must be an eigenvalue of
matrix pencil (M,Nθ̃) and so dc(θ̃) = 0 holds. If dc(θ̃) = 0, by definition there exists a real
eigenvalue r̃ > 0 of matrix pencil (M,Nθ̃), and so by Theorem 3.1, γ must be a singular value of

Fc(r̃, θ̃). Thus by Remark 3.2, point (r̃, θ̃) must either be in the γ-level of fc(r, θ) or some other
γ̃-level set with γ̃ < γ. Hence, dc(θ) = 0 is associated with new starting points for optimization
such that a better (lower) minimizer can be found. Finally, if dc(θ) > 0 for all θ ∈ (−π

2 ,
π
2), then

(M,Nθ) has no positive real eigenvalues for any θ ∈ (−π
2 ,

π
2), so again by Theorem 3.1, γ is not

a singular value of Fc(r, θ) for any r > 0 and θ ∈ (−π
2 ,

π
2). This in turn means the γ-level set of

fc(r, θ) is empty. As fc(r, θ) is continuous, γ < K(A)−1 must hold.
In Figure 1, we show plots of dc(θ) for different values of γ for the 10 × 10 continuous-time

example used in [Mit19, Section 6.1]. The example is based on a demo from EigTool [Wri02],
specifically A = B− κI, where B = companion demo(10) and κ = 1.001α(B). Since this matrix
is real-valued, the level sets of fc(r, θ) are symmetric with respect to the real axis and so it is
only necessary to sweep the upper right quadrant of the complex plane, i.e., the domain of dc(θ)
can be reduced to [0, π2).

Although we do not know of an analytic way of finding zeros of dc(θ), it is a continuous
function of one real variable on a fixed finite interval that we can approximate using interpo-
lation. Although dc(θ) may be nondifferentiable at some points, modern interpolation software

8

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

-5

-5

-4

-4

-3

-3

-5.1

(a) Level sets

-5.1
-5.105
-5.11

(b) dc(θ) on
[

0, 1

2
π
)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
5.4

5.5

5.6

5.7

5.8

5.9

-5

-5

-5.11
-5.105

-5.1

(c) Level sets (enlarged view)

-5.1
-5.105
-5.11

(d) dc(θ) on
[

3

2
, 1

2
π
)

Figure 1: The top left pane shows a contour plot of the level sets (in log10 scale, with label k
denoting 10k) of the objective function in (1.7b) for a continuous-time example, with z = x+ iy.
As this matrix is real, only the upper right quadrant of the complex plane is shown. The global
minimizer of (1.7b) lies in the small boxed area near (x, y) ≈ (0, 6); an enlarged view of this
region is shown in the bottom left pane. Contours are shown for k = −3,−4,−5 (dotted),
k = −5.1 (solid), k = −5.105 (solid, unlabeled at top left), and k = −5.11 (solid, not visible at
top left). For each of the three solid contours, dc(θ) for γ = 10k is plotted in the top and bottom
right panes, for the respective regions shown in the top and bottom left panes. For each angle
tick mark in the right panes, the corresponding ray from the origin is shown as a dashed line
in the top or bottom left pane as appropriate. It is easy to see the correspondence between the
level sets for k ∈ {−5.1,−5.105,−5.11} in the left panes and where their associated functions
dc(θ) are zero in the right panes.

9

is rather adept at approximating functions that are nonsmooth and even discontinuous or have
singularities. Such an interpolation-based approach has several benefits. Provided an appropri-
ate structure-preserving eigensolver is used to preserve the real-axis symmetry of Λ(M,Nθ), it
follows that dc(θ) will be exactly zero numerically for any θ that corresponds to a ray intersect-
ing the level set. Relatedly, evaluating dc(θ) is relatively cheap, since it only requires computing
the eigenvalues of a single 2n × 2n eigenvalue problem and different angles can be evaluated
simultaneously in an embarrassingly parallel manner. Furthermore, the number of interpolation
points needed to build a high-fidelity approximation to dc(θ) is not necessarily dependent on
n, meaning that is not entirely unreasonable to think that such approximations might be built
with only O(n3) work, at least for some problems and perhaps with a high constant factor. We
can also expect that high-fidelity interpolations will only be needed once minimizers that attain
K(A)−1, or close to it, are found. Generically speaking, when γ = K(A)−1, we expect that D
has measure zero, but if γ > K(A)−1, then D has positive measure. By building successively
better interpolants, which is how many interpolation approximations methods already work, the
process can be stopped as soon as any angle yielding dc(θ) = 0 is encountered. This angle, along
with the associated positive real eigenvalues of (3.2), provides the one or more starting points
for another round of optimization (provided these points do not happen to be stationary). If D
is relatively large, then the interpolation process should terminate quickly, with a crude approx-
imation. Hence, before K(A)−1 is accurately resolved, high-fidelity approximations to dc(θ) may
not necessarily be needed. Lastly, as noted earlier, if A is real-valued, then fc(r, θ) has real-axis
symmetry, so it suffices to approximate dc(θ) on the smaller interval [0, π

2) instead of (−π
2 ,

π
2).

There are some challenges though in approximating dc(θ), besides the high number of function
evaluations that will likely be needed. First, although continuous, dc(θ) may be nondifferentiable
at points where there are ties for the minimum value in (3.4). Second, dc(θ) may be non-Lipschitz
whenever it transitions to or from dc(θ) = 0. To see this, suppose the γ-level set of fc(r, θ) consists
of a single continuous closed curve enclosing a nonempty convex interior. Then D ⊂ (−π

2 ,
π
2)

is simply a single interval and for any θ in the interior of D, Λ(M,Nθ) contains two distinct
positive real eigenvalues. However, as θ approaches either end of interval D, this pair coalesces
into a single real eigenvalue, after which it may split apart very rapidly when moving off the real
axis. Squaring Arg(λ) in (3.4) acts to smooth out this numerically difficult high rate of change.

Remark 3.6. Note that our interpolation-based globality cerfiticate has two key differences to
the supervised techniques discussed in the introduction for estimating Kreiss constants. The first
and more important difference is that a global maximizer of (1.5b) may be anywhere in [0,∞)
and may occur on a very fast time scale, which can make finding such maximizers very difficult.
Here, dc(θ) is defined on the fixed finite interval (−π

2 ,
π
2), and its zeros form a subset with

positive measure when γ > K(A)−1. Hence finding zeros of dc(θ) should be substantially easier
than finding global maximizers of (1.5b). Second, dc(θ) is more reliable to compute and cheaper
to obtain; computing αε(A) via the criss-cross algorithms of [BLO03] or [BM17] often involves
computing all eigenvalues of several 2n× 2n matrices.

Remark 3.7. Certainly our certificate function defined in (3.4) is not the only possible choice
but one might wonder why we did not choose something simpler, e.g., an indicator function. The
reason is that if dc(θ) were to return a fixed positive value whenever the associated ray does not
intersect the level set, then interpolation software may erroneously conclude with very few sample
points that the function is constant. This is because the error between the interpolant and dc(θ)
would be exactly zero if none of the interpolation points happen to fall in D, which may be small
when γ is close to K(A)−1. Defining dc(θ) so that it generally varies with θ helps to ensure that
the function is sufficiently sampled.

10

4 Interpolation-based globality certificates for discrete-

time K(A)

We now adapt our new globality certificates for discrete-time Kreiss constants. Following §3, we
parameterize the minimum singular value in (1.7a) using polar coordinates:

fd(r, θ) = σmin(Fd(r, θ)) and Fd(r, θ) =
reiθI −A

r − 1
. (4.1)

In the previous section, the definition of dc(θ) required that zero was never an eigenvalue of
(M,Nθ), which by Lemma 3.3 was equivalent to zero not being an eigenvalue of A. Hence,
as long as this held, dc(θ) was well defined and continuous. Here we will construct an almost
identical distance function, based on the spectrum of a different matrix pencil which also must not
have zero as an eigenvalue (to ensure that the distance function is well defined and continuous).
As we will see, this in turn will be equivalent to γ2 not being an eigenvalue of AA∗. We also
assume that ρ(A) ≤ 1, as otherwise K(A) = ∞.

Theorem 4.1. Given finite parameters γ, r, θ ∈ R, with γ ≥ 0 and r > 1, then γ is a singular
value of Fd(r, θ) defined in (4.1) if and only if r is an eigenvalue of matrix pencil (S, Tθ) where

S :=

[
−γI A

A∗ −γI

]
and Tθ :=

[
−γI eiθI
e−iθI −γI

]
(4.2)

are Hermitian matrices and Tθ is indefinite if γ < 1.

Proof. Suppose γ is a singular value of Fd(r, θ) with left and right singular vectors u and v. Then
(
reiθI −A

r − 1

)
v = γu and

(
re−iθI −A∗

r − 1

)
u = γv.

Multiplying both equations by r − 1 and then rearranging terms yields:

−γu+Av = r
(
−γu+ eiθv

)
and −A∗u+ γv = r

(
−e−iθu+ γv

)
.

These two equations can then be written as this generalized eigenvalue problem:
[
−A∗ γI

−γI A

] [
u

v

]
= r

[
−e−iθI γI

−γI eiθI

] [
u

v

]
.

Multiplying on the left by J =
[

0 I
−I 0

]
completes the if-and-only-if equivalence.

Since Tθ is composed of four blocks of different multiples of the n×n identity, it has eigenvalues
−γ ± 1 and so Tθ must be indefinite if γ < 1.

Note that the point of Remark 3.2, with appropriate substitutions, similarly applies to The-
orem 4.1, fd(r, θ), and Fd(r, θ).

Lemma 4.2. For any θ ∈ R and γ ≥ 0, the matrix pencil (S, Tθ) defined by (4.2) has zero as
an eigenvalue if and only if matrix AA∗ has γ2 as an eigenvalue.

Proof. We can assume γ > 0 as the γ = 0 case is a direct consequence of Lemma 3.3. Suppose
0 ∈ Λ(S, Tθ) with right and left eigenvectors x and y, hence

[
−γI A

A∗ γI

] [
y

x

]
= 0.

By the bottom row, x = 1
γ
A∗y and so substituting this into the top row yields

−γy +A
(

1
γ
A∗y

)
= 0 ⇐⇒ AA∗y = γ2y,

completing this direction of the proof. The other direction holds by following the same steps in
reverse.

11

Theorem 4.3. The spectrum of matrix pencil (S, Tθ) defined by (4.2) is symmetric with respect
to the real axis and, provided γ 6= 1, is also equivalent to the spectrum of

Sθ :=
1

γ2 − 1

[
γ2I − eiθA∗ γ(eiθI −A)
γ(e−iθI − A∗) γ2I − e−iθA

]
. (4.3)

Proof. Since Tθ is composed of four blocks of different multiples of the n× n identity matrix, it
has the following inverse

T−1
θ =

1

γ2 − 1

[
−γI −eiθI

−e−iθI −γI

]
,

provided that γ 6= 1, and so the spectrum of (S, Tθ) can be rewritten as the eigenvalues of T−1
θ S,

which is equal to (4.3). The symmetry of the spectrum of (S, Tθ) with respect to the real axis
follows the same argument given in the proof of Theorem 3.4.

For our interpolation-based globality certificate to (1.7a), we will reuse the idea of sweeping
the complex plane with a ray from the origin to see where it intersects the γ-level set of fd(r, θ).
Since discrete-time Kreiss constants require that we look for intersections anywhere outside the
closed unit disk, not just in the right half-plane, we will construct a new nonnegative function
dd : (−π, π] → [0, π2], quite similar to (3.4) though with a larger domain. Of course, when matrix
A is real valued, the level sets of fd(r, θ) are also symmetric with respect to the real axis, in
which case the domain of dd(θ) can be reduced to [0, π].

To define our discrete-time K(A)−1 analogue of (3.4), for a given finite γ ≥ 0 we use the
function:

dd(θ) := min{Arg(λ)2 : λ ∈ Λ(S, Tθ) \ [0, 1], Imλ ≥ 0}, (4.4)

similarly keeping in mind that Λ(S, Tθ) always has real-axis symmetry, regardless of whether or
not fd(r, θ) does.

Remark 4.4. Function dd(θ) has the following properties:

1. dd(θ) ≥ 0 for all θ ∈ (−π, π]

2. dd(θ) = 0 if and only if Λ(S, Tθ) contains an eigenvalue r ∈ R, r > 1

3. dd(θ) is continuous on its entire domain (−π, π]

4. dd(θ) is differentiable at a point θ if the eigenvalue λ ∈ Λ(S, Tθ) attaining the value of dd(θ)
is unique and simple

5. If γ ∈ (K(A)−1, 1), then the set D = {θ : dd(θ) = 0, θ ∈ (−π, π]} has positive measure.

The properties of dd(θ) are essentially the same as those of dc(θ) and mostly follow for similar
reasons, except for a couple of important differences. The second property holds specifically due
to the exclusion of any real-valued eigenvalues of Λ(S, Tθ) that are also in the interval [0, 1] on
the real axis. This key change keeps dd(θ) strictly positive whenever Λ(S, Tθ) has one or more
eigenvalues in [0, 1] on the real axis but not on (1,∞). The continuity property is unaffected
by this exclusion but does require our assumption that γ2 6∈ Λ(AA∗), which by Lemma 4.2
guarantees that zero is never an eigenvalue of (S, Tθ) for any θ ∈ R. The fifth property follows
from a similar argument to the one given for the fifth property of dc(θ).

The removal of eigenvalues of Λ(S, Tθ) in [0, 1] in the definition dd(θ) requires some further
comments. In fact, we do not care about any of the eigenvalues of Λ(S, Tθ) that are in the
closed unit disk, since by Theorem 4.1 these eigenvalues are only associated with points in level
sets of fd(r, θ) that are also in the closed unit disk. However, excluding these eigenvalues could
introduce discontinuities whenever an eigenvalue of Λ(S, Tθ) enters or exits the unit disk. Hence,
by only excluding [0, 1], continuity is preserved and dd(θ) remains strictly positive if there are no
points in the γ-level set of fd(r, θ) outside the unit disk, even though in this case dd(θ) may still

12

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

0.65

1

1

0.58

0.
9

0.9

(a) Level sets

0.9
0.58
0.54

(b) dd(θ) on [0, π]

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.65

0.65

1

0.54

0.58

0.58

0.9

(c) Level sets (enlarged view)

0.9
0.58
0.54

(d) dd(θ) on
[

0, 3

8
π
]

Figure 2: The top left pane shows a contour plot of the level sets (now in linear scale) of the
objective function in (1.7a) for a discrete-time example, with z = x+ iy. As this matrix is real,
only the upper half of the complex plane is shown. The global minimizer of (1.7a) lies in the
boxed area, in the well near the top left corner; an enlarged view of this region is shown in the
bottom left pane. Contours are shown for γ = 1 (dotted), γ = 0.9 (solid), γ = 0.65 (dotted),
γ = 0.58 (solid), and γ = 0.54 (solid, not visible at top left). For each of the solid contours,
the corresponding dd(θ) function is plotted in the top and bottom right panes, for the respective
regions shown in the top and bottom left panes. For each angle tick mark in the right panes,
the corresponding ray from the origin is shown as a dashed line in the left panes. Again the
correspondence between the γ-level sets and where their associated functions dd(θ) are zero is
clearly evident. In the top right pane, the discontinuity in dd(θ) for γ = 0.54 near θ = π is due
to excluding eigenvalues of (S, Tθ) in an eccentric ellipse centered at the origin.

13

be infinitesimally small (since eigenvalues of Λ(S, Tθ) can be arbitrarily close to the [0, 1] interval
on the real axis). Fortunately, if a structure-preserving eigensolver is used, removing eigenvalues
of (S, Tθ) that lie in [0, 1] on the real axis can be done precisely. When a structure-preserving
eigensolver is not used, generally there will be rounding errors in the imaginary parts of computed
eigenvalues, and so we instead discard any eigenvalue of (S, Tθ) that lies inside an ellipse centered
at the origin with major axis 1 and minor axis δ for some small δ > 0. Technically, this may still
introduce discontinuities in dd(θ) but they are much less likely to occur than when excluding the
entire unit circle (δ = 1). Such a discontinuity (for δ = 10−8) can be seen in Figure 2, where we
show plots of dd(θ) for different values of γ for the 10× 10 discrete-time example used in [Mit19,
Section 6.2], namely A = 1

13B + 11
10I, where B = convdiff demo(11) from EigTool.

5 Interpolation-based globality certificates for τ(A,B)

Finally, we adapt our new globality certificates for the distance to uncontrollability, now param-
eterizing the minimum singular value function in (1.9) using polar coordinates:

fτ (r, θ) = σmin(Fτ (r, θ)) and Fτ (r, θ) =
[
A− reiθI B

]
. (5.1)

We will again create a distance function based on the spectrum of a certain matrix pencil pa-
rameterized by angle θ. As before, it will be necessary to exclude zero as an eigenvalue of this
matrix pencil. Here, in the case of τ(A,B), this will turn out to be equivalent to assuming that
γ2 is not an eigenvalue of AA∗ +BB∗.

Theorem 5.1. Given finite parameters γ, r, θ ∈ R, with γ > 0 and r ≥ 0, then γ is a singular
value of Fτ (r, θ) defined in (5.1) if and only if r is an eigenvalue of matrix pencil (G,Hθ) where

G :=

[
B̃ A

A∗ −γI

]
and Hθ :=

[
0 eiθI

e−iθI 0

]
(5.2)

are Hermitian matrices, Hθ is indefinite, and B̃ := 1
γ
BB∗ − γI.

Proof. Suppose γ is a singular value of Fτ (r, θ) with left and right singular vectors u and v = [v1v2].
Then

[
A− reiθI B

] [v1
v2

]
= γu and

[
A∗ − re−iθI

B∗

]
u = γ

[
v1
v2

]
.

From the lower block row of the equation on the right, it is seen that v2 = 1
γ
B∗u. Substituting

this into the equation on the left and then, for both this equation on the left and the top block
row of the equation on the right, multiplying and rearranging terms respectively yields:

B̃u+Av1 = r
(
eiθv1

)
and −A∗u+ γv1 = r

(
−e−iθu

)
,

where B̃ = 1
γ
BB∗ − γI. These two equations can then be written as this generalized eigenvalue

problem: [
−A∗ γI

B̃ A

] [
u

v1

]
= r

[
−e−iθI 0

0 eiθI

] [
u

v1

]
.

Multiplying on the left by J =
[

0 I
−I 0

]
completes the if-and-only-if equivalence.

It is easy to see that eigenvalues of Hθ are +1 and −1, and hence Hθ is indefinite for all
θ.

Note that the above result is essentially a special case, i.e., through the origin, of the level-
set search on a straight line derived in [Gu00, Section 2.1]. As Gu noted, similar results were
previously developed in [Bye90, Theorem 3.1] and [GN93, Lemmas 2.1 and 2.2]. The point of
Remark 3.2, with appropriate substitutions, also applies to Theorem 5.1, fτ (r, θ), and Fτ (r, θ).

14

Lemma 5.2. Let γ > 0. Then for any θ ∈ R, the matrix pencil (G,Hθ) defined by (5.2) has
zero as an eigenvalue if and only if matrix AA∗ +BB∗ has γ2 as an eigenvalue.

Proof. Suppose γ2 is an eigenvalue of AA∗ +BB∗ with eigenvector x. Then

(AA∗ +BB∗)x = γ2x ⇐⇒ (AA∗ +BB∗ − γ2I)x = 0

⇐⇒ 1
γ
(AA∗ +BB∗ − γ2I)x = 0

⇐⇒ (1
γ
AA∗ + B̃)x = 0.

Then setting y = 1
γ
A∗x, it follows that

Ay + B̃x = 0 and A∗x− γy = 0,

which can be rewritten as [
B̃ A

A∗ −γI

] [
x

y

]
= 0.

Hence, zero is an eigenvalue of the matrix above and so by Lemma 3.3, zero is an eigenvalue of
(G,Hθ). The reverse implication holds since all steps are if-and-only-if equivalences.

Theorem 5.3. The spectrum of matrix pencil (G,Hθ) defined by (5.2) is symmetric with respect
to the real axis and is equivalent to the spectrum of

Gθ :=

[
eiθA∗ −γeiθI

e−iθB̃ e−iθA

]
. (5.3)

Proof. Clearly Hθ = H−1
θ for any value of θ and so the spectrum of (G,Hθ) can be rewritten

as the eigenvalues of H−1
θ G, which is equal to (5.3). The symmetry of the spectrum of (G,Hθ)

with respect to the real axis holds by [LY91, Theorem 2.2] since G and Hθ are Hermitian and
Hθ is always invertible.

Our interpolation-based globality certificate for (1.9) will need to find intersections with the γ-
level set of σmin ([A−zI B]) and, unlike for Kreiss constants, there are now no domain restrictions
for where z may lie. Hence we will sweep the entire complex plane with rays from the origin
via a distance function dτ : (−π, π] → [0, π2] quite similar to dc(θ) and dd(θ). The γ-level set
of σmin ([A−zI B]) is symmetric with respect to the real axis if either A and B are both real
matrices or A is Hermitian; see Appendix A for the proofs. If either of these cases hold, then
the domain can be reduced to [0, π].

Given a candidate solution to (1.9), with function value γ > 0, we apply our interpolation
strategy to

dτ (θ) := min{Arg(λ)2 : λ ∈ Λ(G,Hθ), Imλ ≥ 0} (5.4)

in order to compute globality certificates for τ(A,B). Note that Λ(G,Hθ) always has real-axis
symmetry, even when σmin ([A−zI B]) does not.

Remark 5.4. Function dτ (θ) has the following properties:

1. dτ (θ) ≥ 0 for all θ ∈ (−π, π]

2. dτ (θ) = 0 if and only if Λ(G,Hθ) contains an eigenvalue r ∈ R, r > 0

3. dτ (θ) is continuous on its entire domain (−π, π]

4. dτ (θ) is differentiable at a point θ if the eigenvalue λ ∈ Λ(G,Hθ) attaining the value of
dτ (θ) is unique and simple

5. If γ > τ(A,B), then the set D = {θ : dτ (θ) = 0, θ ∈ (−π, π]} has positive measure.

15

The general properties of dτ (θ) remain the same as those of dc(θ) and dd(θ) and again follow
for similar reasons, except now the third property requires our assumption that γ2 is not an
eigenvalue of AA∗ + BB∗, which by Lemma 5.2 ensures that zero is never an eigenvalue of
(G,Hθ) for any θ ∈ R. The fifth property holds by a similar argument to those given earlier
for the analogous properties of dc(θ) and dd(θ), which traces back to Gu’s proof of [Gu00,
Theorem 3.1].

Note that by Lemma 5.2 and Theorem 5.1, our assumption that γ2 is not an eigenvalue of
AA∗ +BB∗ is equivalent to γ not being a singular value of Fτ (0, θ) for any θ ∈ R. As such, the
properties of dτ (θ) hold as long as γ < fτ (0, θ). Since optimization-with-restarts monotonically
decreases the value of γ until it converges to τ(A,B), we can guarantee that γ2 is never an
eigenvalue of AA∗ + BB∗ by initializing at the origin. Provided the origin is not a stationary
point, optimization guarantees finding a point (r̃, θ̃) such that fτ (r̃, θ̃) < fτ (0, θ). Otherwise,
either other starting points can be evaluated in order to find a function value lower than fτ (0, θ)
or the initial value of γ can simply be set to slightly less than fτ (0, θ) and then a globality check
can be done. Finally, although dτ (θ) is not defined for γ = 0, this is not a problem as there is
no need to do a globality check when fτ (r, θ) = 0, as fτ (r, θ) is never negative.

For brevity, we forgo showing illustrative plots of dτ (θ) here, but an example is shown later
in Figure 3c.

6 Numerical experiments

Recall that the optimization-with-restarts methods for computing Kreiss constants [Mit19] and
the distance to uncontrollability [BLO04, GMO+06] all work by using optimization to find a
(usually) locally minimal value γk of the objective function in (1.7b), (1.7a), or (1.9), as appro-
priate, and then doing a corresponding expensive level-set test, which either asserts that γk is
in fact globally minimal or provides new starting points for the (k+1)th round of optimization.
Fast local optimization uses gradients, and optionally, also Hessians, which for (1.7b) (in Carte-
sian coordinates) and (1.7a) (in polar coordinates) for Kreiss constants were respectively derived
in [Mit19, Sections 3.1 and 5.1]. For τ(A,B), the gradient for (1.9) (in Cartesian coordinates) is
given in [BLO04, p. 358]; its Hessian can be derived in a similar way to that of the Hessian for
(1.7b) [Mit19, Section 3.1].

Since our new interpolation-based globality certificates are also intended to be used within
optimization-with-restarts methods, we need simply replace the older expensive certificate tests
with our hopefully cheaper tests to do a comparison. For the optimization phases, we used
fminunc from Optimization Toolbox in MATLAB and provided it with both gradients and Hes-
sians. In fact, we reused the same code we used for the numerical experiments in [Mit19], which
only required adding in support to also find minimizers of (1.9) and, of course, implement-
ing our new certificates. While all of our interpolation-based certificates use polar coordinates,
optimization for (1.7b) and (1.9) is still done using Cartesian coordinates. Optimization-with-
restarts terminates when either the globality certificate asserts a global minimizer has been found
or if optimization can no longer make meaningful progress. This latter condition is necessary in
practice since optimization software will generally not compute minimizers exactly and so the
level-set certificate tests may return new starting points even when a global minimizer has been
found to numerical precision.

To build interpolant approximations to dc(θ), dd(θ), and dτ (θ), we used Chebfun (a recent
build, commit 51b3f94), partly for its sophistication and efficiency in “computing with functions
to about 15-digit accuracy”2 and partly because it is also adept at handling nonsmooth functions
when its splitting option is enabled. Besides enabling splitting, we also set novectorcheck
as our routines for computing dc(θ), dd(θ), and dτ (θ) allow values of θ to be provided as a vector
rather than one at a time (in §6.2, we will discuss using parallel processing to evaluate the function
being approximated). Now restricting to the continuous-time Kreiss setting for concreteness and

2The quote is taken from the homepage of http://www.chebfun.org .

16

http://www.chebfun.org

clarity, for a given γk, our globality certificate commences building a chebfun (the interpolant
approximation) of dc(θ). However, if dc(θ) happens to be zero at one or more values of θ

provided by Chebfun, then Chebfun is immediately terminated (by throwing and catching an
error) and another round of optimization is done. (Technically, a robust implementation should
additionally check that these new starting points are not stationary, or nearly so, before deciding
to halt Chebfun early.) Otherwise, Chebfun runs until its default termination criteria are met. In
this case, none of the interpolation points are zeros of dc(θ), but as a final check, we also compute
the intervals, if any, where the interpolant is negative (which is trivial to do for a chebfun). If
any such intervals exist, the value of dc(θ) is computed at each of their midpoints and any that
happen to be zeros of dc(θ) are used to restart optimization. If there are no such zeros, globality
of γk is asserted. The same procedure is done for dd(θ) and dτ (θ).

Ideally we would use a structure-preserving eigensolver to compute the eigenvalues of the
matrix pencils given by (3.2), (4.2), and (5.2), so that the real symmetry of their spectra would
be preserved numerically. In floating point computation, this would guarantee that zeros of dc(θ),
dd(θ), and dτ (θ) remain exactly zero and that dd(θ) also remains continuous. In 2004, Mehl in
fact proposed such a structure-preserving solver [Meh04] for indefinite generalized Hermitian
eigenvalue problems, the same kind as our matrix pencils here. However, motivated by different
applications, Mehl’s solver assumes that the matrix pencils have no real-valued eigenvalues,
which are precisely the eigenvalues of interest in our globality certificates. Unfortunately, we
are currently unaware of any other structure-preserving eigensolver for this problem class that
would also be suitable for our application here. Instead, we just computed the eigenvalues of the
related standard eigenvalue problems given by (3.3), (4.3), and (5.3) using eig in MATLAB. To
account for rounding errors with this approach, the imaginary part of any computed eigenvalue
was set to zero if the magnitude of the imaginary part was no more than 10−8. This means that
our routines implementing dc(θ), dd(θ), and dτ (θ) technically have small discontinuities when
transitioning to/from zero. Furthermore, when computing dd(θ), we set δ = 10−8 for discarding
any eigenvalues of (S, Tθ) that are also in the corresponding eccentric ellipse centered at the
origin.

As in [Mit19], our prototype codes implemented in MATLAB are only proof-of-concepts
and are tuned not for efficiency but so that multiple restarts are likely to be needed, to better
illustrate how our interpolation-based globality certificates work. We plan to add optimized
robust implementations for general use to a future release of ROSTAPACK: RObust STAbility
PACKage [Mit], an open-source library implemented in MATLAB and licensed under the AGPL.
The codes used for the experiments here are included in the supplementary materials. All
experiments were done in MATLAB R2017b on a dual-socket compute node (from the mechthild
cluster at MPI Magdeburg) with two Intel Xeon Gold 6130 processors (16 cores each, 32 total),
192GB of RAM, and CentOS Linux 7.

6.1 Comparisons to earlier methods

Since we will address parallel computation in §6.2, here we consider a single-core evaluation of
all the methods. We did this by calling parpool(1) in MATLAB and by not using any parfor

loops.
We begin by comparing our new method for computing continuous-time Kreiss constants with

our earlier method [Mit19, Section 3], using three test problems of different sizes; see the first
three rows of Table 1. The first, companion (stab.), is the stabilized EigTool example matrix
we used for Figure 1. The two larger problems, boeing(’S’) and orrsommerfeld, are from
EigTool.3 We specifically chose starting points such that at least one restart would be necessary;
both methods used these same initial points. For companion (stab.), the relative difference
between the estimates for K(A) computed by our new and old method was 1.4× 10−10, with our
new method returning the slightly worse (lower) estimate. However, this small difference was

3 The transient demo from EigTool, although designed to have transient behavior in both ‖etA‖ and ‖Ak‖,
particularly as n increases, appears to only have one minimizer so we excluded it from consideration here.

17

Time (sec.)

Problem n z0 Computed Value New Other

K(A) (continuous)

companion (stab.) 10 6+6i 1.291867070095026 × 105 0.6 2.0
boeing(’S’) 55 1+50i 3.625410525376937 × 104 334.4 6120.9∗

orrsommerfeld 100 10+10i 3.932304742813434 × 101 127.6 171841.4∗

K(A) (discrete)

convdiff (mod.) 10 −1+1i 1.895013390905799 × 100 0.2 5.9
randn #1 (stab.) 50 1+1i 1.758436065783109 × 100 127.2 3156.9∗

randn #2 (stab.) 100 1−1i 2.358494955746503 × 100 1197.4 out-of-mem∗

τ (A,B)

kahan (m = 20) 60 0+0i 3.882115122611607 × 10−2 2.5 249.5
kahan (m = 30) 150 0+0i 1.825814695301203 × 10−2 720.6 27318.7

Table 1: The eight problems tested. The size of the matrix A is given by n, while z0 is the initial
point used by our new methods (and when relevant, the other methods in the comparison). The
corresponding estimates for K(A) or τ(A,B) computed by our new methods are given under
“Computed Value”. The elapsed wall-clock times (in seconds) are given in the two rightmost
columns, with the total running times of our new methods shown under “New”. The “Other”
column gives the running times of our earlier methods [Mit19] for computing continuous- and
discrete-time K(A) or the divide-and-conquer-based τ(A,B) algorithm of [GMO+06], as appro-
priate. However, the times marked with an asterisk denote where the full optimization-with-
restarts methods of [Mit19] were not tested, due to the prohibitive O(n6) cost of their level-set
tests, particularly since several are often needed; instead, for these problems, only the time to
perform a single one of the relevant expensive tests was recorded. For randn #2 (stab.), the
running time could not be recorded as attempting to solve a quadratic eigenvalue problem of
order 4n2 quickly caused an out-of-memory error.

merely due to fminunc terminating at slightly different points near the global minimizer; as such,
we believe this is simply rounding error, but it is also possible that a different optimization code
might be better at obtaining minimizers of (1.7b) to a more consistent level of accuracy. In terms
of running times, we see that even for n = 10, optimization with our new certificates is faster
than that of our older method. Due to the larger sizes of boeing(’S’) and orrsommerfeld, it
was impractical to run the older algorithm of [Mit19, Section 3]. Instead, for each of these two
problems, we only recorded a fraction of its running time, namely the time for eig to compute
all the eigenvalues of a single instance of the 4n2 × 4n2 generalized eigenvalue problem [Mit19,
Equation (3.11)], using the final value of γk computed by our new method. This is generally a
small subset of the total computations needed in the full algorithm of [Mit19, Section 3], as often
several (e.g., ten or more) different instances of these large eigenvalue problems are solved before
termination. Hence, the actual performance gaps between our new and old methods on these two
examples are likely to be at least another order magnitude wider than the timings (marked with
asterisks in Table 1) would suggest. Nevertheless, we still see that our new method is respectively
18.3 and 1346.7 times faster for boeing(’S’) and orrsommerfeld. In Table 2, we show the
number of points at which Chebfun evaluates dc(θ) for each certificate computation. Before a
global minimizer is obtained, generally relatively few values of θ are evaluated by Chebfun before
new starting points are discovered and optimization commences again. Furthermore, as hoped,
we see that the number of function evaluations needed to build the final interpolants asserting
globality seems to be uncorrelated with the size of A. In Figure 3a, we show dc(θ) for the final
value of γk computed by our method for the boeing(’S’) example.

We now turn to comparing our new method for computing discrete-time Kreiss constants

18

of θ’s evaluated per the kth restart and
γk−γk+1

γk

Problem Restart 1 Restart 2 Restart 3 Restart 4

companion (stab.) 15 1e-02 390 1e-10 389 — — —
boeing(’S’) 15 7e-01 15 7e-01 32918 — — —
orrsommerfeld 15 9e-01 2598 — — — — —

convdiff (mod.) 15 3e-01 15 4e-02 31 3e-02 274 —
randn #1 (stab.) 63 1e-01 12324 — — — — —
randn #2 (stab.) 15 2e-01 15 2e-01 127 1e-01 18518 —

kahan (m = 20) 15 7e-01 177 3e-15 — — — —
kahan (m = 30) 15 6e-01 15 2e-01 7137 — — —

Table 2: For each restart using our new interpolation-based globality certificates, the left number
is the total number of points at which Chebfun evaluated dc(θ), dd(θ), or dτ (θ) for the current
estimate γk until either new starting points were found (which immediately restarts optimization)
or Chebfun terminated on its own; bold font indicates the last certificate computed. The right
number is the relative difference obtained by the next round of optimization to lower γk. Note
that for kahan (m = 20), the last test produced new starting points but optimization was
unable to meaningfully lower estimate γk further and so our code terminated after a round of
optimization instead of after a certificate test.

with our earlier method of [Mit19, Section 5], again using three differently-sized test problems;
see the middle three rows of Table 1. The first, convdiff (mod.), is the modified EigTool
example matrix we used for Figure 2. For larger problems, we generated two complex-valued
non-Hermitian matrices using randn and ensured that they were stable by scaling them so the
spectral radius of each was 0.999; these examples are respectively called randn #1 (stab.) and
randn #2 (stab.). Unlike all the other examples considered so far, the level sets of these two are
not symmetric and so the full [−π, π] domain of dd(θ) must be considered. All three matrices have
very low Kreiss constants but are useful for demonstration since (1.7a) has multiple different local
minima for each of them. Both methods were initialized at the same starting points, again chosen
so at least one restart would be necessary for each problem. For the smallest example, convdiff
(mod.), the estimates of K(A) computed by our new and earlier method agreed to machine
precision (the relative difference was 9.4 × 10−16), and we again see that our new method was
faster even for n = 10. For the larger examples, it was again impractical to run the full algorithm
of [Mit19, Section 5]; instead, for each of these two problems, we only recorded the time needed
by polyeig in MATLAB to compute all the eigenvalues of a single instance of the 4n2 × 4n2

quadratric eigenvalue problem [Mit19, Equation (5.23)], using the final value of γk computed
by our new method. This ended up only being possible for the randn #1 (stab.) example,
which has dimension n = 50, and this single call to polyeig took 24.8 times longer than the
time to run our new method in entirety. For randn #2 (stab.), which has dimension n = 100,
polyeig terminated almost immediately due to running out of memory (on a computer with
192 GB of RAM); this underscores that our new method is also much less memory intensive. In
Table 2, the number of points at which Chebfun evaluated dd(θ) for each certificate computation
is shown; again relatively few values of θ are generally evaluated before a global minimizer is
found in the optimization phases. The number of points evaluated to build the final interpolants
for these examples again does not seem to be strongly associated with the matrix dimension. In
Figure 3b, we show dd(θ) for the final value of γk computed by our method for the randn #2

(stab.) example.
Finally, we compare our new interpolation-based certificates for computing the distance to

uncontrollability with the divide-and-conquer-based certificates developed in [GMO+06]. Recall
that the divide-and-conquer technique has O(n4) work on average and O(n5) in the worst case,
whereas computing our older Kreiss-constant certificates have O(n6) work. Hence, for computing

19

(a) boeing(’S’): dc(θ) in linear scale (left) and in log10 scale (right)

(b) randn #2: dd(θ) in linear scale (left) and in log10 scale (right)

(c) kahan (m = 30): dτ (θ) in linear scale (left) and in log10 scale (right)

Figure 3: The topmost subfigure shows dc(θ) at the final value of γk computed by our new
method for the boeing(’S’) example, in linear scale (left) and log10 scale (right). The circle
denotes the angle of the best minimizer obtained by optimization and corresponds to the single
place where dc(θ) = 0 (which is more easily seen in the log10 plot), confirming that γk is the
globally minimal value. The same is done for dd(θ) and randn #2 in the middle subfigure and
for dτ (θ) and kahan (m = 30) in the bottom subfigure.

20

τ(A,B), it is not immediately clear whether our interpolation-based certificates will be as com-
petitive, as they have a lower bound work complexity of Ω(n3) and it is not clear whether there
even is an upper bound. To assess this, we compared our own code to the dist uncont hybrid

routine4, which uses BFGS for optimization and divide-and-conquer-based certificates when its
options are set as follows: opts.method=1 and opts.eig method=1. Though there are differ-
ences in the optimization implementations and setup, this is not a big issue as the computation
time is by far dominated by computing the certificates. In [GMO+06, Section 4.3], real-valued
examples were generated by setting A to different sizes of the kahan demo from EigTool and
B = randn(n,m). We do the same here but for larger sizes; see the last two rows of Table 1 for
the dimensions. For each problem, the two methods were initialized at the origin. The relative
differences between the estimates computed by both methods were respectively 5.3× 10−13 and
2.8×10−13 for kahan (m = 20) and kahan (m = 30), with our new method returning the slightly
better (lower) estimates for both. Furthermore, our new method was respectively 99.8 and 37.9
times faster than running dist uncont hybrid on these two problems. The number of points
evaluated for each restart is given in the last two rows of Table 2, while dτ (θ) is shown in Figure 3c
for kahan (m = 30) using the final value of γk. Part of the reason why our new method was so
fast on the smaller kahan (m = 20) example is because it did not actually complete computing
the approximation to dτ (θ) on its last certificate test. Instead, Chebfun was halted quite early,
as new starting points were found, but optimization could not significantly lower the objective
function from these points so our method terminated.

Remark 6.1. For all but one of our test problems, Chebfun satisfied its convergence criteria in
building chebfuns of the final distance functions. However, for boeing(’S’), Chebfun warned
that it did not sufficiently resolve the last dc(θ), which is shown in Figure 3a. When this hap-
pens, technically globality is not asserted by the interpolant approximation, but it also generally
means that the distance function is evaluated at many different values of θ (specifically 32918 for
this example) without any new starting points being discovered. Hence it seems likely that the
computed estimate γk is nevertheless globally optimal, and of course there are no new starting
points to be found if γk is indeed globally optimal.

6.2 Additional acceleration via parallel processing

Both the optimization phases and our new interpolation-based certificates have embarrassingly
parallel components. Optimization can be run in parallel whenever there are multiple start-
ing points, which would hopefully increase the chance of finding a global minimizer on any
given iteration, thus reducing the number of the more costly certificate computations. For the
interpolation-based certificates, any time Chebfun provides a vector of multiple values of θ, ob-
taining the corresponding function values of dc(θ), dd(θ), or dτ (θ) is an embarrassingly parallel
task. For brevity here, we only consider accelerating this portion of our new method since it is
the dominant cost, which was done by simply evaluating each vector of θ values using a parfor

loop, with parpool(cores) called for cores set to 2, 4, 8, 16, and 32. We tested this in two
configurations: with the Chebfun preference ’min samples’ kept at its default value of 17 and
then again with it increased to 65.

In Table 3, we show the resulting speedups compared to our single-core configuration used in
§6.1 for the three largest of our test examples. With ’min samples’ set to its default of 17, the
best speedups achieved ranged from 6.0 to 9.0. While this may seem a rather low utilization of a
32-core machine, this is because the average number of θ values provided at a time by Chebfun
was also rather low, i.e., 15.8 to 22.2. In other words, in this configuration, it is not possible to
achieve speedups larger than 15.8 to 22.2. Though not shown in Table 3, on our medium-sized
problems, parallel processing resulted in a speedup of roughly two times, while on the two n = 10
examples, parallel processing generally increased the running times. The low average size of the
vectors of θ values provided by Chebfun means that the overhead of entering and exiting the

4Available at http://home.ku.edu.tr/~emengi/software/robuststability.html

21

http://home.ku.edu.tr/~emengi/software/robuststability.html

Speedup per # of cores Vector of θ’s

Problem 2 4 8 16 32 # Avg. Size

Chebfun min samples: 17

orrsommerfeld 2.6 3.8 5.2 6.0 5.4 157 16.5
randn #2 (stab.) 3.0 4.6 6.4 8.1 9.0 780 22.2
kahan (m = 30) 2.7 4.1 5.6 7.2 8.3 453 15.8

Chebfun min samples: 65

orrsommerfeld 2.7 4.0 5.5 6.3 5.5 138 20.2
randn #2 (stab.) 3.0 5.2 7.1 9.0 9.6 592 30.0
kahan (m = 30) 2.7 4.3 6.1 8.1 9.4 402 19.1

Table 3: The speedups for the number of θ’s evaluated per second while Chebfun is building
the final interpolant for the three largest problems; speedups are done with respect to the rate,
instead of the total time to build each interpolant, since the total number of points Chebfun
evaluated was not always the same as the single-core configuration used in §6.1. The last two
columns, “#” and “Avg. Size”, respectively show the number of times Chebfun requested a
vector of different values of θ to be evaluated and the average length of these vectors. These
average lengths give upper bounds on the best possible speedups, while the pair of values together
show that there is likely high overhead due to entering and existing the parfor loop many times
in order for Chebfun to evaluate more and more points.

parfor loop is incurred many times, which greatly reduces how much speedup can be attained,
particularly when n is rather small. With ’min samples’ set to 65, the average number of θ
values provided at a time increased to 19.1 to 30.0, but the corresponding best speedups, now
6.3 to 9.6 times faster, only modestly improved.

We analyzed the Chebfun code to ascertain how else the average vector size might be in-
creased and the total number of vectors provided decreased. Perhaps the biggest influence is
the findJump routine inside @fun/detectEdge.m, which does bisection to detect singularities
and thus requests only a single function value per iteration, for many iterations. We modified
findJump to instead do k-sectioning for integers k > 2 and found that our new version dramat-
ically increased the overall average vector length if k was sufficiently large, particularly since it
also dramatically reduced the number of iterations findJump needed. Another cause is related
to the fact that Chebfun often approximates functions, particularly nonsmooth ones, not by a
single polynomial interpolant but a concatenation of them. For each piece, a final safety test for
accuracy (@chebtech/sampleTest.m) is done using a pair of hard-coded points in the interval
[−1, 1]; internally, each piece has a domain of [−1, 1], which is rescaled to the region that it
is approximating. With parallel processing, it would be more efficient to speculatively evaluate
these two fixed values for each piece, by batching them in with the piece’s vector of initial sample
points, and store this pair of function values for recall later.

Remark 6.2. Parallel eigensolvers such as [BKS14] could also be used to accelerate solving the
large eigenvalue problems in the older certificate tests of [Mit19] and [Gu00], but this would not
reduce their high memory requirements nor does it seem likely that it would be competitive with
our interpolation-based certificates even using serial computation, let alone parallel computation.

7 Concluding remarks

We have seen that our new interpolation-based globality certificates are substantially more ef-
ficient than the existing state-of-the-art certificates of [Mit19] for Kreiss constants and those of
[Gu00, GMO+06] for the distance to uncontrollability. Although our new approach assumes the

22

relevant one-variable distance functions will be adequately sampled to find their zeros (if any),
this seems a rather mild assumption in practice, as they will be zero on positive measure subsets
of their domains before a global minimizer has been obtained.

One thing we have not investigated here is whether our new assumptions: zero is not an
eigenvalue of A for continuous-time K(A), γ2 is not an eigenvalue of AA∗ for discrete-time K(A),
and γ2 is not eigenvalue ofAA∗+BB∗ for τ(A,B), are at all restrictive in practice. In the presence
of rounding errors, it is unlikely that these assumptions would actually be violated numerically.
Furthermore, just discarding any exactly zero eigenvalues of the relevant matrix pencils when
computing the distance functions might be okay in practice; although doing so could introduce
discontinuities, Chebfun is rather capable of approximating functions with discontinuities.

Finally, we note that our new interpolation-based certificates, which sweep the complex plane
with rays from the origin to locate level sets, could be used to solve other global optimization
problems of singular value functions of two real variables.

Acknowledgments

The author is very grateful to Michael L. Overton for supporting several research visits to the
Courant Institute in New York, where the main idea for this paper was conceived, and for many
helpful comments while preparing this manuscript. The author is also grateful to Peter Benner for
pointing out [LY91] and informative discussions on the possibility of creating structure-preserving
eigensolvers for the indefinite generalized Hermitian eigenvalue problems that appear here.

A Real symmetry conditions for the level sets of τ(A,B)

Lemma A.1. Let A ∈ Cn×n with A = A∗, B ∈ Cn×m, and σk(M) denote the kth singular value
of a matrix M . Then

σk

([
A− λI B

])
= σk

([
A− λI B

])

if either (i) A and B are both real-valued matrices or (ii) A is Hermitian.

Proof. Case (i) holds since conjugation does not change singular values, i.e.,

σk

([
A− λI B

])
= σk

([
A− λI B

])
= σk

([
A− λI B

])
,

where the middle equivalence uses the fact that A = A and B = B since both are real. Case (ii)
follows from the equivalence σk(M) ⇐⇒ σ2

k ∈ Λ(MM∗):

σk

([
A− λI B

])
⇐⇒ σ2

k ∈ Λ

([
A− λI B

] [A∗ − λI

B∗

])

⇐⇒ σ2
k ∈ Λ

([
AA∗ − λA∗ − λA+ |λ|2I +BB∗

])

⇐⇒ σ2
k ∈ Λ

([
AA∗ − λA− λA∗ + |λ|2I +BB∗

])

⇐⇒ σ2
k ∈ Λ

([
A− λI B

] [A∗ − λI

B∗

])

⇐⇒ σk

([
A− λI B

])
.

where the third line uses the assumption that A = A∗.

References

[BKS14] P. Benner, M. Köhler, and J. Saak. Fast approximate solution of the non-symmetric
generalized eigenvalue problem on multicore architectures. In M. Bader, A. Bode-
and, H.-J. Bungartz, M. Gerndt, G. R. Joubert, and F. Peters, editors, Parallel

23

Computing: Accelerating Computational Science and Engineering (CSE), volume 25
of Advances in Parallel Computing, pages 143–152. IOS Press, 2014.

[BLO03] J. V. Burke, A. S. Lewis, and M. L. Overton. Robust stability and a criss-cross
algorithm for pseudospectra. IMA J. Numer. Anal., 23(3):359–375, 2003.

[BLO04] J. V. Burke, A. S. Lewis, and M. L. Overton. Pseudospectral components and the
distance to uncontrollability. SIAM J. Matrix Anal. Appl., 26(2):350–361, 2004.

[BM17] P. Benner and T. Mitchell. Extended and improved criss-cross algorithms for com-
puting the spectral value set abscissa and radius. e-print arXiv:1712.10067, arXiv,
December 2017. math.OC.

[Bye88] R. Byers. A bisection method for measuring the distance of a stable to unstable
matrices. SIAM J. Sci. Statist. Comput., 9:875–881, 1988.

[Bye90] R. Byers. Detecting nearly uncontrollable pairs. In M. A. Kaashoek, J. H. Schuppen,
and A. C. M. Ran, editors, Signal processing, scattering and operator theory, and
numerical methods, volume 3 of Proceedings of the International Symposium MTNS-
89, Amsterdam 1989, pages 447–457. Birkhäuser, Boston, MA, 1990.

[Eis84] R. Eising. Between controllable and uncontrollable. Syst. Cont. Lett., 4(5):263–264,
1984.

[EK17] M. Embree and B. Keeler. Pseudospectra of matrix pencils for transient analysis of
differential-algebraic equations. SIAM J. Matrix Anal. Appl., 38(3):1028–1054, 2017.

[GMO+06] M. Gu, E. Mengi, M. L. Overton, J. Xia, and J. Zhu. Fast methods for estimating
the distance to uncontrollability. SIAM J. Matrix Anal. Appl., 28(2):477–502, 2006.

[GN93] M. Gao and M. Neumann. A global minimum search algorithm for estimating the
distance to uncontrollability. Linear Algebra Appl., 188/189:305–350, 1993.

[Gu00] M. Gu. New methods for estimating the distance to uncontrollability. SIAM J.
Matrix Anal. Appl., 21(3):989–1003, 2000.

[Kre62] H.-O. Kreiss. Über die Stabilitätsdefinition für Differenzengleichungen die partielle
Differentialgleichungen approximieren. BIT Numerical Mathematics, 2(3):153–181,
1962.

[LY91] P. Lancaster and Q. Ye. Variational and numerical methods for symmetric matrix
pencils. Bull. Austral. Math. Soc., 43(1):1–17, 1991.

[Meh04] C. Mehl. Jacobi-like algorithms for the indefinite generalized Hermitian eigenvalue
problem. SIAM J. Matrix Anal. Appl., 25(4):964–985, 2004.

[Men06] E. Mengi. Measures for Robust Stability and Controllability. PhD the-
sis, New York University, New York, NY 10003, USA, September 2006.
https://cs.nyu.edu/media/publications/mengi_emre.pdf.

[Mit] T. Mitchell. ROSTAPACK: RObust STAbility PACKage.
http://timmitchell.com/software/ROSTAPACK.

[Mit19] T. Mitchell. Computing the Kreiss constant of a matrix. e-print arXiv:1907.06537,
arXiv, July 2019. math.OC.

[TE05] L. N. Trefethen and M. Embree. Spectra and pseudospectra: The behavior of non-
normal matrices and operators. Princeton University Press, Princeton, NJ, 2005.

[Wri02] T. G. Wright. EigTool. http://www.comlab.ox.ac.uk/pseudospectra/eigtool/,
2002.

24

https://cs.nyu.edu/media/publications/mengi_emre.pdf
http://timmitchell.com/software/ROSTAPACK
http://www.comlab.ox.ac.uk/pseudospectra/eigtool/

	1 Introduction
	2 Existing methods and their limitations
	3 Interpolation-based globality certificates for continuous-time K(A)
	4 Interpolation-based globality certificates for discrete-time K(A)
	5 Interpolation-based globality certificates for (A,B)
	6 Numerical experiments
	6.1 Comparisons to earlier methods
	6.2 Additional acceleration via parallel processing

	7 Concluding remarks
	A Real symmetry conditions for the level sets of (A,B)

